
EECS 3101 - Design and Analysis of

Algorithms

Shahin Kamali

Tutorial 5

York University

Picture is from the cover of the textbook CLRS.

1 / 4
EECS 3101 - Design and Analysis of Algorithms

▲



Binary Search

Question

Recall that in a sorted array of n comparable items, we can use

binary search to search for a given item in O(log n). Prove

that binary search is the optimal searching algorithm in a sorted

array. You need to use a decision tree approach to show that no

algorithm can search in a sorted array in time less than O(log n).

2 / 4
EECS 3101 - Design and Analysis of Algorithms

▲



Search in an Unsorted Array

Question

We say an array of numbers is almost-sorted if at least half of
elements appear in their right positions in the sorted array.

For example, array A = {2, 1, 3, 4, 6, 5, 7, 8} is almost-sorted
because 3, 4, 7, and 8 are in their correct position.

Provide a tight lower bound for sorting any almost sorted array

of n numbers using a comparison-based sorting. A complete an-

swer, includes an algorithm whose running time is asymptotically

equal to your lower bound.

3 / 4
EECS 3101 - Design and Analysis of Algorithms

▲



Longest Palindromic Subsequence

Question

Given a string S , we want to �nd the longest subsequences of S
that is also a palindrome.

For example, when S = ABBDCAB, the longest palindromic
subsequence (LPS) of S is ABBA.

Devise a dynamic programming algorithm to �nd LPS of S .

1 Step 1: de�ne subproblems, and devise the value of the optimal solution for each

subproblem using the value of the optimal solutions for smaller subproblems.

2 Step 2: write down a recursive formula for the value of optimal solutions.

3 Step 3: �ll up the dynamic programming table recursively.

4 Step 4: retrieve the actual LPS by moving backwards in the table.

4 / 4
EECS 3101 - Design and Analysis of Algorithms

▲


