
EECS 3101 - Design and Analysis of

Algorithms

Shahin Kamali

Tutorial

York University

Picture is from the cover of the textbook CLRS.

1 / 13
EECS 3101 - Design and Analysis of Algorithms

▲



Bucket Sort

Consider the following input for Bucket-Sort which is NOT
uniformly sorted:

one-third of the items are uniformly distributed in [0, 0.3].

one-third of items are uniformly distributed in [0.3, 0.4].

the remaining one-third are uniformly distributed in (0.4, 1].

Repeat the analysis from the class to describe the expected running

time of Bucket-Sort with parameter k =
√
n for the above input.

You may assume that we a comparison-based sorting algorithm with
running time Θ(n log n) to sort items within each bucket.

2 / 13
EECS 3101 - Design and Analysis of Algorithms

▲



Bucket Sort

Consider the following input for Bucket-Sort which is NOT
uniformly sorted:

one-third of the items are uniformly distributed in [0, 0.3].

one-third of items are uniformly distributed in [0.3, 0.4].

the remaining one-third are uniformly distributed in (0.4, 1].

Repeat the analysis from the class to describe the expected running

time of Bucket-Sort with parameter k =
√
n for the above input.

You may assume that we a comparison-based sorting algorithm with
running time Θ(n log n) to sort items within each bucket.

2 / 13
EECS 3101 - Design and Analysis of Algorithms

▲



Bucket Sort

As before, distributing items between buckets takes Θ(n).

The �rst group of 0.3k = 0.3
√
n buckets receive one-third of the

numbers, that is, n/3 items. The expected number of items in each
bucket is thus (n/3)/(0.3

√
n) =

√
n/0.9 = Θ(

√
n). Therefore,

sorting each of these buckets takes Θ(
√
n log

√
n) = Θ(

√
n log n).

The second group of 0.1k = 0.1
√
n buckets receive one-third of the

numbers. The expected number of items in each bucket is thus
(n/3)/(0.1

√
n) =

√
n/0.3 = Θ(

√
n). As before, sorting each of

these buckets takes Θ(
√
n log n).

The third group of 0.6k = 0.6
√
n buckets receive one-third of the

numbers, that is, n/3 items. The expected number of items in each
bucket is thus (n/3)/(0.6

√
n) =

√
n/1.8 = Θ(

√
n). As before,

sorting each of these buckets takes Θ(
√
n log n).

Therefore, sorting all buckets take
√
n ×Θ(

√
n log n) = Θ(n log n).

The overall complexity of the algorithm is thus Θ(n log n).

3 / 13
EECS 3101 - Design and Analysis of Algorithms

▲



Bucket Sort

As before, distributing items between buckets takes Θ(n).

The �rst group of 0.3k = 0.3
√
n buckets receive one-third of the

numbers, that is, n/3 items. The expected number of items in each
bucket is thus (n/3)/(0.3

√
n) =

√
n/0.9 = Θ(

√
n). Therefore,

sorting each of these buckets takes Θ(
√
n log

√
n) = Θ(

√
n log n).

The second group of 0.1k = 0.1
√
n buckets receive one-third of the

numbers. The expected number of items in each bucket is thus
(n/3)/(0.1

√
n) =

√
n/0.3 = Θ(

√
n). As before, sorting each of

these buckets takes Θ(
√
n log n).

The third group of 0.6k = 0.6
√
n buckets receive one-third of the

numbers, that is, n/3 items. The expected number of items in each
bucket is thus (n/3)/(0.6

√
n) =

√
n/1.8 = Θ(

√
n). As before,

sorting each of these buckets takes Θ(
√
n log n).

Therefore, sorting all buckets take
√
n ×Θ(

√
n log n) = Θ(n log n).

The overall complexity of the algorithm is thus Θ(n log n).

3 / 13
EECS 3101 - Design and Analysis of Algorithms

▲



Bucket Sort

As before, distributing items between buckets takes Θ(n).

The �rst group of 0.3k = 0.3
√
n buckets receive one-third of the

numbers, that is, n/3 items. The expected number of items in each
bucket is thus (n/3)/(0.3

√
n) =

√
n/0.9 = Θ(

√
n). Therefore,

sorting each of these buckets takes Θ(
√
n log

√
n) = Θ(

√
n log n).

The second group of 0.1k = 0.1
√
n buckets receive one-third of the

numbers. The expected number of items in each bucket is thus
(n/3)/(0.1

√
n) =

√
n/0.3 = Θ(

√
n). As before, sorting each of

these buckets takes Θ(
√
n log n).

The third group of 0.6k = 0.6
√
n buckets receive one-third of the

numbers, that is, n/3 items. The expected number of items in each
bucket is thus (n/3)/(0.6

√
n) =

√
n/1.8 = Θ(

√
n). As before,

sorting each of these buckets takes Θ(
√
n log n).

Therefore, sorting all buckets take
√
n ×Θ(

√
n log n) = Θ(n log n).

The overall complexity of the algorithm is thus Θ(n log n).

3 / 13
EECS 3101 - Design and Analysis of Algorithms

▲



Bucket Sort

As before, distributing items between buckets takes Θ(n).

The �rst group of 0.3k = 0.3
√
n buckets receive one-third of the

numbers, that is, n/3 items. The expected number of items in each
bucket is thus (n/3)/(0.3

√
n) =

√
n/0.9 = Θ(

√
n). Therefore,

sorting each of these buckets takes Θ(
√
n log

√
n) = Θ(

√
n log n).

The second group of 0.1k = 0.1
√
n buckets receive one-third of the

numbers. The expected number of items in each bucket is thus
(n/3)/(0.1

√
n) =

√
n/0.3 = Θ(

√
n). As before, sorting each of

these buckets takes Θ(
√
n log n).

The third group of 0.6k = 0.6
√
n buckets receive one-third of the

numbers, that is, n/3 items. The expected number of items in each
bucket is thus (n/3)/(0.6

√
n) =

√
n/1.8 = Θ(

√
n). As before,

sorting each of these buckets takes Θ(
√
n log n).

Therefore, sorting all buckets take
√
n ×Θ(

√
n log n) = Θ(n log n).

The overall complexity of the algorithm is thus Θ(n log n).

3 / 13
EECS 3101 - Design and Analysis of Algorithms

▲



Bucket Sort

As before, distributing items between buckets takes Θ(n).

The �rst group of 0.3k = 0.3
√
n buckets receive one-third of the

numbers, that is, n/3 items. The expected number of items in each
bucket is thus (n/3)/(0.3

√
n) =

√
n/0.9 = Θ(

√
n). Therefore,

sorting each of these buckets takes Θ(
√
n log

√
n) = Θ(

√
n log n).

The second group of 0.1k = 0.1
√
n buckets receive one-third of the

numbers. The expected number of items in each bucket is thus
(n/3)/(0.1

√
n) =

√
n/0.3 = Θ(

√
n). As before, sorting each of

these buckets takes Θ(
√
n log n).

The third group of 0.6k = 0.6
√
n buckets receive one-third of the

numbers, that is, n/3 items. The expected number of items in each
bucket is thus (n/3)/(0.6

√
n) =

√
n/1.8 = Θ(

√
n). As before,

sorting each of these buckets takes Θ(
√
n log n).

Therefore, sorting all buckets take
√
n ×Θ(

√
n log n) = Θ(n log n).

The overall complexity of the algorithm is thus Θ(n log n).

3 / 13
EECS 3101 - Design and Analysis of Algorithms

▲



Egg Dropping Puzzle

Suppose that we have n eggs, and wish to know which stories in a
k-story building are safe to drop eggs from, and which will cause the
eggs to break on landing. We make a few assumptions:

An egg that survives a fall can be used again.But a broken egg must
be discarded.
The e�ect of a fall is the same for all eggs.
If an egg breaks when dropped, then it would break if dropped from
a higher �oor. Similarly, if an egg survives a fall then it would
survive a shorter fall.
It is not ruled out that the �rst-�oor windows break eggs, nor is it
ruled out that the kth-�oor do not cause an egg to break.

Use a DP approach to �nd the �oors from which eggs should be
dropped so that the total number of trials are minimized. In other
words, we need to �nd a critical �oor, which is the lowest �oor
such that the egg breaks dropping from it.

4 / 13
EECS 3101 - Design and Analysis of Algorithms

▲



Egg Dropping Puzzle

Suppose that we have n eggs, and wish to know which stories in a
k-story building are safe to drop eggs from, and which will cause the
eggs to break on landing. We make a few assumptions:

An egg that survives a fall can be used again.But a broken egg must
be discarded.
The e�ect of a fall is the same for all eggs.
If an egg breaks when dropped, then it would break if dropped from
a higher �oor. Similarly, if an egg survives a fall then it would
survive a shorter fall.
It is not ruled out that the �rst-�oor windows break eggs, nor is it
ruled out that the kth-�oor do not cause an egg to break.

Use a DP approach to �nd the �oors from which eggs should be
dropped so that the total number of trials are minimized. In other
words, we need to �nd a critical �oor, which is the lowest �oor
such that the egg breaks dropping from it.

4 / 13
EECS 3101 - Design and Analysis of Algorithms

▲



Egg Dropping Puzzle

Step 1:

Let eggDrop(m, j) denote the minimum number of trials required to
detect the critical �oor among j �oors (1 ≤ j ≤ k) using m eggs
(1 ≤ m ≤ n); we want to �nd eggDrop(n, k).
Setting eggDrop(m, j): suppose we drop from �oor x (where
1 ≤ x ≤ j) in the �rst trial.

If the egg breaks, the critical �oor is in [1, x]. We need to search for

the critical �oor among x − 1 �oors using m − 1 eggs.

if it survives, the critical �oor is in [x + 1, j]. We need to search

between j − x �oors using m eggs.

5 / 13
EECS 3101 - Design and Analysis of Algorithms

▲



Egg Dropping Puzzle

Step 1:

Let eggDrop(m, j) denote the minimum number of trials required to
detect the critical �oor among j �oors (1 ≤ j ≤ k) using m eggs
(1 ≤ m ≤ n); we want to �nd eggDrop(n, k).
Setting eggDrop(m, j): suppose we drop from �oor x (where
1 ≤ x ≤ j) in the �rst trial.

If the egg breaks, the critical �oor is in [1, x]. We need to search for

the critical �oor among x − 1 �oors using m − 1 eggs.

if it survives, the critical �oor is in [x + 1, j]. We need to search

between j − x �oors using m eggs.

5 / 13
EECS 3101 - Design and Analysis of Algorithms

▲



Egg Dropping Puzzle

Step 2: Write a recursive formula for the minimum number of trials
using m eggs and for j stories. We can write:

eggDrop(m, j) =


j if j ≤ 1

j if m = 1

1+ min
x∈[1,j]

max{eggDrop(m − 1, x − 1), eggDrop(m, j − x)}

6 / 13
EECS 3101 - Design and Analysis of Algorithms

▲



Egg Dropping Puzzle

Step 3: Fill the DP table bottom up. In this case, for setting
eggDrop(m, j) we look at the previous rows and columns. We can
use the following simple code:
EggDropTable (n, k)
1. for j = 1 to k
2. for m = 1 to n
3. if j ≤ 1 or m = 1
4. eggDrop(m, j)← j
5. else

6. eggDrop[m, j ]←∞
7. for x = 1 to j
8. candidate[x ]← 1+max{eggDrop[m − 1, x − 1], eggDrop[m, j − x ]}
9. if candidate[x ] < eggDrop[m, j ]
10. eggDrop[m, j ]← candidate[x ]
11. return eggDrop

7 / 13
EECS 3101 - Design and Analysis of Algorithms

▲



Egg Dropping Puzzle

Step 4: In Step 4, we usually move backward in the table to �nd
the actual solution. Here, the question only asks for the number of
trials. If the actual stories were intended, we had to store a �ag in
Line 11: flag [m, j ]← x

EggDropTable (n, k)
1. for j = 1 to k
2. for m = 1 to n
3. if j ≤ 1 or m = 1
4. eggDrop(m, j)← j
5. else

6. eggDrop[m, j ]←∞
7. for x = 1 to j
8. candidate[x ]← 1+max{eggDrop[m − 1, x − 1], eggDrop[m, j − x ]}
9. if candidate[x ] < eggDrop[m, j ]
10. eggDrop[m, j ]← candidate[x ]
11. flag [m, j ]← x
12. return eggDrop

8 / 13
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Product Cutting

Given a rope of length n meters, cut the rope in di�erent parts of
integer lengths in a way that maximizes product of lengths of all
parts. You must make at least one cut. Assume that the length of
rope is more than 2 meters.

9 / 13
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Product Cutting

Step 1: Let maxProd(m) be the maximum product for a rope of
length m for m ∈ [1, n]; we want to �nd maxProd(n).

Step 2: To set maxProd [m], suppose the �rst cut has length i . If
the remainder of n − i is not cut any more, the pro�t is i ×m − i ;
otherwise, the pro�t is i ×maxProd [m − i ]. So, for a cut of length
i , the pro�t will be max{i × (m − i), i ×maxProd [m − i ]}.
Therefore maxProd(m) can be written as following.

maxProd(m) =

0 if m ≤ 1

max
i∈[1,m]

(max{i × (m − i), i ×maxProd [m − i ]})

10 / 13
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Product Cutting

Step 1: Let maxProd(m) be the maximum product for a rope of
length m for m ∈ [1, n]; we want to �nd maxProd(n).

Step 2: To set maxProd [m], suppose the �rst cut has length i . If
the remainder of n − i is not cut any more, the pro�t is i ×m − i ;
otherwise, the pro�t is i ×maxProd [m − i ]. So, for a cut of length
i , the pro�t will be max{i × (m − i), i ×maxProd [m − i ]}.
Therefore maxProd(m) can be written as following.

maxProd(m) =

0 if m ≤ 1

max
i∈[1,m]

(max{i × (m − i), i ×maxProd [m − i ]})

10 / 13
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Product Cutting

Step 3: Fill the DP table:

RopeCutTable (n)
1. for m = 1 to n
2. if m ≤ 1
3. maxProd(m)← 0
4. else

5. maxProd [m]← −∞
6. for i = 1 to m
7. candidate[i ]← max{i × (m − i), i × eggDrop[m − i ]}
8. if candidate[i ] > maxProd [m]
9. maxProd [m]← candidate[i ]
10. flag [m]← i
11. return maxProd

11 / 13
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Product Cutting

Step 4: Retrieve the actual solution, i.e., the length of the cuts:

RetrieveCuts (n,maxProd)
1. m← n
2. while m ≥ 2
3. print flag [m]
4. m← m − flag [m]

12 / 13
EECS 3101 - Design and Analysis of Algorithms

▲


