
York University

LE/EECS 3101 B, Fall 2022

Assignment 2

Due Date: October 16th, at 23:59pm

A dreamer is one who can only find his way by moonlight, and his punishment is that he sees
the dawn before the rest of the world ...

Oscar Wilde

All problems are written problems; submit your solutions electronically only via Crowd-
mark. You are welcome to discuss the general idea of the problems with other students.
However, you must write your answers individually and mention your peers (with whom you
discussed the problems) in your solution. Please refer to the course webpage for guidelines
on academic integrity.

Problem 1 [Bonus] Max Value SubMatrix [4+3+3 = 10 marks]

Let A be an n by n matrix of integers. A “cross” of A is a formed by a contiguous set of
items in row i and a contiguous set of items in a column j of A that both contain A[i, j].
The “value” of a cross is the sum of the numbers in the cross. In the example below, items
highlighted in red form a cross of value -15 with i = 2 and j = 4, and items in blue form
another cross of value 16 with i ∈ {6, 7, 8} and j = 7. Note that, with this definition, a set
of items in a single row or column or even a single item form a cross.

Present a divide-and-conquer algorithm that returns the maximum value of the crosses
in A. Do your best to make your algorithm as fast as possible.

(a) Describe your algorithm in English or pseudocode.

(b) What is the running time of your algorithm in the worst case? Write the recursive
formula for the running time and justify your answer. You may assume n is a power
of 2.



Problem 2 Matrix Multiplication [4+4 = 8 marks]

Justin is a smart programmer who has managed to correctly implement both matrix multi-
plication algorithms we saw in the class. Due to a performance issue in the code, however,
the addition of two matrices of size n× n takes Θ(n2.5) instead of Θ(n2).

(a) Write down the recursive formula for the running time of the simple divide-and-conquer
algorithm of Slide 24 in Justin’s implementation. State the asymptotic time complexity
(using Θ notation) and indicate whether the running time changes because of the bug.

(b) Write down the recursive formula for the running time of the Strassen algorithm of
Slide 24 in Justin’s implementation. State the asymptotic time complexity (using Θ
notation) and indicate whether the running time changes because of the bug.

Problem 3 Heap Operations [3+3+4 = 10 marks]

(a) Consider a heap stored in an array a = [25, 17, 23, 14, 8, 21, 12, 7]. Write the updated
array when we apply extractMax operation.

(b) Consider the same heap a = [25, 17, 23, 14, 8, 21, 12, 7]. Write the updated array when
we apply the operation insert(24).

(c) Specify the best-case running time of extractMax() in a heap formed by n distinct
items. If your answer is Θ(f(n)), you must provide an example, with large n, for which
extractMax() takes Θ(f(n)).

Problem 4 Reheap (Heapify) Complexity [2+3+3=8 marks]

Recall that the height of a node in a binary tree is the number of edges (links) from the node
to the deepest leaf in its subtree (e.g., the height of leaves is 0).

To answer the following question, consider a complete binary tree T of size n in which
the last level contains all possible nodes from left to right.

(a) Specify the number of nodes at height h in T for any h ≥ 0 (no proof is needed).

(b) Specify the asymptotic running time of Bubble-Down for a node of height h as a
function of h. Then show the total time complexity to Bubble-Down all nodes at level
h of T when we apply the Heapify operation on T . Justify your answer in one or two
sentences.

(c) Use your answer in part to prove that the time complexity of the Heapify operation is
O(n). You need to sum the total work over all levels. Show your work.

Hint:
∞∑
x=0

x
2x

= Θ(1).

2



Problem 5 Quick-Select [7 marks]

When doing Quick-Select and Quick-Select, it is desired to have a good pivot which is almost
in the middle of the sorted array. When doing the average-case analysis of Quick-Select, we
considered a good and a bad case; the good case happened when the pivot was among the
half middle items of the sorted array, i.e., we had n/4 ≤ i < 3n/4 (i is the index of pivot in
the partitioned array). In our analysis, we provided an upper bound for the time complexity
of the algorithm in the good case and showed that T (n) ≤ T (3n/4) + cn in these cases for
some constant c. Since the good case happened with probability 1/2, we could prove that the
algorithm runs in linear time on average (see the recursion slide 12 of lectures on selections).

Change the definition of the good case and assume the good case happens when we have
n/3 ≤ i < 2n/3. Provide an upper bound for T (n) and use that to show that Quick-Select
runs in O(n).
Hint: start by calculating the probability of good case and bad case happening.

Problem 6 Median-of-Three Algorithm [4+4=8 marks]

Consider a variant of Median-of-Five algorithm in which, instead of partitioning input into
n/5 blocks of size 5, we partition the input into n/3 blocks of size 3.

a) Follow the same steps as in the slides to derive a recursive formula for the time com-
plexity T (n) of this algorithm.

b) Try to solve the recursion by guessing that T (n) ∈ O(n). Follow the same steps as in
the slides and indicate whether we can state T (n) ∈ O(n).

3


	[Bonus] Max Value SubMatrix [4+3+3 = 10 marks]
	Matrix Multiplication [4+4 = 8 marks]
	Heap Operations [3+3+4 = 10 marks]
	Reheap (Heapify) Complexity [2+3+3=8 marks]
	Quick-Select [7 marks]
	Median-of-Three Algorithm [4+4=8 marks] 

