

EECS 3101 - Design and Analysis of Algorithms

Shahin Kamali

Tutorial

York University

Picture is from the cover of the textbook CLRS.

- Consider a highway of M kilometers. The task is to place billboards on the highway such that revenue is maximized. The possible sites for billboards are given by number $x_1 < x_2 < \ldots < x_{n-1} < x_n$ specifying positions in kilometers measured from one end of the road.
 - If we place a billboard at position x_i , we receive a revenue of $r_i > 0$.
 - The constraint is that no two billboards can be placed within *d* kilometers or less than it.
 - Example: M = 15, n = 5, d = 5,(x, r) = (6,3), (8,6), (12,5), (14,3), (15,5),
 - Potential answers:

 $\{(6,3),(12,5)\} \rightarrow \text{revenue: 8} \\ \{(8,6),(15,5)\}: \text{revenue: 11}$

EECS 3101 - Design and Analysis of Algorithms

• Step 1: define subproblems; let Profit(i) define the maximum revenue for an input formed by the first *i* billboards $(1 \le i \le n)$. We want to find Profit(n).

- Step 1: define subproblems; let Profit(i) define the maximum revenue for an input formed by the first *i* billboards $(1 \le i \le n)$. We want to find Profit(n).
- Step 2: devise a recursive formula for Profit i

- Step 1: define subproblems; let Profit(i) define the maximum revenue for an input formed by the first *i* billboards $(1 \le i \le n)$. We want to find Profit(n).
- Step 2: devise a recursive formula for Profit i
 - Base case: we have Profit(0) = 0.

- Step 1: define subproblems; let Profit(i) define the maximum revenue for an input formed by the first *i* billboards $(1 \le i \le n)$. We want to find Profit(n).
- Step 2: devise a recursive formula for Profit i
 - Base case: we have Profit(0) = 0.
 - If we reject the *i*'th billboard, we get a candidate solution with value Profit[i 1].

- Step 1: define subproblems; let *Profit(i)* define the maximum revenue for an input formed by the first *i* billboards (1 ≤ *i* ≤ *n*). We want to find *Profit(n)*.
- Step 2: devise a recursive formula for Profit i
 - Base case: we have Profit(0) = 0.
 - If we reject the *i*'th billboard, we get a candidate solution with value Profit[i 1].
 - If we accept the *i*'th billboard, we get a revenue r[i]. In addition, let *pred* be the larges value j < i s.t. x[i] x[j] > d (and 0 if no such *j* exists). In addition to r[i] we can get a profit of *Profit*[*pred*[*i*]] from other billboards.

Example: pred[5] = 3 in the above example (recall that d = 5).

$$Profit[i] = \begin{cases} 0 & i = 0 \\ \max\{Profit[i-1], Profit[pred[i]] + r[i]\} \end{cases}$$

6

EECS 3101 - Design and Analysis of Algorithms

• Given an $M \times N$ matrix A and two coordinates (p, q) and (r, s) representing top-left and bottom-right coordinates of a submatrix of it, calculate the sum of all elements present in the submatrix. Here, $0 \le p < r < M$ and $0 \le q < s < N$.

Example: for (p, q) = (2, 2) and (r, s) = (3, 3), sum is 8 + 1 + 1 + 3 = 13

	\rightarrow					
1	1 2	2	3 4	1 .	5	6
1	3	7	6	2	2	4
2	9	8	1	6	1	2
3	2	1	3	5	4	3
4	4	9	3	7	3	5
5	1	8	2	5	6	3

• Given an $M \times N$ matrix A and two coordinates (p, q) and (r, s) representing top-left and bottom-right coordinates of a submatrix of it, calculate the sum of all elements present in the submatrix. Here, $0 \le p < r < M$ and $0 \le q < s < N$.

Example: for (p, q) = (2, 2) and (r, s) = (3, 3), sum is 8 + 1 + 1 + 3 = 13

	\rightarrow					
+	1 2	2	3 4	1 .	5	6
1	3	7	6	2	2	4
2	9	8	1	6	1	2
3	2	1	3	5	4	3
4	4	9	3	7	3	5
5	1	8	2	5	6	3

• We want to report the sum in O(1). This requires pre-processing the input!

• Pre-processing: process the matrix once and use the results of your calculation in answering any query.

- Pre-processing: process the matrix once and use the results of your calculation in answering any query.
 - Take an auxiliary matrix sum[][], where sum[i][j] will store the sum of elements in the matrix from (1, 1) to (i, j), e.g., sum[3, 2] = 3 + 7 + 9 + 8 + 2 + 1.

\int	→ 1 :	2	3 4	4	5	6	
1	3	7	6	2	2	4	
2	9	8	1	6	1	2	
3	2	1	3	5	4	3	
4	4	9	3	7	3	5	
5	1	8	2	5	6	3	

Submatrix Sum

- Pre-processing: process the matrix once and use the results of your calculation in answering any query.
 - Take an auxiliary matrix sum[][], where sum[i][j] will store the sum of elements in the matrix from (1, 1) to (i, j), e.g., sum[3, 2] = 3 + 7 + 9 + 8 + 2 + 1.
 - We calculate the value of sum[i][j] using the following relation:

• Real-time Queries: use pre-computed matrix *sum* to answer queries in constant time.

- Real-time Queries: use pre-computed matrix *sum* to answer queries in constant time.
- To calculate the sum of elements present in the submatrix formed by coordinates (p, q), (p, s), (r, q), and(r, s) in constant time, we apply the relation below:

•
$$total = sum[r][s] - sum[r][q-1] - sum[p-1][s] + sum[p-1][q-1]$$

