
York University

LE/EECS 3101 A Fall 2022

Assignment 3

Due Date: November 9th, at 23:59

A dreamer is one who can only find his way by moonlight, and his punishment is that he sees
the dawn before the rest of the world ...

Oscar Wilde

All problems are written problems; submit your solutions electronically only via Crowd-
mark. You are welcome to discuss the general idea of the problems with other students.
However, you must write your answers individually and mention your peers (with whom you
discussed the problems) in your solution.

Problem 1 Sorting [3+3=6 marks]

An steady sorting algorithm is one in which the relative order of all identical elements (or
keys) is the same in the output as it was in the input. For example, a steady sorting of array
[1, 3, 6, 1′, 4, 6′, 4′] gives [1, 1′, 3, 4, 4′, 6, 6′].

a) Indicate whether heap sort is stable or not. You need to justify your answer via a
counter-example or a proof.

Answer: Heap sort is not stable. For example, let A = [4, 4′, 3]. After extracting
4, the node 4′ becomes the new root of the heap, and the sorted array will be [3, 4′, 4].

b) In Radix sort, we iteratively and digit by digit (often starting from the least significant
digit, moving towards most significant digit). In the i’th iteration, a steady sorting
method A is used to sort items based on their i’th digit; given that the A is steady, at
the end of the i’th iteration, the numbers will be sorted with respect to their rightmost
i digit. Here is an example:



123
435
396
45
257
394
246
581
763

→ sort by the
rightmost digit

581
123
763
394
435
045
396
246
257

→ sort by the
second digit

123
435
045
246
257
763
581
394
396

→ sort by the
third digit

045
123
246
257
394
396
435
581
763

Note that if a linear-time stable sorting algorithm is used as A, the running time of
Radix Sort will be Θ(n× b).
Apply Radix Sort to sort the following input. Show your work.

[624, 238, 180, 384, 1006, 446, 164, 1, 184]

Answer:

0624
0238
0180
0384
1006
0446
0164
0001
0184

→ sort
by the
right-
most
digit

0180
0001
0624
0384
0164
0184
1006
0446
0238

→ sort

by the
second
digit

0001
1006
0624
0238
0446
0164
0180
0384
0184

→ sort
by the
third
digit

0001
1006
0164
0180
0184
0238
0384
0446
0624

→ sort
by the
forth
digit

0001
0164
0180
0184
0238
0384
0446
0624
1006

Problem 2 Decision Trees [5 marks]

We need to locate 5 naughty mice who are hiding underneath a n × n grid. Suppose each
cell has space for one mouse. You cannot see the mice, and your only tool for finding them
is to use a query the grid, where each query is a square (of an arbitrary size), and the answer
is the number of mice within the square. In the figure below, the grid size is 8× 8 (we have
n = 8), and the answer for the highlighted query square is 2.

Use a decision tree approach to give a precise (not big-Omega) lower bound for the
number of queries needed to locate the position of all 5 mice. Justify your answer in a few
sentences.

2



Answer: Given that the mice are indistinguishable, there are n2 possible positions,
out of which 5 include mice. In other words, there are

(
n2

5

)
possibilities for the location of

the 5 mice, that is, there are
(
n2

5

)
possible inputs, each associated with a leaf of the decision

tree.

Next, we check the number of possible outputs for each query. Each query answer indi-
cates that there are i ∈ {0, 1, 2, 3, 4, 5} mice in the query box. That is, there are at most
6 possible outcomes for each query. In other each internal node of the decision tree has at
most 6 children.

Therefore, each algorithm becomes a decision tree with
(
n2

5

)
leaves and at most 6 branch

at each internal node. The height of that would specify the worst-case running time of
the algorithm. A tree with

(
n2

5

)
leaves and 6 branch per internal node has a height of at

least log6
(
n2

5

)
(realized when the tree is as balance as possible). Therefore, the worst-case

running-time of any algorithm is at least log6
(
n2

5

)
.

Problem 3 Linear-time Sorting [3+4 = 7 marks]

a) Apply Bucket-Sort on the following input. Show your work in a similar way that we
did in the class. Assume we use 10 buckets.

A = [0.88, 0.32, 0.15, 0.6, 0.55, 0.11, 0.52, 0.12, 0.83, 0.31, 0.19, 0.81]

Answer:

3



b) We saw in the class that Bucket Sort is useful when the input is uniformly distributed.
Consider the following input which is NOT uniformly sorted: n/ log n items are uni-
formly distributed in [0, 0.8], log2 n items are uniformly distributed in (0.8, 0.9] and the
remaining n− n/ log n− log2 n items are uniformly distributed in (0.9, 1].
Repeat the analysis from the class to describe the expected running time of Bucket-Sort
with parameter k = n/20 for the above input. You may assume that we a comparison-
based sorting algorithm with running time Θ(n log n) to sort items within each bucket.
Answer: As before, distributing items between buckets takes Θ(n).

– The first 0.8k = 0.8n/20 = n/25 buckets receive n/ log n of the items. The

expected number of items in each bucket is thus n/ logn
n/25

= 25/ log n = o(1). That
is, for large values of n, the expected number of items within each bucket converges
to 0. Therefore, sorting each of these buckets takes O(1).

– The second group of 0.1k = 0.1n/20 = n/200 buckets receive log2 n of the items.

The expected number of items in each bucket is thus log2 n
n/200

= o(1). As in the
previous group, for large values of n, the expected number of items within each
bucket converges to 0. Therefore, sorting each of these buckets takes O(1).

– The last group of 0.1k = 0.1n/20 = n/200 buckets receive n− n/ log n− log2 n of

the items. The expected number of items in each bucket is thus n−n/ logn−log2 n
n/200

=

Θ(1). That is, for large values of n, the expected number of items within each
bucket is a constant. Therefore, sorting each of these buckets takes O(1).

To conclude, sorting each bucket takes O(1). Therefore, the overall complexity of the
algorithm for all n/20 buckets is Θ(n).

4



Problem 4 Dynamic Programming I [5 marks]

Consider a variant of the rod cutting problem in which, in addition to length n of the rod,
you are given an integer k ≥ 1 that specifies the maximum number of cuts you are allowed
to make. For example, if k = 1, you are allowed to make 0 or 1 cuts and not more. As
before, the values of subrods are stored in an array p. Let L[i, q] be the maximum value you
can get for cutting a rod of length i when you are allowed to make q cuts (we have i ≤ n
and q ≤ k). Write down the recursive formula for L[i, q].

Answer: If i = 0, there is no rod and the profit will be 0. Similarly, if q = 0, we
cannot make any more cut, and the profit for a rod of length i would be p[i]. Otherwise, we
can make a cut of length j ∈ {1, . . . , i}, collect value p[j] plus whatever profit that can be
achieved from cutting the remainder of the rod, i.e., L[i− j, q− 1]. Note that the number of
cuts q is decremented because we just used one cut.

L[i, q] =


0 if i = 0,

p[i] if q = 0,

max
j∈{1,...,i}

(p[j] + L[i− j, q − 1]) otherwise.

Problem 5 Dynamic Programming II [5+3=8 marks]

Given a woorden board of size n × n for some integer n > 1, we want to cut the board to
maximize the profit. For each pair (i, j), the value (profit) of a board of dimension i × j is
stored in p[i, j], where p is a two-dimensional matrix and i, j ∈ {1, 2, . . . n}. For instance, if
n = 4, the matrix p can be as follows:

For example, the value of a subboard of dimensions 2 × 3 in the above example is 7.
The cuts take place vertically or horizontally. The total profit of an algorithm is the sum of
subboard it outputs. In the above example, a board of length 4×4 can be first cut vertically
at index 1 to output a subboard of size 4× 1 and a subboard of size 4× 3. The subboard of
size 4× 1 may be further partitioned horizontally to generate to subboards of size 2× 1, and
the subboard of size 4× 3 may be cut vertically into two subboards of size 4× 1 and 4× 2
(see the figure). The profit of this particular cutting is therefore 2 × 3 + 8 + 9 = 23. Note

5



that there are many other possible cuttings, for example, one may choose not to cut at all
and get a profit of 15.

Let L[i, j] be the maximum profit that one can achieve from cutting a board of size i× j.

a) Write down the value of L[i, j] recursively.
Answer:

If i < 0 or j < 0, there is no board left and the profit will be 0. Otherwise, we We
have the following options for cutting a board of size i× j:

– Do not cut the board. Then the profit will be simply p[i, j].

– Cut the board vertically at index k ∈ {1, . . . , i−1}. The result will be a sub-board
of size k× j and another sub-board of size (i− k)× j. The profit we collect from
the best such vertical cut will be max

k∈{1,...,i−1}
(L[k, j] + L[i− k, j]).

– Cut the board horizontally at index x ∈ {1, . . . , j − 1}. The result will be a
sub-board of size i × x and another sub-board of size i × (j − x). The profit we
collect from the best such vertical cut will be max

x∈{1,...,j−1}
(L[i, x] + L[i, j − x]).

Therefore, we can write

L[i, j] = max{p[i, j], max
k∈{1,...,i−1}

(L[k, j] + L[i− k, j]), max
x∈{1,...,j−1}

(L[i, x] + L[i, j − x])}

.

b) Write a dynamic programming pseudocode to compute L[i, j], for i ∈ [1, n] in a bottom-
up approach. Answer: Here is the pseudocode.

FillDPTable(p, n)
1. for i = 1 to n
2. for j = 1 to n
3. option 1← p[i, j]
4. option 2← −∞
5. for k = 1 to i− 1
6. if L[k, j] + L[i− k, j] > option2

7. option2 ← L[k, j] + L[i− k, j]
8. option 3← −∞
9. for x = 1 to j − 1
10. if (L[i, x] + L[i, j − x] > option3

11. option3 ← L[i, x] + L[i, j − x]
12. L[i][j]← max{option1, option2, option3}

6


	Sorting [3+3=6 marks] 
	Decision Trees [5 marks]
	Linear-time Sorting [3+4 = 7 marks]
	Dynamic Programming I [5 marks]
	Dynamic Programming II [5+3=8 marks]

