
York University

LE/EECS 3101 A, Fall 2023

Assignment 1

Due Date: September 26th, at 23:59pm

The trees are about to show us how lovely it is to let the dead things go ...

anonymous

All problems are written problems; submit your solutions electronically only via Crowd-
mark. Some questions include an example and an answer that provides guidelines on how
the solutions should look. Think of them as a tool for reviewing the material. Your solutions
do not necessarily need to look like provided answers. You are welcome to discuss the general
idea of the problems with other students. However, you must write your answers individually
and mention your peers (with whom you discussed the problems) in your solution.

Throughout the assignment, all logarithms are based 2 logarithms, i.e., log x = log2(x).

Equations you must know:

� 1 + 2 + 3 + 4 + . . .+ i+ . . .+ x = x(x+ 1)/2

� 1 + 4 + 9 + . . .+ i2 + . . .+ x2 = x(x+ 1)(2x+ 1)/6

� 1 + 2 + 4 + . . .+ 2i + . . .+ 2x = 2x+1 − 1.

� 1 + 1/2 + 1/4 + . . . ≈ 2

� 1 + 1/2 + 1/3 + . . .+ 1/n = Θ(log n)

Problem 1 [4+4+4+4+4=20 marks]

Provide a complete proof of the following statements from first principles (i.e., using the
original definitions of order notation).

Ex.) 15n3 + 10n2 + 20 ∈ O(n3)
Consider M := 15 + 10 + 20 = 45 and n0 := 1. Then 15n3 + 10n2 + 20 ≤ Mn3 for all
n ≥ n0.

a) n2 + 3n2

2+cos(n)
∈ O(n2)

Answer: For any value of n, we have cos(n) ≥ −1 and hence 3n2

2+cos(n)
≤ 3n2.

Therefore, f(n) ≤ n2 + 3n2 = 4n2. So, it suffices to have n0 ≥ 1 and M ≥ 4.



b) n2(log n)/10 ∈ ω(n(log n)2). Answer: We need to provide n0 s.t. for all M > 0
and n > n0 we have n2 log n/10 > Mn(log n)2, i.e., n/ log n > 10M . We know for
n > 16, we have

√
n > log n, which implies n/

√
n < n/ log n. So, we can write

n/ log n > n/
√
n =
√
n. So, in order to have n/ log n > 10M , it suffices to have

√
n >

10M , which gives n > 100M2. Therefore, it suffices choose n0 = max{100M2, 16}.

c) 5n2/(n+ 120) ∈ Θ(n).
Answer: Suppose n ≥ 120. Then we have 5n2/(2n) ≤ 5n2/(n + 120) ≤ 5n2/n.
That is, 2.5n ≤ 5n2/(n+120) ≤ 5n. Therefore, we can choose n0 = 120 and M1 = 2.5
and M2 = 5.

d) 1402n ∈ o(n log n)
Answer: Given any value of M , we should provide n0 so that 1402n < Mn log n,
i.e,. 1402/M < log n. For this to hold, it suffices to have n > 21402/M . So it suffices to
define n0 as max{1, 21402/M}.

e) n2023 ∈ o(nn)
Answer: Set n0 := 2023 + M . Then, for n ≥ n0, we have nn = nn−2023n2023 ≥
(2023 +M)Mn20. Since (2023 +M)M > M , this shows that 0 ≤ Mn2023 < nn for all
n ≥ n0.

Problem 2 [4+4+4+4=16 marks]

For each pair of the following functions, fill in the correct asymptotic notation among Θ, o,
and ω in the statement f(n) ∈ ⊔(g(n)). Provide a brief justification of your answers. In
your justification you may use any relationship or technique that is described in class.

Ex.) f(n) = n2.5 and g(n) = n2 log(n).

We have limn→∞
n2.5

n2 logn
= limn→∞

√
n

logn
= limn→∞

(n−1/2)/2
1/(n ln 2)

= limn→∞
n1/2 ln 2

2
= ∞.

Hence we have f(n) = ω(g(n)).

a) f(n) = n(log n)3 versus g(n) = n2 Answer: We have limn→∞
n(logn)3

n2 = limn→∞
(logn)3

n
=

limn→∞
3(logn)2

n ln 2
= limn→∞

6 logn
n(ln 2)2

== limn→∞
6

n(ln 2)3
= 0. Hence we have f(n) =

o(g(n)). Note that we applied L’Hopital rule three times.

b) f(n) =
√
n versus g(n) = (log n)4 Answer: We can show f(n) = ω(g(n)) by

taking the limit and applying L’Hopital rule four times. Alternatively, we can use the
definition as follows. We need to introduce n0 so that for all n > n0 and any M we
have n1/2 > M(log n)4 which is equivalent to (n1/8)4 > (M1/4 log n)4, i.e., it suffices to
show n1/8 > M1/4 log n. We note that for n0 > 2128 we have n1/16 > log n (to see that,
note 2128/16 = 256 > 128). So, in order to show n1/8 > M1/4 log n, it suffices to show
n1/8 > M1/4n1/16, which is equivalent to showing n1/16 > M1/4. For this to hold, it
suffice to have n > (M1/4)16, i.e., define n0 = max{2128,M4}
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c) f(n) = n3(3+2 cos(2n3)) versus g(n) = 2023n3+n2+3n Answer: For any value
of n we have 2 ≤ 3 + 2 cos(2n3) ≤ 3. Hence 2n3 ≤ f(n) ≤ 3n3. Similarly, for any
value of n we have 2023n3 ≤ g(n) ≤ 2027n3. We can conclude f(n) ≤ 3n3 < 2023n3 ≤
g(n) ≤ 2027n3 < 1014 × 2n3 ≤ 1014f(n). So, it suffices to have M1 ≤ 1, M2 ≥ 1014
and n0 = 1.

d) f(n) = 4n versus g(n) = 3n/2

Answer: We have limn→∞
4n

3n/2 = limn′→∞
42n

′

3n′ = limn′→∞
16n

′

3n′ = limn′→∞ (16/3)n
′
=

∞. Note that n′ = n/2. We conclude that 4n ∈ ω(3n/2).

Problem 3 [5+5+5=15 marks]

Prove or disprove each of the following statements. To prove a statement, you should provide
a formal proof that is based on the definitions of the order notations. To disprove a statement,
you can either provide a counter example and explain it or provide a formal proof. All
functions are positive functions.

Ex.) f(n) ∈ Θ(g(n))⇒ g(n) ∈ Θ(f(n))
f(n) ∈ Θ(g(n)), for large values of n we have M1g(n) ≤ f(n) ≤ M2g(n) for some M1

and M2. This means we have 1
M2

f(n) ≤ g(n) ≤ 1
M2

f(n), which shows g(n) = Θ(f(n)).

a) f(n) ̸∈ o(g(n)) and f(n) ̸∈ ω(g(n))⇒ f(n) ∈ Θ(g(n)) Answer:

False. Counter example: Consider f(n) := n and g(n) :=

{
1 n odd
n2 n even

. To prove

the claim false it will be sufficient to show that f(n) ̸∈ O(g(n)) and f(n) ̸∈ Ω(g(n)),
since then the antecedent of the implication is satisfied while the consequent is not.

If f(n) ∈ O(g(n)), then there exist constants n0 > 0 and c > 0 such that f(n) ≤ cg(n)
for all n ≥ n0. But for any odd number n1 > c we have f(n1) = n1 > c = cg(n1),
showing that f(n) ̸∈ O(g(n)).

Similarly, if f(n) ∈ Ω(g(n)), then there exists constants n0 > 0 and c > 0 such
that cg(n) ≤ f(n) for all n ≥ n0. But for any even number n1 > 1/c we have
cg(n1) = cn2

1 > n1 = f(n1), showing that f(n) ̸∈ Ω(g(n)).

b) f(n) ∈ Θ(h(n)) and h(n) ∈ Θ(g(n))⇒ f(n)
g(n)
∈ Θ(1)

Answer: True. Proof: Let n1, n2 > 0 and c1, c2, c3, c4 > 0 be such that c1h(n) ≤
f(n) ≤ c2h(n) for all n ≥ n1 and c3g(n) ≤ h(n) ≤ c4g(n) for all n ≥ n2.

Since g and h are positive, for every n ≥ n2 we have

c3
h(n)

≤ 1

g(n)
≤ c4

h(n)
.
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Let n0 = max{n1, n2}. Then for every n ≥ n0 we have

c1c3h(n)

h(n)
≤ f(n)

g(n)
≤ c2c4h(n)

h(n)
⇒ c1c3 ≤

f(n)

g(n)
≤ c2c4.

Selecting constants c′1 = c1c3 and c′2 = c2c4 we have c′1 ≤
f(n)
g(n)
≤ c′2 for every n ≥ n0.

Thus, according to the definition of Θ we have f(n)
g(n)
∈ Θ(1).

c) f(n) ∈ Θ(g(n)) ⇒ 2f(n) ∈ Θ(2g(n)) Answer: False. Counter example: Consider
f(n) = log n and g(n) = 2 log n. Then f(n) ∈ Θ(g(n)) but 2f(n) = n and 2g(n) = n2.
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Problem 4 [7 marks]

Analyze the following piece of pseudocode and give a tight (Θ) bound on the running time
as a function of n. Show your work. A formal proof is not required, but you should justify
your answer.

1. for i← n2 to 2n2 do {
2. rex← 1
3. for k ← 4i to 6i do
4. rex← rex ∗ 2
5. fido← 1
6. for k ← 0 to rex do
7. fido← rex ∗ fido
8. }

Answer: The value of rex at the beginning of line 6 is 22i; this is because it
starts at 1 and is doubled 6i − 4i = 2i times. So, the time complexity of lines 2 to 7 is

A(i) = c +
6i∑

k=4i

c′ +
22i∑
k=0

c′′ for constant values of c, c′, and c′′. The value of A(i) is thus

c+ (6i− 4i+ 1)c′ + (22i + 1)c′′. The total time complexity of is thus

T (n) =
2n2∑
i=n2

A(i)

=
2n2∑
i=n2

c+ (2i+ 1)c′ + (22i + 1)c′′

The very last term in the sum is (24n
2
+ 1)c′′ ≤ (2c′′)24n

2
. Therefore, we can write

T (n) ≥ (2c′′)24n
2
.

Let d = max{c, c′, c′′}. Then we can write A(i) ≤ d(22i + 2i + 3) < 3d22i. The last
inequality holds when n ≥ 2 (and therefore i ≥ 2). Therefore, we can write

T (n) ≤ 3d
2n2∑
i=n2

22i < 3d
2n2∑
i=1

22i < 3d
4n2∑
j=1

2j = 3d(24n
2+1 − 1) < 6d(24n

2

).

The third inequality holds because on the left we have 3d(22+24+ . . .+24n
2
) and on the

right we have 3d(21 + 22 + 23 + . . .+ 24n
2
).

To conclude, we have (2c′′)24n
2 ≤ T (n) ≤ (6d)24n

2
, which certifies T (n) = Θ(24n

2
).
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Problem 5 5+5+5=15

Consider the following recursion (suppose n is a power of 2):

T (n) =

{
4T (n/2) + n2.5 if n > 1

d if n = 1

a) Use the alternation method to guess the asymptotic value of T (n) (using Θ notation).
Answer: We can write:

T (n) = 4T (n/2) + n2.5

= 4(4T (n/4) + (n/2)2.5) + n2.5 = 16T (n/4) + n2.5(1 + 4/22.5)

= 16(4T (n/8) + (n/4)2.5) + n2(1 + 4/22.5) = 64(n/8) + n2.5(1 + 4/22.5 + (4/22.5)2)

= . . .

= 4kT (n/2k) + n2.5(1 + (4/22.5) + (4/22.5)2 + . . .+ (4/22.5)k−1)

= 4log4 nT (1) + n2.5(1 + (4/22.5) + (4/22.5)2 + . . .+ (4/22.5)k−1)

= nlog4 4d+Θ(n2.5)

= Θ(n2.5)

b) Use induction to prove the correctness of your guess in part (a) (it suffices to prove
the value of T (n) using O notation).
Answer: For the based of induction, we have T (2) = 4T (1) + 22.5 = 4d + 22.5 ≤
M · 22.5, which holds as long as M > 4d/22.5 + 1.
In the induction step, we can write

T (n) = 4T (n/2) + n2.5 ≤ 4M.(n/2)2.5 + n2.5 = (4M/22.5 + 1)n2.5

So, it suffices to have (4M/22.5+1)n2.5 ≤Mn2.5, orM/
√
2+1 ≤M , which holds as long

as M ≥ 2/(
√
2 − 1). Therefore, it suffices to have M = max{4d/22.5 + 1, 2/(

√
2 − 1),

and the desired inequality holds for all values of n ≥ 2.

c) Draw the recursion tree for T (n); specify the height of the tree, the number of leaves,
and total work done in all levels of the tree. From your work, indicate the asymptotic
value of T (n).

Answer: The recursion tree is as follows; note the number of leaves and the
height of the tree. The total work is (ignoring constants):

n2.5(1 + (4/22.5) + (4/22.5)2 + (4/22.5)3 + . . .+ (4/22.5)log3 n + n2d) = Θ(n2.5)
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n2.5

4 (n/2)
2.5

=(
4/2

2.5
)
n
2.5

16 (n/4)
2.5

=(
4/2

2.5
)2

n
2.5

n2d

height:
log2 n

4log2 n leaves= n2

Problem 6 [4+4+4+4=12 marks]

For each of the following recurrences, give an expression for the runtime T (n) if the recurrence
can be solved with the Master Theorem. Otherwise, indicate that the Master Theorem does
not apply. For all cases, we have T (x) = 1 when x ≤ 100 (base of recursion).

Ex.) T (n) = 3T (n/3) +
√
n

We have nlogb a = n. Since f(n) = O(n1−ϵ) (for any ϵ < 1/2), we are at case 1 and
T (n) = Θ(n).

a) T (n) = 5T (n/3) + 2023n1.6 Answer: We have nlogb a = nlog35 = n1.4649 and
hence f(n) = Θ(n1.6) = Ω(nlogb a+ϵ) for some ϵ (any ϵ < 0.13 works). Hence we are at
case III. For regularity condition, we have: af(n/b) = 5(n/3)1.6 = 0.86n1.6 < cf(n) for
c ∈ (0.86, 1). Thus, regularity condition holds and we can state T (n) = Θ(n1.6).

b) T (n) = 9T (n/3) + 1984n2

Answer: This is case 2 (for k = 0) and we can write T (n) = Θ(n2 log n).

c) T (n) = 8T (n/2) + n3

logn
. Answer: We have nlogb a = nlog2 8 = n3. Note that

f(n) = n3

logn
= O(n3), but we cannot write f(n) = O(n3−ϵ) for any positive ϵ (there is

no polynomial gap between f and nlogb a). Therefore we cannot apply Case 1 of Master
theorem. Also note that f(n) = Θ(nlogb a logk n) for k = −1; since k is negative, we
cannot apply Case 2 either. We conclude that Master theorem is not applicable in this
example.

d) T (n) = 16T (n/2) + n4 log3 n

Answer: We have nlogb a = n4 and thus f(n) = Θ(nloga b logk(n)) for k = 3.
Therefore, we are in Case 2 T (n) = Θ(f(n) log n) = n4 log4 n.
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