# EECS 3101 - B Tutorial1 Notes 

Shahin Kamali

York University

September 15, 2023

1. Prove that $100 n / \log n \in O(n)$.

Answer: We need to provide $n_{0}$ and $M$ s.t. for all $n>n_{0}$ it holds that $100 n / \log n \leq M n$, that is, $100 / \log n \leq M$. Many values of $\left(n_{0}, M\right)$ ensure this inequality holds, e.g., we can set $n_{0}=2$ and $M=100$. Then for any $n>n_{0}$, it holds that $100 / \log n<100=M$.
2. Prove that $100 n / \log n \in o(n)$.

Answer: We need to provide $n_{0}$ s.t. for all $n>n_{0}$ it holds that $100 n / \log n<M n$ for any value of $M$, that is, $100 / \log n<M$, or equivalently $100 / M<\log n$, that is, $2^{100 / M}<n$. Therefore, for any value of $M$, we can define $n_{0}$ to be any value larger than $2^{100 / M}$ and then it holds that $100 n / \log n<M n$.
3. Prove that $n^{2}+2022 n \in o\left(n^{2} \log \log n\right)$.

Answer: We need to provide $n_{0}$ s.t. for all $n>n_{0}$ it holds that $n^{2}+2022 n<M\left(n^{2} \log \log n\right)$ for any value of $M$. Suppose $n>2022$, which gives $n^{2}+2022 n<2 n^{2}$. Therefore, assuming $n>$ 2022 , in order to prove $n^{2}+2022 n<M\left(n^{2} \log \log n\right)$, it suffices to prove $2 n^{2}<M\left(n^{2} \log \log n\right)$ or equivalently $2 / M<\log \log n$, that is $2^{2^{2 / M}}<n$. To conclude, for any value of $M$, we can define $n_{0}$ to be any value larger than $\max \left\{2022,2^{2^{2 / M}}\right\}$ and then it holds that $n^{2}+2022 n<$ $M\left(n^{2} \log \log n\right)$.
4. Prove that $n \log n / 2022 \in \Omega(n)$.

Answer: We need to provide $n_{0}$ and $M$ s.t. for all $n>n_{0}$ it holds that $n \log n / 2022 \geq M n$, that is, $\log n / 2022 \geq M$. Many values of $\left(n_{0}, M\right)$ ensure this inequality holds, e.g., we can set $n_{0}=2$ and $M=1 / 2022$. Then for any $n>n_{0}$, it holds that $n \log n / 2022 \geq M n$.
5. Prove that $n \log n / 2022 \in \omega(2022 n)$.

Answer: We need to provide $n_{0}$ s.t. for all $n>n_{0}$ it holds that $n \log n / 2022>M 2022 n$ for any value of $M$, that is, $\log n / 2022>2022 M$ or $n>2^{2022^{2} M}$. Therefore, for any value of $M$, we can define $n_{0}$ to be any value larger than $2^{2022^{2} M}$ and then it holds that $n \log n / 2022>2022 n$.
6. Prove that $n^{2}+2022 n \in \omega(n \log n)$.

Answer: We need to provide $n_{0}$ s.t. for all $n>n_{0}$ it holds that $n^{2}+2022 n>M(n \log n)$ for any value of $M$, that is, $n+2022>M \log n$. To prove $n+2022>M \log n$, it suffices to prove $n>M \log n$ or $n / \log n>M$. We note that for $n>4$, it holds that $\log n<\sqrt{n}$; therefore, assuming $n>4$, to prove $n / \log n>M$, it suffices to prove $n / \sqrt{n}>M$, that is $\sqrt{n}>M$ or $n>M^{2}$. To conclude, for any value of $M$, we can define $n_{0}$ to be any value larger than $\max \left\{4, M^{2}\right\}$ and then it holds that $n+2022>M \log n$.
7. Prove that $2^{n} \in \Theta\left(2^{n+2022}\right)$. Answer: We need to provide $n_{0}, M_{1}$ and $M_{2}$ s.t. for all $n>n_{0}$ it holds that $M_{1} 2^{n+2022} \leq 2^{n} \leq M_{2} 2^{n+2022}$, or equivalently, $M_{1} 2^{2022} \leq 1 \leq M_{2} 2^{2022}$. Many values of $\left(n_{0}, M_{1}, M_{2}\right)$ ensure these inequalities hold, e.g., we can set $n_{0}=1, M_{1}=1 / 2^{2022}$ and $M_{2}=1$.
8. State the relationship between $2^{n}$ and $2^{2 n}$ and prove it!

Answer: We have $2^{n} \in o\left(2^{2 n}\right)$. To prove it, we need to show provide $n_{0}$ such that for all values of $n>n_{0}$, it holds that $2^{n}<M .2^{2 n}$ for any value of $M$. That is, $1<M \cdot 2^{n}$, or $\log (1 / M)<n$. To conclude, for any value of $M$, we can define $n_{0}$ to be any value larger than $\log (1 / M)$ and then it holds that $2^{n}<M .2^{2 n}$.
9. Prove that if $f(n) \in O(g(n))$ and $g(n) \in o(h(n))$ then $f(n) \in o(h(n))$.

Answer: Since $f(n) \in O(g(n))$, there exist values of $n_{00}$ and $M_{0}$ s.t. for all $n>n_{00}$, it holds that $f(n)<M_{0} g(n)$. Moreover, since $g(n) \in o(h(n))$, there is a value of $n_{01}$ s.t. for all $n>n_{01}$, it holds that $g(n)<M^{\prime} h(n)$ for all values of $M^{\prime}$. Therefore, as long as $n>\max \left\{n_{00}, n_{01}\right\}$, for any value of $M^{\prime}$, we can write

$$
\begin{equation*}
f(n)<M_{0} M^{\prime} h(n) \tag{1}
\end{equation*}
$$

To prove $f(n) \in o(h(n))$, we need to provide $n_{0}$ s.t. for all values of $M$ and for $n>n_{0}$ it holds that $f(n)<\operatorname{Mh}(n)$. Fix any value of $M$, and let $n_{0}=\max \left\{n_{00}, n_{01}\right\}$. Apply Inequality (1) for $M^{\prime}=M / M_{0}$ (we can do it because Inequality (1) holds for all values of $M^{\prime}$ ). Then we can write $f(n)<M h(n)$ which completes the proof.
10. Prove that if $f(n) \in \Theta(g(n))$ and $g(n) \in \omega(h(n))$ then $f(n) \in \omega(h(n))$.

Answer: Since $f(n) \in \Theta(g(n))$, there exist values of $n_{00}, M_{1}$ and $M_{2}$ s.t. for all $n>n_{00}$, it holds that $M_{1} g(n) \leq f(n) \leq M_{2} g(n)$. Moreover, since $g(n) \in \omega(h(n))$, there is a value of $n_{01}$ s.t. for all $n>n_{01}$, it holds that $g(n)>M^{\prime} h(n)$ for all values of $M^{\prime}$. Therefore, as long as $n>\max \left\{n_{00}, n_{01}\right\}$, for any value of $M^{\prime}$, we can write

$$
\begin{equation*}
f(n) \geq M_{1} g(n)>M_{1} M^{\prime} h(n) \tag{2}
\end{equation*}
$$

To prove $f(n) \in \omega(h(n))$, we need to provide $n_{0}$ s.t. for all values of $M$ and for $n>n_{0}$ it holds that $f(n)>\operatorname{Mh}(n)$. Fix any value of $M$, and let $n_{0}=\max \left\{n_{00}, n_{01}\right\}$. Apply Inequality (2) for $M^{\prime}=M / M_{1}$ (we can do it because Inequality (1) holds for all values of $M^{\prime}$ ). Then we can write $f(n)>M h(n)$ which completes the proof.
11. What is the time complexity of the following algorithm?

```
\(\operatorname{Algo2}(A, n)\)
    \(\max \leftarrow 0\)
    for \(i \leftarrow 1\) to \(n\) do
            for \(j \leftarrow i\) to \(n\) do
                \(X \leftarrow 0\)
                for \(k \leftarrow i\) to \(j\) do
                        \(X \leftarrow A[k]\)
                        if \(X>\max\) then
                        \(\max \leftarrow X\)
        return max
```

Answer: The time complexity is ( $e, d, c$ are constant number of primitive operations):

$$
\begin{aligned}
T(n) & =e+\sum_{i=1}^{n} \sum_{j=i}^{n}\left(d+\sum_{k=i}^{j} c\right) \\
& =e+\sum_{i=1}^{n} \sum_{j=i}^{n}(d+(j-i+1) c) \\
& =e+\sum_{i=1}^{n} \sum_{p=1}^{n-i+1}(d+p c) \\
& =e+\sum_{i=1}^{n}\left(d(n-i+1)+c \sum_{p=1}^{n-i+1} p\right) \\
& =e+\sum_{i=1}^{n}(d(n-i+1)+c(n-i+1)(n-i+2) / 2) \\
& =e+\sum_{q=1}^{n}(d q+c q(q+1) / 2) \\
& =e+\sum_{q=1}^{n}\left((d+c / 2) q+c q^{2} / 2\right) \\
& =e+(d+c / 2) \sum_{q=1}^{n} q+c / 2 \sum_{q=1}^{n} q^{2} \\
& =e+(d+c / 2) n(n+1) / 2+c / 2(n(n+1)(2 n+1) / 6) \\
& =n^{3} / 6+o\left(n^{3}\right)=\Theta\left(n^{3}\right)
\end{aligned}
$$

12. What is the time complexity of the following algorithm?
```
Algo4 ( \(n\) )
        \(A \leftarrow 0\)
        for \(i \leftarrow 1\) to \(n\) do
            for \(j \leftarrow 1\) to \(n\) do
                if \(j<n / 3\) then
                \(A \leftarrow A /(i-j)^{2}\)
                    \(A \leftarrow A^{100}\)
            else
                    \(k \leftarrow i\)
                        while \(k>1\)
                                \(A \leftarrow A^{2022}\)
                        \(k \leftarrow k / 3\)
    return sum
```

Answer: The time complexity is ( $e, d, c$ are constant number of primitive operations):

$$
\begin{aligned}
T(n) & =\sum_{i=1}^{n}\left(\sum_{j=1}^{n / 3} c+\sum_{j=n / 3+1}^{n}\left(e+d \log _{3} i\right)\right) \\
& =\sum_{i=1}^{n}\left((n / 3) c+(2 n / 3)\left(e+d \log _{3} i\right)\right) \\
& =n(n / 3) c+n(2 n / 3) e+d(2 n / 3) \sum_{i=1}^{n} \log _{3} i \\
& =n(n / 3) c+n(2 n / 3) e+\frac{d(2 n / 3)}{\log 3} \sum_{i=1}^{n} \log i \\
& =n(n / 3) c+n(2 n / 3) e+\frac{d(2 n / 3)}{\log 3} \Theta(n \log n) \\
& =\Theta\left(n^{2} \log n\right)
\end{aligned}
$$

