
LE/EECS 3101
Design & Analysis of Algorithms

Sample Final Exam

Shahin Kamalli

York University

15 December 2023 at 9:00

Write your name and student id here:

“Rivers know this: there is no hurry. We shall get there some day ... ” A. A. Milne, Winnie the Pooh

� Do not open this booklet until instructed.

� You are NOT allowed to use any printed/written material. A “cheat page” is provided at the end of the exam.

� It is OK to take the staples off, but make sure to submit all sheets, including the cheat sheet.

� Please turn off your cell phones and put them in your bags.

� Calculators are not needed but you can use simple calculators with no memory.

� Manage your time. We start the exam at 9:00 and end the exam at 12:00. You have 180 minutes. Don’t waste too
much time on a single question. It is a long exam, and your time is limited. Many questions ask for a final answer,
and you do not need to provide explanations. Use blank pages at the end of the exam if you need more space.

� To save trees, the exam is printed double-sided. There are 20 pages in the final exam, including this cover page,
the cheat page, and four extra blank pages (use them if you need more space for draft work or your final answers).

� There will be one or two optional bonus questions at the end of the exam. These questions are more complex and
will be marked relatively harshly. Approach them only if you have finished other questions.

� The marks will be scaled so that the highest mark gets the full mark.



1. Short Answer Questions

Provide your short answers in the provided boxes. There is no need to justify your answers.
In the actual exam, there will be more short-answer questions. They cover all topics discussed in the course.

(a). True or False: n log n ∈ Θ(n log n3 +
√
n). True

(b). True or False: Quick-Sort running time in expected to be Θ(n log n), assuming that the input is permuted randomly.

True

(c). What is the asymptotic running time of the following pseudocode?
Write your answer using Θ notation. Θ(n log n)

foo(n)
1. for i← 1 to n do {
2. k ← i5

3. while k > 1 do
4. k ← k/5
5. }
6. return i

(d). Assume T (1) = 2022 and T (n) = 81T (n/3)+n4 log n. Write down the asymptotic value of T using Θ notation. Hint:

log3 81 = 4 and log81 3 = 1/4. Θ(n4 log2 n)

(e). From the set {Merge-Sort, QuickSort (with the pivot selected by the media-of-five algorithm), Counting-Sort, Bucket-
Sort}, specify the most suitable sorting algorithm for the following scenario.
The input is a large array of n positive integers in the range [1, 100]. The input distribution is unknown.

Counting Sort

(f). True or False: Adjacency matrix and adjacency list take asymptotically equal space of Θ(n2) to store a graph of n

vertices in which every vertex has Θ(n) neighbors. True

(g). True or False: If one can find a polynomial-time algorithm for one NP-complete problem, then all NP-complete

problems can be solved in polynomial time. True

2



2. Time Analysis

(a) Provide a complete proof of the following statement from first principles (i.e., using the original definitions of order

notation).

n3 ∈ ω(n2(log n)2)

(b) Given a set of points on the x-axis (each point indicated by its distance from the origin), describe a Divide-and-
Conquer algorithm that reports the closest pair of points! Assume the points are sorted by their x-coordinate. Write
down the recursive formula for the running time and express it in Θ notation, using the Master theorem.

MinDistance(A, lo, hi)
1. if (lo = hi− 1)
2. return A[hi]−A[lo]
3. mid← (lo+ hi)/2
4. option1← MinDistance(A, lo,mid− 1)
5. option2← MinDistance(A,mid+ 1, hi)
6. option3← min{A[mid]−A[mid− 1], A[mid+ 1]−A[mid]}
7. result← max{option1, option2, option3}
8. return result

3



3. Heaps and Huffman (Short Answers)
(a) Given the array [1, 2, 3, 4, 5, 6, 7, 8], first Heapify the array to form a Max-Heap (using the linear-time Heapify algo-

rithm), and then apply the Insert(10) operation on the resulting heap. Show the final heap after these operations.
There is no need to explain your answer or show intermediate steps.

(b) Apply the Huffman encoding to encode the following string over alphabet Σ = {e, g, h, o, r, s, }. Break ties arbitrarily,
and assume the tree with a smaller frequency forms the left child of a merged tree (and in case of equal frequencies,
the subtree whose left-most leaf appears earlier in the alphabet forms the left child).
It suffices to show the (final) Huffman tree.

S = shoor eshgh

4



4. Graph Algorithms (Short Answers)

(a). Write down the vertex ordering by the DFS and BFS traversals
(each in one line) of the following graph. Assume the source is 5
and G is represented with a sorted adjacency list.
There is no need to explain or justify your answers.

1

2

7

4

9

5

6

8

3

(b). Write down the first five edges added by Kruskal’s and
Prim’s MST algorithm (each in one line) of the following
graph. Break ties arbitrarily. Indicate each edge with its
endpoints, e.g., (A,B).
There is no need to explain or justify your answers.

5



5. Selection

When doing Quick-Select, it is desired to have a good pivot which is almost in the middle of the sorted array. When
doing the average-case analysis of Quick-Select, we considered a good and a bad case; the good case happened when the
pivot was among the half middle items of the sorted array, i.e., we had n/4 ≤ i < 3n/4 (i is the index of pivot in the
partitioned array). Change the definition of the good case and assume the good case happens when we have n/3 ≤ i < 4n/5.
Provide an upper bound for T (n) and specify whether this analysis shows that Quick-Select runs in O(n).

6



6. Decision Trees

Use the Decision-Tree approach to parove a time complexity lower bound for sorting an array A of distinct integers that
is already sorted except that two elements are misplaced, e.g., A = [1, 2, 3, 4,9, 6, 7, 8,5, 10, 11, 12].

There are
(
n
2

)
possible inputs: you need to find any pair of numbers in a sorted array and swap them to get an

almost-sorted array; there are
(
n
2

)
ways to select them. As before, any comparison has two outcomes. Therefore, we

have a binary decision tree with
(
n
2

)
leaves. The height of such a tree is at least ⌈log2

(
n
2

)
⌉ = Ω(log n).

7



7. Dynamic Programming

Given a set of activities, each represented by a black interval, we would like to color each interval red, blue, or leave
it black in a way that no two red intervals overlap, and similarly no two blue intervals overlap. See the figure below for an
example. We would like to color intervals in a way to maximize the number of intervals colored red or blue.

(a) Devise a DP program to find the maximum number of intervals that can be colored red or blue. It suffices to show
Steps 1 and 2 in the DP paradigm in your solution; that is, specify the subproblems and write down a recursive
formula. Assume indices start at 1 and the intervals are sorted by their completion time.
Answer: We let intervals be a1, a2, . . . , an, sorted in the non-decreasing order of their finish time (right endpoint). Let M [n1, n2] indicate
the maximum profit, assuming that only a subset of intervals from {1, 2, . . . , n1} can possibly colored red and only a subset of intervals
from {1, 2, . . . , n2} can be colored blue. We want to find M [n, n], where n specifies the number of intervals. As before, we let pred[i]
specify the last interval that end before interval i starts (it is 0 if no such interval exists).

– In the base case, when n1 = n2 = 0, we have M [n1, n2] = 0.

– Suppose n1 > n2. We need to decide whether interval n1 should be colored red or left black. If it is colored red, we get a profit of
1 plus M [pred[n1], n2]. Otherwise, we get a profit of M [n1 − 1, n2]. We take the option which gives the maximum profit.

– Similarly when n2 > n1. We need to decide whether interval n2 should be colored blue or left black. If it is colored blue, we get a
profit of 1 plus M [n1, pred[n2]]. Otherwise, we get a profit of M [n1, n2 − 1]. We take the option which gives the maximum profit.

– Finally, when n1 = n2, we need to decide whether interval n1 (which is n2) should be colored red or blue or left black. In this case,
we should take the maximum between {1 +M [pred[n1], n2], 1 +M [n1, pred[n2]], 1 +M [n1 − 1, n2 − 1]}.

M [n1, n2] =


0 if n1 = n2 = 0

max{1 +M [pred[n1], n2],M [n1 − 1, n2]} if n1 > n2

max 1 +M [n1, pred[n2]],M [n1, n2 − 1]} if n1 < n2

max{1 +M [pred[n1], n2], 1 +M [n1, pred[n2]],M [n1 − 1, n2 − 1]} if n1 = n2

(b) Describe a greedy algorithm for this variant of the interval-selection problem (in a few sentences or with pseudocode)
and indicate whether this algorithm yields to an optimal solution.
There is no need to justify your answer.

8



8. Dynamic Programming

Given two strings S of length n and T of length m, we want to reconfigure S to T with the following operations: i)
delete a character from S at a cost of 2, ii) insert a character into S at cost of 2, or iii) substitute a character in S into a
new character at cost of 3. For example, to reconfigure S = GoodMajor to T = GoofyMayor, we can substitute d with
f (at cost 3), add y (at cost 2) and substitute y with j (cost 3) for a total cost of 8.

Devise a DP solution to report the minimum cost to reconfigure S to T . It suffices to show Steps 1 and 2 in the DP
paradigm in your solution; that is, specify the subproblems and write down a recursive formula. Assume indices start at 1.

Answer: A subproblem LD(i, j) indicates the distance (no. operations) between the prefix of S with length i, denoted with S[1..i], and
prefix of T with length j, denoted with T [1..j]. We want to find D(m,n).
To find LD(i, j), we check whether S[i] equals S[j]. If it does, then the LD distance between S[1, i] and T [1, j] equals to the distance
between S[1, i− 1] and T [1, j − 1]. Otherwise, we either need to:

� Remove the last character of S[1..i]. The candidate distance in this case is 2 + LD(i− 1, j)

� Insert the last character of T [1..j] to the end of S[1..i]. The candidate distance, in this case, is 2 + LD(i, j − 1).

� Substitute S[i] with the S[j]. The candidate distance, in this case, is 3 + LD(i− 1, j − 1).

Since we are interested in the minimum distance, we must take the minimum value among the above three candidates. Note that if one
of the two substrings is empty (base case), then LD constitutes deleting all characters of the other substring. Therefore, we can write:

LD(i, j, p) =


2i if j = 0

2j if i = 0

LD(i− 1, j − 1) if S[i] = T [j]

min{LD(i, j − 1) + 2, LD(i− 1, j) + 2, LD(i− 1, j − 1) + 3} if (S[i] ̸= S[j])

9



9. Knapsack Problem

Consider a variant of the knapsack problem in which you can accept, reject, or half-accept each item. As before, the input
is a set of n items, where the i’th item has size si and value vi. In case you half-accept an item vi, a fraction 1/2 of the item
with size si/2 and value vi/2 will be placed in the knapsack. Derive a Dynamic Programming solution that finds the value
of the optimal solution. It suffices to define subproblems and provide a recursive formula for the value of optimal solutions.

Answer: Let V (k,B) denote the optimal value when the set of items is limited to the first k items, and the capacity is B. We want
to find V (n, S). To set V (k,B), we consider the following options for the k’th item:

� Suppose k ≤ 0; in this case, we have V (k,B) = 0.

� Suppose B < sk/2; in this case, we can only reject the item and we have V (k,B) = V (k − 1, B).

� Suppose sk/2 ≤ B < sk; in this case, we can reject the item or half-accept it, and we have V (k,B) = max{V (k − 1, B), vk/2 +
V (k − 1, B − sk/2)}.

� Suppose sk ≤ B; in this case, we can reject the item, half-accept it, or fully accept it. Then we have V (k,B) = max{V (k −
1, B), vk/2 + V (k − 1, B − sk/2), vk + V (k − 1, B − sk)}.

V (k,B) =


0 if k ≤ 0

V (k − 1, B) if B < sk/2

max{V (k − 1, B), vk/2 + V (k − 1, B − sk/2)} if sk/2 ≤ B < sk
max{V (k − 1, B), vk/2 + V (k − 1, B − sk/2), vk + V (k − 1, B − sk)} if sk ≤ B

10



10. Dijkstra’s Algorithms

Follow the steps of Dijkstra’s algorithm on the following directed graph using vertex s as the source. Show the d and
π values after each pass (after processing each vertex). For the π values, it suffices to shade or colour the edges from
predecessors to nodes.

11



11. Floyd-Warshall’s Algorithms

We have followed the steps of the Floyd-Warshall algorithm for finding the weight of all-pair shortest paths in the fol-
lowing graph. Most values in matrices Di are provided for i ∈ {0, 4}. A few indices, however, are missing, and you should
calculate them. It suffices to write down the missing values in the tables. There is no need to justify your answer.

1

32

4

4 −2

2−1

3

4 0

0

∞

-2

-1

∞

∞ 0

20

1

2

3

4

D0 D1
D2

D3
D4

1 2 3 4

∞ ∞

3

∞

∞

4 0

0

∞

-2

-1

∞

∞ 0

20

1

2

3

4

1 2 3 4

∞ ∞

2

∞

∞

4 0

0

∞

-2

-1

∞

1 0

20

1

2

3

4

1 2 3 4

∞ ∞

2

∞

3

4 0

0 -2

∞ 0

1

2

3

4

1 2 3 4

∞

2

∞

1

2

3

4

1 2 3 4

12



The following space is intentionally left blank. Use it if you need more space for your answers or draft work.
Remember to submit this page.

13



You can consult the following “cheat page” in answering your questions. Not all material presented here is necessary to
answer the exam questions. Remember to submit this page.

14



The following space is intentionally left blank. Use it if you need more space for your answers or draft work.
Remember to submit this page.

15



The following space is intentionally left blank. Use it if you need more space for your answers or draft work.
Remember to submit this page.

16



The following space is intentionally left blank. Use it if you need more space for your answers or draft work.
Remember to submit this page.

17


