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Partition Problem

Given an array A of n distinct positive integers, we want to
investigate whether items in A can be divided into two subsets A1

and A2 such that the sum of the numbers in A1 equals the sum of
the numbers in A2.

For example, for A = [1, 2, 4, 5, 10, 18], the answer is `true' because
items in A can be divided into A1 = {2, 18} and A2 = {1, 4, 5, 10},
and numbers in both A1 and A2 sum to 20. On the other hand, for
subset A′ = [2, 3, 4, 5, 7, 19], the answer is `false.'

Use a DP approach to answer the Partition problem for any array A
of size n. Assume indices start at 1.
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Partition Problem

Let S denote the total sum of the items. We consider the decision
problem that asks whether the �rst i items of A contains a subset of
size M. There is a `yes' or `no' in each cell of the DP table T . The
�nal solution is stored in P[n,S/2].

In the base case, P[i , 0] = true, P[0,M] = false if M ̸= 0.

We can write P[i ,M] = P[i − 1,M] ∨ P[i − 1,M − A[i ]].
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Subset Sum Problem

In the subset sum problem, the goal is to �nd a subset of S of A
whose sum is a certain target number t given as input.

The partition problem is the special case in which t is half the sum
of S .

The same approach that we used can be applied to solve subset sum
problem.
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3-Partition Problem

Given an array A of n distinct positive integers, we want to
investigate whether items in A can be divided into three subsets A1

and A2 such that the sum of the numbers in A1 equals the sum of
the numbers in A2 and also the sume of the numbers in A3.

For example, for A = [1, 2, 3, 5, 8, 10, 11, 17], the answer is `true'
because items in A can be divided into A1 = {2, 17},
A2 = {1, 3, 5, 10}, and A3 = {8, 11} and numbers in A1,A2 and A3

sum to 19.

Use a DP approach to answer the 3-Partition problem for any array
A of size n. Assume indices start at 1.
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Three Stack Question

Given three stacks of the positive numbers, the task is to �nd the
possible equal maximum sum of the stacks with the removal of top
elements allowed.

Stacks are represented as an array of lengths n1, n2, n3, and the last
index of the array represent the top element of the stack.

E.g., S1 = [1, 1, 1, 2, 3], S2 = [2, 3, 4], and S3 = [1, 4, 5, 2].

Popping all elements result in an equal sum of 0.
A better solution is popping one element from S1, one element from
S2 and two elements from S3 results in the three stacks having an
equal value of 5.
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Three Stack Question

Optimal subproblem property holds.

Let Val [i , j , k] denote the optimal sum for the input formed by the
�rst i items of S1, the �rst j items of S2, and the �rst k items of
S3. We want Val [n1, n2, n3].

To set Val [i , j , k], we check if total sum of the three stacks (up to
indices i , j , k respectively) is equal. If it is, return the equal sum.

E.g., here the three sums S1[1..4], S2[2..3], and S[1..2] are equal to

5. Thus, Val [4, 2, 2] = 5.

If the three sums are not equal, we must pop from one of the
stacks. We can write
Val [i , j , k] = max{Val [i − 1, j , k],Val [i , j − 1, k],Val [i , j , k − 1]}
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Three Stack Question

Greedy-Choice property holds.

The greedy choice is to pop from the stack with the largest sum
and repeat.

Greedy Choice property: there is an optimal solution which starts
by popping from the stack with the larges sum (why?)
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Problem De�nition

In edge coloring, the goal is to color edges of a graph with minimum
number of colors

No two adjacent edges (edges sharing an endpoint) should have the
same color

The problem is NP-hard, that is, it is very unlikely that an
algorithm which runs in polynomial time (in O(nc) for some
constant c) can solve it optimally.

For a graph of max-degree ∆, at least ∆ and at most ∆+ 1 colors
are required (Vizing theorem)

This implies that cost(Opt) ≈ ∆
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Problem De�nition

Greedy family of algorithms maintain a set of colors and use them,
if possible, before requesting a new coloring

cost of Opt is 4

Cost of Greedy is 5, which is not optimal
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Greedy algorithm

The number of colors used by Greedy is at most 2 times worse than
the optimal number of colors → Greedy has an approximation

factor of 2!

For any graph of degree ∆, cost of Opt is at least ∆.

Cost of greedy is at most 2∆− 1.

Consider the edge that demands the last color.

It is an edge between two vertices, each currently adjacent to at

most ∆− 1 edges.

The number of colors will be 2(∆− 1) + 1 = 2∆− 1
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