
EECS 3101 - Design and Analysis of

Algorithms

Shahin Kamali

Topic 7 - Remarks on Complexity

1 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Overview

A few remarks about complexity classes

A brief introduction to NP-completeness

P ̸= NP and other questions for which we do not know the answers!

2 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Polynomial Algorithms

Most algorithms you have seen have running times Θ(log n) (e.g.,
binary search), Θ(n) (e.g., searching in a linked list), Θ(n log n)
(e.g., merge-sot), Θ(n2) (e.g., bubble-sort), Θ(n3) (e.g., matrix
multiplication), etc.

n is the number of words (in word-RAM model) to encode the input.

The running time of all these algorithms can be bounded by some
polynomial function, e.g., n5.

A Polynomial Algorithm has running time O(nc) on input size of
n, where c is a constant independent of n

E.g., O(n),O(n2),O(n3),O(n2022).
Also O(1),O(α(n)),O(log n),O(n log n),O(

√
n),O(n3/2), etc.

A function is super polynomial if f (n) ∈ ω(nc) for all c .

E.g., 2n, 3n, n!, nn, etc.

3 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Polynomial Algorithms

Most algorithms you have seen have running times Θ(log n) (e.g.,
binary search), Θ(n) (e.g., searching in a linked list), Θ(n log n)
(e.g., merge-sot), Θ(n2) (e.g., bubble-sort), Θ(n3) (e.g., matrix
multiplication), etc.

n is the number of words (in word-RAM model) to encode the input.

The running time of all these algorithms can be bounded by some
polynomial function, e.g., n5.

A Polynomial Algorithm has running time O(nc) on input size of
n, where c is a constant independent of n

E.g., O(n),O(n2),O(n3),O(n2022).
Also O(1),O(α(n)),O(log n),O(n log n),O(

√
n),O(n3/2), etc.

A function is super polynomial if f (n) ∈ ω(nc) for all c .

E.g., 2n, 3n, n!, nn, etc.

3 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Polynomial Algorithms

Most algorithms you have seen have running times Θ(log n) (e.g.,
binary search), Θ(n) (e.g., searching in a linked list), Θ(n log n)
(e.g., merge-sot), Θ(n2) (e.g., bubble-sort), Θ(n3) (e.g., matrix
multiplication), etc.

n is the number of words (in word-RAM model) to encode the input.

The running time of all these algorithms can be bounded by some
polynomial function, e.g., n5.

A Polynomial Algorithm has running time O(nc) on input size of
n, where c is a constant independent of n

E.g., O(n),O(n2),O(n3),O(n2022).
Also O(1),O(α(n)),O(log n),O(n log n),O(

√
n),O(n3/2), etc.

A function is super polynomial if f (n) ∈ ω(nc) for all c .

E.g., 2n, 3n, n!, nn, etc.

3 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Polynomial Algorithms

Most algorithms you have seen have running times Θ(log n) (e.g.,
binary search), Θ(n) (e.g., searching in a linked list), Θ(n log n)
(e.g., merge-sot), Θ(n2) (e.g., bubble-sort), Θ(n3) (e.g., matrix
multiplication), etc.

n is the number of words (in word-RAM model) to encode the input.

The running time of all these algorithms can be bounded by some
polynomial function, e.g., n5.

A Polynomial Algorithm has running time O(nc) on input size of
n, where c is a constant independent of n

E.g., O(n),O(n2),O(n3),O(n2022).
Also O(1),O(α(n)),O(log n),O(n log n),O(

√
n),O(n3/2), etc.

A function is super polynomial if f (n) ∈ ω(nc) for all c .

E.g., 2n, 3n, n!, nn, etc.

3 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Polynomial Algorithms

Most algorithms you have seen have running times Θ(log n) (e.g.,
binary search), Θ(n) (e.g., searching in a linked list), Θ(n log n)
(e.g., merge-sot), Θ(n2) (e.g., bubble-sort), Θ(n3) (e.g., matrix
multiplication), etc.

n is the number of words (in word-RAM model) to encode the input.

The running time of all these algorithms can be bounded by some
polynomial function, e.g., n5.

A Polynomial Algorithm has running time O(nc) on input size of
n, where c is a constant independent of n

E.g., O(n),O(n2),O(n3),O(n2022).
Also O(1),O(α(n)),O(log n),O(n log n),O(

√
n),O(n3/2), etc.

A function is super polynomial if f (n) ∈ ω(nc) for all c .

E.g., 2n, 3n, n!, nn, etc.

3 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Primality test

Problem: given a positive integer x , indicate whether x is prime.

Trial division: try to divide x by i for i ∈ {1, 2, . . . ,
√
x}.

What is the time complexity? → Θ(
√
x).

Is this algorithm polynomial? No (why?)
This algorithm is pseudo-polynomial; its running time is a
polynomial in the numeric value of the input (the largest integer
present in the input)�but not in the length of the input

A rich �eld of research is formed around this `simple' problem

Whether a polynomial time algorithm exists was not-known until
2002.
Three scientists from India discovered an algorithm (later named
AKS primality test) that runs in Õ((log x)6) ∈ O((log x)7).
Their paper won the 2006 Godel prize among other things.

4 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Primality test

Problem: given a positive integer x , indicate whether x is prime.

Trial division: try to divide x by i for i ∈ {1, 2, . . . ,
√
x}.

What is the time complexity?

→ Θ(
√
x).

Is this algorithm polynomial? No (why?)
This algorithm is pseudo-polynomial; its running time is a
polynomial in the numeric value of the input (the largest integer
present in the input)�but not in the length of the input

A rich �eld of research is formed around this `simple' problem

Whether a polynomial time algorithm exists was not-known until
2002.
Three scientists from India discovered an algorithm (later named
AKS primality test) that runs in Õ((log x)6) ∈ O((log x)7).
Their paper won the 2006 Godel prize among other things.

4 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Primality test

Problem: given a positive integer x , indicate whether x is prime.

Trial division: try to divide x by i for i ∈ {1, 2, . . . ,
√
x}.

What is the time complexity? → Θ(
√
x).

Is this algorithm polynomial? No (why?)
This algorithm is pseudo-polynomial; its running time is a
polynomial in the numeric value of the input (the largest integer
present in the input)�but not in the length of the input

A rich �eld of research is formed around this `simple' problem

Whether a polynomial time algorithm exists was not-known until
2002.
Three scientists from India discovered an algorithm (later named
AKS primality test) that runs in Õ((log x)6) ∈ O((log x)7).
Their paper won the 2006 Godel prize among other things.

4 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Primality test

Problem: given a positive integer x , indicate whether x is prime.

Trial division: try to divide x by i for i ∈ {1, 2, . . . ,
√
x}.

What is the time complexity? → Θ(
√
x).

Is this algorithm polynomial?

No (why?)
This algorithm is pseudo-polynomial; its running time is a
polynomial in the numeric value of the input (the largest integer
present in the input)�but not in the length of the input

A rich �eld of research is formed around this `simple' problem

Whether a polynomial time algorithm exists was not-known until
2002.
Three scientists from India discovered an algorithm (later named
AKS primality test) that runs in Õ((log x)6) ∈ O((log x)7).
Their paper won the 2006 Godel prize among other things.

4 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Primality test

Problem: given a positive integer x , indicate whether x is prime.

Trial division: try to divide x by i for i ∈ {1, 2, . . . ,
√
x}.

What is the time complexity? → Θ(
√
x).

Is this algorithm polynomial? No (why?)
This algorithm is pseudo-polynomial; its running time is a
polynomial in the numeric value of the input (the largest integer
present in the input)�but not in the length of the input

A rich �eld of research is formed around this `simple' problem

Whether a polynomial time algorithm exists was not-known until
2002.
Three scientists from India discovered an algorithm (later named
AKS primality test) that runs in Õ((log x)6) ∈ O((log x)7).
Their paper won the 2006 Godel prize among other things.

4 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Primality test

Problem: given a positive integer x , indicate whether x is prime.

Trial division: try to divide x by i for i ∈ {1, 2, . . . ,
√
x}.

What is the time complexity? → Θ(
√
x).

Is this algorithm polynomial? No (why?)
This algorithm is pseudo-polynomial; its running time is a
polynomial in the numeric value of the input (the largest integer
present in the input)�but not in the length of the input

A rich �eld of research is formed around this `simple' problem

Whether a polynomial time algorithm exists was not-known until
2002.

Three scientists from India discovered an algorithm (later named
AKS primality test) that runs in Õ((log x)6) ∈ O((log x)7).
Their paper won the 2006 Godel prize among other things.

4 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Primality test

Problem: given a positive integer x , indicate whether x is prime.

Trial division: try to divide x by i for i ∈ {1, 2, . . . ,
√
x}.

What is the time complexity? → Θ(
√
x).

Is this algorithm polynomial? No (why?)
This algorithm is pseudo-polynomial; its running time is a
polynomial in the numeric value of the input (the largest integer
present in the input)�but not in the length of the input

A rich �eld of research is formed around this `simple' problem

Whether a polynomial time algorithm exists was not-known until
2002.
Three scientists from India discovered an algorithm (later named
AKS primality test) that runs in Õ((log x)6) ∈ O((log x)7).
Their paper won the 2006 Godel prize among other things.

4 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

3SUM problem

the 3SUM problem asks if a given set of n real numbers contains
three elements that sum to zero, e.g., for
S = {−25,−10,−7,−3, 2, 4, 8, 10}, the answer is �true".

A naive solutions solves the problem in Θ(n3).

A smart (but not complicated) algorithm exists that answers 3SUM
in Θ(n2).

3Sum-conjecture: 3-Sum requires Ω(n2) time, any algorithm for
3Sum runs in Ω(n2).

This conjecture was open for a long time, until it was refuted in
2014 by an algorithm which runs in O(n2/(log n log log n)2/3).
[Gronlund and Pettie paper on �Threesomes, Degenerates, and Love
Triangles�]
Modern 3Sum-conjecture: 3-Sum requires Ω(n2−ϵ) time for any
constant ϵ > 0.
If this conjecture is true, many other 3SUM-hard problems also
requires Ω(n2−ϵ).

5 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

3SUM problem

the 3SUM problem asks if a given set of n real numbers contains
three elements that sum to zero, e.g., for
S = {−25,−10,−7,−3, 2, 4, 8, 10}, the answer is �true".

A naive solutions solves the problem in Θ(n3).
A smart (but not complicated) algorithm exists that answers 3SUM
in Θ(n2).

3Sum-conjecture: 3-Sum requires Ω(n2) time, any algorithm for
3Sum runs in Ω(n2).

This conjecture was open for a long time, until it was refuted in
2014 by an algorithm which runs in O(n2/(log n log log n)2/3).
[Gronlund and Pettie paper on �Threesomes, Degenerates, and Love
Triangles�]
Modern 3Sum-conjecture: 3-Sum requires Ω(n2−ϵ) time for any
constant ϵ > 0.
If this conjecture is true, many other 3SUM-hard problems also
requires Ω(n2−ϵ).

5 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

3SUM problem

the 3SUM problem asks if a given set of n real numbers contains
three elements that sum to zero, e.g., for
S = {−25,−10,−7,−3, 2, 4, 8, 10}, the answer is �true".

A naive solutions solves the problem in Θ(n3).
A smart (but not complicated) algorithm exists that answers 3SUM
in Θ(n2).

3Sum-conjecture: 3-Sum requires Ω(n2) time, any algorithm for
3Sum runs in Ω(n2).

This conjecture was open for a long time, until it was refuted in
2014 by an algorithm which runs in O(n2/(log n log log n)2/3).
[Gronlund and Pettie paper on �Threesomes, Degenerates, and Love
Triangles�]

Modern 3Sum-conjecture: 3-Sum requires Ω(n2−ϵ) time for any
constant ϵ > 0.
If this conjecture is true, many other 3SUM-hard problems also
requires Ω(n2−ϵ).

5 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

3SUM problem

the 3SUM problem asks if a given set of n real numbers contains
three elements that sum to zero, e.g., for
S = {−25,−10,−7,−3, 2, 4, 8, 10}, the answer is �true".

A naive solutions solves the problem in Θ(n3).
A smart (but not complicated) algorithm exists that answers 3SUM
in Θ(n2).

3Sum-conjecture: 3-Sum requires Ω(n2) time, any algorithm for
3Sum runs in Ω(n2).

This conjecture was open for a long time, until it was refuted in
2014 by an algorithm which runs in O(n2/(log n log log n)2/3).
[Gronlund and Pettie paper on �Threesomes, Degenerates, and Love
Triangles�]
Modern 3Sum-conjecture: 3-Sum requires Ω(n2−ϵ) time for any
constant ϵ > 0.

If this conjecture is true, many other 3SUM-hard problems also
requires Ω(n2−ϵ).

5 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

3SUM problem

the 3SUM problem asks if a given set of n real numbers contains
three elements that sum to zero, e.g., for
S = {−25,−10,−7,−3, 2, 4, 8, 10}, the answer is �true".

A naive solutions solves the problem in Θ(n3).
A smart (but not complicated) algorithm exists that answers 3SUM
in Θ(n2).

3Sum-conjecture: 3-Sum requires Ω(n2) time, any algorithm for
3Sum runs in Ω(n2).

This conjecture was open for a long time, until it was refuted in
2014 by an algorithm which runs in O(n2/(log n log log n)2/3).
[Gronlund and Pettie paper on �Threesomes, Degenerates, and Love
Triangles�]
Modern 3Sum-conjecture: 3-Sum requires Ω(n2−ϵ) time for any
constant ϵ > 0.
If this conjecture is true, many other 3SUM-hard problems also
requires Ω(n2−ϵ).

5 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Exhaustive Search

Many problems have an exponential number of possible solutions.

An algorithm which applies an exhaustive search on the solution
space will eventually �nd a solution

The time will be proportional to the size of solution space in the
worst case, i.e., it will be super-polynomial.

This is not good!

For many problems, we have failed to do much better.

6 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Exhaustive Search

Many problems have an exponential number of possible solutions.

An algorithm which applies an exhaustive search on the solution
space will eventually �nd a solution

The time will be proportional to the size of solution space in the
worst case, i.e., it will be super-polynomial.

This is not good!
For many problems, we have failed to do much better.

6 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Hamiltonian Path

Instance: a graph G with vertex set V and edge set E .

Question: Does there exist a path in G that visits every vertex in
V (G) exactly once along a sequence of edges in E (G)?

7 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Hamiltonian Path

Instance: a graph G with vertex set V and edge set E .

Question: Does there exist a path in G that visits every vertex in
V (G) exactly once along a sequence of edges in E (G)?

7 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Exhaustive Search for HP

Try all paths and check whether the sequence of edges exist in G

In other words, try all permutations of vertices

v1, v2, v3, v4, . . . , vn
v2, v1, v3, v4, . . . , vn
. . .

There are n! di�erent paths

Some paths are redundant, e.g., v1, v2, . . . , vn is the same as
vn, vn−1, . . . , v1.
Regardless, the number of distinct paths is still Θ(n!).

→ exhaustive search requires Ω(n!) in the worst case

8 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Exhaustive Search for HP

Try all paths and check whether the sequence of edges exist in G

In other words, try all permutations of vertices

v1, v2, v3, v4, . . . , vn
v2, v1, v3, v4, . . . , vn
. . .

There are n! di�erent paths

Some paths are redundant, e.g., v1, v2, . . . , vn is the same as
vn, vn−1, . . . , v1.
Regardless, the number of distinct paths is still Θ(n!).

→ exhaustive search requires Ω(n!) in the worst case

8 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Exhaustive Search for HP

Try all paths and check whether the sequence of edges exist in G

In other words, try all permutations of vertices

v1, v2, v3, v4, . . . , vn
v2, v1, v3, v4, . . . , vn
. . .

There are n! di�erent paths

Some paths are redundant, e.g., v1, v2, . . . , vn is the same as
vn, vn−1, . . . , v1.
Regardless, the number of distinct paths is still Θ(n!).

→ exhaustive search requires Ω(n!) in the worst case

8 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Complexity of HP

There are `faster' algorithms, e.g., O(n22n) deterministic and
O(1.415n) randomized algorithms.

Is there a polynomial algorithm for Hamiltonian Path?

We don't know, but no such algorithm is discovered yet, and it is
unlikely that we can �nd one!
This relates to P ̸= NP conjecture that we see in a minute.

There are many `Hard' problems like Hamiltonian path problem for
which we do not know whether a polynomial algorithm exists; they
form a complexity class.

If there is a polynomial algorithm for any of these problems, there
will be polynomial algorithms for all of them.
When you fail to come up with a polynomial algorithm for a
problem, investigate whether it is `Hard'.

9 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Complexity of HP

There are `faster' algorithms, e.g., O(n22n) deterministic and
O(1.415n) randomized algorithms.

Is there a polynomial algorithm for Hamiltonian Path?

We don't know, but no such algorithm is discovered yet, and it is
unlikely that we can �nd one!
This relates to P ̸= NP conjecture that we see in a minute.

There are many `Hard' problems like Hamiltonian path problem for
which we do not know whether a polynomial algorithm exists; they
form a complexity class.

If there is a polynomial algorithm for any of these problems, there
will be polynomial algorithms for all of them.
When you fail to come up with a polynomial algorithm for a
problem, investigate whether it is `Hard'.

9 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Complexity of HP

There are `faster' algorithms, e.g., O(n22n) deterministic and
O(1.415n) randomized algorithms.

Is there a polynomial algorithm for Hamiltonian Path?

We don't know, but no such algorithm is discovered yet, and it is
unlikely that we can �nd one!
This relates to P ̸= NP conjecture that we see in a minute.

There are many `Hard' problems like Hamiltonian path problem for
which we do not know whether a polynomial algorithm exists; they
form a complexity class.

If there is a polynomial algorithm for any of these problems, there
will be polynomial algorithms for all of them.
When you fail to come up with a polynomial algorithm for a
problem, investigate whether it is `Hard'.

9 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Complexity of HP

There are `faster' algorithms, e.g., O(n22n) deterministic and
O(1.415n) randomized algorithms.

Is there a polynomial algorithm for Hamiltonian Path?

We don't know, but no such algorithm is discovered yet, and it is
unlikely that we can �nd one!
This relates to P ̸= NP conjecture that we see in a minute.

There are many `Hard' problems like Hamiltonian path problem for
which we do not know whether a polynomial algorithm exists; they
form a complexity class.

If there is a polynomial algorithm for any of these problems, there
will be polynomial algorithms for all of them.
When you fail to come up with a polynomial algorithm for a
problem, investigate whether it is `Hard'.

9 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Application of Reductions

Assume you have a problem P for which you look for an e�cient,
polynomial algorithm, and you fail after trying a bit.

How can you determine whether you should keep searching for an
e�cient algorithm or whether it's unlikely that any e�cient
algorithm for problem P exists?

If you can reduce one of those Hard problems to P in polynomial
time, then a polynomial algorithm for P gives polynomial algorithms
for all those hard problems.

10 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Application of Reductions

Assume you have a problem P for which you look for an e�cient,
polynomial algorithm, and you fail after trying a bit.

How can you determine whether you should keep searching for an
e�cient algorithm or whether it's unlikely that any e�cient
algorithm for problem P exists?

If you can reduce one of those Hard problems to P in polynomial
time, then a polynomial algorithm for P gives polynomial algorithms
for all those hard problems.

10 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Application of Reductions

Assume you have a problem P for which you look for an e�cient,
polynomial algorithm, and you fail after trying a bit.

How can you determine whether you should keep searching for an
e�cient algorithm or whether it's unlikely that any e�cient
algorithm for problem P exists?

If you can reduce one of those Hard problems to P in polynomial
time, then a polynomial algorithm for P gives polynomial algorithms
for all those hard problems.

10 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Application of Reductions

Since none of those Hard problems have any known polynomial
algorithm, it is unlikely that you can come up with a polynomial
algorithm for P.

Informally, to give up searching for a polynomial algorithm for P, it
su�ces to reduce a `Hard' problem to P in polynomial time.
We say the problem is NP-Hard in that case!
To show P is NP-Hard, we reduce another NP-Hard problem to P

11 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Complexity Classes

A complexity class is a set of problems that can be solved with a
similar amount of time/space/cost resources.

Important complexity classes: P, NP, EXP, R, etc.

P = problems that can be solved in polynomial time, i.e., O(nc) for
some �xed c

E.g., given a graph on n vertices and m edges, �nd its MST; it can
be done in O(n3).
Basically, all problems for which you have seen an algorithm belong
to class P of problems.

12 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Complexity Classes

A complexity class is a set of problems that can be solved with a
similar amount of time/space/cost resources.

Important complexity classes: P, NP, EXP, R, etc.

P = problems that can be solved in polynomial time, i.e., O(nc) for
some �xed c

E.g., given a graph on n vertices and m edges, �nd its MST; it can
be done in O(n3).
Basically, all problems for which you have seen an algorithm belong
to class P of problems.

12 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Complexity Classes

A complexity class is a set of problems that can be solved with a
similar amount of time/space/cost resources.

Important complexity classes: P, NP, EXP, R, etc.

P = problems that can be solved in polynomial time, i.e., O(nc) for
some �xed c

E.g., given a graph on n vertices and m edges, �nd its MST; it can
be done in O(n3).
Basically, all problems for which you have seen an algorithm belong
to class P of problems.

12 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Class NP

A problem belongs to class NP if a non-deterministic Turing
machine can solve it in polynomial time.

These are problems whose solutions can be veri�ed in polynomial
time.

For decision problems, instances with a yes answer can be veri�ed.

E.g., Hamiltonian Path is an NP problem: given an instance of the
problem we can verify if a solution gives a `yes' answer in
polynomial time.

Given a solution path, we can verify whether it is a Hamiltonian
path, i.e., check whether it visits every vertex exactly once, in
polynomial time (in O(n log n) exactly).

13 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Class NP

A problem belongs to class NP if a non-deterministic Turing
machine can solve it in polynomial time.

These are problems whose solutions can be veri�ed in polynomial
time.

For decision problems, instances with a yes answer can be veri�ed.

E.g., Hamiltonian Path is an NP problem: given an instance of the
problem we can verify if a solution gives a `yes' answer in
polynomial time.

Given a solution path, we can verify whether it is a Hamiltonian
path, i.e., check whether it visits every vertex exactly once, in
polynomial time (in O(n log n) exactly).

13 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Class NP

A problem belongs to class NP if a non-deterministic Turing
machine can solve it in polynomial time.

These are problems whose solutions can be veri�ed in polynomial
time.

For decision problems, instances with a yes answer can be veri�ed.

E.g., Hamiltonian Path is an NP problem: given an instance of the
problem we can verify if a solution gives a `yes' answer in
polynomial time.

Given a solution path, we can verify whether it is a Hamiltonian
path, i.e., check whether it visits every vertex exactly once, in
polynomial time (in O(n log n) exactly).

13 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Class NP

Is Hamiltonian Path in P?

We don't know but it is unlikely!

Is Hamiltonian Path in NP?

Yes, we just showed given a solution (a candidate path), we can
check in polynomial time whether it is Hamiltonian.

Is 3SUM in P?

Yes, because it can be solved in O(n2).

Is 3SUM in NP?

Yes, given a solution (3 numbers from the set), we can verify in
polynomial time whether they sum to 0.

14 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Class NP

Is Hamiltonian Path in P?

We don't know but it is unlikely!

Is Hamiltonian Path in NP?

Yes, we just showed given a solution (a candidate path), we can
check in polynomial time whether it is Hamiltonian.

Is 3SUM in P?

Yes, because it can be solved in O(n2).

Is 3SUM in NP?

Yes, given a solution (3 numbers from the set), we can verify in
polynomial time whether they sum to 0.

14 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Class NP

Is Hamiltonian Path in P?

We don't know but it is unlikely!

Is Hamiltonian Path in NP?

Yes, we just showed given a solution (a candidate path), we can
check in polynomial time whether it is Hamiltonian.

Is 3SUM in P?

Yes, because it can be solved in O(n2).

Is 3SUM in NP?

Yes, given a solution (3 numbers from the set), we can verify in
polynomial time whether they sum to 0.

14 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Class NP

Is Hamiltonian Path in P?

We don't know but it is unlikely!

Is Hamiltonian Path in NP?

Yes, we just showed given a solution (a candidate path), we can
check in polynomial time whether it is Hamiltonian.

Is 3SUM in P?

Yes, because it can be solved in O(n2).

Is 3SUM in NP?

Yes, given a solution (3 numbers from the set), we can verify in
polynomial time whether they sum to 0.

14 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Class NP

Is Hamiltonian Path in P?

We don't know but it is unlikely!

Is Hamiltonian Path in NP?

Yes, we just showed given a solution (a candidate path), we can
check in polynomial time whether it is Hamiltonian.

Is 3SUM in P?

Yes, because it can be solved in O(n2).

Is 3SUM in NP?

Yes, given a solution (3 numbers from the set), we can verify in
polynomial time whether they sum to 0.

14 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Class NP

Is Hamiltonian Path in P?

We don't know but it is unlikely!

Is Hamiltonian Path in NP?

Yes, we just showed given a solution (a candidate path), we can
check in polynomial time whether it is Hamiltonian.

Is 3SUM in P?

Yes, because it can be solved in O(n2).

Is 3SUM in NP?

Yes, given a solution (3 numbers from the set), we can verify in
polynomial time whether they sum to 0.

14 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Class NP

Is Hamiltonian Path in P?

We don't know but it is unlikely!

Is Hamiltonian Path in NP?

Yes, we just showed given a solution (a candidate path), we can
check in polynomial time whether it is Hamiltonian.

Is 3SUM in P?

Yes, because it can be solved in O(n2).

Is 3SUM in NP?

Yes, given a solution (3 numbers from the set), we can verify in
polynomial time whether they sum to 0.

14 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Class NP

Is Hamiltonian Path in P?

We don't know but it is unlikely!

Is Hamiltonian Path in NP?

Yes, we just showed given a solution (a candidate path), we can
check in polynomial time whether it is Hamiltonian.

Is 3SUM in P?

Yes, because it can be solved in O(n2).

Is 3SUM in NP?

Yes, given a solution (3 numbers from the set), we can verify in
polynomial time whether they sum to 0.

14 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

P vs NP

If a problem can be solved in polynomial time (belongs to P), a
solution to that can be checked in polynomial time (belongs to NP)
→ Eevery problem in P also belongs to NP.

Does the other direction hold?

If a solution to a problem can be checked in polynomial time (e.g.,
Hamiltonian path), is it true that a polynomial-time algorithm exists
for the problem?
We do not know the answer.

Question: Does any problem in NP belong to P? Is it that P=NP?

It is One of seven Millennium Prize problems in mathematics
announced in 2000 by Clay Mathematics Institute with a prize of
$1M for solving any of the problems.
To date only one of the Millennium has been solved, the Poincare
Conjecture, solved by Perelman in 2006; he declined the money. He
was also awarded Fields medal and rejected it: �I'm not interested in

money or fame; I don't want to be on display like an animal in a

zoo".

15 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

P vs NP

If a problem can be solved in polynomial time (belongs to P), a
solution to that can be checked in polynomial time (belongs to NP)
→ Eevery problem in P also belongs to NP.

Does the other direction hold?

If a solution to a problem can be checked in polynomial time (e.g.,
Hamiltonian path), is it true that a polynomial-time algorithm exists
for the problem?
We do not know the answer.

Question: Does any problem in NP belong to P? Is it that P=NP?

It is One of seven Millennium Prize problems in mathematics
announced in 2000 by Clay Mathematics Institute with a prize of
$1M for solving any of the problems.
To date only one of the Millennium has been solved, the Poincare
Conjecture, solved by Perelman in 2006; he declined the money. He
was also awarded Fields medal and rejected it: �I'm not interested in

money or fame; I don't want to be on display like an animal in a

zoo".

15 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

P vs NP

If a problem can be solved in polynomial time (belongs to P), a
solution to that can be checked in polynomial time (belongs to NP)
→ Eevery problem in P also belongs to NP.

Does the other direction hold?

If a solution to a problem can be checked in polynomial time (e.g.,
Hamiltonian path), is it true that a polynomial-time algorithm exists
for the problem?

We do not know the answer.

Question: Does any problem in NP belong to P? Is it that P=NP?

It is One of seven Millennium Prize problems in mathematics
announced in 2000 by Clay Mathematics Institute with a prize of
$1M for solving any of the problems.
To date only one of the Millennium has been solved, the Poincare
Conjecture, solved by Perelman in 2006; he declined the money. He
was also awarded Fields medal and rejected it: �I'm not interested in

money or fame; I don't want to be on display like an animal in a

zoo".

15 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

P vs NP

If a problem can be solved in polynomial time (belongs to P), a
solution to that can be checked in polynomial time (belongs to NP)
→ Eevery problem in P also belongs to NP.

Does the other direction hold?

If a solution to a problem can be checked in polynomial time (e.g.,
Hamiltonian path), is it true that a polynomial-time algorithm exists
for the problem?
We do not know the answer.

Question: Does any problem in NP belong to P? Is it that P=NP?

It is One of seven Millennium Prize problems in mathematics
announced in 2000 by Clay Mathematics Institute with a prize of
$1M for solving any of the problems.
To date only one of the Millennium has been solved, the Poincare
Conjecture, solved by Perelman in 2006; he declined the money. He
was also awarded Fields medal and rejected it: �I'm not interested in

money or fame; I don't want to be on display like an animal in a

zoo".

15 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

P vs NP

If a problem can be solved in polynomial time (belongs to P), a
solution to that can be checked in polynomial time (belongs to NP)
→ Eevery problem in P also belongs to NP.

Does the other direction hold?

If a solution to a problem can be checked in polynomial time (e.g.,
Hamiltonian path), is it true that a polynomial-time algorithm exists
for the problem?
We do not know the answer.

Question: Does any problem in NP belong to P? Is it that P=NP?

It is One of seven Millennium Prize problems in mathematics
announced in 2000 by Clay Mathematics Institute with a prize of
$1M for solving any of the problems.
To date only one of the Millennium has been solved, the Poincare
Conjecture, solved by Perelman in 2006; he declined the money. He
was also awarded Fields medal and rejected it: �I'm not interested in

money or fame; I don't want to be on display like an animal in a

zoo".

15 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

P vs NP

If a problem can be solved in polynomial time (belongs to P), a
solution to that can be checked in polynomial time (belongs to NP)
→ Eevery problem in P also belongs to NP.

Does the other direction hold?

If a solution to a problem can be checked in polynomial time (e.g.,
Hamiltonian path), is it true that a polynomial-time algorithm exists
for the problem?
We do not know the answer.

Question: Does any problem in NP belong to P? Is it that P=NP?

It is One of seven Millennium Prize problems in mathematics
announced in 2000 by Clay Mathematics Institute with a prize of
$1M for solving any of the problems.

To date only one of the Millennium has been solved, the Poincare
Conjecture, solved by Perelman in 2006; he declined the money. He
was also awarded Fields medal and rejected it: �I'm not interested in

money or fame; I don't want to be on display like an animal in a

zoo".

15 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

P vs NP

If a problem can be solved in polynomial time (belongs to P), a
solution to that can be checked in polynomial time (belongs to NP)
→ Eevery problem in P also belongs to NP.

Does the other direction hold?

If a solution to a problem can be checked in polynomial time (e.g.,
Hamiltonian path), is it true that a polynomial-time algorithm exists
for the problem?
We do not know the answer.

Question: Does any problem in NP belong to P? Is it that P=NP?

It is One of seven Millennium Prize problems in mathematics
announced in 2000 by Clay Mathematics Institute with a prize of
$1M for solving any of the problems.
To date only one of the Millennium has been solved, the Poincare
Conjecture, solved by Perelman in 2006; he declined the money. He
was also awarded Fields medal and rejected it: �I'm not interested in

money or fame; I don't want to be on display like an animal in a

zoo".

15 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

P & NP review

P: class of problems which can be solved in polynomial time, e.g.,
Minimum Spanning Tree, 3Sum.

NP: class of problems for which a solution can be veri�ed in
polynomial time.

Hamiltonian Path: we can check in O(n log n) if a given solution
(path) is Hamiltonian or not.
If a problem can be solved in polynomial time, its solutions can be
checked in polynomial time as well, i.e., P is a subset of NP.
The other direction is conjectured to be false, i.e., it is conjectured
that there are problems which are in NP but not P, i.e., no
polynomial algorithm exists for them.
Recall this problem (NP ∈ P) which is equal to P = NP is open.

16 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

P & NP review

P: class of problems which can be solved in polynomial time, e.g.,
Minimum Spanning Tree, 3Sum.

NP: class of problems for which a solution can be veri�ed in
polynomial time.

Hamiltonian Path: we can check in O(n log n) if a given solution
(path) is Hamiltonian or not.

If a problem can be solved in polynomial time, its solutions can be
checked in polynomial time as well, i.e., P is a subset of NP.
The other direction is conjectured to be false, i.e., it is conjectured
that there are problems which are in NP but not P, i.e., no
polynomial algorithm exists for them.
Recall this problem (NP ∈ P) which is equal to P = NP is open.

16 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

P & NP review

P: class of problems which can be solved in polynomial time, e.g.,
Minimum Spanning Tree, 3Sum.

NP: class of problems for which a solution can be veri�ed in
polynomial time.

Hamiltonian Path: we can check in O(n log n) if a given solution
(path) is Hamiltonian or not.
If a problem can be solved in polynomial time, its solutions can be
checked in polynomial time as well, i.e., P is a subset of NP.

The other direction is conjectured to be false, i.e., it is conjectured
that there are problems which are in NP but not P, i.e., no
polynomial algorithm exists for them.
Recall this problem (NP ∈ P) which is equal to P = NP is open.

16 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

P & NP review

P: class of problems which can be solved in polynomial time, e.g.,
Minimum Spanning Tree, 3Sum.

NP: class of problems for which a solution can be veri�ed in
polynomial time.

Hamiltonian Path: we can check in O(n log n) if a given solution
(path) is Hamiltonian or not.
If a problem can be solved in polynomial time, its solutions can be
checked in polynomial time as well, i.e., P is a subset of NP.
The other direction is conjectured to be false, i.e., it is conjectured
that there are problems which are in NP but not P, i.e., no
polynomial algorithm exists for them.
Recall this problem (NP ∈ P) which is equal to P = NP is open.

16 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-hard problems

A problem Q is NP-hard if every problem in NP reduces to Q in
polynomial time.

Problem Q is as hard as any other problem in NP.

Stephen Cook, father of complexity:

joined UC Berkeley in 1966, denied a tenure in 1970, had to leave
Berkeley for U. of Toronto.

in 1971, Cook published a seminal paper which shaped theory of
complexity:

de�ned the concepts of reduction, NP-hardness, and
NP-completeness
showed that every problem in NP reduces to
boolean satis�ability problem (SAT)
→ SAT is NP-hard.

17 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-hard problems

A problem Q is NP-hard if every problem in NP reduces to Q in
polynomial time.

Problem Q is as hard as any other problem in NP.

Stephen Cook, father of complexity:

joined UC Berkeley in 1966, denied a tenure in 1970, had to leave
Berkeley for U. of Toronto.

in 1971, Cook published a seminal paper which shaped theory of
complexity:

de�ned the concepts of reduction, NP-hardness, and
NP-completeness
showed that every problem in NP reduces to
boolean satis�ability problem (SAT)
→ SAT is NP-hard.

17 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-hard problems

A problem Q is NP-hard if every problem in NP reduces to Q in
polynomial time.

Problem Q is as hard as any other problem in NP.

Stephen Cook, father of complexity:

joined UC Berkeley in 1966, denied a tenure in 1970, had to leave
Berkeley for U. of Toronto.

in 1971, Cook published a seminal paper which shaped theory of
complexity:

de�ned the concepts of reduction, NP-hardness, and
NP-completeness
showed that every problem in NP reduces to
boolean satis�ability problem (SAT)
→ SAT is NP-hard.

17 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-hard problems

A problem Q is NP-hard if every problem in NP reduces to Q in
polynomial time.

Problem Q is as hard as any other problem in NP.

Stephen Cook, father of complexity:

joined UC Berkeley in 1966, denied a tenure in 1970, had to leave
Berkeley for U. of Toronto.

in 1971, Cook published a seminal paper which shaped theory of
complexity:

de�ned the concepts of reduction, NP-hardness, and
NP-completeness
showed that every problem in NP reduces to
boolean satis�ability problem (SAT)
→ SAT is NP-hard.

17 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-hard problems

A problem Q is NP-hard if every problem in NP reduces to Q in
polynomial time.

Problem Q is as hard as any other problem in NP.

Stephen Cook, father of complexity:

joined UC Berkeley in 1966, denied a tenure in 1970, had to leave
Berkeley for U. of Toronto.

in 1971, Cook published a seminal paper which shaped theory of
complexity:

de�ned the concepts of reduction, NP-hardness, and
NP-completeness
showed that every problem in NP reduces to
boolean satis�ability problem (SAT)
→ SAT is NP-hard.

17 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-hard problems

A problem Q is NP-hard if every problem in NP reduces to Q in
polynomial time.

Problem Q is as hard as any other problem in NP.

Stephen Cook, father of complexity:

joined UC Berkeley in 1966, denied a tenure in 1970, had to leave
Berkeley for U. of Toronto.

in 1971, Cook published a seminal paper which shaped theory of
complexity:

de�ned the concepts of reduction, NP-hardness, and
NP-completeness
showed that every problem in NP reduces to
boolean satis�ability problem (SAT)
→ SAT is NP-hard.

17 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-hard problems

Reduction is transitive: if problem A reduces to B in time f (x) and
B reduces to C in time g(x), then A reduces to C in time
(f (x) + g(x)).

If all NP problems reduce to SAT in polynomial time and SAT
reduces to problem Q in polynomial time, then all NP problems
reduce to Q in polynomial time (Q is NP-hard).

In 1972, Richard Karp from Berkeley showed

21 problems for which no polynomial algorithm exists for years were
NP-hard (SAT reduces to them directly or via transition).
Cook got his Turing award in 1982; his departure is considered one
of the biggest failures for UC Berkeley.
Karp got his Turing award in 1986; partially
because his contribution to complexity theory.

18 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-hard problems

Reduction is transitive: if problem A reduces to B in time f (x) and
B reduces to C in time g(x), then A reduces to C in time
(f (x) + g(x)).

If all NP problems reduce to SAT in polynomial time and SAT
reduces to problem Q in polynomial time, then all NP problems
reduce to Q in polynomial time (Q is NP-hard).

In 1972, Richard Karp from Berkeley showed

21 problems for which no polynomial algorithm exists for years were
NP-hard (SAT reduces to them directly or via transition).

Cook got his Turing award in 1982; his departure is considered one
of the biggest failures for UC Berkeley.
Karp got his Turing award in 1986; partially
because his contribution to complexity theory.

18 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-hard problems

Reduction is transitive: if problem A reduces to B in time f (x) and
B reduces to C in time g(x), then A reduces to C in time
(f (x) + g(x)).

If all NP problems reduce to SAT in polynomial time and SAT
reduces to problem Q in polynomial time, then all NP problems
reduce to Q in polynomial time (Q is NP-hard).

In 1972, Richard Karp from Berkeley showed

21 problems for which no polynomial algorithm exists for years were
NP-hard (SAT reduces to them directly or via transition).
Cook got his Turing award in 1982; his departure is considered one
of the biggest failures for UC Berkeley.
Karp got his Turing award in 1986; partially
because his contribution to complexity theory.

18 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-hard problem Consequences

If a problem Q is NP-hard:

All NP-problems reduce to A in polynomial time, i.e., it is at least
as hard as any NP problem.
Upper bound consequence: if we have a polynomial algorithm that
solves Q, then there will be polynomial algorithms for all NP
problems.
Lower bound consequence: if we show there is no polynomial
algorithm for any NP problem, then there is no polynomial
algorithm for Q.

19 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-Complete Problems

A problem is NP-complete if it belongs to both NP and NP-hard
family of problems.

For a pair of NP-complete problems A and B, A reduces to B in
polynomial time and B reduces to A as well.

Since A is in NP and B is NP-hard, all NP problems (particularly A)
reduce to B.
Since B is in NP and A is NP-hard, all NP problems (particularly B)
reduce to A.

Either both A, B are solvable in polynomial time (the case if
P=NP) or neither A,B are solvable in polynomial time (in the more
likely case of P̸= NP).

Note that there are NP-problems which are not NP-complete (e.g.,
3Sum or MST) and there are NP-hard problems that we do not
know whether they belong to NP (EXP-complete problems).

20 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-Complete Problems

A problem is NP-complete if it belongs to both NP and NP-hard
family of problems.

For a pair of NP-complete problems A and B, A reduces to B in
polynomial time and B reduces to A as well.

Since A is in NP and B is NP-hard, all NP problems (particularly A)
reduce to B.
Since B is in NP and A is NP-hard, all NP problems (particularly B)
reduce to A.

Either both A, B are solvable in polynomial time (the case if
P=NP) or neither A,B are solvable in polynomial time (in the more
likely case of P̸= NP).

Note that there are NP-problems which are not NP-complete (e.g.,
3Sum or MST) and there are NP-hard problems that we do not
know whether they belong to NP (EXP-complete problems).

20 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-Complete Problems

A problem is NP-complete if it belongs to both NP and NP-hard
family of problems.

For a pair of NP-complete problems A and B, A reduces to B in
polynomial time and B reduces to A as well.

Since A is in NP and B is NP-hard, all NP problems (particularly A)
reduce to B.
Since B is in NP and A is NP-hard, all NP problems (particularly B)
reduce to A.

Either both A, B are solvable in polynomial time (the case if
P=NP) or neither A,B are solvable in polynomial time (in the more
likely case of P̸= NP).

Note that there are NP-problems which are not NP-complete (e.g.,
3Sum or MST) and there are NP-hard problems that we do not
know whether they belong to NP (EXP-complete problems).

20 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-Complete Problems

A problem is NP-complete if it belongs to both NP and NP-hard
family of problems.

For a pair of NP-complete problems A and B, A reduces to B in
polynomial time and B reduces to A as well.

Since A is in NP and B is NP-hard, all NP problems (particularly A)
reduce to B.
Since B is in NP and A is NP-hard, all NP problems (particularly B)
reduce to A.

Either both A, B are solvable in polynomial time (the case if
P=NP) or neither A,B are solvable in polynomial time (in the more
likely case of P̸= NP).

Note that there are NP-problems which are not NP-complete (e.g.,
3Sum or MST) and there are NP-hard problems that we do not
know whether they belong to NP (EXP-complete problems).

20 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-complete Problems

If we show a problem is NP-complete, we often stop any e�ort for
designing any polynomial algorithm or devising a polynomial time
lower bound (just give up on �nding exact solutions for the
problem).

You might try; but your e�ort for providing an algorithm/lower
bound will be equivalent to trying to solve P ̸= NP conjecture.

Steps for showing NP-completeness of a problem A:

Show A is in NP, i.e., show that a yes instance of size n can be
veri�ed in polynomial time (i.e., O(nc)).
Show that A is NP-hard, i.e., prove that all NP problem reduce to A
in polynomial time

21 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-complete Problems

If we show a problem is NP-complete, we often stop any e�ort for
designing any polynomial algorithm or devising a polynomial time
lower bound (just give up on �nding exact solutions for the
problem).

You might try; but your e�ort for providing an algorithm/lower
bound will be equivalent to trying to solve P ̸= NP conjecture.

Steps for showing NP-completeness of a problem A:

Show A is in NP, i.e., show that a yes instance of size n can be
veri�ed in polynomial time (i.e., O(nc)).
Show that A is NP-hard, i.e., prove that all NP problem reduce to A
in polynomial time

21 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-hardness proof

To prove A is NP-hard:

Choose a known NP-complete problem B for the reduction. Any
NP-complete problem can be used, but some will have simpler
reductions.

De�ne a polynomial-time reduction f that transforms any instance i
of B into an instance f (i) of A.
Prove the correctness of the reduction. Show:

answer to i is `yes' → answer to f (i) is `yes'
answer to f (i) is `yes' → answer to i is `yes'

Show that the reduction can be computed in time O(nc)
(polynomial time).

22 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-hardness proof

To prove A is NP-hard:

Choose a known NP-complete problem B for the reduction. Any
NP-complete problem can be used, but some will have simpler
reductions.
De�ne a polynomial-time reduction f that transforms any instance i
of B into an instance f (i) of A.

Prove the correctness of the reduction. Show:

answer to i is `yes' → answer to f (i) is `yes'
answer to f (i) is `yes' → answer to i is `yes'

Show that the reduction can be computed in time O(nc)
(polynomial time).

22 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-hardness proof

To prove A is NP-hard:

Choose a known NP-complete problem B for the reduction. Any
NP-complete problem can be used, but some will have simpler
reductions.
De�ne a polynomial-time reduction f that transforms any instance i
of B into an instance f (i) of A.
Prove the correctness of the reduction. Show:

answer to i is `yes' → answer to f (i) is `yes'
answer to f (i) is `yes' → answer to i is `yes'

Show that the reduction can be computed in time O(nc)
(polynomial time).

22 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

NP-hardness proof

To prove A is NP-hard:

Choose a known NP-complete problem B for the reduction. Any
NP-complete problem can be used, but some will have simpler
reductions.
De�ne a polynomial-time reduction f that transforms any instance i
of B into an instance f (i) of A.
Prove the correctness of the reduction. Show:

answer to i is `yes' → answer to f (i) is `yes'
answer to f (i) is `yes' → answer to i is `yes'

Show that the reduction can be computed in time O(nc)
(polynomial time).

22 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Reduction & Bounds

Assume we reduce a problem E to problem H (e.g., reduce 3Sum to
collinearity).

Intuitively, H is as hard as E

A lower bound Ω(f (n)) for E also applies to H, assuming f (n) is
not dominated by the reduction time.

E.g., lower bound Ω(n2−ϵ) of 3Sum applies to collinearity, i.e.,
there is no collinearity algorithm that runs in Ω(n2−ϵ) (assuming
the modern 3Sum conjecture is true).

An upper bound O(f ′(n)) for H applies to E , assuming f ′(n) is not
dominated by the reduction time.

E.g., a Collinearity algorithm that runs in O(n2) implies that there
is an algorithm that runs in O(n2) for 3Sum .

23 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Reduction & Bounds

Assume we reduce a problem E to problem H (e.g., reduce 3Sum to
collinearity).

Intuitively, H is as hard as E

A lower bound Ω(f (n)) for E also applies to H, assuming f (n) is
not dominated by the reduction time.

E.g., lower bound Ω(n2−ϵ) of 3Sum applies to collinearity, i.e.,
there is no collinearity algorithm that runs in Ω(n2−ϵ) (assuming
the modern 3Sum conjecture is true).

An upper bound O(f ′(n)) for H applies to E , assuming f ′(n) is not
dominated by the reduction time.

E.g., a Collinearity algorithm that runs in O(n2) implies that there
is an algorithm that runs in O(n2) for 3Sum .

23 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Reduction & Bounds

Assume we reduce a problem E to problem H (e.g., reduce 3Sum to
collinearity).

Intuitively, H is as hard as E

A lower bound Ω(f (n)) for E also applies to H, assuming f (n) is
not dominated by the reduction time.

E.g., lower bound Ω(n2−ϵ) of 3Sum applies to collinearity, i.e.,
there is no collinearity algorithm that runs in Ω(n2−ϵ) (assuming
the modern 3Sum conjecture is true).

An upper bound O(f ′(n)) for H applies to E , assuming f ′(n) is not
dominated by the reduction time.

E.g., a Collinearity algorithm that runs in O(n2) implies that there
is an algorithm that runs in O(n2) for 3Sum .

23 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Reductions & hardness

Assume we reduce an NP-hard problem X to problem Y in
polynomial time.

A lower bound for X also applies to Y

In particular if we know any algorithm for X runs in ω(nc) (i.e., no
algorithm for X runs in polynomial time), we can make the same
statement for Y , i.e., no algorithm for Y runs in polynomial time.
If P ̸= NP, then there is an NP problem Q which has no polynomial
time algorithm; such problem reduce to X (by de�nition of
NP-hardness), and X reduces to Y . Since ω(nc) is a lower bound
for Q, that would be a lower bound for Y , i.e., no algorithm for Y
runs in polynomial time.

An upper bound for Y also applies to X , i.e., in particular if there is
a polynomial time algorithm for Y , then that algorithm can be used
to answer X (and all NP problems which reduce to X) in
polynomial time. This implies that P = NP.

24 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Reductions & hardness

Assume we reduce an NP-hard problem X to problem Y in
polynomial time.

A lower bound for X also applies to Y

In particular if we know any algorithm for X runs in ω(nc) (i.e., no
algorithm for X runs in polynomial time), we can make the same
statement for Y , i.e., no algorithm for Y runs in polynomial time.
If P ̸= NP, then there is an NP problem Q which has no polynomial
time algorithm; such problem reduce to X (by de�nition of
NP-hardness), and X reduces to Y . Since ω(nc) is a lower bound
for Q, that would be a lower bound for Y , i.e., no algorithm for Y
runs in polynomial time.

An upper bound for Y also applies to X , i.e., in particular if there is
a polynomial time algorithm for Y , then that algorithm can be used
to answer X (and all NP problems which reduce to X) in
polynomial time. This implies that P = NP.

24 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Reductions & hardness

Assume we reduce an NP-hard problem X to problem Y in
polynomial time.

A lower bound for X also applies to Y

In particular if we know any algorithm for X runs in ω(nc) (i.e., no
algorithm for X runs in polynomial time), we can make the same
statement for Y , i.e., no algorithm for Y runs in polynomial time.

If P ̸= NP, then there is an NP problem Q which has no polynomial
time algorithm; such problem reduce to X (by de�nition of
NP-hardness), and X reduces to Y . Since ω(nc) is a lower bound
for Q, that would be a lower bound for Y , i.e., no algorithm for Y
runs in polynomial time.

An upper bound for Y also applies to X , i.e., in particular if there is
a polynomial time algorithm for Y , then that algorithm can be used
to answer X (and all NP problems which reduce to X) in
polynomial time. This implies that P = NP.

24 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Reductions & hardness

Assume we reduce an NP-hard problem X to problem Y in
polynomial time.

A lower bound for X also applies to Y

In particular if we know any algorithm for X runs in ω(nc) (i.e., no
algorithm for X runs in polynomial time), we can make the same
statement for Y , i.e., no algorithm for Y runs in polynomial time.
If P ̸= NP, then there is an NP problem Q which has no polynomial
time algorithm; such problem reduce to X (by de�nition of
NP-hardness), and X reduces to Y . Since ω(nc) is a lower bound
for Q, that would be a lower bound for Y , i.e., no algorithm for Y
runs in polynomial time.

An upper bound for Y also applies to X , i.e., in particular if there is
a polynomial time algorithm for Y , then that algorithm can be used
to answer X (and all NP problems which reduce to X) in
polynomial time. This implies that P = NP.

24 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Reductions & hardness

Assume we reduce an NP-hard problem X to problem Y in
polynomial time.

A lower bound for X also applies to Y

In particular if we know any algorithm for X runs in ω(nc) (i.e., no
algorithm for X runs in polynomial time), we can make the same
statement for Y , i.e., no algorithm for Y runs in polynomial time.
If P ̸= NP, then there is an NP problem Q which has no polynomial
time algorithm; such problem reduce to X (by de�nition of
NP-hardness), and X reduces to Y . Since ω(nc) is a lower bound
for Q, that would be a lower bound for Y , i.e., no algorithm for Y
runs in polynomial time.

An upper bound for Y also applies to X , i.e., in particular if there is
a polynomial time algorithm for Y , then that algorithm can be used
to answer X (and all NP problems which reduce to X) in
polynomial time. This implies that P = NP.

24 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Bin Packing Problem

The input is a multi-set of items of various sizes in range (0,1].

The goal is to pack these items into a minimum number of bins of
uniform capacity.

E.g., S =
{0.1, 0.2, 0.2, 0.3, 0.3, 0.4, 0.4, 0.4, 0.5, 0.5, 0.5, 0.5, 0.6, 0.8, 0.8, 0.9}

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

0.4

5

8

5

0.4

10.1

0.1
0.2

0.2

0.3

4
0.5

0.5

0.5 0.5
0.6

0.8

0.3

0.8

0.4

4

0.9

25 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

First Fit Algorithm

First Fit: process items one by one in arbitrary order. Place each
item in the �rst bin which has enough space for the item.

Open a new bin if such bin does not exist.

26 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

First Fit Algorithm

First Fit: process items one by one in arbitrary order. Place each
item in the �rst bin which has enough space for the item.

Open a new bin if such bin does not exist.

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

4

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

4

26 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

First Fit Algorithm

First Fit: process items one by one in arbitrary order. Place each
item in the �rst bin which has enough space for the item.

Open a new bin if such bin does not exist.

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

4

0.9

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

4

0.9

26 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

First Fit Algorithm

First Fit: process items one by one in arbitrary order. Place each
item in the �rst bin which has enough space for the item.

Open a new bin if such bin does not exist.

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

30.3

4

0.9

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

30.3

4

0.9

26 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

First Fit Algorithm

First Fit: process items one by one in arbitrary order. Place each
item in the �rst bin which has enough space for the item.

Open a new bin if such bin does not exist.

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

0.3

0.8

4

0.9

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

0.3

0.8

4

0.9

26 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

First Fit Algorithm

First Fit: process items one by one in arbitrary order. Place each
item in the �rst bin which has enough space for the item.

Open a new bin if such bin does not exist.

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

50.5

0.3

0.8

4

0.9

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

50.5

0.3

0.8

4

0.9

26 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

First Fit Algorithm

First Fit: process items one by one in arbitrary order. Place each
item in the �rst bin which has enough space for the item.

Open a new bin if such bin does not exist.

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

110.1

0.5

0.3

0.8

4

0.9

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

110.1

0.5

0.3

0.8

4

0.9

26 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

First Fit Algorithm

First Fit: process items one by one in arbitrary order. Place each
item in the �rst bin which has enough space for the item.

Open a new bin if such bin does not exist.

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

10.1

0.1

0.5

0.3

0.8

4

0.9

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

10.1

0.1

0.5

0.3

0.8

4

0.9

26 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

First Fit Algorithm

First Fit: process items one by one in arbitrary order. Place each
item in the �rst bin which has enough space for the item.

Open a new bin if such bin does not exist.

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

10.1

0.1

0.3

0.5

0.3

0.8

4

0.9

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

10.1

0.1

0.3

0.5

0.3

0.8

4

0.9

26 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

First Fit Algorithm

First Fit: process items one by one in arbitrary order. Place each
item in the �rst bin which has enough space for the item.

Open a new bin if such bin does not exist.

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2
10.1

0.1
0.2

0.3

0.5

0.3

0.8

4

0.9

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2
10.1

0.1
0.2

0.3

0.5

0.3

0.8

4

0.9

26 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

First Fit Algorithm

First Fit: process items one by one in arbitrary order. Place each
item in the �rst bin which has enough space for the item.

Open a new bin if such bin does not exist.

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

10.1

0.1
0.2

0.3

4
0.5

0.3

0.8

0.4

4

0.9

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

10.1

0.1
0.2

0.3

4
0.5

0.3

0.8

0.4

4

0.9

26 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

First Fit Algorithm

First Fit: process items one by one in arbitrary order. Place each
item in the �rst bin which has enough space for the item.

Open a new bin if such bin does not exist.

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

10.1

0.1
0.2

0.2

0.3

4
0.5

0.3

0.8

0.4

4

0.9

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

10.1

0.1
0.2

0.2

0.3

4
0.5

0.3

0.8

0.4

4

0.9

26 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

First Fit Algorithm

First Fit: process items one by one in arbitrary order. Place each
item in the �rst bin which has enough space for the item.

Open a new bin if such bin does not exist.

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

0.4

10.1

0.1
0.2

0.2

0.3

4
0.5

0.3

0.8

0.4

4

0.9

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

0.4

10.1

0.1
0.2

0.2

0.3

4
0.5

0.3

0.8

0.4

4

0.9

26 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

First Fit Algorithm

First Fit: process items one by one in arbitrary order. Place each
item in the �rst bin which has enough space for the item.

Open a new bin if such bin does not exist.

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

0.4

5

10.1

0.1
0.2

0.2

0.3

4
0.5

0.5

0.3

0.8

0.4

4

0.9

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

0.4

5

10.1

0.1
0.2

0.2

0.3

4
0.5

0.5

0.3

0.8

0.4

4

0.9

26 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

First Fit Algorithm

First Fit: process items one by one in arbitrary order. Place each
item in the �rst bin which has enough space for the item.

Open a new bin if such bin does not exist.

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

0.4

5

5

10.1

0.1
0.2

0.2

0.3

4
0.5

0.5

0.5

0.3

0.8

0.4

4

0.9

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

0.4

5

5

10.1

0.1
0.2

0.2

0.3

4
0.5

0.5

0.5

0.3

0.8

0.4

4

0.9

26 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

First Fit Algorithm

First Fit: process items one by one in arbitrary order. Place each
item in the �rst bin which has enough space for the item.

Open a new bin if such bin does not exist.

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

0.4

5

8

5

10.1

0.1
0.2

0.2

0.3

4
0.5

0.5

0.5

0.8

0.3

0.8

0.4

4

0.9

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

0.4

5

8

5

10.1

0.1
0.2

0.2

0.3

4
0.5

0.5

0.5

0.8

0.3

0.8

0.4

4

0.9

26 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

First Fit Algorithm

First Fit: process items one by one in arbitrary order. Place each
item in the �rst bin which has enough space for the item.

Open a new bin if such bin does not exist.

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

0.4

5

8

5

10.1

0.1
0.2

0.2

0.3

4
0.5

0.5

0.5
0.6

0.8

0.3

0.8

0.4

4

0.9

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

0.4

5

8

5

10.1

0.1
0.2

0.2

0.3

4
0.5

0.5

0.5
0.6

0.8

0.3

0.8

0.4

4

0.9

26 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

First Fit Algorithm

First Fit: process items one by one in arbitrary order. Place each
item in the �rst bin which has enough space for the item.

Open a new bin if such bin does not exist.

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

0.4

5

8

5

0.4

10.1

0.1
0.2

0.2

0.3

4
0.5

0.5

0.5
0.6

0.8

0.3

0.8

0.4

4

0.9

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

0.4

5

8

5

0.4

10.1

0.1
0.2

0.2

0.3

4
0.5

0.5

0.5
0.6

0.8

0.3

0.8

0.4

4

0.9

26 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

First Fit Algorithm

First Fit: process items one by one in arbitrary order. Place each
item in the �rst bin which has enough space for the item.

Open a new bin if such bin does not exist.

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

0.4

5

8

5

0.4

10.1

0.1
0.2

0.2

0.3

4
0.5

0.5

0.5

0.5

0.6

0.8

0.3

0.8

0.4

4

0.9

< 0.9 0.3 0.8 0.5 0.1 0.1 0.3 0.2 0.4 0.2 0.4 0.5 0.5 0.8 0.6 0.4 0.5 ... >

1
2

3

5
6

7
8

9
10

3

8

5

1

1

3

2

4

2

0.4

5

8

5

0.4

10.1

0.1
0.2

0.2

0.3

4
0.5

0.5

0.5 0.5
0.6

0.8

0.3

0.8

0.4

4

0.9

26 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Applications of Bin Packing

Loading trucks (e.g., trucks moving between Toronto and Montreal)

Truck have uniform weight capacity.

Stock cutting, e.g., cutting standard-sized wood material (bins) into
pieces of speci�ed sizes (items).

Server consolidation (e.g., in cloud)

Servers are bins and items are clients (e.g., cloud tenants) and you
want to minimize the number of active servers.

27 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Applications of Bin Packing

Loading trucks (e.g., trucks moving between Toronto and Montreal)

Truck have uniform weight capacity.

Stock cutting, e.g., cutting standard-sized wood material (bins) into
pieces of speci�ed sizes (items).

Server consolidation (e.g., in cloud)

Servers are bins and items are clients (e.g., cloud tenants) and you
want to minimize the number of active servers.

27 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Applications of Bin Packing

Loading trucks (e.g., trucks moving between Toronto and Montreal)

Truck have uniform weight capacity.

Stock cutting, e.g., cutting standard-sized wood material (bins) into
pieces of speci�ed sizes (items).

Server consolidation (e.g., in cloud)

Servers are bins and items are clients (e.g., cloud tenants) and you
want to minimize the number of active servers.

27 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Complexity of Bin Packing

Decision Variant of Bin Packing: given a multi-set of items, is it
possible to pack them into k bins?

We show this problem is NP-complete even for the easy case of
k = 2.

Decision problem: given a multi-set of items, is it possible to pack
them into 2 bins?

The problem is in NP: given a solution (e.g., assignment of items to
2 bins), we can check in linear (i.e., polynomial) time whether the
total size of items in each bin is at most 1.

28 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Complexity of Bin Packing

Decision Variant of Bin Packing: given a multi-set of items, is it
possible to pack them into k bins?

We show this problem is NP-complete even for the easy case of
k = 2.

Decision problem: given a multi-set of items, is it possible to pack
them into 2 bins?

The problem is in NP: given a solution (e.g., assignment of items to
2 bins), we can check in linear (i.e., polynomial) time whether the
total size of items in each bin is at most 1.

28 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Complexity of Bin Packing

Decision Variant of Bin Packing: given a multi-set of items, is it
possible to pack them into k bins?

We show this problem is NP-complete even for the easy case of
k = 2.

Decision problem: given a multi-set of items, is it possible to pack
them into 2 bins?

The problem is in NP: given a solution (e.g., assignment of items to
2 bins), we can check in linear (i.e., polynomial) time whether the
total size of items in each bin is at most 1.

28 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Bin Packing Hardness
Prove that it is NP-Hard to decide whether a multi-set of items can
be packed in 2 bins.

reduction from the partition problem

Partition: decide whether a multiset P of positive integers can be
partitioned into two subsets S and P − S .t.
sum of the numbers in S = sum of the numbers in P − S

P = {3, 1, 3, 2, 3, 2, 3, 3, 4, 1} → S = {3, 2, 3, 3} P − S =
{1, 3, 2, 4, 1}

Partition is NP-complete, i.e., assuming P ̸= NP there is no
algorithm that runs in O(nc) for an input of emphlength n.

An algorithm runs in polynomial if it is polynomial in the length of
the input
E.g., a polynomial time algorithm should run in polynomial time
even if there is an integer 2n in the input (the input length will be
still polynomial and that number's length is n in the input).
If all numbers are O(nc), there is an algorithm that runs in
polynomial time; that is called a pseudo-polynomial algorithm.

29 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Bin Packing Hardness
Prove that it is NP-Hard to decide whether a multi-set of items can
be packed in 2 bins.

reduction from the partition problem

Partition: decide whether a multiset P of positive integers can be
partitioned into two subsets S and P − S .t.
sum of the numbers in S = sum of the numbers in P − S

P = {3, 1, 3, 2, 3, 2, 3, 3, 4, 1} → S = {3, 2, 3, 3} P − S =
{1, 3, 2, 4, 1}

Partition is NP-complete, i.e., assuming P ̸= NP there is no
algorithm that runs in O(nc) for an input of emphlength n.

An algorithm runs in polynomial if it is polynomial in the length of
the input
E.g., a polynomial time algorithm should run in polynomial time
even if there is an integer 2n in the input (the input length will be
still polynomial and that number's length is n in the input).
If all numbers are O(nc), there is an algorithm that runs in
polynomial time; that is called a pseudo-polynomial algorithm.

29 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Bin Packing Hardness
Prove that it is NP-Hard to decide whether a multi-set of items can
be packed in 2 bins.

reduction from the partition problem

Partition: decide whether a multiset P of positive integers can be
partitioned into two subsets S and P − S .t.
sum of the numbers in S = sum of the numbers in P − S

P = {3, 1, 3, 2, 3, 2, 3, 3, 4, 1} → S = {3, 2, 3, 3} P − S =
{1, 3, 2, 4, 1}

Partition is NP-complete, i.e., assuming P ̸= NP there is no
algorithm that runs in O(nc) for an input of emphlength n.

An algorithm runs in polynomial if it is polynomial in the length of
the input
E.g., a polynomial time algorithm should run in polynomial time
even if there is an integer 2n in the input (the input length will be
still polynomial and that number's length is n in the input).
If all numbers are O(nc), there is an algorithm that runs in
polynomial time; that is called a pseudo-polynomial algorithm.

29 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Bin Packing Hardness
Prove that it is NP-Hard to decide whether a multi-set of items can
be packed in 2 bins.

reduction from the partition problem

Partition: decide whether a multiset P of positive integers can be
partitioned into two subsets S and P − S .t.
sum of the numbers in S = sum of the numbers in P − S

P = {3, 1, 3, 2, 3, 2, 3, 3, 4, 1} → S = {3, 2, 3, 3} P − S =
{1, 3, 2, 4, 1}

Partition is NP-complete, i.e., assuming P ̸= NP there is no
algorithm that runs in O(nc) for an input of emphlength n.

An algorithm runs in polynomial if it is polynomial in the length of
the input
E.g., a polynomial time algorithm should run in polynomial time
even if there is an integer 2n in the input (the input length will be
still polynomial and that number's length is n in the input).
If all numbers are O(nc), there is an algorithm that runs in
polynomial time; that is called a pseudo-polynomial algorithm.

29 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Bin Packing Hardness
Prove that it is NP-Hard to decide whether a multi-set of items can
be packed in 2 bins.

reduction from the partition problem

Partition: decide whether a multiset P of positive integers can be
partitioned into two subsets S and P − S .t.
sum of the numbers in S = sum of the numbers in P − S

P = {3, 1, 3, 2, 3, 2, 3, 3, 4, 1} → S = {3, 2, 3, 3} P − S =
{1, 3, 2, 4, 1}

Partition is NP-complete, i.e., assuming P ̸= NP there is no
algorithm that runs in O(nc) for an input of emphlength n.

An algorithm runs in polynomial if it is polynomial in the length of
the input

E.g., a polynomial time algorithm should run in polynomial time
even if there is an integer 2n in the input (the input length will be
still polynomial and that number's length is n in the input).
If all numbers are O(nc), there is an algorithm that runs in
polynomial time; that is called a pseudo-polynomial algorithm.

29 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Bin Packing Hardness
Prove that it is NP-Hard to decide whether a multi-set of items can
be packed in 2 bins.

reduction from the partition problem

Partition: decide whether a multiset P of positive integers can be
partitioned into two subsets S and P − S .t.
sum of the numbers in S = sum of the numbers in P − S

P = {3, 1, 3, 2, 3, 2, 3, 3, 4, 1} → S = {3, 2, 3, 3} P − S =
{1, 3, 2, 4, 1}

Partition is NP-complete, i.e., assuming P ̸= NP there is no
algorithm that runs in O(nc) for an input of emphlength n.

An algorithm runs in polynomial if it is polynomial in the length of
the input
E.g., a polynomial time algorithm should run in polynomial time
even if there is an integer 2n in the input (the input length will be
still polynomial and that number's length is n in the input).

If all numbers are O(nc), there is an algorithm that runs in
polynomial time; that is called a pseudo-polynomial algorithm.

29 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Bin Packing Hardness
Prove that it is NP-Hard to decide whether a multi-set of items can
be packed in 2 bins.

reduction from the partition problem

Partition: decide whether a multiset P of positive integers can be
partitioned into two subsets S and P − S .t.
sum of the numbers in S = sum of the numbers in P − S

P = {3, 1, 3, 2, 3, 2, 3, 3, 4, 1} → S = {3, 2, 3, 3} P − S =
{1, 3, 2, 4, 1}

Partition is NP-complete, i.e., assuming P ̸= NP there is no
algorithm that runs in O(nc) for an input of emphlength n.

An algorithm runs in polynomial if it is polynomial in the length of
the input
E.g., a polynomial time algorithm should run in polynomial time
even if there is an integer 2n in the input (the input length will be
still polynomial and that number's length is n in the input).
If all numbers are O(nc), there is an algorithm that runs in
polynomial time; that is called a pseudo-polynomial algorithm.

29 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Reduction from Partition to Bin Pack-

ing

Assume we have an instance P = {p1, p2, . . . pn} of Partition
problem.

Create an instance of bin packing as follows:

Let t =
∑
pi∈P

pi .

De�ne a multi-set of item sizes Q = {q1, . . . , qn} such that
qi = pi · 2

t
.

Note that we have
∑
qi∈Q

qi =
2
t
·
∑
pi∈P

pi =
2
t
· t = 2.

30 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Reduction from Partition to Bin Pack-

ing

Assume we have an instance P = {p1, p2, . . . pn} of Partition
problem.

Create an instance of bin packing as follows:

Let t =
∑
pi∈P

pi .

De�ne a multi-set of item sizes Q = {q1, . . . , qn} such that
qi = pi · 2

t
.

Note that we have
∑
qi∈Q

qi =
2
t
·
∑
pi∈P

pi =
2
t
· t = 2.

30 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Reduction from Partition to Bin Pack-

ing

Assume we have an instance P = {p1, p2, . . . pn} of Partition
problem.

Create an instance of bin packing as follows:

Let t =
∑
pi∈P

pi .

De�ne a multi-set of item sizes Q = {q1, . . . , qn} such that
qi = pi · 2

t
.

Note that we have
∑
qi∈Q

qi =
2
t
·
∑
pi∈P

pi =
2
t
· t = 2.

30 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Validity of Reduction

Show that the answer to the partition instance
P = {p1, p2, . . . pn} is yes if and only the answer to in packing
instance Q = {q1, . . . , qn} is yes (i.e., items can be packed in 2
bins).

Recall that qi = pi · 2
t
.

Assume the answer to the partition instance is yes

I.e., there is S ∈ P so that
∑
pi∈S

pi =
∑

pi∈P−S

pi = t/2

We show that the bin packing instance can be packed into 2 bins.

Since
∑
pi∈S

pi =
∑

pi∈P−S

pi = t/2, we have∑
pi∈S

qi =
∑

pi∈P−S

qi =
t
2
· 2

t
= 1.

We can pack the items associated with set S (i.e., set of qi 's s.t.
pi ∈ S) in one bin and the rest in another.
The total size in each bin will not be more than 1 (hence a valid
packing).

31 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Validity of Reduction

Show that the answer to the partition instance
P = {p1, p2, . . . pn} is yes if and only the answer to in packing
instance Q = {q1, . . . , qn} is yes (i.e., items can be packed in 2
bins).

Recall that qi = pi · 2
t
.

Assume the answer to the partition instance is yes

I.e., there is S ∈ P so that
∑
pi∈S

pi =
∑

pi∈P−S

pi = t/2

We show that the bin packing instance can be packed into 2 bins.

Since
∑
pi∈S

pi =
∑

pi∈P−S

pi = t/2, we have∑
pi∈S

qi =
∑

pi∈P−S

qi =
t
2
· 2

t
= 1.

We can pack the items associated with set S (i.e., set of qi 's s.t.
pi ∈ S) in one bin and the rest in another.
The total size in each bin will not be more than 1 (hence a valid
packing).

31 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Validity of Reduction

Show that the answer to the partition instance
P = {p1, p2, . . . pn} is yes if and only the answer to in packing
instance Q = {q1, . . . , qn} is yes (i.e., items can be packed in 2
bins).

Recall that qi = pi · 2
t
.

Assume the answer to the partition instance is yes

I.e., there is S ∈ P so that
∑
pi∈S

pi =
∑

pi∈P−S

pi = t/2

We show that the bin packing instance can be packed into 2 bins.

Since
∑
pi∈S

pi =
∑

pi∈P−S

pi = t/2, we have∑
pi∈S

qi =
∑

pi∈P−S

qi =
t
2
· 2

t
= 1.

We can pack the items associated with set S (i.e., set of qi 's s.t.
pi ∈ S) in one bin and the rest in another.
The total size in each bin will not be more than 1 (hence a valid
packing).

31 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Validity of Reduction

Next, we show if the answer to the bin packing instance
Q = {q1, . . . , qn} is yes, then the answer to the partition problem is
yes.

Recall that
∑
qi∈Q

qi =
2
t
·
∑
pi∈P

pi =
2
t
· t = 2.

Our assumption implies that a set of items of total size 2 have been
packed into 2 bins → each bin is completely full.
Our packing is equivalent to partitioning Q into two subsets R,
Q − R each of total size 1, i.e.,

∑
qi∈R

qi =
∑

qi∈Q−R

qi = 1.

Let S be the multiset associated with items of R in the partition
instance, i.e., S = ∪qi∈R{pi}.
We have

∑
pi∈S

pi =
∑
pi∈S

qi · t
2
= t

2
.

So, S and P − S will be two subsets of the partition instance each
with total sum of t/2 → the answer to partition instance is yes.

32 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Validity of Reduction

Next, we show if the answer to the bin packing instance
Q = {q1, . . . , qn} is yes, then the answer to the partition problem is
yes.

Recall that
∑
qi∈Q

qi =
2
t
·
∑
pi∈P

pi =
2
t
· t = 2.

Our assumption implies that a set of items of total size 2 have been
packed into 2 bins → each bin is completely full.
Our packing is equivalent to partitioning Q into two subsets R,
Q − R each of total size 1, i.e.,

∑
qi∈R

qi =
∑

qi∈Q−R

qi = 1.

Let S be the multiset associated with items of R in the partition
instance, i.e., S = ∪qi∈R{pi}.
We have

∑
pi∈S

pi =
∑
pi∈S

qi · t
2
= t

2
.

So, S and P − S will be two subsets of the partition instance each
with total sum of t/2 → the answer to partition instance is yes.

32 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Validity of Reduction

Next, we show if the answer to the bin packing instance
Q = {q1, . . . , qn} is yes, then the answer to the partition problem is
yes.

Recall that
∑
qi∈Q

qi =
2
t
·
∑
pi∈P

pi =
2
t
· t = 2.

Our assumption implies that a set of items of total size 2 have been
packed into 2 bins → each bin is completely full.

Our packing is equivalent to partitioning Q into two subsets R,
Q − R each of total size 1, i.e.,

∑
qi∈R

qi =
∑

qi∈Q−R

qi = 1.

Let S be the multiset associated with items of R in the partition
instance, i.e., S = ∪qi∈R{pi}.
We have

∑
pi∈S

pi =
∑
pi∈S

qi · t
2
= t

2
.

So, S and P − S will be two subsets of the partition instance each
with total sum of t/2 → the answer to partition instance is yes.

32 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Validity of Reduction

Next, we show if the answer to the bin packing instance
Q = {q1, . . . , qn} is yes, then the answer to the partition problem is
yes.

Recall that
∑
qi∈Q

qi =
2
t
·
∑
pi∈P

pi =
2
t
· t = 2.

Our assumption implies that a set of items of total size 2 have been
packed into 2 bins → each bin is completely full.
Our packing is equivalent to partitioning Q into two subsets R,
Q − R each of total size 1, i.e.,

∑
qi∈R

qi =
∑

qi∈Q−R

qi = 1.

Let S be the multiset associated with items of R in the partition
instance, i.e., S = ∪qi∈R{pi}.
We have

∑
pi∈S

pi =
∑
pi∈S

qi · t
2
= t

2
.

So, S and P − S will be two subsets of the partition instance each
with total sum of t/2 → the answer to partition instance is yes.

32 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Validity of Reduction

Next, we show if the answer to the bin packing instance
Q = {q1, . . . , qn} is yes, then the answer to the partition problem is
yes.

Recall that
∑
qi∈Q

qi =
2
t
·
∑
pi∈P

pi =
2
t
· t = 2.

Our assumption implies that a set of items of total size 2 have been
packed into 2 bins → each bin is completely full.
Our packing is equivalent to partitioning Q into two subsets R,
Q − R each of total size 1, i.e.,

∑
qi∈R

qi =
∑

qi∈Q−R

qi = 1.

Let S be the multiset associated with items of R in the partition
instance, i.e., S = ∪qi∈R{pi}.

We have
∑
pi∈S

pi =
∑
pi∈S

qi · t
2
= t

2
.

So, S and P − S will be two subsets of the partition instance each
with total sum of t/2 → the answer to partition instance is yes.

32 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Validity of Reduction

Next, we show if the answer to the bin packing instance
Q = {q1, . . . , qn} is yes, then the answer to the partition problem is
yes.

Recall that
∑
qi∈Q

qi =
2
t
·
∑
pi∈P

pi =
2
t
· t = 2.

Our assumption implies that a set of items of total size 2 have been
packed into 2 bins → each bin is completely full.
Our packing is equivalent to partitioning Q into two subsets R,
Q − R each of total size 1, i.e.,

∑
qi∈R

qi =
∑

qi∈Q−R

qi = 1.

Let S be the multiset associated with items of R in the partition
instance, i.e., S = ∪qi∈R{pi}.
We have

∑
pi∈S

pi =
∑
pi∈S

qi · t
2
= t

2
.

So, S and P − S will be two subsets of the partition instance each
with total sum of t/2 → the answer to partition instance is yes.

32 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Bin Packing NP-completeness

Given any instance of the partition problem P with total sum t, we
created an instance Q of bin packing problem by scaling down the
size of numbers in P by a factor of t/2 so that their total sum is 2.

It is possible to partition P into two groups, each of total sum t/2
↔
It is possible to partition Q into two groups, each of total sum 1 ↔
It is possible to pack items into two bins.
The answer to partition instance is yes if and only if the packing
instance can be packed into 2 bins.

This means answering the decision problem �can a multiset of items
be packed into 2 bins" is NP-hard.

We showed the decision variant of bin packing is NP, i.e., we can
check whether a given solution to bin packing is valid (total size of
items i each bin is at most 1) or not in polynomial time.

Bin Packing is an NP-complete problem.

33 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Bin Packing NP-completeness

Given any instance of the partition problem P with total sum t, we
created an instance Q of bin packing problem by scaling down the
size of numbers in P by a factor of t/2 so that their total sum is 2.

It is possible to partition P into two groups, each of total sum t/2
↔
It is possible to partition Q into two groups, each of total sum 1 ↔
It is possible to pack items into two bins.

The answer to partition instance is yes if and only if the packing
instance can be packed into 2 bins.

This means answering the decision problem �can a multiset of items
be packed into 2 bins" is NP-hard.

We showed the decision variant of bin packing is NP, i.e., we can
check whether a given solution to bin packing is valid (total size of
items i each bin is at most 1) or not in polynomial time.

Bin Packing is an NP-complete problem.

33 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Bin Packing NP-completeness

Given any instance of the partition problem P with total sum t, we
created an instance Q of bin packing problem by scaling down the
size of numbers in P by a factor of t/2 so that their total sum is 2.

It is possible to partition P into two groups, each of total sum t/2
↔
It is possible to partition Q into two groups, each of total sum 1 ↔
It is possible to pack items into two bins.
The answer to partition instance is yes if and only if the packing
instance can be packed into 2 bins.

This means answering the decision problem �can a multiset of items
be packed into 2 bins" is NP-hard.

We showed the decision variant of bin packing is NP, i.e., we can
check whether a given solution to bin packing is valid (total size of
items i each bin is at most 1) or not in polynomial time.

Bin Packing is an NP-complete problem.

33 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Bin Packing NP-completeness

Given any instance of the partition problem P with total sum t, we
created an instance Q of bin packing problem by scaling down the
size of numbers in P by a factor of t/2 so that their total sum is 2.

It is possible to partition P into two groups, each of total sum t/2
↔
It is possible to partition Q into two groups, each of total sum 1 ↔
It is possible to pack items into two bins.
The answer to partition instance is yes if and only if the packing
instance can be packed into 2 bins.

This means answering the decision problem �can a multiset of items
be packed into 2 bins" is NP-hard.

We showed the decision variant of bin packing is NP, i.e., we can
check whether a given solution to bin packing is valid (total size of
items i each bin is at most 1) or not in polynomial time.

Bin Packing is an NP-complete problem.

33 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Bin Packing NP-completeness

Given any instance of the partition problem P with total sum t, we
created an instance Q of bin packing problem by scaling down the
size of numbers in P by a factor of t/2 so that their total sum is 2.

It is possible to partition P into two groups, each of total sum t/2
↔
It is possible to partition Q into two groups, each of total sum 1 ↔
It is possible to pack items into two bins.
The answer to partition instance is yes if and only if the packing
instance can be packed into 2 bins.

This means answering the decision problem �can a multiset of items
be packed into 2 bins" is NP-hard.

We showed the decision variant of bin packing is NP, i.e., we can
check whether a given solution to bin packing is valid (total size of
items i each bin is at most 1) or not in polynomial time.

Bin Packing is an NP-complete problem.

33 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Approximation Algorithms

Given an NP-complete optimization problem, there is no optimal
polynomial algorithm, assuming P ̸= NP.

We can approximate the solution!

The solution provided by an approximation algorithm is not
necessarily optimal but an approximation of that.

34 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Approximation Algorithms

Given an NP-complete optimization problem, there is no optimal
polynomial algorithm, assuming P ̸= NP.

We can approximate the solution!

The solution provided by an approximation algorithm is not
necessarily optimal but an approximation of that.

34 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

Approximation Algorithms

Given an NP-complete optimization problem, there is no optimal
polynomial algorithm, assuming P ̸= NP.

We can approximate the solution!

The solution provided by an approximation algorithm is not
necessarily optimal but an approximation of that.

34 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

The Ending

Observation

You should aim for the stars - and hopefully avoid ending up in
the clouds! Roxanne McKee

We covered some materials about algorithms & complexity; the goal
was not to cover everything; but prepare you to get interested and
discover yourself in your future career.

When dealing with a problem, we are interested in:

designing algorithms for them (using tools such as data structures)
analyzing algorithms (based on time complexity, memory
requirement, approximation ratio, etc.) to provide guarantees.
understanding the restrictions of algorithms (lower bounds and
complexity classes).

99 percent of people who talk about algorithms (e.g., in media,
news, etc.) don't understand them. Hopefully you are not one of
them any more. 35 / 34

EECS 3101 - Design and Analysis of Algorithms

▲

The Ending

Observation

You should aim for the stars - and hopefully avoid ending up in
the clouds! Roxanne McKee

Template for �nal is posted. If any thing in the slides is not clear,
ask me to explain it on Piazza.

Your feedback is appreciated; if something can be improved (which
is 100 percent the case), let me know.

I hope to see you in future courses.

36 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

The Ending

Observation

You should aim for the stars - and hopefully avoid ending up in
the clouds! Roxanne McKee

Template for �nal is posted. If any thing in the slides is not clear,
ask me to explain it on Piazza.

Your feedback is appreciated; if something can be improved (which
is 100 percent the case), let me know.

I hope to see you in future courses.

36 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

The Ending

Observation

You should aim for the stars - and hopefully avoid ending up in
the clouds! Roxanne McKee

Template for �nal is posted. If any thing in the slides is not clear,
ask me to explain it on Piazza.

Your feedback is appreciated; if something can be improved (which
is 100 percent the case), let me know.

I hope to see you in future courses.

36 / 34
EECS 3101 - Design and Analysis of Algorithms

▲

	Overview
	Polynomial Algorithms
	Primality test
	3SUM problem
	Exhaustive Search
	Hamiltonian Path
	Exhaustive Search for HP
	Complexity of HP
	Application of Reductions
	Application of Reductions
	Complexity Classes
	Class NP
	Class NP
	P vs NP
	P & NP review
	NP-hard problems
	NP-hard problems
	NP-hard problem Consequences
	NP-Complete Problems
	NP-complete Problems
	NP-hardness proof
	Reduction & Bounds
	Reductions & hardness
	Applications of Bin Packing
	Complexity of Bin Packing
	Reduction from Partition to Bin Packing
	Validity of Reduction
	Validity of Reduction
	Bin Packing NP-completeness
	Approximation Algorithms

