
EECS 3101 - Design and Analysis of

Algorithms

Shahin Kamali

Tutorial

York University

Picture is from the cover of the textbook CLRS.

1 / 6
EECS 3101 - Design and Analysis of Algorithms

▲



Highway Billboard Placement

Consider a highway of M kilometers. The task is to place billboards
on the highway such that revenue is maximized. The possible sites
for billboards are given by number x1 < x2 < . . . < xn−1 < xn
specifying positions in kilometers measured from one end of the
road.

If we place a billboard at position xi , we receive a revenue of ri > 0.
The constraint is that no two billboards can be placed within d
kilometers or less than it.
Example: M = 15, n = 5, d = 5,
(x , r) = (6, 3), (8, 6), (12, 5), (14, 3), (15, 5),
Potential answers:

{(6, 3), (12, 5)} → revenue: 8
{(8, 6), (15, 5)} : revenue: 11

2 / 6
EECS 3101 - Design and Analysis of Algorithms

▲



Highway Billboard Placement

Step 1: de�ne subproblems; let Profit(i) de�ne the maximum
revenue for an input formed by the �rst i billboards (1 ≤ i ≤ n).
We want to �nd Profit(n).

Step 2: devise a recursive formula for Pro�t i

Base case: we have Profit(0) = 0.
If we reject the i 'th billboard, we get a candidate solution with
value Profit[i − 1].
If we accept the i 'th billboard, we get a revenue r [i ]. In addition, let
pred be the larges value j < i s.t. x [i ]− x [j ] > d (and 0 if no such j
exists). In addition to r [i ] we can get a pro�t of Profit[pred [i ]] from
other billboards.
Example: pred [5] = 3 in the above example (recall that d = 5).

Profit[i ] =

{
0 i = 0

max{Profit[i − 1],Profit[pred [i ]] + r [i ]}

3 / 6
EECS 3101 - Design and Analysis of Algorithms

▲



Highway Billboard Placement

Step 1: de�ne subproblems; let Profit(i) de�ne the maximum
revenue for an input formed by the �rst i billboards (1 ≤ i ≤ n).
We want to �nd Profit(n).

Step 2: devise a recursive formula for Pro�t i

Base case: we have Profit(0) = 0.
If we reject the i 'th billboard, we get a candidate solution with
value Profit[i − 1].
If we accept the i 'th billboard, we get a revenue r [i ]. In addition, let
pred be the larges value j < i s.t. x [i ]− x [j ] > d (and 0 if no such j
exists). In addition to r [i ] we can get a pro�t of Profit[pred [i ]] from
other billboards.
Example: pred [5] = 3 in the above example (recall that d = 5).

Profit[i ] =

{
0 i = 0

max{Profit[i − 1],Profit[pred [i ]] + r [i ]}

3 / 6
EECS 3101 - Design and Analysis of Algorithms

▲



Highway Billboard Placement

Step 1: de�ne subproblems; let Profit(i) de�ne the maximum
revenue for an input formed by the �rst i billboards (1 ≤ i ≤ n).
We want to �nd Profit(n).

Step 2: devise a recursive formula for Pro�t i

Base case: we have Profit(0) = 0.

If we reject the i 'th billboard, we get a candidate solution with
value Profit[i − 1].
If we accept the i 'th billboard, we get a revenue r [i ]. In addition, let
pred be the larges value j < i s.t. x [i ]− x [j ] > d (and 0 if no such j
exists). In addition to r [i ] we can get a pro�t of Profit[pred [i ]] from
other billboards.
Example: pred [5] = 3 in the above example (recall that d = 5).

Profit[i ] =

{
0 i = 0

max{Profit[i − 1],Profit[pred [i ]] + r [i ]}

3 / 6
EECS 3101 - Design and Analysis of Algorithms

▲



Highway Billboard Placement

Step 1: de�ne subproblems; let Profit(i) de�ne the maximum
revenue for an input formed by the �rst i billboards (1 ≤ i ≤ n).
We want to �nd Profit(n).

Step 2: devise a recursive formula for Pro�t i

Base case: we have Profit(0) = 0.
If we reject the i 'th billboard, we get a candidate solution with
value Profit[i − 1].

If we accept the i 'th billboard, we get a revenue r [i ]. In addition, let
pred be the larges value j < i s.t. x [i ]− x [j ] > d (and 0 if no such j
exists). In addition to r [i ] we can get a pro�t of Profit[pred [i ]] from
other billboards.
Example: pred [5] = 3 in the above example (recall that d = 5).

Profit[i ] =

{
0 i = 0

max{Profit[i − 1],Profit[pred [i ]] + r [i ]}

3 / 6
EECS 3101 - Design and Analysis of Algorithms

▲



Highway Billboard Placement

Step 1: de�ne subproblems; let Profit(i) de�ne the maximum
revenue for an input formed by the �rst i billboards (1 ≤ i ≤ n).
We want to �nd Profit(n).

Step 2: devise a recursive formula for Pro�t i

Base case: we have Profit(0) = 0.
If we reject the i 'th billboard, we get a candidate solution with
value Profit[i − 1].
If we accept the i 'th billboard, we get a revenue r [i ]. In addition, let
pred be the larges value j < i s.t. x [i ]− x [j ] > d (and 0 if no such j
exists). In addition to r [i ] we can get a pro�t of Profit[pred [i ]] from
other billboards.
Example: pred [5] = 3 in the above example (recall that d = 5).

Profit[i ] =

{
0 i = 0

max{Profit[i − 1],Profit[pred [i ]] + r [i ]}

3 / 6
EECS 3101 - Design and Analysis of Algorithms

▲



Submatrix Sum

Given an M × N matrix A and two coordinates (p, q) and (r , s)
representing top-left and bottom-right coordinates of a submatrix of
it, calculate the sum of all elements present in the submatrix. Here,
0 ≤ p < r < M and 0 ≤ q < s < N.

Example: for (p, q) = (2, 2) and (r , s) = (3, 3), sum is
8+ 1+ 1+ 3 = 13

We want to report the sum in O(1). This requires pre-processing
the input!

4 / 6
EECS 3101 - Design and Analysis of Algorithms

▲



Submatrix Sum

Given an M × N matrix A and two coordinates (p, q) and (r , s)
representing top-left and bottom-right coordinates of a submatrix of
it, calculate the sum of all elements present in the submatrix. Here,
0 ≤ p < r < M and 0 ≤ q < s < N.

Example: for (p, q) = (2, 2) and (r , s) = (3, 3), sum is
8+ 1+ 1+ 3 = 13

We want to report the sum in O(1). This requires pre-processing
the input!

4 / 6
EECS 3101 - Design and Analysis of Algorithms

▲



Submatrix Sum

Pre-processing: process the matrix once and use the results of
your calculation in answering any query.

Take an auxiliary matrix sum[][], where sum[i ][j ] will store the sum
of elements in the matrix from (1, 1) to (i , j), e.g.,
sum[3, 2] = 3+ 7+ 9+ 8+ 2+ 1.
We calculate the value of sum[i ][j ] using the following relation:

sum[i ][j ] =

{
0 if i < 0 or j < 0

sum[i ][j − 1] + sum[i − 1][j ] + A[i ][j ]− sum[i − 1][j − 1] if i , j > 0

5 / 6
EECS 3101 - Design and Analysis of Algorithms

▲



Submatrix Sum

Pre-processing: process the matrix once and use the results of
your calculation in answering any query.

Take an auxiliary matrix sum[][], where sum[i ][j ] will store the sum
of elements in the matrix from (1, 1) to (i , j), e.g.,
sum[3, 2] = 3+ 7+ 9+ 8+ 2+ 1.

We calculate the value of sum[i ][j ] using the following relation:

sum[i ][j ] =

{
0 if i < 0 or j < 0

sum[i ][j − 1] + sum[i − 1][j ] + A[i ][j ]− sum[i − 1][j − 1] if i , j > 0

5 / 6
EECS 3101 - Design and Analysis of Algorithms

▲



Submatrix Sum

Pre-processing: process the matrix once and use the results of
your calculation in answering any query.

Take an auxiliary matrix sum[][], where sum[i ][j ] will store the sum
of elements in the matrix from (1, 1) to (i , j), e.g.,
sum[3, 2] = 3+ 7+ 9+ 8+ 2+ 1.
We calculate the value of sum[i ][j ] using the following relation:

sum[i ][j ] =

{
0 if i < 0 or j < 0

sum[i ][j − 1] + sum[i − 1][j ] + A[i ][j ]− sum[i − 1][j − 1] if i , j > 0

5 / 6
EECS 3101 - Design and Analysis of Algorithms

▲



Submatrix Sum

Real-time Queries: use pre-computed matrix sum to answer
queries in constant time.

To calculate the sum of elements present in the submatrix formed
by coordinates (p, q), (p, s), (r , q), and(r , s) in constant time, we
apply the relation below:

total = sum[r ][s]− sum[r ][q− 1]− sum[p− 1][s]+ sum[p− 1][q− 1]

6 / 6
EECS 3101 - Design and Analysis of Algorithms

▲



Submatrix Sum

Real-time Queries: use pre-computed matrix sum to answer
queries in constant time.

To calculate the sum of elements present in the submatrix formed
by coordinates (p, q), (p, s), (r , q), and(r , s) in constant time, we
apply the relation below:

total = sum[r ][s]− sum[r ][q− 1]− sum[p− 1][s]+ sum[p− 1][q− 1]

6 / 6
EECS 3101 - Design and Analysis of Algorithms

▲


