
York University

LE/EECS 3101 B, Fall 2022

Assignment 2

Due Date: October 16th, at 23:59pm

A dreamer is one who can only find his way by moonlight, and his punishment is that he sees
the dawn before the rest of the world ...

Oscar Wilde

All problems are written problems; submit your solutions electronically only via Crowd-
mark. You are welcome to discuss the general idea of the problems with other students.
However, you must write your answers individually and mention your peers (with whom you
discussed the problems) in your solution. Please refer to the course webpage for guidelines
on academic integrity.

Problem 1 [Bonus] Max Value SubMatrix [4+3+3 = 10 marks]

Let A be an n by n matrix of integers. A “cross” of A is a formed by a contiguous set of
items in row i and a contiguous set of items in a column j of A that both contain A[i, j].
The “value” of a cross is the sum of the numbers in the cross. In the example below, items
highlighted in red form a cross of value -15 with i = 2 and j = 4, and items in blue form
another cross of value 16 with i ∈ {6, 7, 8} and j = 7. Note that, with this definition, a set
of items in a single row or column or even a single item form a cross.

Present a divide-and-conquer algorithm that returns the maximum value of the crosses
in A. Do your best to make your algorithm as fast as possible.

(a) Describe your algorithm in English or pseudocode.

(b) What is the running time of your algorithm in the worst case? Write the recursive
formula for the running time and justify your answer. You may assume n is a power
of 2.

Answer: Find the answer at the end of this document



Problem 2 Matrix Multiplication [4+4 = 8 marks]

Justin is a smart programmer who has managed to correctly implement both matrix multi-
plication algorithms we saw in the class. Due to a performance issue in the code, however,
the addition of two matrices of size n× n takes Θ(n2.5) instead of Θ(n2).

(a) Write down the recursive formula for the running time of the simple divide-and-conquer
algorithm of Slide 24 in Justin’s implementation. State the asymptotic time complexity
(using Θ notation) and indicate whether the running time changes because of the bug.

Answer: We can write:

T (n) =

{
8T (n/2) + Θ(n2.5) if n > 2

c if n = 1

This is Case 1 of Master theorem, and we have T (n) = Θ(n3). The running time of
the algorithm does not change due to the bug.

(b) Write down the recursive formula for the running time of the Strassen algorithm of
Slide 24 in Justin’s implementation. State the asymptotic time complexity (using Θ
notation) and indicate whether the running time changes because of the bug. An-
swer: We can write:

T (n) =

{
7T (n/2) + Θ(n2.5) if n > 2

d if n = 1

Note that nlogb a = nlog2 7 = n2.807. Again, this is Case 1 of Master theorem, and we
have T (n) = Θ(n807). The running time of the algorithm does not change due to the
bug.

Problem 3 Heap Operations [3+3+4 = 10 marks]

(a) Consider a heap stored in an array a = [25, 17, 23, 14, 8, 21, 12, 7]. Write the updated
array when we apply extractMax operation.

(b) Consider the same heap a = [25, 17, 23, 14, 8, 21, 12, 7]. Write the updated array when
we apply the operation insert(24).

(c) Specify the best-case running time of extractMax() in a heap formed by n distinct
items. If your answer is Θ(f(n)), you must provide an example, with large n, for
which extractMax() takes Θ(f(n)). Answer: See the following figures. Note
that for part (c), extractMax involves placing 500 in the root, swapping it with 1000,
and stopping. Therefore, it is true that extractMax takes constant time Θ(1) in the
best case.

2



Problem 4 Reheap (Heapify) Complexity [2+3+3=8 marks]

Recall that the height of a node in a binary tree is the number of edges (links) from the node
to the deepest leaf in its subtree (e.g., the height of leaves is 0).

To answer the following question, consider a complete binary tree T of size n in which
the last level contains all possible nodes from left to right.

(a) Specify the number of nodes at height h in T for any h ≥ 0 (no proof is needed).
Answer: The number of leaves in the last level is (n + 1)/2, and as we “move up”,
the number of leaves halves at each level. That is, the number of nodes of height h is
(n+ 1)/2h+1.

(b) Specify the asymptotic running time of Bubble-Down for a node of height h as a
function of h. Then show the total time complexity to Bubble-Down all nodes at level
h of T when we apply the Heapify operation on T . Justify your answer in one or two
sentences. Answer: There are h levels below a node of height h; therefore,
Bubble-Down for a node of height h takes Θ(h). There are (n+1)/2h+1 nodes at level
h. Thus, the total time complexity for all nodes of level h is (n+ 1)/2h+1 ×Θ(h).

(c) Use your answer in part to prove that the time complexity of the Heapify operation is
O(n). You need to sum the total work over all levels. Show your work.

Hint:
∞∑
x=0

x
2x

= Θ(1).

Answer: There are log(n + 1) levels in T . For the time complexity of Heapify,

3



we can write

T (n) ≤
log(n+1)∑

h=0

c · h(n+ 1)/2h+1

=
c(n+ 1)

2

log(n+1)∑
h=0

h/2h

<
c(n+ 1)

2

∞∑
h=0

h/2h

= Θ(n)

Problem 5 Quick-Select [7 marks]

When doing Quick-Select and Quick-Select, it is desired to have a good pivot which is almost
in the middle of the sorted array. When doing the average-case analysis of Quick-Select, we
considered a good and a bad case; the good case happened when the pivot was among the
half middle items of the sorted array, i.e., we had n/4 ≤ i < 3n/4 (i is the index of pivot in
the partitioned array). In our analysis, we provided an upper bound for the time complexity
of the algorithm in the good case and showed that T (n) ≤ T (3n/4) + cn in these cases for
some constant c. Since the good case happened with probability 1/2, we could prove that the
algorithm runs in linear time on average (see the recursion slide 12 of lectures on selections).

Change the definition of the good case and assume the good case happens when we have
n/3 ≤ i < 2n/3. Provide an upper bound for T (n) and use that to show that Quick-Select
runs in O(n).
Hint: start by calculating the probability of good case and bad case happening.

Answer:
We showed in the class that for the average cost of selection algorithm on an array of size
n, we have

T (n) ≤ cn+
1

n

(
i−1∑
j=0

T (n− j − 1) +
n−1∑

j=i+1

T (j)

)

Assuming n/3 ≤ j < 2n/3 (when pivot is good, a “good range”), we will have n−j−1 <
2n/3 and j − 1 < 2n/3. Consequently, T (n − j − 1) < T (2n/3) and T (j − 1) < T (2n/3).
With a chance of 1/3, a random pivot is on the left of the good range and with a chance of
1/3, it is on the right of the good range. So, with probability 2/3, the pivot is bad and with
probability 1/3, it is good. From the above equation, we get:

4



T (n) < cn+ 1/3 · T (2n/3) + 2/3 · T (n) =⇒
T (n) < 3cn+ T (2n/3)

To find the value of T (n), we can use the Master theorem; we are in case 3, f(n) has
regularity condition and we have T (n) = O(n).

Problem 6 Median-of-Three Algorithm [4+4=8 marks]

Consider a variant of Median-of-Five algorithm in which, instead of partitioning input into
n/5 blocks of size 5, we partition the input into n/3 blocks of size 3.

a) Follow the same steps as in the slides to derive a recursive formula for the time com-
plexity T (n) of this algorithm.

Answer: Assume x is the selected median-of-medians. So, half of blocks have
their medians smaller than x; each of these blocks have one element smaller than their

median (and hence smaller than x). So, in total, there are at least 1
2
· n

3︸︷︷︸
no. of blocks

×2 = n/3

items smaller than x. Similarly, there are at least n/3 items larger than x. Conse-
quently, the size of recursion can be at most 2n/3. Assume T (1) = d. For n > 1, we
can write

T (n) ≤ T (n/3)︸ ︷︷ ︸
finding median of meidans

+ cn︸︷︷︸
selection

+ T (2n/3)︸ ︷︷ ︸
size of recursion

b) Try to solve the recursion by guessing that T (n) ∈ O(n). Follow the same steps as in
the slides and indicate whether we can state T (n) ∈ O(n).

Answer: Let’s guess T (n) ∈ O(n) and use strong induction to prove it. We
should prove there is a value M s.t. T (n) ≤ Mn for all n ≥ 1. For the base we have
T (1) = d ≤M as long as M ≥ d. For any value of n we can state:
T (n) ≤ T (n/3) + T (2n/3) + cn (from above recursion)
≤M · n/3 +M · 2n/3 + cn (induction hypothesis)
= (M + c)n

Note that we cannot sow that (M+c) ≤M for any value of M . So, following the same
steps does Not give us the same result, i.e., we could Not prove that T (n) ∈ O(n). 1

1This algorithm’s complexity is in fact O(n log n); remember to use a value ≥ 5 for median of median
algorithms.

5



Answer to Question 1 (sketch)

The “prefixSum” of a row or column is an array in which the ith value is the sum of the
elements up to an index i of that row/column.
The “minPrefixSum” an array in which the ith index is the minimum value among the first
i entries of the prefixSum.Similarly, the “maxPreSum” is an array in which the ith index is
the maximum value among the last n− i entries of the prefixSum.

For example, here are the three arrays for the forth row and forth column of the example
matrix in the question (in the matrix, indices start at 1, and the following arrays, they start
at 0).
Forth row:
prefixSum: [0, 2, 14, 28, 12, 13, 21, 4,−8]
minPrefixSum: [0, 0, 0, 0, 0, 0, 0, 0,−8]
maxPrefixSum: [28, 28, 28, 28, 21, 21, 21, 4,−8]

Forth column:
prefixSum: [0, 3,−3,−16,−32,−29,−52,−58,−32]
minPrefixSum: [0, 0,−3,−16,−32,−32,−52,−58,−58]
maxPrefixSum: [3, 3,−3,−16,−29,−29,−32,−32,−32]

The value of the continuous subarray with the largest sum in an array A that must
contain A[i] is simply maxPrefixSum[i]−minPrefixSum[i−1]. For example, in the forth
row, if we want to enforce the forth number (with value -16) to be in the contigious subarray,
the maximum sum that we get is 21− 0 = 21. Similarly, in the forth column, if we want to
enforce the same number (-16) to be in the contigious subarray, the maximum sum that we
get is −29− (−16) = −13.

We can find the values of minPrefixSum and maxPrefixSum (over rows and columns),
using D&Q, as in Algorithm 1. Note that we spend O(n) at each recursive call, and make
two recurive calls of size n/2. Therefore, the running time of setting minPrefixSum and
maxPrefixSum can be described as T (n) = 2T (n/2)+cn2, which is case 3 of Master theorem
and solves as T (n) = Θ(n2).

Provided with the values of minPrefixSum and maxPrefixSum, we can consider all n2

possible “centers” for crosses, and find the best possible extension in constant time per each
center, as shown in Algorithm 2. Note that we spend a constant time for each center, and
the total time complexity is thus Θ(n2).

Thus, the total time complexity is O(n2), which is the best possible (why?)

6



Algorithm 1 SetValues (A, lo, hi, n)

1: mid← (lo+ hi)/2
2: Sum← 0
3: minPrefixSumRows[mid][0]← 0
4: for i = 1 to n do
5: Sum← Sum+ A[mid][i]
6: minPrefixSumRows[mid][i]← max{Sum,minPrefixSumRows[mid][i− 1] }
7: Sum← 0
8: minPrefixSumCols[0][mid]← 0
9: for i = 1 to n do
10: Sum← Sum+ A[i][mid]
11: minPrefixSumCols[i][mid]← min{Sum,minPrefixSumCols[i− 1][mid] }
12: Sum← 0
13: maxPrefixSumRows[mid][n+ 1]← 0
14: for i = n downto 0 do
15: Sum← Sum+ A[mid][i]
16: maxPrefixSumRows[mid][i]← max{Sum,maxPrefixSumRows[mid][i+ 1] }
17: Sum← 0
18: maxPrefixSumColss[n+ 1][mid]← 0
19: for i = n downto 0 do
20: Sum← Sum+ A[i][mid]
21: maxPrefixSumCols[i][mid]← max{Sum,maxPrefixSumCols[i+ 1][mid] }
22: if lo < hi then
23: setValues (A, lo,mid− 1, n)
24: setValues (A,mid+ 1, hi, n)

Algorithm 2 FindMaxSum (A, n)

1: best← −∞
2: for i = 1 to n do
3: for j = 1 to n do
4: rowSum← maxPrefixSumRows[i][j]−minPrefixSumRows[i− 1][j]
5: colSum← maxPrefixSumCols[i][j]−minPrefixSumCols[i][j − 1]
6: best← min{best, rowSum+ colSum }

7


	[Bonus] Max Value SubMatrix [4+3+3 = 10 marks]
	Matrix Multiplication [4+4 = 8 marks]
	Heap Operations [3+3+4 = 10 marks]
	Reheap (Heapify) Complexity [2+3+3=8 marks]
	Quick-Select [7 marks]
	Median-of-Three Algorithm [4+4=8 marks] 

