
EECS 3101 - B Tutorial 3 Notes

Shahin Kamali

York University

September 2022

1. Draw the recursion tree and analyze it to determine the asymptotic complexity of the following
recursive function:

f(n) =

{
1 if n = 1

3f(n/2) + n

Answer: The recursion tree is depicted below:

. . .

n

n/2

d

n

3× n/2

nlog2 3

height:
log2 n

3log2 n = nlog23 leaves

n/4
9× n/4

. . .

(2/3) nlog2 3

Note that it is a “leaf-hevay” tree, that is, the majority of work is done at the leaves. You
can see that the amount of work at the leaf level is nlog2 3 which is asymptotically larger than
the amount of work at the root. For the time complexity, we can write (summing the work on
each level in a bottom-up approach):

f(n) = nlog2 3d+ 2/3nlog2 3 + . . .+ 9n/4 + 3n/2 + n

≤ nlog2 3(1 + 2/3 + 4/9 + . . .)

= 3nlog2 3

Therefore, the value of f(n) is at least nlog2 3 and at most 3nlog2 3. Thus f(n) = Θ(nlog2 3).

Note that, when the tree is “leaf-heavy” like this case, we are in Case 1 of the Master theorem.

1



2. Draw the recursion tree and analyze it to determine the asymptotic complexity of the following
recursive function:

f(n) =

{
d if n = 1

4f(n/4) + n

Answer: The recursion tree is depicted below:

. . .

n

n/4

d

n

4× n/4 = n

n · d

height:
log4 n

4log4 n = nlog44 = n leaves

n/16
16× n/16 = n

. . .

Note that it is a “balanced” tree, that is, the amoun of work done is the same at all levels of
the tree, that is n at all levels. Given that there are log4 n levels in the tree, we can write
f(n) = log4 n× n = (log2 n/ log2 4)× n = Θ(n log n).

Note that, when the tree is “balanced” like this case, we are in Case 2 of the Master theorem
and the time complexity is Θ(f(n)× log n), here, Θ(n log n).

2



3. Draw the recursion tree and analyze it to determine the asymptotic complexity of the following
recursive function:

f(n) =

{
d if n = 1

2f(n/4) + n

Answer: The recursion tree is depicted below:

. . .

n

n/4

n/16

d

n

2× n/4 = n/2

4× n/16 = n/4

√
n d

height:
log4 n

2log4 n = nlog42 =
√
n

2
√
n d

. . .

Note that it is a “root-heavy” tree, that is, the majority of work is done at the root level. You
can see that the amount of work at the root level is n which is asymptotically larger than the
amount of work at the leaves (

√
n). For the time complexity, we can write (summing the work

on each level in a top-down approach):

f(n) = n+ n/2 + n/4 + . . .+ 2
√
n+

√
n

≤ n(1 + 1/2 + 1/4 + . . .)

= 2n

Therefore, the value of f(n) is at least n (the work done at the root) and at most 2n. Thus
f(n) = Θ(n).

Note that, when the tree is “leaf-heavy” like this case, we are in Case 3 of the Master theorem.

3



4. Draw the recursion tree and analyze it to determine the asymptotic complexity of the following
recursive function:

f(n) =

{
d if n = 1

2f(n/2) + n/ log n

Answer: The recursion tree is depicted below:

. . .

n/ logn

(n/2)/(log(n/2)

d

n/ logn

2× (n/2)/(log(n/2) = n/(logn− 1)

n

height:
log2 n

2log2 n = nlog22 = n leaves

(n/4)/(log(n/4) 4× (n/4)/(log(n/4) = n/(logn− 2)

. . .

Note that the amount of work is done at the root level. But we cannot apply the Master
theorem in this case; here we have nlogb a = n and f(n) = n/ log n. Now, although f(n) = O(n),
we cannot state that f(n) ∈ O(n1−ϵ) for any positive ϵ. So, we cannot apply Master theorem
here.

For the time complexity, we can write:

f(n) =
n

log n
+

n

log n− 1
+ . . .+

n

3
+

n

2
+ n

= n(1 + 1/2 + 1/3 + . . .+ 1/ log n)

= Θ(n log log n)

Note that 1 + 1/2 + 1/3 + . . . + 1/x is the Harmonic series which is asymptotically equal to
log(x); here x = log n.

4


