EECS 3101 - B Tutorial 3 Notes

Shahin Kamali

York University

September 2022

1. Draw the recursion tree and analyze it to determine the asymptotic complexity of the following recursive function:

$$
f(n)=\left\{\begin{array}{lr}
1 \quad \text { if } n=1 \\
3 f(n / 2)+n
\end{array}\right.
$$

Answer: The recursion tree is depicted below:

Note that it is a "leaf-hevay" tree, that is, the majority of work is done at the leaves. You can see that the amount of work at the leaf level is $n^{\log _{2} 3}$ which is asymptotically larger than the amount of work at the root. For the time complexity, we can write (summing the work on each level in a bottom-up approach):

$$
\begin{aligned}
f(n) & =n^{\log _{2} 3} d+2 / 3 n^{\log _{2} 3}+\ldots+9 n / 4+3 n / 2+n \\
& \leq n^{\log _{2} 3}(1+2 / 3+4 / 9+\ldots) \\
& =3 n^{\log _{2} 3}
\end{aligned}
$$

Therefore, the value of $f(n)$ is at least $n^{\log _{2} 3}$ and at most $3 n^{\log _{2} 3}$. Thus $f(n)=\Theta\left(n^{\log _{2} 3}\right)$. Note that, when the tree is "leaf-heavy" like this case, we are in Case 1 of the Master theorem.
2. Draw the recursion tree and analyze it to determine the asymptotic complexity of the following recursive function:

$$
f(n)=\left\{\begin{array}{lr}
d \quad \text { if } n=1 \\
4 f(n / 4)+n
\end{array}\right.
$$

Answer: The recursion tree is depicted below:

Note that it is a "balanced" tree, that is, the amoun of work done is the same at all levels of the tree, that is n at all levels. Given that there are $\log _{4} n$ levels in the tree, we can write $f(n)=\log _{4} n \times n=\left(\log _{2} n / \log _{2} 4\right) \times n=\Theta(n \log n)$.
Note that, when the tree is "balanced" like this case, we are in Case 2 of the Master theorem and the time complexity is $\Theta(f(n) \times \log n)$, here, $\Theta(n \log n)$.
3. Draw the recursion tree and analyze it to determine the asymptotic complexity of the following recursive function:

$$
f(n)= \begin{cases}d \quad \text { if } n=1 \\ 2 f(n / 4)+n\end{cases}
$$

Answer: The recursion tree is depicted below:

Note that it is a "root-heavy" tree, that is, the majority of work is done at the root level. You can see that the amount of work at the root level is n which is asymptotically larger than the amount of work at the leaves (\sqrt{n}). For the time complexity, we can write (summing the work on each level in a top-down approach):

$$
\begin{aligned}
f(n) & =n+n / 2+n / 4+\ldots+2 \sqrt{n}+\sqrt{n} \\
& \leq n(1+1 / 2+1 / 4+\ldots) \\
& =2 n
\end{aligned}
$$

Therefore, the value of $f(n)$ is at least n (the work done at the root) and at most $2 n$. Thus $f(n)=\Theta(n)$.
Note that, when the tree is "leaf-heavy" like this case, we are in Case 3 of the Master theorem.
4. Draw the recursion tree and analyze it to determine the asymptotic complexity of the following recursive function:

$$
f(n)=\left\{\begin{array}{l}
d \quad \text { if } n=1 \\
2 f(n / 2)+n / \log n
\end{array}\right.
$$

Answer: The recursion tree is depicted below:

Note that the amount of work is done at the root level. But we cannot apply the Master theorem in this case; here we have $n^{\log _{b} a}=n$ and $f(n)=n / \log n$. Now, although $f(n)=O(n)$, we cannot state that $f(n) \in O\left(n^{1-\epsilon}\right)$ for any positive ϵ. So, we cannot apply Master theorem here.

For the time complexity, we can write:

$$
\begin{aligned}
f(n) & =\frac{n}{\log n}+\frac{n}{\log n-1}+\ldots+\frac{n}{3}+\frac{n}{2}+n \\
& =n(1+1 / 2+1 / 3+\ldots+1 / \log n) \\
& =\Theta(n \log \log n)
\end{aligned}
$$

Note that $1+1 / 2+1 / 3+\ldots+1 / x$ is the Harmonic series which is asymptotically equal to $\log (x)$; here $x=\log n$.

