EECS 3101 - Design and Analysis of
v Algorithms

\‘; l/‘_ \‘ Shahin Kamali
“‘ Tutorial

York University

Picture is from the cover of the textbook CLRS.

EECS 3101 - Design and Analysis of Algorithms

v

PN
~

t ‘ L] L]
‘™ Partition Problem

o Given an array A of n distinct positive integers, we want to
investigate whether items in A can be divided into two subsets A;
and A, such that the sum of the numbers in A; equals the sum of
the numbers in A,.

o For example, for A =[1,2,4,5,10,18], the answer is ‘true’ because
items in A can be divided into A; = {2,18} and A; = {1,4,5, 10},
and numbers in both A; and A, sum to 20. On the other hand, for
subset A’ = [2,3,4,5,7,19], the answer is 'false.’

o Use a DP approach to answer the Partition problem for any array A
of size n. Assume indices start at 1.

v
PN
~\——

‘ - -
Y Partition Problem

A\

o Let S denote the total sum of the items. We consider the decision
problem that asks whether the first i items of A contains a subset of
size M. There is a 'yes' or ‘no’ in each cell of the DP table T. The

final solution is stored in P[n,S/2].

v
-
~

‘ - -
Y Partition Problem

s
o)

o Let S denote the total sum of the items. We consider the decision
problem that asks whether the first i items of A contains a subset of
size M. There is a 'yes' or ‘no’ in each cell of the DP table T. The

final solution is stored in P[n,S/2].
o In the base case, P[i,0] = true, P[0, M] = false if M # 0.

v
PN
~

N

‘ - -
~~) Partition Problem

W

o Let S denote the total sum of the items. We consider the decision
problem that asks whether the first i items of A contains a subset of
size M. There is a 'yes' or ‘no’ in each cell of the DP table T. The
final solution is stored in P[n,S/2].

o In the base case, P[i,0] = true, P[0, M] = false if M # 0.
o We can write P[i, M] = P[i —1,M]V P[i — 1, M — A[]].

v
PN
~\——

xh Subset Sum Problem

.
\ ;
A\

o In the subset sum problem, the goal is to find a subset of S of A
whose sum is a certain target number t given as input.

o The partition problem is the special case in which t is half the sum
of S.

v
PN
~

i A
‘Y Subset Sum Problem

W

o In the subset sum problem, the goal is to find a subset of S of A
whose sum is a certain target number t given as input.

o The partition problem is the special case in which t is half the sum
of S.

o The same approach that we used can be applied to solve subset sum
problem.

v

PN
~

t ‘ - -
‘o) 3-Partition Problem

o Given an array A of n distinct positive integers, we want to
investigate whether items in A can be divided into three subsets A;
and A, such that the sum of the numbers in A; equals the sum of
the numbers in A, and also the sume of the numbers in As.

o For example, for A=1,2,3,5,8,10,11,17], the answer is ‘true’
because items in A can be divided into A; = {2,17},
A, ={1,3,5,10}, and A3 = {8,11} and numbers in A1, A> and A;
sum to 19.

o Use a DP approach to answer the 3-Partition problem for any array
A of size n. Assume indices start at 1.

v
-
~

‘ -
‘™Y Three Stack Question

o Given three stacks of the positive numbers, the task is to find the
possible equal maximum sum of the stacks with the removal of top
elements allowed.

o Stacks are represented as an array of lengths ny, ny, n3, and the last
index of the array represent the top element of the stack.

° E.g., 51 = [1,1,1 2 3] 52 [2 3 4] and 53 [1 4 5 2]

v

PN
~

‘ -
‘™Y Three Stack Question

o Given three stacks of the positive numbers, the task is to find the
possible equal maximum sum of the stacks with the removal of top
elements allowed.

o Stacks are represented as an array of lengths ny, ny, n3, and the last
index of the array represent the top element of the stack.

o Eg, S1=1[1,1,1,2,3], S = [2,3,4], and S; = [1,4,5,2].
o Popping all elements result in an equal sum of 0.

v

PN
~

‘ -
‘™Y Three Stack Question

o Given three stacks of the positive numbers, the task is to find the
possible equal maximum sum of the stacks with the removal of top
elements allowed.

o Stacks are represented as an array of lengths ny, ny, n3, and the last
index of the array represent the top element of the stack.

o Eg., S1=[1,1,1,2,3], $> = [2,3,4], and S5 = [1,4,5,2].

o Popping all elements result in an equal sum of 0.

o A better solution is popping one element from S;, one element from
S> and two elements from S3 results in the three stacks having an
equal value of 5.

v
-
~

. o ‘ .
‘™) Three Stack Question

o Optimal subproblem property holds.

o Let Val[i,j, k] denote the optimal sum for the input formed by the
first i items of Sy, the first j items of S, and the first k items of
S3. We want Val[n1, n2, ns].

v

PN
~

‘ -
‘™Y Three Stack Question

o Optimal subproblem property holds.

o Let Val[i,j, k] denote the optimal sum for the input formed by the
first i items of Sy, the first j items of S, and the first k items of
Ss. We want Val[ny, n2, n3].

o To set Val[i,j, k], we check if total sum of the three stacks (up to
indices /,j, k respectively) is equal. If it is, return the equal sum.

o E.g., here the three sums Si[1..4], 52[2..3], and S[1..2] are equal to
5. Thus, Val[4,2,2] =5.

v

PN
~

‘ -
‘™Y Three Stack Question

o Optimal subproblem property holds.

o Let Val[i,j, k] denote the optimal sum for the input formed by the
first i items of Sy, the first j items of S, and the first k items of
Ss. We want Val[ny, n2, n3].

o To set Val[i,j, k], we check if total sum of the three stacks (up to
indices /,j, k respectively) is equal. If it is, return the equal sum.

o E.g., here the three sums Si[1..4], 52[2..3], and S[1..2] are equal to
5. Thus, Val[4,2,2] =5.

o If the three sums are not equal, we must pop from one of the
stacks. We can write
Valli, j, k] = max{Val[i — 1,j, k], Val[i,j — 1, k], Val[i,j, k — 1]}

v

PN
~

. o ‘ .
‘™) Three Stack Question

o Greedy-Choice property holds.

o The greedy choice is to pop from the stack with the largest sum
and repeat.

S S

sum: 8 sum: 9 sum: 12

EECS 3101 - Design and Analysis of Algorithms

v

PN
~

. o ‘ .
‘™) Three Stack Question

o Greedy-Choice property holds.

o The greedy choice is to pop from the stack with the largest sum
and repeat.

EECS 3101 - Design and Analysis of Algorithms

v

PN
~

. o ‘ .
‘™) Three Stack Question

o Greedy-Choice property holds.

o The greedy choice is to pop from the stack with the largest sum
and repeat.

EECS 3101 - Design and Analysis of Algorithms

v

PN
~

. o ‘ .
‘™) Three Stack Question

o Greedy-Choice property holds.

o The greedy choice is to pop from the stack with the largest sum
and repeat.

EECS 3101 - Design and Analysis of Algorithms

v

PN
~

. o ‘ .
‘™) Three Stack Question

o Greedy-Choice property holds.

o The greedy choice is to pop from the stack with the largest sum
and repeat.

EECS 3101 - Design and Analysis of Algorithms

v
-
~

. -
‘™) Three Stack Question

o Greedy-Choice property holds.

o The greedy choice is to pop from the stack with the largest sum
and repeat.

o Greedy Choice property: there is an optimal solution which starts
by popping from the stack with the larges sum (why?)

5§ oo

sum: 5 sum: 5 sum: 5

v
-
A \\an

1 ‘ - L] L]
‘>~ Problem Definition

W

o In edge coloring, the goal is to color edges of a graph with minimum
number of colors
o No two adjacent edges (edges sharing an endpoint) should have the
same color

o The problem is NP-hard, that is, it is very unlikely that an
algorithm which runs in polynomial time (in O(n°) for some
constant ¢) can solve it optimally.

v

PN
~

t ‘ - L] L]
‘>~ Problem Definition

W

o In edge coloring, the goal is to color edges of a graph with minimum
number of colors
o No two adjacent edges (edges sharing an endpoint) should have the
same color

o The problem is NP-hard, that is, it is very unlikely that an
algorithm which runs in polynomial time (in O(n°) for some
constant ¢) can solve it optimally.

o For a graph of max-degree A, at least A and at most A + 1 colors
are required (Vizing theorem)

o This implies that cost(Opt) = A

v
PN
N\

1 ; ‘ - " "
‘™) Problem Definition

o Greedy family of algorithms maintain a set of colors and use them,
if possible, before requesting a new coloring

EECS 3101 - Design and Analysis of Algorithms

v
PN
N\

1 ; ‘ - " "
‘™) Problem Definition

o Greedy family of algorithms maintain a set of colors and use them,
if possible, before requesting a new coloring

o cost of Opt is 4

EE 101 - Design and Analysi Igorithm

v
PN
N\

1 ; ‘ - " "
‘™) Problem Definition

o Greedy family of algorithms maintain a set of colors and use them,
if possible, before requesting a new coloring

o cost of Opt is 4

\

EE 101 - Design and Analysi Igorithm

v
PN
N\

1 ; ‘ - " "
‘™) Problem Definition

o Greedy family of algorithms maintain a set of colors and use them,
if possible, before requesting a new coloring

o cost of Opt is 4

EE 101 - Design and Analysi Igorithm

v
PN
N\

1 ; ‘ - " "
‘™) Problem Definition

o Greedy family of algorithms maintain a set of colors and use them,
if possible, before requesting a new coloring

o cost of Opt is 4

EE 101 - Design and Analysi Igorithm

v
PN
N\

1 ; ‘ - " "
‘™) Problem Definition

o Greedy family of algorithms maintain a set of colors and use them,
if possible, before requesting a new coloring

o cost of Opt is 4

EE 101 - Design and Analysi Igorithm

v
PN
N\

1 ; ‘ - " "
‘™) Problem Definition

o Greedy family of algorithms maintain a set of colors and use them,
if possible, before requesting a new coloring

o cost of Opt is 4

EE 101 - Design and Analysi Igorithm

v
PN
N\

1 ; ‘ - " "
‘™) Problem Definition

o Greedy family of algorithms maintain a set of colors and use them,
if possible, before requesting a new coloring

o cost of Opt is 4

EE 101 - Design and Analysi Igorithm

v
PN
N\

1 ; ‘ - " "
‘™) Problem Definition

o Greedy family of algorithms maintain a set of colors and use them,
if possible, before requesting a new coloring

o cost of Opt is 4

EE 101 - Design and Analysi Igorithm

v
PN
N\

1 ; ‘ - " "
‘™) Problem Definition

o Greedy family of algorithms maintain a set of colors and use them,
if possible, before requesting a new coloring

o cost of Opt is 4

EE 101 - Design and Analysi Igorithm

v
PN
~

.
\sz

< ‘ - " "
‘™) Problem Definition

o Greedy family of algorithms maintain a set of colors and use them,
if possible, before requesting a new coloring

o cost of Opt is 4

o Cost of Greedy is 5, which is not optimal

v
PN
1

. - ‘ .
WY Greedy algorithm

o The number of colors used by Greedy is at most 2 times worse than
the optimal number of colors — Greedy has an approximation
factor of 2!

EECS 3101 - Design and Analysis of Algorithms

v
PN
~\——

. h ‘ .
‘) Greedy algorithm

o The number of colors used by Greedy is at most 2 times worse than
the optimal number of colors — Greedy has an approximation
factor of 2!

o For any graph of degree A, cost of Opt is at least A.

v
PN
~

i

. .
‘) Greedy algorithm

o The number of colors used by Greedy is at most 2 times worse than
the optimal number of colors — Greedy has an approximation
factor of 2!

o For any graph of degree A, cost of Opt is at least A.
o Cost of greedy is at most 2A — 1.

a4=5 []

v
-
~

‘ L]
W™ Greedy algorithm

o The number of colors used by Greedy is at most 2 times worse than
the optimal number of colors — Greedy has an approximation
factor of 2!

o For any graph of degree A, cost of Opt is at least A.

o Cost of greedy is at most 2A — 1.

o Consider the edge that demands the last color.
o It is an edge between two vertices, each currently adjacent to at
most A — 1 edges.

a4=5 []

v

PN
~

‘ L]
W™ Greedy algorithm

o The number of colors used by Greedy is at most 2 times worse than
the optimal number of colors — Greedy has an approximation
factor of 2!

o For any graph of degree A, cost of Opt is at least A.

o Cost of greedy is at most 2A — 1.

o Consider the edge that demands the last color.
o It is an edge between two vertices, each currently adjacent to at
most A — 1 edges.
o The number of colors will be 2(A —1)+1=2A -1

a4=5 []

