EECS 3101 - Design and Analysis of Algorithms

Shahin Kamali

Topic 7 - Remarks on Complexity

Overview

- A few remarks about complexity classes
- A brief introduction to NP-completeness
- $P \neq N P$ and other questions for which we do not know the answers!

Polynomial Algorithms

- Most algorithms you have seen have running times $\Theta(\log n)$ (e.g., binary search), $\Theta(n)$ (e.g., searching in a linked list), $\Theta(n \log n)$ (e.g., merge-sot), $\Theta\left(n^{2}\right)$ (e.g., bubble-sort), $\Theta\left(n^{3}\right)$ (e.g., matrix multiplication), etc.
- n is the number of words (in word-RAM model) to encode the input.

Polynomial Algorithms

- Most algorithms you have seen have running times $\Theta(\log n)$ (e.g., binary search), $\Theta(n)$ (e.g., searching in a linked list), $\Theta(n \log n)$ (e.g., merge-sot), $\Theta\left(n^{2}\right)$ (e.g., bubble-sort), $\Theta\left(n^{3}\right)$ (e.g., matrix multiplication), etc.
- n is the number of words (in word-RAM model) to encode the input.
- The running time of all these algorithms can be bounded by some polynomial function, e.g., n^{5}.

Polynomial Algorithms

- Most algorithms you have seen have running times $\Theta(\log n)$ (e.g., binary search), $\Theta(n)$ (e.g., searching in a linked list), $\Theta(n \log n)$ (e.g., merge-sot), $\Theta\left(n^{2}\right)$ (e.g., bubble-sort), $\Theta\left(n^{3}\right)$ (e.g., matrix multiplication), etc.
- n is the number of words (in word-RAM model) to encode the input.
- The running time of all these algorithms can be bounded by some polynomial function, e.g., n^{5}.
- A Polynomial Algorithm has running time $O\left(n^{c}\right)$ on input size of n, where c is a constant independent of n
- E.g., $O(n), O\left(n^{2}\right), O\left(n^{3}\right), O\left(n^{2022}\right)$.
- Also $O(1), O(\alpha(n)), O(\log n), O(n \log n), O(\sqrt{n}), O\left(n^{3 / 2}\right)$, etc.

Polynomial Algorithms

- Most algorithms you have seen have running times $\Theta(\log n)$ (e.g., binary search), $\Theta(n)$ (e.g., searching in a linked list), $\Theta(n \log n)$ (e.g., merge-sot), $\Theta\left(n^{2}\right)$ (e.g., bubble-sort), $\Theta\left(n^{3}\right)$ (e.g., matrix multiplication), etc.
- n is the number of words (in word-RAM model) to encode the input.
- The running time of all these algorithms can be bounded by some polynomial function, e.g., n^{5}.
- A Polynomial Algorithm has running time $O\left(n^{c}\right)$ on input size of n, where c is a constant independent of n
- E.g., $O(n), O\left(n^{2}\right), O\left(n^{3}\right), O\left(n^{2022}\right)$.
- Also $O(1), O(\alpha(n)), O(\log n), O(n \log n), O(\sqrt{n}), O\left(n^{3 / 2}\right)$, etc.
- A function is super polynomial if $f(n) \in \omega\left(n^{c}\right)$ for all c.

Polynomial Algorithms

- Most algorithms you have seen have running times $\Theta(\log n)$ (e.g., binary search), $\Theta(n)$ (e.g., searching in a linked list), $\Theta(n \log n)$ (e.g., merge-sot), $\Theta\left(n^{2}\right)$ (e.g., bubble-sort), $\Theta\left(n^{3}\right)$ (e.g., matrix multiplication), etc.
- n is the number of words (in word-RAM model) to encode the input.
- The running time of all these algorithms can be bounded by some polynomial function, e.g., n^{5}.
- A Polynomial Algorithm has running time $O\left(n^{c}\right)$ on input size of n, where c is a constant independent of n
- E.g., $O(n), O\left(n^{2}\right), O\left(n^{3}\right), O\left(n^{2022}\right)$.
- Also $O(1), O(\alpha(n)), O(\log n), O(n \log n), O(\sqrt{n}), O\left(n^{3 / 2}\right)$, etc.
- A function is super polynomial if $f(n) \in \omega\left(n^{c}\right)$ for all c.
- E.g., $2^{n}, 3^{n}, n!, n^{n}$, etc.

Primality test

- Problem: given a positive integer x, indicate whether x is prime.

Primality test

- Problem: given a positive integer x, indicate whether x is prime.
- Trial division: try to divide x by i for $i \in\{1,2, \ldots, \sqrt{x}\}$.
-What is the time complexity?

Primality test

- Problem: given a positive integer x, indicate whether x is prime.
- Trial division: try to divide x by i for $i \in\{1,2, \ldots, \sqrt{x}\}$.
- What is the time complexity? $\rightarrow \Theta(\sqrt{x})$.

Primality test

- Problem: given a positive integer x, indicate whether x is prime.
- Trial division: try to divide x by i for $i \in\{1,2, \ldots, \sqrt{x}\}$.
- What is the time complexity? $\rightarrow \Theta(\sqrt{x})$.
- Is this algorithm polynomial?

Primality test

- Problem: given a positive integer x, indicate whether x is prime.
- Trial division: try to divide x by i for $i \in\{1,2, \ldots, \sqrt{x}\}$.
- What is the time complexity? $\rightarrow \Theta(\sqrt{x})$.
- Is this algorithm polynomial? No (why?)
- This algorithm is pseudo-polynomial; its running time is a polynomial in the numeric value of the input (the largest integer present in the input)-but not in the length of the input

Primality test

- Problem: given a positive integer x, indicate whether x is prime.
- Trial division: try to divide x by i for $i \in\{1,2, \ldots, \sqrt{x}\}$.
- What is the time complexity? $\rightarrow \Theta(\sqrt{x})$.
- Is this algorithm polynomial? No (why?)
- This algorithm is pseudo-polynomial; its running time is a polynomial in the numeric value of the input (the largest integer present in the input)-but not in the length of the input
- A rich field of research is formed around this 'simple' problem
- Whether a polynomial time algorithm exists was not-known until 2002.

Primality test

- Problem: given a positive integer x, indicate whether x is prime.
- Trial division: try to divide x by i for $i \in\{1,2, \ldots, \sqrt{x}\}$.
- What is the time complexity? $\rightarrow \Theta(\sqrt{x})$.
- Is this algorithm polynomial? No (why?)
- This algorithm is pseudo-polynomial; its running time is a polynomial in the numeric value of the input (the largest integer present in the input)-but not in the length of the input
- A rich field of research is formed around this 'simple' problem
- Whether a polynomial time algorithm exists was not-known until 2002.
- Three scientists from India discovered an algorithm (later named AKS primality test) that runs in $\tilde{O}\left((\log x)^{6}\right) \in O\left((\log x)^{7}\right)$.
- Their paper won the 2006 Godel prize among other things.

Manindra Agrawal

Neeraj Kayal

Nitin SaxenaEECS 3101 -

3SUM problem

- the 3SUM problem asks if a given set of n real numbers contains three elements that sum to zero, e.g., for $S=\{-25,-10,-7,-3,2,4,8,10\}$, the answer is "true".
- A naive solutions solves the problem in $\Theta\left(n^{3}\right)$.

3SUM problem

- the 3SUM problem asks if a given set of n real numbers contains three elements that sum to zero, e.g., for $S=\{-25,-10,-7,-3,2,4,8,10\}$, the answer is "true".
- A naive solutions solves the problem in $\Theta\left(n^{3}\right)$.
- A smart (but not complicated) algorithm exists that answers 3SUM in $\Theta\left(n^{2}\right)$.
- 3Sum-conjecture: 3-Sum requires $\Omega\left(n^{2}\right)$ time, any algorithm for 3Sum runs in $\Omega\left(n^{2}\right)$.

3SUM problem

- the 3SUM problem asks if a given set of n real numbers contains three elements that sum to zero, e.g., for $S=\{-25,-10,-7,-3,2,4,8,10\}$, the answer is "true".
- A naive solutions solves the problem in $\Theta\left(n^{3}\right)$.
- A smart (but not complicated) algorithm exists that answers 3SUM in $\Theta\left(n^{2}\right)$.
- 3Sum-conjecture: 3-Sum requires $\Omega\left(n^{2}\right)$ time, any algorithm for 3Sum runs in $\Omega\left(n^{2}\right)$.
- This conjecture was open for a long time, until it was refuted in 2014 by an algorithm which runs in $O\left(n^{2} /(\log n \log \log n)^{2 / 3}\right)$. [Gronlund and Pettie paper on "Threesomes, Degenerates, and Love Triangles']

3SUM problem

- the 3SUM problem asks if a given set of n real numbers contains three elements that sum to zero, e.g., for $S=\{-25,-10,-7,-3,2,4,8,10\}$, the answer is "true".
- A naive solutions solves the problem in $\Theta\left(n^{3}\right)$.
- A smart (but not complicated) algorithm exists that answers 3SUM in $\Theta\left(n^{2}\right)$.
- 3Sum-conjecture: 3-Sum requires $\Omega\left(n^{2}\right)$ time, any algorithm for 3Sum runs in $\Omega\left(n^{2}\right)$.
- This conjecture was open for a long time, until it was refuted in 2014 by an algorithm which runs in $O\left(n^{2} /(\log n \log \log n)^{2 / 3}\right)$. [Gronlund and Pettie paper on "Threesomes, Degenerates, and Love Triangles']
- Modern 3Sum-conjecture: 3-Sum requires $\Omega\left(n^{2-\epsilon}\right)$ time for any constant $\epsilon>0$.

3SUM problem

- the 3SUM problem asks if a given set of n real numbers contains three elements that sum to zero, e.g., for $S=\{-25,-10,-7,-3,2,4,8,10\}$, the answer is "true".
- A naive solutions solves the problem in $\Theta\left(n^{3}\right)$.
- A smart (but not complicated) algorithm exists that answers 3SUM in $\Theta\left(n^{2}\right)$.
- 3Sum-conjecture: 3-Sum requires $\Omega\left(n^{2}\right)$ time, any algorithm for 3Sum runs in $\Omega\left(n^{2}\right)$.
- This conjecture was open for a long time, until it was refuted in 2014 by an algorithm which runs in $O\left(n^{2} /(\log n \log \log n)^{2 / 3}\right)$. [Gronlund and Pettie paper on "Threesomes, Degenerates, and Love Triangles"]
- Modern 3Sum-conjecture: 3-Sum requires $\Omega\left(n^{2-\epsilon}\right)$ time for any constant $\epsilon>0$.
- If this conjecture is true, many other 3SUM-hard problems also requires $\Omega\left(n^{2-\epsilon}\right)$.

Exhaustive Search

- Many problems have an exponential number of possible solutions.
- An algorithm which applies an exhaustive search on the solution space will eventually find a solution
- The time will be proportional to the size of solution space in the worst case, i.e., it will be super-polynomial.
- This is not good!

Exhaustive Search

- Many problems have an exponential number of possible solutions.
- An algorithm which applies an exhaustive search on the solution space will eventually find a solution
- The time will be proportional to the size of solution space in the worst case, i.e., it will be super-polynomial.
- This is not good!
- For many problems, we have failed to do much better.

Hamiltonian Path

- Instance: a graph G with vertex set V and edge set E.
- Question: Does there exist a path in G that visits every vertex in $V(G)$ exactly once along a sequence of edges in $E(G)$?

G_{1}

G_{2}

Hamiltonian Path

- Instance: a graph G with vertex set V and edge set E.
- Question: Does there exist a path in G that visits every vertex in $V(G)$ exactly once along a sequence of edges in $E(G)$?

G_{1}

G_{2}

Exhaustive Search for HP

- Try all paths and check whether the sequence of edges exist in G
- In other words, try all permutations of vertices

```
- }\mp@subsup{V}{1}{},\mp@subsup{V}{2}{},\mp@subsup{V}{3}{},\mp@subsup{V}{4}{},\ldots,\mp@subsup{V}{n}{
- }\mp@subsup{V}{2}{},\mp@subsup{V}{1}{},\mp@subsup{V}{3}{},\mp@subsup{V}{4}{},\ldots,\mp@subsup{V}{n}{
- ...
```


Exhaustive Search for HP

- Try all paths and check whether the sequence of edges exist in G
- In other words, try all permutations of vertices
- $V_{1}, V_{2}, V_{3}, V_{4}, \ldots, V_{n}$
- $V_{2}, V_{1}, V_{3}, V_{4}, \ldots, V_{n}$
- ...
- There are n ! different paths
- Some paths are redundant, e.g., $v_{1}, v_{2}, \ldots, v_{n}$ is the same as $v_{n}, v_{n-1}, \ldots, v_{1}$.
- Regardless, the number of distinct paths is still $\Theta(n!)$.

Exhaustive Search for HP

- Try all paths and check whether the sequence of edges exist in G
- In other words, try all permutations of vertices
- $v_{1}, v_{2}, v_{3}, v_{4}, \ldots, v_{n}$
- $V_{2}, V_{1}, V_{3}, V_{4}, \ldots, V_{n}$
- ...
- There are n ! different paths
- Some paths are redundant, e.g., $v_{1}, v_{2}, \ldots, v_{n}$ is the same as $v_{n}, v_{n-1}, \ldots, v_{1}$.
- Regardless, the number of distinct paths is still $\Theta(n!)$.
- \rightarrow exhaustive search requires $\Omega(n!)$ in the worst case

Complexity of HP

- There are 'faster' algorithms, e.g., $O\left(n^{2} 2^{n}\right)$ deterministic and $O\left(1.415^{n}\right)$ randomized algorithms.

Complexity of HP

- There are 'faster' algorithms, e.g., $O\left(n^{2} 2^{n}\right)$ deterministic and $O\left(1.415^{n}\right)$ randomized algorithms.
- Is there a polynomial algorithm for Hamiltonian Path?
- We don't know, but no such algorithm is discovered yet, and it is unlikely that we can find one!
- This relates to $P \neq N P$ conjecture that we see in a minute.

Complexity of HP

- There are 'faster' algorithms, e.g., $O\left(n^{2} 2^{n}\right)$ deterministic and $O\left(1.415^{n}\right)$ randomized algorithms.
- Is there a polynomial algorithm for Hamiltonian Path?
- We don't know, but no such algorithm is discovered yet, and it is unlikely that we can find one!
- This relates to $P \neq N P$ conjecture that we see in a minute.
- There are many 'Hard' problems like Hamiltonian path problem for which we do not know whether a polynomial algorithm exists; they form a complexity class.

Complexity of HP

- There are 'faster' algorithms, e.g., $O\left(n^{2} 2^{n}\right)$ deterministic and $O\left(1.415^{n}\right)$ randomized algorithms.
- Is there a polynomial algorithm for Hamiltonian Path?
- We don't know, but no such algorithm is discovered yet, and it is unlikely that we can find one!
- This relates to $P \neq N P$ conjecture that we see in a minute.
- There are many 'Hard' problems like Hamiltonian path problem for which we do not know whether a polynomial algorithm exists; they form a complexity class.
- If there is a polynomial algorithm for any of these problems, there will be polynomial algorithms for all of them.
- When you fail to come up with a polynomial algorithm for a problem, investigate whether it is 'Hard'.

Application of Reductions

- Assume you have a problem P for which you look for an efficient, polynomial algorithm, and you fail after trying a bit.

Application of Reductions

- Assume you have a problem P for which you look for an efficient, polynomial algorithm, and you fail after trying a bit.
- How can you determine whether you should keep searching for an efficient algorithm or whether it's unlikely that any efficient algorithm for problem P exists?

Application of Reductions

- Assume you have a problem P for which you look for an efficient, polynomial algorithm, and you fail after trying a bit.
- How can you determine whether you should keep searching for an efficient algorithm or whether it's unlikely that any efficient algorithm for problem P exists?
- If you can reduce one of those Hard problems to P in polynomial time, then a polynomial algorithm for P gives polynomial algorithms for all those hard problems.

Application of Reductions

- Since none of those Hard problems have any known polynomial algorithm, it is unlikely that you can come up with a polynomial algorithm for P.
- Informally, to give up searching for a polynomial algorithm for P, it suffices to reduce a 'Hard' problem to P in polynomial time.
- We say the problem is NP-Hard in that case!
- To show P is NP-Hard, we reduce another NP-Hard problem to P

Complexity Classes

- A complexity class is a set of problems that can be solved with a similar amount of time/space/cost resources.

Complexity Classes

- A complexity class is a set of problems that can be solved with a similar amount of time/space/cost resources.
- Important complexity classes: P, NP, EXP, R, etc.

Complexity Classes

- A complexity class is a set of problems that can be solved with a similar amount of time/space/cost resources.
- Important complexity classes: P, NP, EXP, R, etc.
- $\mathrm{P}=$ problems that can be solved in polynomial time, i.e., $O\left(n^{c}\right)$ for some fixed c
- E.g., given a graph on n vertices and m edges, find its MST; it can be done in $O\left(n^{3}\right)$.
- Basically, all problems for which you have seen an algorithm belong to class P of problems.

Class NP

- A problem belongs to class NP if a non-deterministic Turing machine can solve it in polynomial time.

Class NP

- A problem belongs to class NP if a non-deterministic Turing machine can solve it in polynomial time.
- These are problems whose solutions can be verified in polynomial time.
- For decision problems, instances with a yes answer can be verified.

Class NP

- A problem belongs to class NP if a non-deterministic Turing machine can solve it in polynomial time.
- These are problems whose solutions can be verified in polynomial time.
- For decision problems, instances with a yes answer can be verified.
- E.g., Hamiltonian Path is an NP problem: given an instance of the problem we can verify if a solution gives a 'yes' answer in polynomial time.
- Given a solution path, we can verify whether it is a Hamiltonian path, i.e., check whether it visits every vertex exactly once, in polynomial time (in $O(n \log n)$ exactly).
- Is Hamiltonian Path in P?

Class NP

- Is Hamiltonian Path in P?
- We don't know but it is unlikely!

Class NP

- Is Hamiltonian Path in P?
- We don't know but it is unlikely!
- Is Hamiltonian Path in NP?

Class NP

- Is Hamiltonian Path in P?
- We don't know but it is unlikely!
- Is Hamiltonian Path in NP?
- Yes, we just showed given a solution (a candidate path), we can check in polynomial time whether it is Hamiltonian.

Class NP

- Is Hamiltonian Path in P?
- We don't know but it is unlikely!
- Is Hamiltonian Path in NP?
- Yes, we just showed given a solution (a candidate path), we can check in polynomial time whether it is Hamiltonian.
- Is 3SUM in P?

Class NP

- Is Hamiltonian Path in P?
- We don't know but it is unlikely!
- Is Hamiltonian Path in NP?
- Yes, we just showed given a solution (a candidate path), we can check in polynomial time whether it is Hamiltonian.
- Is 3SUM in P?
- Yes, because it can be solved in $O\left(n^{2}\right)$.

Class NP

- Is Hamiltonian Path in P?
- We don't know but it is unlikely!
- Is Hamiltonian Path in NP?
- Yes, we just showed given a solution (a candidate path), we can check in polynomial time whether it is Hamiltonian.
- Is 3SUM in P?
- Yes, because it can be solved in $O\left(n^{2}\right)$.
- Is 3SUM in NP?

Class NP

- Is Hamiltonian Path in P?
- We don't know but it is unlikely!
- Is Hamiltonian Path in NP?
- Yes, we just showed given a solution (a candidate path), we can check in polynomial time whether it is Hamiltonian.
- Is 3SUM in P?
- Yes, because it can be solved in $O\left(n^{2}\right)$.
- Is 3SUM in NP?
- Yes, given a solution (3 numbers from the set), we can verify in polynomial time whether they sum to 0 .

P vs NP

- If a problem can be solved in polynomial time (belongs to P), a solution to that can be checked in polynomial time (belongs to NP) \rightarrow Eevery problem in P also belongs to $N P$.

P vs NP

- If a problem can be solved in polynomial time (belongs to P), a solution to that can be checked in polynomial time (belongs to NP) \rightarrow Eevery problem in P also belongs to $N P$.
- Does the other direction hold?

P vs NP

- If a problem can be solved in polynomial time (belongs to P), a solution to that can be checked in polynomial time (belongs to NP) \rightarrow Eevery problem in P also belongs to $N P$.
- Does the other direction hold?
- If a solution to a problem can be checked in polynomial time (e.g., Hamiltonian path), is it true that a polynomial-time algorithm exists for the problem?

P vs NP

- If a problem can be solved in polynomial time (belongs to P), a solution to that can be checked in polynomial time (belongs to NP) \rightarrow Eevery problem in P also belongs to $N P$.
- Does the other direction hold?
- If a solution to a problem can be checked in polynomial time (e.g., Hamiltonian path), is it true that a polynomial-time algorithm exists for the problem?
- We do not know the answer.

P vs NP

- If a problem can be solved in polynomial time (belongs to P), a solution to that can be checked in polynomial time (belongs to NP) \rightarrow Eevery problem in P also belongs to $N P$.
- Does the other direction hold?
- If a solution to a problem can be checked in polynomial time (e.g., Hamiltonian path), is it true that a polynomial-time algorithm exists for the problem?
- We do not know the answer.
- Question: Does any problem in NP belong to P ? Is it that $\mathrm{P}=\mathrm{NP}$?

P vs NP

- If a problem can be solved in polynomial time (belongs to P), a solution to that can be checked in polynomial time (belongs to NP) \rightarrow Eevery problem in P also belongs to $N P$.
- Does the other direction hold?
- If a solution to a problem can be checked in polynomial time (e.g., Hamiltonian path), is it true that a polynomial-time algorithm exists for the problem?
- We do not know the answer.
- Question: Does any problem in NP belong to P ? Is it that $\mathrm{P}=\mathrm{NP}$?
- It is One of seven Millennium Prize problems in mathematics announced in 2000 by Clay Mathematics Institute with a prize of $\$ 1 \mathrm{M}$ for solving any of the problems.

P vs NP

- If a problem can be solved in polynomial time (belongs to P), a solution to that can be checked in polynomial time (belongs to NP)
\rightarrow Eevery problem in P also belongs to $N P$.
- Does the other direction hold?
- If a solution to a problem can be checked in polynomial time (e.g., Hamiltonian path), is it true that a polynomial-time algorithm exists for the problem?
- We do not know the answer.
- Question: Does any problem in NP belong to P ? Is it that $\mathrm{P}=\mathrm{NP}$?
- It is One of seven Millennium Prize problems in mathematics announced in 2000 by Clay Mathematics Institute with a prize of \$1M for solving any of the problems.
- To date only one of the Millennium has been solved, the Poincare Conjecture, solved by Perelman in 2006; he declined the money. He was also awarded Fields medal and rejected it: "I'm not interested in money or fame; I don't want to be on display like an animal in a zoo".

P \& NP review

- P: class of problems which can be solved in polynomial time, e.g., Minimum Spanning Tree, 3Sum.

P \& NP review

- P: class of problems which can be solved in polynomial time, e.g., Minimum Spanning Tree, 3Sum.
- NP: class of problems for which a solution can be verified in polynomial time.
- Hamiltonian Path: we can check in $O(n \log n)$ if a given solution (path) is Hamiltonian or not.

P \& NP review

- P: class of problems which can be solved in polynomial time, e.g., Minimum Spanning Tree, 3Sum.
- NP: class of problems for which a solution can be verified in polynomial time.
- Hamiltonian Path: we can check in $O(n \log n)$ if a given solution (path) is Hamiltonian or not.
- If a problem can be solved in polynomial time, its solutions can be checked in polynomial time as well, i.e., P is a subset of NP.

P \& NP review

- P: class of problems which can be solved in polynomial time, e.g., Minimum Spanning Tree, 3Sum.
- NP: class of problems for which a solution can be verified in polynomial time.
- Hamiltonian Path: we can check in $O(n \log n)$ if a given solution (path) is Hamiltonian or not.
- If a problem can be solved in polynomial time, its solutions can be checked in polynomial time as well, i.e., P is a subset of NP.
- The other direction is conjectured to be false, i.e., it is conjectured that there are problems which are in NP but not P, i.e., no polynomial algorithm exists for them.
- Recall this problem ($N P \in P$) which is equal to $P=N P$ is open.

NP-hard problems

- A problem Q is NP-hard if every problem in NP reduces to Q in polynomial time.

NP-hard problems

- A problem Q is NP-hard if every problem in NP reduces to Q in polynomial time.
- Problem Q is as hard as any other problem in NP.

NP-hard problems

- A problem Q is NP-hard if every problem in NP reduces to Q in polynomial time.
- Problem Q is as hard as any other problem in NP.
- Stephen Cook, father of complexity:

NP-hard problems

- A problem Q is NP-hard if every problem in NP reduces to Q in polynomial time.
- Problem Q is as hard as any other problem in NP.
- Stephen Cook, father of complexity:
- joined UC Berkeley in 1966, denied a tenure in 1970, had to leave Berkeley for U. of Toronto.

NP-hard problems

- A problem Q is NP-hard if every problem in NP reduces to Q in polynomial time.
- Problem Q is as hard as any other problem in NP.
- Stephen Cook, father of complexity:
- joined UC Berkeley in 1966, denied a tenure in 1970, had to leave Berkeley for U. of Toronto.
- in 1971, Cook published a seminal paper which shaped theory of complexity:

NP-hard problems

- A problem Q is NP-hard if every problem in NP reduces to Q in polynomial time.
- Problem Q is as hard as any other problem in NP.
- Stephen Cook, father of complexity:
- joined UC Berkeley in 1966, denied a tenure in 1970, had to leave Berkeley for U. of Toronto.
- in 1971, Cook published a seminal paper which shaped theory of complexity:
- defined the concepts of reduction, NP-hardness, and NP-completeness
- showed that every problem in NP reduces to boolean satisfiability problem (SAT) \rightarrow SAT is NP-hard.

NP-hard problems

- Reduction is transitive: if problem A reduces to B in time $f(x)$ and B reduces to C in time $g(x)$, then A reduces to C in time $(f(x)+g(x))$.
- If all NP problems reduce to SAT in polynomial time and SAT reduces to problem Q in polynomial time, then all NP problems reduce to Q in polynomial time (Q is NP-hard).

NP-hard problems

- Reduction is transitive: if problem A reduces to B in time $f(x)$ and B reduces to C in time $g(x)$, then A reduces to C in time $(f(x)+g(x))$.
- If all NP problems reduce to SAT in polynomial time and SAT reduces to problem Q in polynomial time, then all NP problems reduce to Q in polynomial time (Q is NP-hard).
- In 1972, Richard Karp from Berkeley showed
- 21 problems for which no polynomial algorithm exists for years were NP-hard (SAT reduces to them directly or via transition).

NP-hard problems

- Reduction is transitive: if problem A reduces to B in time $f(x)$ and B reduces to C in time $g(x)$, then A reduces to C in time $(f(x)+g(x))$.
- If all NP problems reduce to SAT in polynomial time and SAT reduces to problem Q in polynomial time, then all NP problems reduce to Q in polynomial time (Q is NP-hard).
- In 1972, Richard Karp from Berkeley showed
- 21 problems for which no polynomial algorithm exists for years were NP-hard (SAT reduces to them directly or via transition).
- Cook got his Turing award in 1982; his departure is considered one of the biggest failures for UC Berkeley.
- Karp got his Turing award in 1986; partially because his contribution to complexity theory.

NP-hard problem Consequences

- If a problem Q is NP-hard:
- All NP-problems reduce to A in polynomial time, i.e., it is at least as hard as any NP problem.
- Upper bound consequence: if we have a polynomial algorithm that solves Q, then there will be polynomial algorithms for all NP problems.
- Lower bound consequence: if we show there is no polynomial algorithm for any NP problem, then there is no polynomial algorithm for Q.

NP-Complete Problems

- A problem is NP-complete if it belongs to both NP and NP-hard family of problems.

NP-Complete Problems

- A problem is NP-complete if it belongs to both NP and NP-hard family of problems.
- For a pair of NP-complete problems A and B, A reduces to B in polynomial time and B reduces to A as well.
- Since A is in NP and B is NP-hard, all NP problems (particularly A) reduce to B.
- Since B is in NP and A is NP-hard, all NP problems (particularly B) reduce to A.

NP-Complete Problems

- A problem is NP-complete if it belongs to both NP and NP-hard family of problems.
- For a pair of NP-complete problems A and B, A reduces to B in polynomial time and B reduces to A as well.
- Since A is in NP and B is NP-hard, all NP problems (particularly A) reduce to B.
- Since B is in NP and A is NP-hard, all NP problems (particularly B) reduce to A.
- Either both A, B are solvable in polynomial time (the case if $\mathrm{P}=\mathrm{NP}$) or neither A, B are solvable in polynomial time (in the more likely case of $P \neq N P)$.

NP-Complete Problems

- A problem is NP-complete if it belongs to both NP and NP-hard family of problems.
- For a pair of NP-complete problems A and B, A reduces to B in polynomial time and B reduces to A as well.
- Since A is in NP and B is NP-hard, all NP problems (particularly A) reduce to B.
- Since B is in NP and A is NP-hard, all NP problems (particularly B) reduce to A.
- Either both A, B are solvable in polynomial time (the case if $\mathrm{P}=\mathrm{NP}$) or neither A, B are solvable in polynomial time (in the more likely case of $P \neq N P$).
- Note that there are NP-problems which are not NP-complete (e.g., 3Sum or MST) and there are NP-hard problems that we do not know whether they belong to NP (EXP-complete problems).

NP-complete Problems

- If we show a problem is NP-complete, we often stop any effort for designing any polynomial algorithm or devising a polynomial time lower bound (just give up on finding exact solutions for the problem).
- You might try; but your effort for providing an algorithm/lower bound will be equivalent to trying to solve $P \neq N P$ conjecture.

NP-complete Problems

- If we show a problem is NP-complete, we often stop any effort for designing any polynomial algorithm or devising a polynomial time lower bound (just give up on finding exact solutions for the problem).
- You might try; but your effort for providing an algorithm/lower bound will be equivalent to trying to solve $P \neq N P$ conjecture.
- Steps for showing NP-completeness of a problem A:
- Show A is in NP, i.e., show that a yes instance of size n can be verified in polynomial time (i.e., $O\left(n^{c}\right)$).
- Show that A is NP-hard, i.e., prove that all NP problem reduce to A in polynomial time

NP-hardness proof

- To prove A is NP-hard:
- Choose a known NP-complete problem B for the reduction. Any NP-complete problem can be used, but some will have simpler reductions.

NP-hardness proof

- To prove A is NP-hard:
- Choose a known NP-complete problem B for the reduction. Any NP-complete problem can be used, but some will have simpler reductions.
- Define a polynomial-time reduction f that transforms any instance i of B into an instance $f(i)$ of A.

NP-hardness proof

- To prove A is NP-hard:
- Choose a known NP-complete problem B for the reduction. Any NP-complete problem can be used, but some will have simpler reductions.
- Define a polynomial-time reduction f that transforms any instance i of B into an instance $f(i)$ of A.
- Prove the correctness of the reduction. Show:
- answer to i is 'yes' \rightarrow answer to $f(i)$ is 'yes'
- answer to $f(i)$ is 'yes' \rightarrow answer to i is 'yes'

NP-hardness proof

- To prove A is NP-hard:
- Choose a known NP-complete problem B for the reduction. Any NP-complete problem can be used, but some will have simpler reductions.
- Define a polynomial-time reduction f that transforms any instance i of B into an instance $f(i)$ of A.
- Prove the correctness of the reduction. Show:
- answer to i is 'yes' \rightarrow answer to $f(i)$ is 'yes'
- answer to $f(i)$ is 'yes' \rightarrow answer to i is 'yes'
- Show that the reduction can be computed in time $O\left(n^{c}\right)$ (polynomial time).

Reduction \& Bounds

- Assume we reduce a problem E to problem H (e.g., reduce 3 Sum to collinearity).
- Intuitively, H is as hard as E

Reduction \& Bounds

- Assume we reduce a problem E to problem H (e.g., reduce 3Sum to collinearity).
- Intuitively, H is as hard as E
- A lower bound $\Omega(f(n))$ for E also applies to H, assuming $f(n)$ is not dominated by the reduction time.
- E.g., lower bound $\Omega\left(n^{2-\epsilon}\right)$ of 3 Sum applies to collinearity, i.e., there is no collinearity algorithm that runs in $\Omega\left(n^{2-\epsilon}\right)$ (assuming the modern 3 Sum conjecture is true).

Reduction \& Bounds

- Assume we reduce a problem E to problem H (e.g., reduce 3Sum to collinearity).
- Intuitively, H is as hard as E
- A lower bound $\Omega(f(n))$ for E also applies to H, assuming $f(n)$ is not dominated by the reduction time.
- E.g., lower bound $\Omega\left(n^{2-\epsilon}\right)$ of 3 Sum applies to collinearity, i.e., there is no collinearity algorithm that runs in $\Omega\left(n^{2-\epsilon}\right)$ (assuming the modern 3Sum conjecture is true).
- An upper bound $O\left(f^{\prime}(n)\right)$ for H applies to E, assuming $f^{\prime}(n)$ is not dominated by the reduction time.
- E.g., a Collinearity algorithm that runs in $O\left(n^{2}\right)$ implies that there is an algorithm that runs in $O\left(n^{2}\right)$ for 3 Sum .

Reductions \& hardness

- Assume we reduce an NP-hard problem X to problem Y in polynomial time.

Reductions \& hardness

- Assume we reduce an NP-hard problem X to problem Y in polynomial time.
- A lower bound for X also applies to Y

Reductions \& hardness

- Assume we reduce an NP-hard problem X to problem Y in polynomial time.
- A lower bound for X also applies to Y
- In particular if we know any algorithm for X runs in $\omega\left(n^{c}\right)$ (i.e., no algorithm for X runs in polynomial time), we can make the same statement for Y, i.e., no algorithm for Y runs in polynomial time.

Reductions \& hardness

- Assume we reduce an NP-hard problem X to problem Y in polynomial time.
- A lower bound for X also applies to Y
- In particular if we know any algorithm for X runs in $\omega\left(n^{c}\right)$ (i.e., no algorithm for X runs in polynomial time), we can make the same statement for Y, i.e., no algorithm for Y runs in polynomial time.
- If $P \neq N P$, then there is an NP problem Q which has no polynomial time algorithm; such problem reduce to X (by definition of NP-hardness), and X reduces to Y. Since $\omega\left(n^{c}\right)$ is a lower bound for Q, that would be a lower bound for Y, i.e., no algorithm for Y runs in polynomial time.

Reductions \& hardness

- Assume we reduce an NP-hard problem X to problem Y in polynomial time.
- A lower bound for X also applies to Y
- In particular if we know any algorithm for X runs in $\omega\left(n^{c}\right)$ (i.e., no algorithm for X runs in polynomial time), we can make the same statement for Y, i.e., no algorithm for Y runs in polynomial time.
- If $P \neq N P$, then there is an NP problem Q which has no polynomial time algorithm; such problem reduce to X (by definition of NP-hardness), and X reduces to Y. Since $\omega\left(n^{c}\right)$ is a lower bound for Q, that would be a lower bound for Y, i.e., no algorithm for Y runs in polynomial time.
- An upper bound for Y also applies to X, i.e., in particular if there is a polynomial time algorithm for Y, then that algorithm can be used to answer X (and all NP problems which reduce to X) in polynomial time. This implies that $P=N P$.

Bin Packing Problem

- The input is a multi-set of items of various sizes in range $(0,1]$.
- The goal is to pack these items into a minimum number of bins of uniform capacity.
- E.g., $S=$ $\{0.1,0.2,0.2,0.3,0.3,0.4,0.4,0.4,0.5,0.5,0.5,0.5,0.6,0.8,0.8,0.9\}$

First Fit Algorithm

- First Fit: process items one by one in arbitrary order. Place each item in the first bin which has enough space for the item.
- Open a new bin if such bin does not exist.

First Fit Algorithm

- First Fit: process items one by one in arbitrary order. Place each item in the first bin which has enough space for the item.
- Open a new bin if such bin does not exist.

$$
<0.90 .30 .80 .50 .10 .10 .30 .20 .40 .20 .40 .50 .50 .80 .60 .40 .5 \text {... > }
$$

First Fit Algorithm

- First Fit: process items one by one in arbitrary order. Place each item in the first bin which has enough space for the item.
- Open a new bin if such bin does not exist.

$$
<0.90 .30 .80 .50 .10 .10 .30 .20 .40 .20 .40 .50 .50 .80 .60 .40 .5 \ldots .>
$$

First Fit Algorithm

- First Fit: process items one by one in arbitrary order. Place each item in the first bin which has enough space for the item.
- Open a new bin if such bin does not exist.

$$
<0.90 .30 .80 .50 .10 .10 .30 .20 .40 .20 .40 .50 .50 .80 .60 .40 .5 \ldots .4
$$

First Fit Algorithm

- First Fit: process items one by one in arbitrary order. Place each item in the first bin which has enough space for the item.
- Open a new bin if such bin does not exist.

$$
<0.90 .30 .80 .50 .10 .10 .30 .20 .40 .20 .40 .50 .50 .80 .60 .40 .5 \ldots .>
$$

First Fit Algorithm

- First Fit: process items one by one in arbitrary order. Place each item in the first bin which has enough space for the item.
- Open a new bin if such bin does not exist.

First Fit Algorithm

- First Fit: process items one by one in arbitrary order. Place each item in the first bin which has enough space for the item.
- Open a new bin if such bin does not exist.

$$
<0.90 .30 .80 .50 .10 .10 .30 .20 .40 .20 .40 .50 .50 .80 .60 .40 .5 \ldots .4
$$

0.1		
0.9		
	0.5	0.8
	0.3	

First Fit Algorithm

- First Fit: process items one by one in arbitrary order. Place each item in the first bin which has enough space for the item.
- Open a new bin if such bin does not exist.

$$
<0.90 .30 .80 .50 .10 .10 .30 .20 .40 .20 .40 .50 .50 .80 .60 .40 .5 \ldots .4
$$

0.1			
	0.1		
0.9	0.5		
	0.8		
	0.3		

First Fit Algorithm

- First Fit: process items one by one in arbitrary order. Place each item in the first bin which has enough space for the item.
- Open a new bin if such bin does not exist.

$$
<0.90 .30 .80 .50 .10 .10 .30 .20 .40 .20 .40 .50 .50 .80 .60 .40 .5 \ldots .4
$$

0.1			
0.9	0.1		
	0.5	0.8	
	0.3		0.3

First Fit Algorithm

- First Fit: process items one by one in arbitrary order. Place each item in the first bin which has enough space for the item.
- Open a new bin if such bin does not exist.

$$
<0.90 .30 .80 .50 .10 .10 .30 .20 .40 .20 .40 .50 .50 .80 .60 .40 .5 \ldots .4
$$

First Fit Algorithm

- First Fit: process items one by one in arbitrary order. Place each item in the first bin which has enough space for the item.
- Open a new bin if such bin does not exist.

$$
<0.90 .30 .80 .50 .10 .10 .30 .20 .40 .20 .40 .50 .50 .80 .60 .40 .4 \ldots \text {... }>
$$

0.1		0.2	
0.9	0.1		
	0.5	0.8	0.4
	0.3		0.3

First Fit Algorithm

- First Fit: process items one by one in arbitrary order. Place each item in the first bin which has enough space for the item.
- Open a new bin if such bin does not exist.

$$
<0.90 .30 .80 .50 .10 .10 .30 .20 .40 .20 .40 .50 .50 .80 .60 .40 .5 \ldots .4
$$

0.1			
0.9	0.1	0.2	
	0.5	0.8	0.2
			0.4
	0.3		0.3

First Fit Algorithm

- First Fit: process items one by one in arbitrary order. Place each item in the first bin which has enough space for the item.
- Open a new bin if such bin does not exist.

$$
<0.90 .30 .80 .50 .10 .10 .30 .20 .40 .20 .40 .50 .50 .80 .60 .40 .5 \ldots .8
$$

0.1		0.2		
0.9	0.1		0.2	
	0.5	0.8	0.4	
	0.3		0.3	0.4

First Fit Algorithm

- First Fit: process items one by one in arbitrary order. Place each item in the first bin which has enough space for the item.
- Open a new bin if such bin does not exist.

$$
<0.90 .30 .80 .50 .10 .10 .30 .20 .40 .20 .40 .50 .50 .80 .60 .40 .5 \ldots .4
$$

First Fit Algorithm

- First Fit: process items one by one in arbitrary order. Place each item in the first bin which has enough space for the item.
- Open a new bin if such bin does not exist.

$$
<0.90 .30 .80 .50 .10 .10 .30 .20 .40 .20 .40 .50 .50 .80 .60 .40 .4 \ldots
$$

First Fit Algorithm

- First Fit: process items one by one in arbitrary order. Place each item in the first bin which has enough space for the item.
- Open a new bin if such bin does not exist.

$$
<0.90 .30 .80 .50 .10 .10 .30 .20 .40 .20 .40 .50 .50 .80 .60 .40 .5 \ldots .4
$$

0.1		0.2				
0.9	0.1		0.2	0.5		
	0.5	0.8				0.8
			0.4			
	0.3		0.3	0.4	0.5	

First Fit Algorithm

- First Fit: process items one by one in arbitrary order. Place each item in the first bin which has enough space for the item.
- Open a new bin if such bin does not exist.

$$
<0.90 .30 .80 .50 .10 .10 .30 .20 .40 .20 .40 .50 .50 .80 .60 .40 .5 \ldots .4
$$

0.1		0.2					
0.9	0.1		0.2	0.5			
	0.5	0.8				0.8	
			0.4				
	0.3		0.3	0.4	0.5		

First Fit Algorithm

- First Fit: process items one by one in arbitrary order. Place each item in the first bin which has enough space for the item.
- Open a new bin if such bin does not exist.

$$
<0.90 .30 .80 .50 .10 .10 .30 .20 .40 .20 .40 .50 .50 .80 .60 .40 .5 \ldots .4
$$

0.1		0.2					
0.9	0.1		0.2	0.5	0.4		
	0.5	0.8				0.8	
			0.4				
	0.3		0.3	0.4	0.5		

First Fit Algorithm

- First Fit: process items one by one in arbitrary order. Place each item in the first bin which has enough space for the item.
- Open a new bin if such bin does not exist.

$$
<0.90 .30 .80 .50 .10 .10 .30 .20 .40 .20 .40 .50 .50 .80 .60 .40 .5 \ldots .>
$$

Applications of Bin Packing

- Loading trucks (e.g., trucks moving between Toronto and Montreal)
- Truck have uniform weight capacity.

Applications of Bin Packing

- Loading trucks (e.g., trucks moving between Toronto and Montreal)
- Truck have uniform weight capacity.
- Stock cutting, e.g., cutting standard-sized wood material (bins) into pieces of specified sizes (items).

Applications of Bin Packing

- Loading trucks (e.g., trucks moving between Toronto and Montreal)
- Truck have uniform weight capacity.
- Stock cutting, e.g., cutting standard-sized wood material (bins) into pieces of specified sizes (items).
- Server consolidation (e.g., in cloud)
- Servers are bins and items are clients (e.g., cloud tenants) and you want to minimize the number of active servers.

Complexity of Bin Packing

- Decision Variant of Bin Packing: given a multi-set of items, is it possible to pack them into k bins?

Complexity of Bin Packing

- Decision Variant of Bin Packing: given a multi-set of items, is it possible to pack them into k bins?
- We show this problem is NP-complete even for the easy case of $k=2$.
- Decision problem: given a multi-set of items, is it possible to pack them into 2 bins?

Complexity of Bin Packing

- Decision Variant of Bin Packing: given a multi-set of items, is it possible to pack them into k bins?
- We show this problem is NP-complete even for the easy case of $k=2$.
- Decision problem: given a multi-set of items, is it possible to pack them into 2 bins?
- The problem is in NP: given a solution (e.g., assignment of items to 2 bins), we can check in linear (i.e., polynomial) time whether the total size of items in each bin is at most 1.

Bin Packing Hardness

- Prove that it is NP-Hard to decide whether a multi-set of items can be packed in 2 bins.

Bin Packing Hardness

- Prove that it is NP-Hard to decide whether a multi-set of items can be packed in 2 bins.
- reduction from the partition problem

Bin Packing Hardness

- Prove that it is NP-Hard to decide whether a multi-set of items can be packed in 2 bins.
- reduction from the partition problem
- Partition: decide whether a multiset P of positive integers can be partitioned into two subsets S and $P-S$.t. sum of the numbers in $S=$ sum of the numbers in $P-S$
- $P=\{3,1,3,2,3,2,3,3,4,1\} \rightarrow S=\{3,2,3,3\} \quad P-S=$ $\{1,3,2,4,1\}$

Bin Packing Hardness

- Prove that it is NP-Hard to decide whether a multi-set of items can be packed in 2 bins.
- reduction from the partition problem
- Partition: decide whether a multiset P of positive integers can be partitioned into two subsets S and $P-S$.t. sum of the numbers in $S=$ sum of the numbers in $P-S$
- $P=\{3,1,3,2,3,2,3,3,4,1\} \rightarrow S=\{3,2,3,3\} \quad P-S=$ $\{1,3,2,4,1\}$
- Partition is NP-complete, i.e., assuming $P \neq N P$ there is no algorithm that runs in $O\left(n^{c}\right)$ for an input of emphlength n.

Bin Packing Hardness

- Prove that it is NP-Hard to decide whether a multi-set of items can be packed in 2 bins.
- reduction from the partition problem
- Partition: decide whether a multiset P of positive integers can be partitioned into two subsets S and $P-S$.t. sum of the numbers in $S=$ sum of the numbers in $P-S$
- $P=\{3,1,3,2,3,2,3,3,4,1\} \rightarrow S=\{3,2,3,3\} \quad P-S=$ $\{1,3,2,4,1\}$
- Partition is NP-complete, i.e., assuming $P \neq N P$ there is no algorithm that runs in $O\left(n^{c}\right)$ for an input of emphlength n.
- An algorithm runs in polynomial if it is polynomial in the length of the input

Bin Packing Hardness

- Prove that it is NP-Hard to decide whether a multi-set of items can be packed in 2 bins.
- reduction from the partition problem
- Partition: decide whether a multiset P of positive integers can be partitioned into two subsets S and $P-S$.t.
sum of the numbers in $S=$ sum of the numbers in $P-S$
- $P=\{3,1,3,2,3,2,3,3,4,1\} \rightarrow S=\{3,2,3,3\} \quad P-S=$ $\{1,3,2,4,1\}$
- Partition is NP-complete, i.e., assuming $P \neq N P$ there is no algorithm that runs in $O\left(n^{c}\right)$ for an input of emphlength n.
- An algorithm runs in polynomial if it is polynomial in the length of the input
- E.g., a polynomial time algorithm should run in polynomial time even if there is an integer 2^{n} in the input (the input length will be still polynomial and that number's length is n in the input).

Bin Packing Hardness

- Prove that it is NP-Hard to decide whether a multi-set of items can be packed in 2 bins.
- reduction from the partition problem
- Partition: decide whether a multiset P of positive integers can be partitioned into two subsets S and $P-S$.t.
sum of the numbers in $S=$ sum of the numbers in $P-S$
- $P=\{3,1,3,2,3,2,3,3,4,1\} \rightarrow S=\{3,2,3,3\} \quad P-S=$ $\{1,3,2,4,1\}$
- Partition is NP-complete, i.e., assuming $P \neq N P$ there is no algorithm that runs in $O\left(n^{c}\right)$ for an input of emphlength n.
- An algorithm runs in polynomial if it is polynomial in the length of the input
- E.g., a polynomial time algorithm should run in polynomial time even if there is an integer 2^{n} in the input (the input length will be still polynomial and that number's length is n in the input).
- If all numbers are $O\left(n^{c}\right)$, there is an algorithm that runs in polynomial time; that is called a pseudo-polynomial algorithm.

Reduction from Partition to Bin Pack-

 ing- Assume we have an instance $P=\left\{p_{1}, p_{2}, \ldots p_{n}\right\}$ of Partition problem.

Reduction from Partition to Bin Pack-

 ing- Assume we have an instance $P=\left\{p_{1}, p_{2}, \ldots p_{n}\right\}$ of Partition problem.
- Create an instance of bin packing as follows:
- Let $t=\sum_{p_{i} \in P} p_{i}$.
- Define a multi-set of item sizes $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ such that $q_{i}=p_{i} \cdot \frac{2}{t}$.

Reduction from Partition to Bin Pack-

 ing- Assume we have an instance $P=\left\{p_{1}, p_{2}, \ldots p_{n}\right\}$ of Partition problem.
- Create an instance of bin packing as follows:
- Let $t=\sum_{p_{i} \in P} p_{i}$.
- Define a multi-set of item sizes $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ such that $q_{i}=p_{i} \cdot \frac{2}{t}$.
- Note that we have $\sum_{q_{i} \in Q} q_{i}=\frac{2}{t} \cdot \sum_{p_{i} \in P} p_{i}=\frac{2}{t} \cdot t=2$.

Validity of Reduction

- Show that the answer to the partition instance $P=\left\{p_{1}, p_{2}, \ldots p_{n}\right\}$ is yes if and only the answer to in packing instance $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ is yes (i.e., items can be packed in 2 bins).
- Recall that $q_{i}=p_{i} \cdot \frac{2}{t}$.

Validity of Reduction

- Show that the answer to the partition instance $P=\left\{p_{1}, p_{2}, \ldots p_{n}\right\}$ is yes if and only the answer to in packing instance $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ is yes (i.e., items can be packed in 2 bins).
- Recall that $q_{i}=p_{i} \cdot \frac{2}{t}$.
- Assume the answer to the partition instance is yes
- I.e., there is $S \in P$ so that $\sum_{p_{i} \in S} p_{i}=\sum_{p_{i} \in P-S} p_{i}=t / 2$

Validity of Reduction

- Show that the answer to the partition instance $P=\left\{p_{1}, p_{2}, \ldots p_{n}\right\}$ is yes if and only the answer to in packing instance $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ is yes (i.e., items can be packed in 2 bins).
- Recall that $q_{i}=p_{i} \cdot \frac{2}{t}$.
- Assume the answer to the partition instance is yes
- I.e., there is $S \in P$ so that $\sum_{p_{i} \in S} p_{i}=\sum_{p_{i} \in P-S} p_{i}=t / 2$
- We show that the bin packing instance can be packed into 2 bins.
- Since $\sum_{p_{i} \in S} p_{i}=\sum_{p_{i} \in P-S} p_{i}=t / 2$, we have

$$
\sum_{p_{i} \in S} q_{i}=\sum_{p_{i} \in P-S} q_{i}=\frac{t}{2} \cdot \frac{2}{t}=1 .
$$

- We can pack the items associated with set S (i.e., set of q_{i} 's s.t. $p_{i} \in S$) in one bin and the rest in another.
- The total size in each bin will not be more than 1 (hence a valid packing).

Validity of Reduction

- Next, we show if the answer to the bin packing instance $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ is yes, then the answer to the partition problem is yes.

Validity of Reduction

- Next, we show if the answer to the bin packing instance $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ is yes, then the answer to the partition problem is yes.
- Recall that $\sum_{q_{i} \in Q} q_{i}=\frac{2}{t} \cdot \sum_{p_{i} \in P} p_{i}=\frac{2}{t} \cdot t=2$.

Validity of Reduction

- Next, we show if the answer to the bin packing instance $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ is yes, then the answer to the partition problem is yes.
- Recall that $\sum_{q_{i} \in Q} q_{i}=\frac{2}{t} \cdot \sum_{p_{i} \in P} p_{i}=\frac{2}{t} \cdot t=2$.
- Our assumption implies that a set of items of total size 2 have been packed into 2 bins \rightarrow each bin is completely full.

Validity of Reduction

- Next, we show if the answer to the bin packing instance $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ is yes, then the answer to the partition problem is yes.
- Recall that $\sum_{q_{i} \in Q} q_{i}=\frac{2}{t} \cdot \sum_{p_{i} \in P} p_{i}=\frac{2}{t} \cdot t=2$.
- Our assumption implies that a set of items of total size 2 have been packed into 2 bins \rightarrow each bin is completely full.
- Our packing is equivalent to partitioning Q into two subsets R, $Q-R$ each of total size 1, i.e., $\sum_{q_{i} \in R} q_{i}=\sum_{q_{i} \in Q-R} q_{i}=1$.

Validity of Reduction

- Next, we show if the answer to the bin packing instance $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ is yes, then the answer to the partition problem is yes.
- Recall that $\sum_{q_{i} \in Q} q_{i}=\frac{2}{t} \cdot \sum_{p_{i} \in P} p_{i}=\frac{2}{t} \cdot t=2$.
- Our assumption implies that a set of items of total size 2 have been packed into 2 bins \rightarrow each bin is completely full.
- Our packing is equivalent to partitioning Q into two subsets R, $Q-R$ each of total size 1, i.e., $\sum_{q_{i} \in R} q_{i}=\sum_{q_{i} \in Q-R} q_{i}=1$.
- Let S be the multiset associated with items of R in the partition instance, i.e., $S=\cup_{q_{i} \in R}\left\{p_{i}\right\}$.

Validity of Reduction

- Next, we show if the answer to the bin packing instance $Q=\left\{q_{1}, \ldots, q_{n}\right\}$ is yes, then the answer to the partition problem is yes.
- Recall that $\sum_{q_{i} \in Q} q_{i}=\frac{2}{t} \cdot \sum_{p_{i} \in P} p_{i}=\frac{2}{t} \cdot t=2$.
- Our assumption implies that a set of items of total size 2 have been packed into 2 bins \rightarrow each bin is completely full.
- Our packing is equivalent to partitioning Q into two subsets R, $Q-R$ each of total size 1, i.e., $\sum_{q_{i} \in R} q_{i}=\sum_{q_{i} \in Q-R} q_{i}=1$.
- Let S be the multiset associated with items of R in the partition instance, i.e., $S=\cup_{q_{i} \in R}\left\{p_{i}\right\}$.
- We have $\sum_{p_{i} \in S} p_{i}=\sum_{p_{i} \in S} q_{i} \cdot \frac{t}{2}=\frac{t}{2}$.
- So, S and $P-S$ will be two subsets of the partition instance each with total sum of $t / 2 \rightarrow$ the answer to partition instance is yes.

Bin Packing NP-completeness

- Given any instance of the partition problem P with total sum t, we created an instance Q of bin packing problem by scaling down the size of numbers in P by a factor of $t / 2$ so that their total sum is 2 .

Bin Packing NP-completeness

- Given any instance of the partition problem P with total sum t, we created an instance Q of bin packing problem by scaling down the size of numbers in P by a factor of $t / 2$ so that their total sum is 2 .
- It is possible to partition P into two groups, each of total sum $t / 2$
\leftrightarrow
It is possible to partition Q into two groups, each of total sum $1 \leftrightarrow$ It is possible to pack items into two bins.

Bin Packing NP-completeness

- Given any instance of the partition problem P with total sum t, we created an instance Q of bin packing problem by scaling down the size of numbers in P by a factor of $t / 2$ so that their total sum is 2 .
- It is possible to partition P into two groups, each of total sum $t / 2$ \leftrightarrow It is possible to partition Q into two groups, each of total sum $1 \leftrightarrow$ It is possible to pack items into two bins.
- The answer to partition instance is yes if and only if the packing instance can be packed into 2 bins.
- This means answering the decision problem "can a multiset of items be packed into 2 bins" is NP-hard.

Bin Packing NP-completeness

- Given any instance of the partition problem P with total sum t, we created an instance Q of bin packing problem by scaling down the size of numbers in P by a factor of $t / 2$ so that their total sum is 2 .
- It is possible to partition P into two groups, each of total sum $t / 2$ \leftrightarrow It is possible to partition Q into two groups, each of total sum $1 \leftrightarrow$ It is possible to pack items into two bins.
- The answer to partition instance is yes if and only if the packing instance can be packed into 2 bins.
- This means answering the decision problem "can a multiset of items be packed into 2 bins" is NP-hard.
- We showed the decision variant of bin packing is NP, i.e., we can check whether a given solution to bin packing is valid (total size of items i each bin is at most 1) or not in polynomial time.

Bin Packing NP-completeness

- Given any instance of the partition problem P with total sum t, we created an instance Q of bin packing problem by scaling down the size of numbers in P by a factor of $t / 2$ so that their total sum is 2 .
- It is possible to partition P into two groups, each of total sum $t / 2$ \leftrightarrow It is possible to partition Q into two groups, each of total sum $1 \leftrightarrow$ It is possible to pack items into two bins.
- The answer to partition instance is yes if and only if the packing instance can be packed into 2 bins.
- This means answering the decision problem "can a multiset of items be packed into 2 bins" is NP-hard.
- We showed the decision variant of bin packing is NP, i.e., we can check whether a given solution to bin packing is valid (total size of items i each bin is at most 1) or not in polynomial time.

Bin Packing is an NP-complete problem.

Approximation Algorithms

- Given an NP-complete optimization problem, there is no optimal polynomial algorithm, assuming $P \neq N P$.

Approximation Algorithms

- Given an NP-complete optimization problem, there is no optimal polynomial algorithm, assuming $P \neq N P$.
- We can approximate the solution!
- The solution provided by an approximation algorithm is not necessarily optimal but an approximation of that.

Approximation Algorithms

- Given an NP-complete optimization problem, there is no optimal polynomial algorithm, assuming $P \neq N P$.
- We can approximate the solution!
- The solution provided by an approximation algorithm is not necessarily optimal but an approximation of that.

The Ending

Observation

You should aim for the stars - and hopefully avoid ending up in the clouds! Roxanne McKee

- We covered some materials about algorithms \& complexity; the goal was not to cover everything; but prepare you to get interested and discover yourself in your future career.
- When dealing with a problem, we are interested in:
- designing algorithms for them (using tools such as data structures)
- analyzing algorithms (based on time complexity, memory requirement, approximation ratio, etc.) to provide guarantees.
- understanding the restrictions of algorithms (lower bounds and complexity classes).
- 99 percent of people who talk about algorithms (e.g., in media, news, etc.) don't understand them. Hopefully you are not one of them any more.

The Ending

Observation

You should aim for the stars - and hopefully avoid ending up in the clouds! Roxanne McKee

- Template for final is posted. If any thing in the slides is not clear, ask me to explain it on Piazza.

The Ending

Observation

You should aim for the stars - and hopefully avoid ending up in the clouds! Roxanne McKee

- Template for final is posted. If any thing in the slides is not clear, ask me to explain it on Piazza.
- Your feedback is appreciated; if something can be improved (which is 100 percent the case), let me know.

The Ending

Observation

You should aim for the stars - and hopefully avoid ending up in the clouds! Roxanne McKee

- Template for final is posted. If any thing in the slides is not clear, ask me to explain it on Piazza.
- Your feedback is appreciated; if something can be improved (which is 100 percent the case), let me know.
- I hope to see you in future courses.

