EECS 3101 - B Tutorial1 Notes

Shahin Kamali

York University

September 15, 2023

1. Prove that $100n/\log n \in O(n)$.

Answer: We need to provide n_0 and M s.t. for all $n > n_0$ it holds that $100n/\log n \le Mn$, that is, $100/\log n \le M$. Many values of (n_0, M) ensure this inequality holds, e.g., we can set $n_0 = 2$ and M = 100. Then for any $n > n_0$, it holds that $100/\log n < 100 = M$.

2. Prove that $100n/\log n \in o(n)$.

Answer: We need to provide n_0 s.t. for all $n > n_0$ it holds that $100n/\log n < Mn$ for any value of M, that is, $100/\log n < M$, or equivalently $100/M < \log n$, that is, $2^{100/M} < n$. Therefore, for any value of M, we can define n_0 to be any value larger than $2^{100/M}$ and then it holds that $100n/\log n < Mn$.

3. Prove that $n^2 + 2022n \in o(n^2 \log \log n)$.

Answer: We need to provide n_0 s.t. for all $n > n_0$ it holds that $n^2 + 2022n < M(n^2 \log \log n)$ for any value of M. Suppose n > 2022, which gives $n^2 + 2022n < 2n^2$. Therefore, assuming n > 2022, in order to prove $n^2 + 2022n < M(n^2 \log \log n)$, it suffices to prove $2n^2 < M(n^2 \log \log n)$ or equivalently $2/M < \log \log n$, that is $2^{2^{2/M}} < n$. To conclude, for any value of M, we can define n_0 to be any value larger than max $\{2022, 2^{2^{2/M}}\}$ and then it holds that $n^2 + 2022n < M(n^2 \log \log n)$.

4. Prove that $n \log n/2022 \in \Omega(n)$.

Answer: We need to provide n_0 and M s.t. for all $n > n_0$ it holds that $n \log n/2022 \ge Mn$, that is, $\log n/2022 \ge M$. Many values of (n_0, M) ensure this inequality holds, e.g., we can set $n_0 = 2$ and M = 1/2022. Then for any $n > n_0$, it holds that $n \log n/2022 \ge Mn$.

5. Prove that $n \log n/2022 \in \omega(2022n)$.

Answer: We need to provide n_0 s.t. for all $n > n_0$ it holds that $n \log n/2022 > M2022n$ for any value of M, that is, $\log n/2022 > 2022M$ or $n > 2^{2022^2M}$. Therefore, for any value of M, we can define n_0 to be any value larger than 2^{2022^2M} and then it holds that $n \log n/2022 > 2022n$.

6. Prove that $n^2 + 2022n \in \omega(n \log n)$.

Answer: We need to provide n_0 s.t. for all $n > n_0$ it holds that $n^2 + 2022n > M(n \log n)$ for any value of M, that is, $n + 2022 > M \log n$. To prove $n + 2022 > M \log n$, it suffices to prove $n > M \log n$ or $n/\log n > M$. We note that for n > 4, it holds that $\log n < \sqrt{n}$; therefore, assuming n > 4, to prove $n/\log n > M$, it suffices to prove $n/\sqrt{n} > M$, that is $\sqrt{n} > M$ or $n > M^2$. To conclude, for any value of M, we can define n_0 to be any value larger than max $\{4, M^2\}$ and then it holds that $n + 2022 > M \log n$.

- 7. Prove that $2^n \in \Theta(2^{n+2022})$. Answer: We need to provide n_0 , M_1 and M_2 s.t. for all $n > n_0$ it holds that $M_1 2^{n+2022} \leq 2^n \leq M_2 2^{n+2022}$, or equivalently, $M_1 2^{2022} \leq 1 \leq M_2 2^{2022}$. Many values of (n_0, M_1, M_2) ensure these inequalities hold, e.g., we can set $n_0 = 1$, $M_1 = 1/2^{2022}$ and $M_2 = 1$.
- 8. State the relationship between 2^n and 2^{2n} and prove it! **Answer:** We have $2^n \in o(2^{2n})$. To prove it, we need to show provide n_0 such that for all values of $n > n_0$, it holds that $2^n < M.2^{2n}$ for any value of M. That is, $1 < M \cdot 2^n$, or $\log(1/M) < n$. To conclude, for any value of M, we can define n_0 to be any value larger than $\log(1/M)$ and then it holds that $2^n < M.2^{2n}$.
- 9. Prove that if $f(n) \in O(g(n))$ and $g(n) \in o(h(n))$ then $f(n) \in o(h(n))$. **Answer:** Since $f(n) \in O(g(n))$, there exist values of n_{00} and M_0 s.t. for all $n > n_{00}$, it holds that $f(n) < M_0g(n)$. Moreover, since $g(n) \in o(h(n))$, there is a value of n_{01} s.t. for all $n > n_{01}$, it holds that g(n) < M'h(n) for all values of M'. Therefore, as long as $n > \max\{n_{00}, n_{01}\}$, for any value of M', we can write

$$f(n) < M_0 M' h(n) \tag{1}$$

To prove $f(n) \in o(h(n))$, we need to provide n_0 s.t. for all values of M and for $n > n_0$ it holds that f(n) < Mh(n). Fix any value of M, and let $n_0 = \max\{n_{00}, n_{01}\}$. Apply Inequality (1) for $M' = M/M_0$ (we can do it because Inequality (1) holds for all values of M'). Then we can write f(n) < Mh(n) which completes the proof.

10. Prove that if $f(n) \in \Theta(g(n))$ and $g(n) \in \omega(h(n))$ then $f(n) \in \omega(h(n))$. **Answer:** Since $f(n) \in \Theta(g(n))$, there exist values of n_{00} , M_1 and M_2 s.t. for all $n > n_{00}$, it holds that $M \circ (n) \leq f(n) \leq M \circ (n)$. Moreover, gives $g(n) \in \psi(h(n))$, there is a value of n

holds that $M_1g(n) \leq f(n) \leq M_2g(n)$. Moreover, since $g(n) \in \omega(h(n))$, there is a value of n_{01} s.t. for all $n > n_{01}$, it holds that g(n) > M'h(n) for all values of M'. Therefore, as long as $n > \max\{n_{00}, n_{01}\}$, for any value of M', we can write

$$f(n) \ge M_1 g(n) > M_1 M' h(n) \tag{2}$$

To prove $f(n) \in \omega(h(n))$, we need to provide n_0 s.t. for all values of M and for $n > n_0$ it holds that f(n) > Mh(n). Fix any value of M, and let $n_0 = \max\{n_{00}, n_{01}\}$. Apply Inequality (2) for $M' = M/M_1$ (we can do it because Inequality (1) holds for all values of M'). Then we can write f(n) > Mh(n) which completes the proof.

11. What is the time complexity of the following algorithm?

Algo2(A, n)1. $max \gets 0$ for $i \leftarrow 1$ to n do 2.3. $\mathbf{for}\ j \leftarrow i \ \mathbf{to}\ n \ \mathbf{do}$ 4. $X \gets 0$ 5.for $k \leftarrow i$ to j do $X \leftarrow A[k]$ 6. if X > max then 7.8. $max \leftarrow X$ 9. return max

Answer: The time complexity is (e, d, c are constant number of primitive operations):

$$\begin{split} T(n) &= e + \sum_{i=1}^{n} \sum_{j=i}^{n} (d + \sum_{k=i}^{j} c) \\ &= e + \sum_{i=1}^{n} \sum_{j=i}^{n} (d + (j - i + 1)c) \\ &= e + \sum_{i=1}^{n} \sum_{p=1}^{n-i+1} (d + pc) \\ &= e + \sum_{i=1}^{n} (d(n - i + 1) + c \sum_{p=1}^{n-i+1} p) \\ &= e + \sum_{i=1}^{n} (d(n - i + 1) + c(n - i + 1)(n - i + 2)/2) \\ &= e + \sum_{q=1}^{n} (dq + cq(q + 1)/2) \\ &= e + \sum_{q=1}^{n} ((d + c/2)q + cq^2/2) \\ &= e + (d + c/2) \sum_{q=1}^{n} q + c/2 \sum_{q=1}^{n} q^2 \\ &= e + (d + c/2)n(n + 1)/2 + c/2(n(n + 1)(2n + 1)/6) \\ &= n^3/6 + o(n^3) = \Theta(n^3) \end{split}$$

12. What is the time complexity of the following algorithm?

```
Algo_4(n)
1.
            A \gets 0
            for i \leftarrow 1 to n do
 2.
 3.
                     for j \leftarrow 1 to n do
 4.
                             \mathbf{if}\; j < n/3 \ \mathrm{then}
                                     \begin{array}{c} A \leftarrow A/(i-j)^2 \\ A \leftarrow A^{100} \end{array}
 5.
 6.
 7.
                             \mathbf{else}
                                      k \gets i
 8.
                                      while k > 1
A \leftarrow A^{2022}
 9.
 10.
                                               k \leftarrow k/3
 11.
 12.
            \mathbf{return}\ sum
```

Answer: The time complexity is (e, d, c are constant number of primitive operations):

$$T(n) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n/3} c + \sum_{j=n/3+1}^{n} (e + d \log_3 i)\right)$$

= $\sum_{i=1}^{n} \left((n/3)c + (2n/3)(e + d \log_3 i)\right)$
= $n(n/3)c + n(2n/3)e + d(2n/3)\sum_{i=1}^{n} \log_3 i$
= $n(n/3)c + n(2n/3)e + \frac{d(2n/3)}{\log 3}\sum_{i=1}^{n} \log i$
= $n(n/3)c + n(2n/3)e + \frac{d(2n/3)}{\log 3}\Theta(n \log n)$
= $\Theta(n^2 \log n)$