

EECS 3101 - Design and Analysis of Algorithms

Shahin Kamali

Tutorial

York University

Picture is from the cover of the textbook CLRS.

- Given an array A of n distinct positive integers, we want to investigate whether items in A can be divided into two subsets A₁ and A₂ such that the sum of the numbers in A₁ equals the sum of the numbers in A₂.
- For example, for A = [1, 2, 4, 5, 10, 18], the answer is 'true' because items in A can be divided into $A_1 = \{2, 18\}$ and $A_2 = \{1, 4, 5, 10\}$, and numbers in both A_1 and A_2 sum to 20. On the other hand, for subset A' = [2, 3, 4, 5, 7, 19], the answer is 'false.'
- Use a DP approach to answer the Partition problem for any array A of size n. Assume indices start at 1.

• Let S denote the total sum of the items. We consider the decision problem that asks whether the first *i* items of A contains a subset of size M. There is a 'yes' or 'no' in each cell of the DP table T. The final solution is stored in P[n, S/2].

- Let S denote the total sum of the items. We consider the decision problem that asks whether the first *i* items of A contains a subset of size M. There is a 'yes' or 'no' in each cell of the DP table T. The final solution is stored in P[n, S/2].
- In the base case, P[i, 0] = true, P[0, M] = false if $M \neq 0$.

- Let S denote the total sum of the items. We consider the decision problem that asks whether the first *i* items of A contains a subset of size M. There is a 'yes' or 'no' in each cell of the DP table T. The final solution is stored in P[n, S/2].
- In the base case, P[i, 0] = true, P[0, M] = false if $M \neq 0$.
- We can write $P[i, M] = P[i 1, M] \vee P[i 1, M A[i]]$.

- In the subset sum problem, the goal is to find a subset of S of A whose sum is a certain target number t given as input.
- The partition problem is the special case in which *t* is half the sum of *S*.

- In the subset sum problem, the goal is to find a subset of S of A whose sum is a certain target number t given as input.
- The partition problem is the special case in which *t* is half the sum of *S*.
- The same approach that we used can be applied to solve subset sum problem.

- Given an array A of n distinct positive integers, we want to investigate whether items in A can be divided into **three** subsets A₁ and A₂ such that the sum of the numbers in A₁ equals the sum of the numbers in A₂ and also the sume of the numbers in A₃.
- For example, for A = [1, 2, 3, 5, 8, 10, 11, 17], the answer is 'true' because items in A can be divided into $A_1 = \{2, 17\}$, $A_2 = \{1, 3, 5, 10\}$, and $A_3 = \{8, 11\}$ and numbers in A_1, A_2 and A_3 sum to 19.
- Use a DP approach to answer the 3-Partition problem for any array *A* of size *n*. Assume indices start at 1.

- Given three stacks of the positive numbers, the task is to find the possible equal maximum sum of the stacks with the removal of top elements allowed.
- Stacks are represented as an array of lengths n_1, n_2, n_3 , and the last index of the array represent the top element of the stack.

• E.g., $S_1 = [1, 1, 1, 2, 3]$, $S_2 = [2, 3, 4]$, and $S_3 = [1, 4, 5, 2]$.

ECS 3101 - Design and Analysis of Algorithms

- Given three stacks of the positive numbers, the task is to find the possible equal maximum sum of the stacks with the removal of top elements allowed.
- Stacks are represented as an array of lengths n_1, n_2, n_3 , and the last index of the array represent the top element of the stack.
 - E.g., $S_1 = [1, 1, 1, 2, 3]$, $S_2 = [2, 3, 4]$, and $S_3 = [1, 4, 5, 2]$.
 - Popping all elements result in an equal sum of 0.

EECS 3101 - Design and Analysis of Algorithms

- Given three stacks of the positive numbers, the task is to find the possible equal maximum sum of the stacks with the removal of top elements allowed.
- Stacks are represented as an array of lengths n_1, n_2, n_3 , and the last index of the array represent the top element of the stack.
 - E.g., $S_1 = [1, 1, 1, 2, 3]$, $S_2 = [2, 3, 4]$, and $S_3 = [1, 4, 5, 2]$.
 - Popping all elements result in an equal sum of 0.
 - A better solution is popping one element from S_1 , one element from S_2 and two elements from S_3 results in the three stacks having an equal value of 5.

- Optimal subproblem property holds.
 - Let Val[i, j, k] denote the optimal sum for the input formed by the first *i* items of S_1 , the first *j* items of S_2 , and the first *k* items of S_3 . We want $Val[n_1, n_2, n_3]$.

- Optimal subproblem property holds.
 - Let Val[i, j, k] denote the optimal sum for the input formed by the first *i* items of S_1 , the first *j* items of S_2 , and the first *k* items of S_3 . We want $Val[n_1, n_2, n_3]$.
 - To set *Val*[*i*, *j*, *k*], we check if total sum of the three stacks (up to indices *i*, *j*, *k* respectively) is equal. If it is, return the equal sum.
 - E.g., here the three sums $S_1[1..4]$, $S_2[2..3]$, and S[1..2] are equal to 5. Thus, Val[4, 2, 2] = 5.

- Optimal subproblem property holds.
 - Let Val[i, j, k] denote the optimal sum for the input formed by the first *i* items of S_1 , the first *j* items of S_2 , and the first *k* items of S_3 . We want $Val[n_1, n_2, n_3]$.
 - To set *Val*[*i*, *j*, *k*], we check if total sum of the three stacks (up to indices *i*, *j*, *k* respectively) is equal. If it is, return the equal sum.
 - E.g., here the three sums $S_1[1..4]$, $S_2[2..3]$, and S[1..2] are equal to 5. Thus, Val[4,2,2] = 5.
 - If the three sums are not equal, we must pop from one of the stacks. We can write

 $Val[i, j, k] = \max\{Val[i - 1, j, k], Val[i, j - 1, k], Val[i, j, k - 1]\}$

- Greedy-Choice property holds.
 - The greedy choice is to pop from the stack with the largest sum and repeat.

- Greedy-Choice property holds.
 - The greedy choice is to pop from the stack with the largest sum and repeat.

- Greedy-Choice property holds.
 - The greedy choice is to pop from the stack with the largest sum and repeat.

- Greedy-Choice property holds.
 - The greedy choice is to pop from the stack with the largest sum and repeat.

8 / 11

- Greedy-Choice property holds.
 - The greedy choice is to pop from the stack with the largest sum and repeat.

- Greedy-Choice property holds.
 - The greedy choice is to pop from the stack with the largest sum and repeat.
 - Greedy Choice property: there is an optimal solution which starts by popping from the stack with the larges sum (why?)

Problem Definition

- In edge coloring, the goal is to color edges of a graph with minimum number of colors
 - No two adjacent edges (edges sharing an endpoint) should have the same color
- The problem is NP-hard, that is, it is very unlikely that an algorithm which runs in polynomial time (in $O(n^c)$ for some constant c) can solve it optimally.

Problem Definition

- In edge coloring, the goal is to color edges of a graph with minimum number of colors
 - No two adjacent edges (edges sharing an endpoint) should have the same color
- The problem is NP-hard, that is, it is very unlikely that an algorithm which runs in polynomial time (in $O(n^c)$ for some constant c) can solve it optimally.
- For a graph of max-degree $\Delta,$ at least Δ and at most $\Delta+1$ colors are required (Vizing theorem)
 - This implies that $\textit{cost}(\mathsf{Opt}) pprox \Delta$

• Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4

- Greedy family of algorithms maintain a set of colors and use them, if possible, before requesting a new coloring
- cost of Opt is 4
- Cost of Greedy is 5, which is not optimal

 The number of colors used by Greedy is at most 2 times worse than the optimal number of colors → Greedy has an approximation factor of 2!

- The number of colors used by Greedy is at most 2 times worse than the optimal number of colors → Greedy has an approximation factor of 2!
- For any graph of degree Δ , cost of Opt is at least Δ .

- The number of colors used by Greedy is at most 2 times worse than the optimal number of colors \rightarrow Greedy has an approximation factor of 2!
- For any graph of degree Δ , cost of Opt is at least Δ .
- Cost of greedy is at most $2\Delta 1$.

- The number of colors used by Greedy is at most 2 times worse than the optimal number of colors → Greedy has an approximation factor of 2!
- For any graph of degree Δ , cost of Opt is at least Δ .
- Cost of greedy is at most $2\Delta 1$.
 - Consider the edge that demands the last color.
 - $\bullet~$ It is an edge between two vertices, each currently adjacent to at most $\Delta-1$ edges.

- The number of colors used by Greedy is at most 2 times worse than the optimal number of colors \rightarrow Greedy has an approximation factor of 2!
- For any graph of degree Δ , cost of Opt is at least Δ .
- Cost of greedy is at most $2\Delta 1$.
 - Consider the edge that demands the last color.
 - It is an edge between two vertices, each currently adjacent to at most $\Delta-1$ edges.
 - The number of colors will be $2(\Delta 1) + 1 = 2\Delta 1$

