EECS 3101 - Design and Analysis of Algorithms

Shahin Kamali

Tutorial
York University

Picture is from the cover of the textbook CLRS.

Partition Problem

- Given an array A of n distinct positive integers, we want to investigate whether items in A can be divided into two subsets A_{1} and A_{2} such that the sum of the numbers in A_{1} equals the sum of the numbers in A_{2}.
- For example, for $A=[1,2,4,5,10,18]$, the answer is 'true' because items in A can be divided into $A_{1}=\{2,18\}$ and $A_{2}=\{1,4,5,10\}$, and numbers in both A_{1} and A_{2} sum to 20 . On the other hand, for subset $A^{\prime}=[2,3,4,5,7,19]$, the answer is 'false.'
- Use a DP approach to answer the Partition problem for any array A of size n. Assume indices start at 1 .

Partition Problem

- Let S denote the total sum of the items. We consider the decision problem that asks whether the first i items of A contains a subset of size M. There is a 'yes' or 'no' in each cell of the DP table T. The final solution is stored in $P[n, S / 2]$.

Partition Problem

- Let S denote the total sum of the items. We consider the decision problem that asks whether the first i items of A contains a subset of size M. There is a 'yes' or 'no' in each cell of the DP table T. The final solution is stored in $P[n, S / 2]$.
- In the base case, $P[i, 0]=$ true, $P[0, M]=$ false if $M \neq 0$.

Partition Problem

- Let S denote the total sum of the items. We consider the decision problem that asks whether the first i items of A contains a subset of size M. There is a 'yes' or 'no' in each cell of the DP table T. The final solution is stored in $P[n, S / 2]$.
- In the base case, $P[i, 0]=$ true, $P[0, M]=$ false if $M \neq 0$.
- We can write $P[i, M]=P[i-1, M] \vee P[i-1, M-A[i]]$.

Subset Sum Problem

- In the subset sum problem, the goal is to find a subset of S of A whose sum is a certain target number t given as input.
- The partition problem is the special case in which t is half the sum of S.

Subset Sum Problem

- In the subset sum problem, the goal is to find a subset of S of A whose sum is a certain target number t given as input.
- The partition problem is the special case in which t is half the sum of S.
- The same approach that we used can be applied to solve subset sum problem.

3-Partition Problem

- Given an array A of n distinct positive integers, we want to investigate whether items in A can be divided into three subsets A_{1} and A_{2} such that the sum of the numbers in A_{1} equals the sum of the numbers in A_{2} and also the sume of the numbers in A_{3}.
- For example, for $A=[1,2,3,5,8,10,11,17]$, the answer is 'true' because items in A can be divided into $A_{1}=\{2,17\}$, $A_{2}=\{1,3,5,10\}$, and $A_{3}=\{8,11\}$ and numbers in A_{1}, A_{2} and A_{3} sum to 19 .
- Use a DP approach to answer the 3-Partition problem for any array A of size n. Assume indices start at 1 .

Three Stack Question

- Given three stacks of the positive numbers, the task is to find the possible equal maximum sum of the stacks with the removal of top elements allowed.
- Stacks are represented as an array of lengths n_{1}, n_{2}, n_{3}, and the last index of the array represent the top element of the stack.
- E.g., $S_{1}=[1,1,1,2,3], S_{2}=[2,3,4]$, and $S_{3}=[1,4,5,2]$.

3
2
1
1
1

Three Stack Question

- Given three stacks of the positive numbers, the task is to find the possible equal maximum sum of the stacks with the removal of top elements allowed.
- Stacks are represented as an array of lengths n_{1}, n_{2}, n_{3}, and the last index of the array represent the top element of the stack.
- E.g., $S_{1}=[1,1,1,2,3], S_{2}=[2,3,4]$, and $S_{3}=[1,4,5,2]$.
- Popping all elements result in an equal sum of 0 .

3
2
1
1
1
S_{1}

Three Stack Question

- Given three stacks of the positive numbers, the task is to find the possible equal maximum sum of the stacks with the removal of top elements allowed.
- Stacks are represented as an array of lengths n_{1}, n_{2}, n_{3}, and the last index of the array represent the top element of the stack.
- E.g., $S_{1}=[1,1,1,2,3], S_{2}=[2,3,4]$, and $S_{3}=[1,4,5,2]$.
- Popping all elements result in an equal sum of 0 .
- A better solution is popping one element from S_{1}, one element from S_{2} and two elements from S_{3} results in the three stacks having an equal value of 5 .

3
2
1
1
1
S_{1}

Three Stack Question

- Optimal subproblem property holds.
- Let $\mathrm{Val}[i, j, k]$ denote the optimal sum for the input formed by the first i items of S_{1}, the first j items of S_{2}, and the first k items of S_{3}. We want $\mathrm{Val}\left[n_{1}, n_{2}, n_{3}\right]$.

3
2
1
1
1

4
3
2
S_{2}
:---
5
4
1

Three Stack Question

- Optimal subproblem property holds.
- Let $\mathrm{Val}[i, j, k]$ denote the optimal sum for the input formed by the first i items of S_{1}, the first j items of S_{2}, and the first k items of S_{3}. We want $V a l\left[n_{1}, n_{2}, n_{3}\right]$.
- To set $\mathrm{Val}[i, j, k]$, we check if total sum of the three stacks (up to indices i, j, k respectively) is equal. If it is, return the equal sum.
- E.g., here the three sums $S_{1}[1 . .4], S_{2}[2 . .3]$, and $S[1 . .2]$ are equal to 5. Thus, $\mathrm{Val}[4,2,2]=5$.

3
2
1
1
1

Three Stack Question

- Optimal subproblem property holds.
- Let $\mathrm{Val}[i, j, k]$ denote the optimal sum for the input formed by the first i items of S_{1}, the first j items of S_{2}, and the first k items of S_{3}. We want $V a l\left[n_{1}, n_{2}, n_{3}\right]$.
- To set $\mathrm{Val}[i, j, k]$, we check if total sum of the three stacks (up to indices i, j, k respectively) is equal. If it is, return the equal sum.
- E.g., here the three sums $S_{1}[1 . .4], S_{2}[2 . .3]$, and $S[1 . .2]$ are equal to 5. Thus, $\operatorname{Val}[4,2,2]=5$.
- If the three sums are not equal, we must pop from one of the stacks. We can write

$$
\operatorname{Val}[i, j, k]=\max \{\operatorname{Val}[i-1, j, k], \operatorname{Val}[i, j-1, k], \operatorname{Val}[i, j, k-1]\}
$$

3
2
1
1
1
S_{1}

4
4
3
2
S_{2}
:---
5
4
1

Three Stack Question

- Greedy-Choice property holds.
- The greedy choice is to pop from the stack with the largest sum and repeat.

sum : 8

sum : 9

sum : 12

Three Stack Question

- Greedy-Choice property holds.
- The greedy choice is to pop from the stack with the largest sum and repeat.

sum : 8

sum: 9

sum : 10

Three Stack Question

- Greedy-Choice property holds.
- The greedy choice is to pop from the stack with the largest sum and repeat.

sum : 8

sum : 9

sum : 5

Three Stack Question

- Greedy-Choice property holds.
- The greedy choice is to pop from the stack with the largest sum and repeat.

sum : 8

sum : 5

sum : 5

Three Stack Question

- Greedy-Choice property holds.
- The greedy choice is to pop from the stack with the largest sum and repeat.

Three Stack Question

- Greedy-Choice property holds.
- The greedy choice is to pop from the stack with the largest sum and repeat.
- Greedy Choice property: there is an optimal solution which starts by popping from the stack with the larges sum (why?)

Problem Definition

- In edge coloring, the goal is to color edges of a graph with minimum number of colors
- No two adjacent edges (edges sharing an endpoint) should have the same color
- The problem is NP-hard, that is, it is very unlikely that an algorithm which runs in polynomial time (in $O\left(n^{c}\right)$ for some constant c) can solve it optimally.

Problem Definition

- In edge coloring, the goal is to color edges of a graph with minimum number of colors
- No two adjacent edges (edges sharing an endpoint) should have the same color
- The problem is NP-hard, that is, it is very unlikely that an algorithm which runs in polynomial time (in $O\left(n^{c}\right)$ for some constant c) can solve it optimally.
- For a graph of max-degree Δ, at least Δ and at most $\Delta+1$ colors are required (Vizing theorem)
- This implies that $\operatorname{cost}(\mathrm{Opt}) \approx \Delta$

Problem Definition

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring

Problem Definition

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4

Problem Definition

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4

Problem Definition

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4

Problem Definition

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4

Problem Definition

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4

Problem Definition

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4

Problem Definition

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4

Problem Definition

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4

Problem Definition

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4

Problem Definition

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4
- Cost of Greedy is 5 , which is not optimal

Greedy algorithm

- The number of colors used by Greedy is at most 2 times worse than the optimal number of colors \rightarrow Greedy has an approximation factor of 2 !

Greedy algorithm

- The number of colors used by Greedy is at most 2 times worse than the optimal number of colors \rightarrow Greedy has an approximation factor of 2 !
- For any graph of degree Δ, cost of Opt is at least Δ.

Greedy algorithm

- The number of colors used by Greedy is at most 2 times worse than the optimal number of colors \rightarrow Greedy has an approximation factor of 2 !
- For any graph of degree Δ, cost of Opt is at least Δ.
- Cost of greedy is at most $2 \Delta-1$.

Greedy algorithm

- The number of colors used by Greedy is at most 2 times worse than the optimal number of colors \rightarrow Greedy has an approximation factor of 2 !
- For any graph of degree Δ, cost of Opt is at least Δ.
- Cost of greedy is at most $2 \Delta-1$.
- Consider the edge that demands the last color.
- It is an edge between two vertices, each currently adjacent to at most $\Delta-1$ edges.

Greedy algorithm

- The number of colors used by Greedy is at most 2 times worse than the optimal number of colors \rightarrow Greedy has an approximation factor of 2 !
- For any graph of degree Δ, cost of Opt is at least Δ.
- Cost of greedy is at most $2 \Delta-1$.
- Consider the edge that demands the last color.
- It is an edge between two vertices, each currently adjacent to at most $\Delta-1$ edges.
- The number of colors will be $2(\Delta-1)+1=2 \Delta-1$

