EECS 3101 - Design and Analysis of Algorithms

Shahin Kamali

Tutorial
York University

Picture is from the cover of the textbook CLRS.

Highway Billboard Placement

- Consider a highway of M kilometers. The task is to place billboards on the highway such that revenue is maximized. The possible sites for billboards are given by number $x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}$ specifying positions in kilometers measured from one end of the road.
- If we place a billboard at position x_{i}, we receive a revenue of $r_{i}>0$.
- The constraint is that no two billboards can be placed within d kilometers or less than it.
- Example: $M=15, n=5, d=5$,

$$
(x, r)=(6,3),(8,6),(12,5),(14,3),(15,5)
$$

- Potential answers:
$\{(6,3),(12,5)\} \rightarrow$ revenue: 8
$\{(8,6),(15,5)\}$: revenue: 11

	3	6	5	3	5
0	6	8	12	14	15

Highway Billboard Placement

- Step 1: define subproblems; let Profit(i) define the maximum revenue for an input formed by the first i billboards ($1 \leq i \leq n$). We want to find $\operatorname{Profit}(n)$.

Highway Billboard Placement

- Step 1: define subproblems; let Profit(i) define the maximum revenue for an input formed by the first i billboards $(1 \leq i \leq n)$. We want to find $\operatorname{Profit}(n)$.
- Step 2: devise a recursive formula for Profit i

Highway Billboard Placement

- Step 1: define subproblems; let Profit(i) define the maximum revenue for an input formed by the first i billboards ($1 \leq i \leq n$).
We want to find $\operatorname{Profit}(n)$.
- Step 2: devise a recursive formula for Profit i
- Base case: we have $\operatorname{Profit}(0)=0$.

Highway Billboard Placement

- Step 1: define subproblems; let Profit(i) define the maximum revenue for an input formed by the first i billboards ($1 \leq i \leq n$). We want to find $\operatorname{Profit}(n)$.
- Step 2: devise a recursive formula for Profit i
- Base case: we have $\operatorname{Profit}(0)=0$.
- If we reject the i 'th billboard, we get a candidate solution with value $\operatorname{Profit}[i-1]$.

Highway Billboard Placement

- Step 1: define subproblems; let Profit(i) define the maximum revenue for an input formed by the first i billboards $(1 \leq i \leq n)$. We want to find $\operatorname{Profit}(n)$.
- Step 2: devise a recursive formula for Profit i
- Base case: we have $\operatorname{Profit}(0)=0$.
- If we reject the i 'th billboard, we get a candidate solution with value $\operatorname{Profit}[i-1]$.
- If we accept the i 'th billboard, we get a revenue $r[i]$. In addition, let pred be the larges value $j<i$ s.t. $x[i]-x[j]>d$ (and 0 if no such j exists). In addition to r[i] we can get a profit of Profit[pred[i]] from other billboards.
Example: $\operatorname{pred}[5]=3$ in the above example (recall that $d=5$).

$$
\operatorname{Profit}[i]= \begin{cases}0 & i=0 \\ \max \{\operatorname{Profit}[i-1], \operatorname{Profit}[\operatorname{pred}[i]]+r[i]\}\end{cases}
$$

Submatrix Sum

- Given an $M \times N$ matrix A and two coordinates (p, q) and (r, s) representing top-left and bottom-right coordinates of a submatrix of it, calculate the sum of all elements present in the submatrix. Here, $0 \leq p<r<M$ and $0 \leq q<s<N$.
Example: for $(p, q)=(2,2)$ and $(r, s)=(3,3)$, sum is $8+1+1+3=13$

	3	7	6	2	2	4
2	9	8	1	6	1	2
3	2	1	3	5	4	3
4	4	9	3	7	3	5
	1	8	2	5		

Submatrix Sum

- Given an $M \times N$ matrix A and two coordinates (p, q) and (r, s) representing top-left and bottom-right coordinates of a submatrix of it, calculate the sum of all elements present in the submatrix. Here, $0 \leq p<r<M$ and $0 \leq q<s<N$.
Example: for $(p, q)=(2,2)$ and $(r, s)=(3,3)$, sum is $8+1+1+3=13$

	3	7	6	2	2	4
2	9	8	1	6	1	2
3	2	1	3	5	4	3
4	4	9	3	7	3	5
	1	8	2	5	6	3

- We want to report the sum in $O(1)$. This requires pre-processing the input!

Submatrix Sum

- Pre-processing: process the matrix once and use the results of your calculation in answering any query.

1	3	7	6	2	2	4
2	9	8	1	6	1	2
3	2	1	3	5	4	3
4	4	9	3	7	3	5
5	1	8	2	5	6	3

Submatrix Sum

- Pre-processing: process the matrix once and use the results of your calculation in answering any query.
- Take an auxiliary matrix sum[[][], where sum[$[i][j]$ will store the sum of elements in the matrix from $(1,1)$ to (i, j), e.g., $\operatorname{sum}[3,2]=3+7+9+8+2+1$.

Submatrix Sum

- Pre-processing: process the matrix once and use the results of your calculation in answering any query.
- Take an auxiliary matrix sum[][], where sum[i][j] will store the sum of elements in the matrix from $(1,1)$ to (i, j), e.g.,

$$
\operatorname{sum}[3,2]=3+7+9+8+2+1
$$

- We calculate the value of $\operatorname{sum}[i][j]$ using the following relation:

$$
\operatorname{sum}[i][j]= \begin{cases}0 & \text { if } i<0 \text { or } j<0 \\ \operatorname{sum}[i][j-1]+\operatorname{sum}[i-1][j]+A[i][j]-\operatorname{sum}[i-1][j-1] \text { if } i, j>0\end{cases}
$$

$\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$						
	3	7	6	2	2	4
2	9	8	1	6	1	2
3	2	1	3	5	4	3
4	4	9	3	7	3	5
	1	8	2	5	6	3

Submatrix Sum

- Real-time Queries: use pre-computed matrix sum to answer queries in constant time.

Submatrix Sum

- Real-time Queries: use pre-computed matrix sum to answer queries in constant time.
- To calculate the sum of elements present in the submatrix formed by coordinates $(p, q),(p, s),(r, q)$, and (r, s) in constant time, we apply the relation below:
- total $=\operatorname{sum}[r][s]-\operatorname{sum}[r][q-1]-\operatorname{sum}[p-1][s]+\operatorname{sum}[p-1][q-1]$

