EECS 3101 - Design and Analysis of
v Algorithms

\‘; l/‘_ \‘ Shahin Kamali
“‘ Tutorial

York University

Picture is from the cover of the textbook CLRS.

EECS 3101 - Design and Analysis of Algorithms

v
PN
~

i Al
‘oY Bucket Sort

Consider the following input for Bucket-Sort which is NOT
uniformly sorted:

o one-third of the items are uniformly distributed in [0,0.3].
o one-third of items are uniformly distributed in [0.3,0.4].

o the remaining one-third are uniformly distributed in (0.4,1].

v

PN
~

A
=Y Bucket Sort

-
Y

Consider the following input for Bucket-Sort which is NOT
uniformly sorted:

o one-third of the items are uniformly distributed in [0,0.3].
o one-third of items are uniformly distributed in [0.3,0.4].

o the remaining one-third are uniformly distributed in (0.4,1].

Repeat the analysis from the class to describe the expected running
time of Bucket-Sort with parameter k = \/n for the above input.

o You may assume that we a comparison-based sorting algorithm with
running time ©(nlog n) to sort items within each bucket.

_

PN

~
.

‘oY Bucket Sort

o As before, distributing items between buckets takes O(n).

EECS 3101 - Design and Analysis of Algorithms)
3/13

v
-
~

i Al
‘oY Bucket Sort

o As before, distributing items between buckets takes O(n).

o The first group of 0.3k = 0.31/n buckets receive one-third of the
numbers, that is, n/3 items. The expected number of items in each
bucket is thus (n/3)/(0.3y/n) = /n/0.9 = ©(1/n). Therefore,
sorting each of these buckets takes ©(y/nlog+/n) = ©(y/nlog n).

v

PN
~

* Al
‘oYY Bucket Sort

o As before, distributing items between buckets takes O(n).

o The first group of 0.3k = 0.31/n buckets receive one-third of the
numbers, that is, n/3 items. The expected number of items in each
bucket is thus (n/3)/(0.3y/n) = /n/0.9 = ©(1/n). Therefore,
sorting each of these buckets takes ©(y/nlog+/n) = ©(y/nlog n).

o The second group of 0.1k = 0.1y/n buckets receive one-third of the
numbers. The expected number of items in each bucket is thus
(n/3)/(0.1y/n) = +/n/0.3 = ©(y/n). As before, sorting each of
these buckets takes ©(+/nlog n).

v

PN
~

* A
‘oYY Bucket Sort

o As before, distributing items between buckets takes O(n).

o The first group of 0.3k = 0.31/n buckets receive one-third of the
numbers, that is, n/3 items. The expected number of items in each
bucket is thus (n/3)/(0.3y/n) = /n/0.9 = ©(1/n). Therefore,
sorting each of these buckets takes ©(y/nlog+/n) = ©(y/nlog n).

o The second group of 0.1k = 0.1y/n buckets receive one-third of the
numbers. The expected number of items in each bucket is thus
(n/3)/(0.1y/n) = +/n/0.3 = ©(y/n). As before, sorting each of
these buckets takes ©(+/nlog n).

o The third group of 0.6k = 0.6+/n buckets receive one-third of the
numbers, that is, n/3 items. The expected number of items in each
bucket is thus (n/3)/(0.6y/n) = \/n/1.8 = ©(1/n). As before,
sorting each of these buckets takes ©(y/nlogn).

v
PN
~

* A
WY Bucket Sort

o As before, distributing items between buckets takes O(n).

o The first group of 0.3k = 0.31/n buckets receive one-third of the
numbers, that is, n/3 items. The expected number of items in each
bucket is thus (n/3)/(0.3y/n) = /n/0.9 = ©(1/n). Therefore,
sorting each of these buckets takes ©(y/nlog+/n) = ©(y/nlog n).

o The second group of 0.1k = 0.1y/n buckets receive one-third of the
numbers. The expected number of items in each bucket is thus
(n/3)/(0.1y/n) = +/n/0.3 = ©(y/n). As before, sorting each of
these buckets takes ©(+/nlog n).

o The third group of 0.6k = 0.6+/n buckets receive one-third of the
numbers, that is, n/3 items. The expected number of items in each
bucket is thus (n/3)/(0.6y/n) = \/n/1.8 = ©(1/n). As before,
sorting each of these buckets takes ©(y/nlogn).

Therefore, sorting all buckets take \/n x ©(y/nlog n) = ©(nlog n).
The overall complexity of the algorithm is thus ©(nlog n).

v

PN
~

;‘;\\“ Egg Dropping Puzzle

o Suppose that we have n eggs, and wish to know which stories in a
k-story building are safe to drop eggs from, and which will cause the
eggs to break on landing. We make a few assumptions:

o An egg that survives a fall can be used again.But a broken egg must
be discarded.

o The effect of a fall is the same for all eggs.

o If an egg breaks when dropped, then it would break if dropped from
a higher floor. Similarly, if an egg survives a fall then it would
survive a shorter fall.

o It is not ruled out that the first-floor windows break eggs, nor is it
ruled out that the kth-floor do not cause an egg to break.

v
. . ‘
N}

\
Y

Egg Dropping Puzzle

o Suppose that we have n eggs, and wish to know which stories in a
k-story building are safe to drop eggs from, and which will cause the
eggs to break on landing. We make a few assumptions:

An egg that survives a fall can be used again.But a broken egg must
be discarded.

The effect of a fall is the same for all eggs.

If an egg breaks when dropped, then it would break if dropped from
a higher floor. Similarly, if an egg survives a fall then it would
survive a shorter fall.

It is not ruled out that the first-floor windows break eggs, nor is it
ruled out that the kth-floor do not cause an egg to break.

Use a DP approach to find the floors from which eggs should be
dropped so that the total number of trials are minimized. In other
words, we need to find a critical floor, which is the lowest floor
such that the egg breaks dropping from it.

v

PN
~\——
.

‘ -
W™ Egg Dropping Puzzle

o Step 1:

o Let eggDrop(m,j) denote the minimum number of trials required to
detect the critical floor among j floors (1 < j < k) using m eggs
(1 < m < n); we want to find eggDrop(n, k).

o Setting eggDrop(m, j): suppose we drop from floor x (where
1 < x <) in the first trial.

v
PN
~

‘ -
‘Y Egg Dropping Puzzle

o Step 1:

o Let eggDrop(m,j) denote the minimum number of trials required to
detect the critical floor among j floors (1 < j < k) using m eggs
(1 < m < n); we want to find eggDrop(n, k).
o Setting eggDrop(m, j): suppose we drop from floor x (where
1 < x <) in the first trial.
o If the egg breaks, the critical floor is in [1, x]. We need to search for
the critical floor among x — 1 floors using m — 1 eggs.
o if it survives, the critical floor is in [x 4+ 1,]. We need to search
between j — x floors using m eggs.

v

PN
~

5‘}“;\“ Egg Dropping Puzzle

o Step 2: Write a recursive formula for the minimum number of trials
using m eggs and for j stories. We can write:

j fj<1
eggDrop(m,j) = {J 1 m=1
1+ rn[iln] max{eggDrop(m — 1,x — 1), eggDrop(m,j — x)}
xell,j

v

PN
~
.

2’\6“‘ Egg Dropping Puzzle

o Step 3: Fill the DP table bottom up. In this case, for setting
eggDrop(m, j) we look at the previous rows and columns. We can
use the following simple code:

EggDropTable (n, k)
for j=1to k
form=1ton
ifj<lorm=1
eggDrop(m, j) < j

else
eggDrop[m, j] + oo
forx=1toj
candidate[x] < 1+ max{eggDrop[m — 1, x — 1], eggDrop[m, j — x]}
if candidate[x] < eggDrop[m,j]
eggDrop[m, j] < candidate[x]

HBO®XNOOGORWNE

[

return eggDrop

v
PN
~
.

s
Y

RS

Egg Dropping Puzzle

o Step 4: In Step 4, we usually move backward in the table to find
the actual solution. Here, the question only asks for the number of
trials. If the actual stories were intended, we had to store a flag in
Line 11: flag[m,j] + x

P NSO WN =

©

==
N =

=
=

EggDropTable (n, k)

for j=1to k
form=1ton
ifj<lorm=1
eggDrop(m, j) < j
else
eggDrop[m, j] + oo
forx=1toj
candidate[x] < 1 + max{eggDrop[m — 1, x — 1], eggDrop[m, j — x]}
if candidate[x] < eggDrop[m,j]
eggDrop[m, j] < candidate[x]
flag[m, j] « x
return eggDrop

v
PN
~

\sz

. . -
WY Maximum Product Cutting

o Given a rope of length n meters, cut the rope in different parts of
integer lengths in a way that maximizes product of lengths of all
parts. You must make at least one cut. Assume that the length of
rope is more than 2 meters.

v
PN
~

. ™ ‘ . .
WY Maximum Product Cutting

o Step 1: Let maxProd(m) be the maximum product for a rope of
length m for m € [1, n]; we want to find maxProd(n).

EECS 3101 - Design and Analysis of Algorithms

v

PN
~

- . :
WYY Maximum Product Cutting

o Step 1: Let maxProd(m) be the maximum product for a rope of
length m for m € [1, n]; we want to find maxProd(n).

Step 2: To set maxProd[m], suppose the first cut has length /. If
the remainder of n — j is not cut any more, the profit is i x m — i,
otherwise, the profit is i x maxProd[m — i]. So, for a cut of length
i, the profit will be max{i x (m — i), i x maxProd[m — i]}.
Therefore maxProd(m) can be written as following.

0 ifm<1

_r7[11ax](max{i x (m—1i),i x maxProd[m — i]})
e|ll,m

maxProd(m) =

v
PN
~

WY Maximum Product Cutting

o Step 3: Fill the DP table:

RopeCutTable (n)
form=1ton
fm<1
maxProd(m) < 0
else
maxProd[m] + —oco
fori=1tom
candidate[i] +— max{i x (m — i), i x eggDrop[m — i]}
if candidate[i] > maxProd[m]
maxProd[m] < candidateli]
flag[m] i

HBO®XNOOGOSWNR

= o

return maxProd

v
%
'\ .
RN
w

Maximum Product Cutting

o Step 4: Retrieve the actual solution, i.e., the length of the cuts:

RetrieveCuts (n, maxProd)

1. m<—n

2 while m > 2

3. print flag[m]
4.

m < m — flag[m]

esign and Analysis of

Igorithms

