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1. Short Answer Questions (24 marks)

Provide your short answers in the provided boxes. There is no need to justify your answers. Notes: all parts
have 2 marks except the last two which have 3 marks.

1. True or False: Multiplying two matrices A and B, each of size n× n, takes Ω(n2). True Answer:

You need to read the two matrices to multiply them, and it asymptotically takes n2 time.

2. True or False: log(n2023) ∈ Θ(log n1917). True Answer: We have log(n2023) = 2023 log n and

log n1917 = 1917 log n, and the two functions are a constant factor away from each other.

3. True or false: In any recursion tree, the number of leaves is larger than or equal to the number of internal nodes.

False Answer: For example, in the binary search recursion, there is only one recursive call and

thus one leaf in the recursion tree.

4. True or False:
√
n

logn ∈ ω(log2023 n) True Answer: For any positive values of ϵ and

k, as long as they are constants (independent of n), we have nϵ ∈ ω(logk n). In particular, n1/2 ∈ ω(log2024 n) which
confirms the statement of this question is correct.

5. True or False: The following function has complexity Θ(n2 log n): False

f(n) =


100 log(n), for 0 ≤ n ≤ 1402

n2 log n+ 1
100 log

2023 n, for 1402 ≤ n ≤ 2023

2n log n+ log n2023, for n > 2023

Answer: For asymptotic analysis, we only care for arbitrary large values of n; here we have f(n) = Θ(n log n).
We cannot state that the complexity is max taken over the three given functions.

6. True or False: if log(f(n)) ∈ Θ(log(g(n))) then f(n) ∈ Θ(g(n)). False Answer: Assume

f(n) = 22n and g(n) = 2n. We have log f(n) ∈ Θ(log g(n)). But f(n) = 22n = 2n × 2n which is asymptotically larger
than c× 2n for constant c. Here f(n) ∈ ω(g(n)).

7. True or False: There are heaps of size n for which ExtractMax operation takes Θ(n) in the worst case. False
Answer: False. ExtractMax takes O(log n) in the worst case.

8. True or False: Strassen’s Algorithm for matrix multiplication makes 7 recursive calls, and its time complexity for

n > 2 is given by T (n) = 7T (n/2) + Θ(n2). True
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9. True or False: If we select the pivot as the first element, the worst case running time of Quick-Sort and Quick-Select

will be the same. True Answer: Both algorithm will run in O(n2) in the worst-case (with this

naive pivot-selection).

10. Assume T (1) = 2023 and T (n) = 25T (n/5) + n2 log n. Give an expression for the run-time of T (n) using Θ notation.

Θ(n2 log2 n) Answer: Case two of the Master theorem. We have nlogb a = nlog5 25 = 2. So

we have T (n) = n2 log2 n.

11. Assume T (1) = 1402 and T (n) = 4T (n/8) + 3n3. Give an expression for the number of leaves in the recursion tree of

T using Θ notation. Θ(nlog8 4) Answer: At each level, the number of nodes increases by

a factor of 4; since we divide by 8, there are log8 n levels. Therefore, there will be 4log8 n = nlog8 4 leaves.
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2. Asymptotic Analysis (4 marks)

Provide a complete proof of the following statement from first principles (i.e., using the original definitions of order notation).

n1.5 ∈ ω(n0.49+cosn)

Answer: We need to show that for any M , there is some n0 such that for n > n0 it holds that n1.5 >
Mn0.49+cosn. Given that cosn < 1, we can write n0.49+cosn < n1.49. Therefore, it suffices to prove n1.5 > Mn1.49,
which is equivalent to n0.01 < M or n > M100. That is, it suffices to have n0 ≥ M100.
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3. Loop Analysis (5 marks)

Consider the following pseudocode:

foo(n)
1. for i = 1 to n do
2. k ← 1
3. for j = 1 to n do
4. k ← i ∗ k
5. while k > 1 do
6. k ← k/2
7. return i

What is the worst-case running time of foo(n)?
Express your answer using Θ-notation in terms of n, and be as precise as possible.
Show your work in the space below.

Answer: Lines 2-4 clearly take Θ(n). At the end of Line 3, the value of k is in. Therefore, Lines 4-5 run in
c log in = cn log i for constant c (which dominates the time complexity of Lines 2-4). That is, iteration i of the for
loop at line 1 takes c′n log i. Summing over all iterations, the total time complexity will be c′n

∑
log i = Θ(n2 log n).
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4. Divide & Conquer (10 marks)
Given an array A of integers with size n, devise a divide and conquer algorithm that runs in Θ(n log n) and reports the
length of the longest contiguous subarray of A formed by the same number. For example, for A = [1, 0, 0, 3, 4, 4, 2, 2, 0, 0, 0, 3],
the output should be 3, because there is a subarray formed by 3 consecutive 0’s.
You need to present the body of a procedure with header LongestSameSubArray(A, lo, hi) (you are expected to know
the meaning of lo and hi). The first call is LongestSameSubArray(A, 0, n − 1). There is no need to analyze the time
complexity.

Answer:

LongestSameSubArray(A, lo, hi)
1. if (lo = hi)
2. return 1
3. mid← (lo+ hi)/2
4. option1← LongestSameSubArray(A, lo,mid)
5. option2← LongestSameSubArray(A,mid+ 1, hi)
6. option3← helper(A, lo,mid, hi)
7. result← max{option1, option2, option3}
8. return result

helper(A, lo,mid, hi)
1. result← 1.
2. j ← mid− 1
3. while (j ≥ low) and (A[j] = A[j + 1])
4. result← result+ 1
5. j ← j − 1
6. j ← mid
7. while (j ≤ hi− 1) and (A[j] = A[j + 1])
8. result← result+ 1
9. j ← j + 1
10. return result
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5. Heap Operations (6 marks)

Consider array A = [15, 3, 19, 32, 7, 17, 21, 23, 13, 5, 29, 9, 25, 11, 33].

a) Apply the Heapify procedure on A to form a Max heap. Show the resulting tree in the space below.

Answer:
23 13

32

5 29

7

3

9 25

17

11 33

21

19

15

3 13

23

5 7

29

32

9 15

17

11 19

21

25

33

b) On the heap formed after the Heapify operation, apply operation insert(27). Show the resulting tree in the space
below.

Answer:

23 13

27

5 7

29

32

9 15

17

11 19

21

25

33

3
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6. Median-of-Five Variant (8 marks)

The trian of k numbers is the (k/3)’th smallest number. For example, the trian of {7, 3, 8, 4, 1, 5}, where k = 6, is
3.

Consider the following variant of Median-of-Five algorithm. As before, blocks have size 5 and we find their medians.
However, instead of selecting the pivot as the median of the n/5 medians, we select it as trian of the n/5 medians.

a) Follow the same steps as in the slides to derive a recursive formula for the time complexity T (n) of this algorithm.

Answer: As before, finding the median of blocks and partitioning takes Θ(n). Finding trian is an instance of
the selection problem, which takes T (n/5). It remains to find the maximum size of the recursion of the qiuckSelect.
Note that one third of blocks, that is 1/3× n/5 = n/15 have their median and two other elements smaller than the
pivot. That is, at least 3n/15 = n/5 numbers are smaller than the pivot. So, when we recurs on right, the size of the
recursion is at most 4n/5. On the other hand, two-third of blocks, that is 2/3× n/5 = 2n/15 have their median and
two elements larger than the pivot. That is, at least 6n/15 elements are larger than the pivot. So, when we recurs
on the left, the size of the recursion is at most 9n/15. Note that, in the worst case, the recursive call is on the right
and of size 4n/5. In this case, for n > 1, we can write

T (n) ≤ T (n/5)︸ ︷︷ ︸
finding trian of meidans

+ cn︸︷︷︸
selection

+ T (4n/5)︸ ︷︷ ︸
size of recursion

.

b) Try to solve the recursion by guessing that T (n) ∈ O(n). Follow the same steps as in the slides and indicate whether
we can state T (n) ∈ O(n).

Answer: Let’s guess T (n) ∈ O(n) and use strong induction to prove it. We should prove there is a value M
s.t. T (n) ≤ Mn for all n ≥ 1. For the base we have T (1) = d ≤ M as long as M ≥ d. For any value of n we can
state:
T (n) ≤ T (n/5) + T (4n/5) + cn (from above recursion)
≤ M · n/5 +M · 4n/5 + cn (induction hypothesis)
= (M + c)n
Note that we cannot show that (M + c) ≤ M for any value of M . So, following the same steps does Not give us the
same result, i.e., we could Not prove that T (n) ∈ O(n).
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The following space is intentionally left blank. Use it if you need more space for your answers or draft work.
Remember to submit this page.
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You can consult the following “cheat page” in answering your questions. Not all material presented here is necessary to
answer the exam questions. Remember to submit this page.
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The following space is intentionally left blank. Use it if you need more space for your answers or draft work.
Remember to submit this page.
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