
EECS 3101 - Design and Analysis of

Algorithms

Shahin Kamali

Topic 6 - Graph Algorithms

1 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Overview

Graph Applications & Representation

Breadth-First Search and Depth-First Search

Minimum Spanning Trees

Shortest Path Algorithms

2 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Graph De�nition

A graph G = (V ,E) consists of:

a set of vertices, V , representing objects in a set
a set of edges, E ∈ V × V .

A vertex is usually represented by a point.

An edge (u, v) is usually represented by a line segment from u to v .

3 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Graph Applications

Computer Networks: pairs of computers (vertices) joined by a
network connection (edge).

4 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Graph Applications

World Wide Web: pairs of web pages (vertices) joined by a
hyperlink (edge).

5 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Graph Applications

Social networks: pairs of users (vertices) joined by a
friendship-relation (edge).

6 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Graph Applications

Road networks: pairs of locations (vertices) joined by a road
(edge).

7 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Graph Applications

Air map: pairs of cities (vertices) joined by a direct �ight (edge).

8 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Undirected vs Directed Graphs

In undirected graphs, there is no direction for edges.

In directed graphs, also called digraphs, edges have one-way
direction.

(u, v) and (v , u) are distinct possible edges between vertices v and
u.

9 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Terminology

An edge e = (v ,w) is incident on vertices v and w .

v and w are said to be adjacent or neighbouring vertices.

An edge coming from a vertex u into vertex v is called an in-edge

of v .

Conversely, an edge going from vertex v out to a vertex u is
described as an out-edge of v .

10 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Weighted Graphs

A numerical value may be assigned to every edge to form a
weighted graph.

Edge weight may represent:

distance
cost
speed
network tra�c

11 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Weighted Graphs

A numerical value may be assigned to every edge to form a
weighted graph.

Edge weight may represent:

distance
cost
speed
network tra�c

11 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Subgraph

Given graphs G = (V ,E) and H = (V ′,E ′), H is a subgraph of G
if and only if V ′ is a subset of V and E ′ is a subset of E .

If V ′ = V then H is a spanning subgraph of G .

Is G a subgraph of H?

We have V = {1, 2, 3, 4}, E = {(1, 2), (2, 4), (1, 3), (3, 4), (2, 3)}
Also V ′ = {1, 2, 3}, and E ′ = {(1, 2), (2, 3)}.

H is a subgraph of G but since V ̸= V ′, it is not a spanning
subgraph.

12 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Subgraph

Given graphs G = (V ,E) and H = (V ′,E ′), H is a subgraph of G
if and only if V ′ is a subset of V and E ′ is a subset of E .

If V ′ = V then H is a spanning subgraph of G .

Is G a subgraph of H?

We have V = {1, 2, 3, 4}, E = {(1, 2), (2, 4), (1, 3), (3, 4), (2, 3)}
Also V ′ = {1, 2, 3}, and E ′ = {(1, 2), (2, 3)}.
H is a subgraph of G but since V ̸= V ′, it is not a spanning
subgraph.

12 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Degree

The degree of a vertex v is the total number of edges incident
upon v .

In case of a directed graph, the in-degree of v is the number of
in-edges at v , and and the out-degree of v is the number of
out-edges at v .

v has degree 5, in-degree 2, and out-degree 3.

The maximum degree of a graph G , denoted ∆(G), is de�ned as
the maximum degree amongst all vertices v ∈ V .

G1 has maximum degree 3.

All vertices in a regular graph have the same degree (e.g., G2 is
regular).

13 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Degree

The degree of a vertex v is the total number of edges incident
upon v .

In case of a directed graph, the in-degree of v is the number of
in-edges at v , and and the out-degree of v is the number of
out-edges at v .

v has degree 5, in-degree 2, and out-degree 3.

The maximum degree of a graph G , denoted ∆(G), is de�ned as
the maximum degree amongst all vertices v ∈ V .

G1 has maximum degree 3.

All vertices in a regular graph have the same degree (e.g., G2 is
regular).

13 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Degree

The degree of a vertex v is the total number of edges incident
upon v .

In case of a directed graph, the in-degree of v is the number of
in-edges at v , and and the out-degree of v is the number of
out-edges at v .

v has degree 5, in-degree 2, and out-degree 3.

The maximum degree of a graph G , denoted ∆(G), is de�ned as
the maximum degree amongst all vertices v ∈ V .

G1 has maximum degree 3.

All vertices in a regular graph have the same degree (e.g., G2 is
regular).

13 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Degree

The degree of a vertex v is the total number of edges incident
upon v .

In case of a directed graph, the in-degree of v is the number of
in-edges at v , and and the out-degree of v is the number of
out-edges at v .

v has degree 5, in-degree 2, and out-degree 3.

The maximum degree of a graph G , denoted ∆(G), is de�ned as
the maximum degree amongst all vertices v ∈ V .

G1 has maximum degree 3.

All vertices in a regular graph have the same degree (e.g., G2 is
regular).

13 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Degree

The degree of a vertex v is the total number of edges incident
upon v .

In case of a directed graph, the in-degree of v is the number of
in-edges at v , and and the out-degree of v is the number of
out-edges at v .

v has degree 5, in-degree 2, and out-degree 3.

The maximum degree of a graph G , denoted ∆(G), is de�ned as
the maximum degree amongst all vertices v ∈ V .

G1 has maximum degree 3.

All vertices in a regular graph have the same degree (e.g., G2 is
regular).

13 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Size of a Graph

If a graph has n vertices, what is the maximum number of edges it
can have?

This depends on whether self-loops (edges between a vertex and
itself) are permitted and wehther are directed.

If there is no self-loop and edges are not directed, there will be

(
n
2

)
= n(n − 1)/2 possible edges.

14 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Size of a Graph

If a graph has n vertices, what is the maximum number of edges it
can have?

This depends on whether self-loops (edges between a vertex and
itself) are permitted and wehther are directed.
If there is no self-loop and edges are not directed, there will be(
n
2

)
= n(n − 1)/2 possible edges.

14 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Size of a Graph

If a graph has n vertices, what is the maximum number of edges it
can have?

This depends on whether self-loops (edges between a vertex and
itself) are permitted and wehther are directed.
If there is no self-loop and edges are not directed, there will be(
n
2

)
= n(n − 1)/2 possible edges.

14 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Size of a Graph

If a graph has n vertices, what is the maximum number of edges it
can have?

This depends on whether self-loops (edges between a vertex and
itself) are permitted and wehther are directed.
If there is no self-loop and edges are not directed, there will be(
n
2

)
= n(n − 1)/2 possible edges.

14 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Size of a Graph

If a graph has n vertices, what is the maximum number of edges it
can have?

This depends on whether self-loops (edges between a vertex and
itself) are permitted and wehther are directed.
If there is no self-loop and edges are not directed, there will be(
n
2

)
= n(n − 1)/2 possible edges.

14 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Data Structures for Graphs

How can we store the following graph in a data structure?

The two common data structures for storing a graph are:

adjacency matrix
adjacency list

15 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Data Structures for Graphs

How can we store the following graph in a data structure?

The two common data structures for storing a graph are:

adjacency matrix
adjacency list

15 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency Matrix

Let G = (V ,E) be a graph where V = {v0, v1, . . . , vn−1}.
The adjacency matrix of G is an n × n matrix A such that

A[i , j] = 1 if (vi , vj) ∈ E .
A[i , j] = 0 if (vi , vj) /∈ E .

16 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency Matrix of Digraphs

The adjacency matrix of an undirected graph is symmetric.

The adjacency matrix of a directed graph may not be asymmetric.

17 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency Matrix of Weighted Graphs

We represent a weighted graph by storing the weight of edge (vi , vj)
atA[i , j].

We assume all weights are non-zero

18 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency Matrix Summary

Let n denote the number of vertices and m be the number of edges.

Storing the matrix takes

O(n2).

We can check whether an edge (edge-search) between vi and vj
exists in O(1) time (just check the index a[i][j]).

Similar time for adding an edge (just set the value of a[i][j] to 1 or
another number to indicate weight).

We can compute the indegree of a vertex vi in time O(n) (just
scan the i 'th column and count non-zero elements).

We can compute the outdegree of a vertex vi in time O(n) (just
scan the i 'th row and count non-zero elements).

19 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency Matrix Summary

Let n denote the number of vertices and m be the number of edges.

Storing the matrix takes O(n2).

We can check whether an edge (edge-search) between vi and vj
exists in

O(1) time (just check the index a[i][j]).

Similar time for adding an edge (just set the value of a[i][j] to 1 or
another number to indicate weight).

We can compute the indegree of a vertex vi in time O(n) (just
scan the i 'th column and count non-zero elements).

We can compute the outdegree of a vertex vi in time O(n) (just
scan the i 'th row and count non-zero elements).

19 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency Matrix Summary

Let n denote the number of vertices and m be the number of edges.

Storing the matrix takes O(n2).

We can check whether an edge (edge-search) between vi and vj
exists in O(1) time (just check the index a[i][j]).

Similar time for adding an edge (just set the value of a[i][j] to 1 or
another number to indicate weight).

We can compute the indegree of a vertex vi in time O(n) (just
scan the i 'th column and count non-zero elements).

We can compute the outdegree of a vertex vi in time O(n) (just
scan the i 'th row and count non-zero elements).

19 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency Matrix Summary

Let n denote the number of vertices and m be the number of edges.

Storing the matrix takes O(n2).

We can check whether an edge (edge-search) between vi and vj
exists in O(1) time (just check the index a[i][j]).

Similar time for adding an edge (just set the value of a[i][j] to 1 or
another number to indicate weight).

We can compute the indegree of a vertex vi in time

O(n) (just
scan the i 'th column and count non-zero elements).

We can compute the outdegree of a vertex vi in time O(n) (just
scan the i 'th row and count non-zero elements).

19 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency Matrix Summary

Let n denote the number of vertices and m be the number of edges.

Storing the matrix takes O(n2).

We can check whether an edge (edge-search) between vi and vj
exists in O(1) time (just check the index a[i][j]).

Similar time for adding an edge (just set the value of a[i][j] to 1 or
another number to indicate weight).

We can compute the indegree of a vertex vi in time O(n) (just
scan the i 'th column and count non-zero elements).

We can compute the outdegree of a vertex vi in time

O(n) (just
scan the i 'th row and count non-zero elements).

19 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency Matrix Summary

Let n denote the number of vertices and m be the number of edges.

Storing the matrix takes O(n2).

We can check whether an edge (edge-search) between vi and vj
exists in O(1) time (just check the index a[i][j]).

Similar time for adding an edge (just set the value of a[i][j] to 1 or
another number to indicate weight).

We can compute the indegree of a vertex vi in time O(n) (just
scan the i 'th column and count non-zero elements).

We can compute the outdegree of a vertex vi in time O(n) (just
scan the i 'th row and count non-zero elements).

19 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency List

An adjacency matrix requires O(n2)space, where n = |V |.
For a sparse matrix (when m is small relative to n), a data structure
that uses less space may be useful.
Adjacency List: use a linked list for each vertex.

20 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency List Summary

An adjacency list requires a space of

O(m + n) space, where
n = |V | and m = |E |.

There is one node for each vertex (in the array) and one node for
each directed edge (two nodes for undirected edges).

Checking for an edge (vi , vj) takes O(∆(G)); recall that ∆(G) is
the max degree and is at most n − 1.

we just need to scan the list associated with one of the vertices.
adding an edge takes the same time of O(∆(G)): method
addEdge(u,v) should check whether edge (u, v) is already in the
linked-list A[u] to avoid inserting an edge multiple times.

Degree queries:

Computing the out-degree of vi takes O(∆(G)); just scan the list of
vi and report its length.
Computing the in-degree of vi takes O(m + n); we need to go
through all nodes.

21 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency List Summary

An adjacency list requires a space of O(m + n) space, where
n = |V | and m = |E |.

There is one node for each vertex (in the array) and one node for
each directed edge (two nodes for undirected edges).

Checking for an edge (vi , vj) takes

O(∆(G)); recall that ∆(G) is
the max degree and is at most n − 1.

we just need to scan the list associated with one of the vertices.
adding an edge takes the same time of O(∆(G)): method
addEdge(u,v) should check whether edge (u, v) is already in the
linked-list A[u] to avoid inserting an edge multiple times.

Degree queries:

Computing the out-degree of vi takes O(∆(G)); just scan the list of
vi and report its length.
Computing the in-degree of vi takes O(m + n); we need to go
through all nodes.

21 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency List Summary

An adjacency list requires a space of O(m + n) space, where
n = |V | and m = |E |.

There is one node for each vertex (in the array) and one node for
each directed edge (two nodes for undirected edges).

Checking for an edge (vi , vj) takes O(∆(G)); recall that ∆(G) is
the max degree and is at most n − 1.

we just need to scan the list associated with one of the vertices.

adding an edge takes the same time of O(∆(G)): method
addEdge(u,v) should check whether edge (u, v) is already in the
linked-list A[u] to avoid inserting an edge multiple times.

Degree queries:

Computing the out-degree of vi takes O(∆(G)); just scan the list of
vi and report its length.
Computing the in-degree of vi takes O(m + n); we need to go
through all nodes.

21 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency List Summary

An adjacency list requires a space of O(m + n) space, where
n = |V | and m = |E |.

There is one node for each vertex (in the array) and one node for
each directed edge (two nodes for undirected edges).

Checking for an edge (vi , vj) takes O(∆(G)); recall that ∆(G) is
the max degree and is at most n − 1.

we just need to scan the list associated with one of the vertices.
adding an edge takes the same time of O(∆(G)): method
addEdge(u,v) should check whether edge (u, v) is already in the
linked-list A[u] to avoid inserting an edge multiple times.

Degree queries:

Computing the out-degree of vi takes O(∆(G)); just scan the list of
vi and report its length.
Computing the in-degree of vi takes O(m + n); we need to go
through all nodes.

21 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency List Summary

An adjacency list requires a space of O(m + n) space, where
n = |V | and m = |E |.

There is one node for each vertex (in the array) and one node for
each directed edge (two nodes for undirected edges).

Checking for an edge (vi , vj) takes O(∆(G)); recall that ∆(G) is
the max degree and is at most n − 1.

we just need to scan the list associated with one of the vertices.
adding an edge takes the same time of O(∆(G)): method
addEdge(u,v) should check whether edge (u, v) is already in the
linked-list A[u] to avoid inserting an edge multiple times.

Degree queries:

Computing the out-degree of vi takes O(∆(G)); just scan the list of
vi and report its length.
Computing the in-degree of vi takes O(m + n); we need to go
through all nodes.

21 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency List Summary

An adjacency list requires a space of O(m + n) space, where
n = |V | and m = |E |.

There is one node for each vertex (in the array) and one node for
each directed edge (two nodes for undirected edges).

Checking for an edge (vi , vj) takes O(∆(G)); recall that ∆(G) is
the max degree and is at most n − 1.

we just need to scan the list associated with one of the vertices.
adding an edge takes the same time of O(∆(G)): method
addEdge(u,v) should check whether edge (u, v) is already in the
linked-list A[u] to avoid inserting an edge multiple times.

Degree queries:

Computing the out-degree of vi takes

O(∆(G)); just scan the list of
vi and report its length.
Computing the in-degree of vi takes O(m + n); we need to go
through all nodes.

21 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency List Summary

An adjacency list requires a space of O(m + n) space, where
n = |V | and m = |E |.

There is one node for each vertex (in the array) and one node for
each directed edge (two nodes for undirected edges).

Checking for an edge (vi , vj) takes O(∆(G)); recall that ∆(G) is
the max degree and is at most n − 1.

we just need to scan the list associated with one of the vertices.
adding an edge takes the same time of O(∆(G)): method
addEdge(u,v) should check whether edge (u, v) is already in the
linked-list A[u] to avoid inserting an edge multiple times.

Degree queries:

Computing the out-degree of vi takes O(∆(G)); just scan the list of
vi and report its length.

Computing the in-degree of vi takes O(m + n); we need to go
through all nodes.

21 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency List Summary

An adjacency list requires a space of O(m + n) space, where
n = |V | and m = |E |.

There is one node for each vertex (in the array) and one node for
each directed edge (two nodes for undirected edges).

Checking for an edge (vi , vj) takes O(∆(G)); recall that ∆(G) is
the max degree and is at most n − 1.

we just need to scan the list associated with one of the vertices.
adding an edge takes the same time of O(∆(G)): method
addEdge(u,v) should check whether edge (u, v) is already in the
linked-list A[u] to avoid inserting an edge multiple times.

Degree queries:

Computing the out-degree of vi takes O(∆(G)); just scan the list of
vi and report its length.
Computing the in-degree of vi takes

O(m + n); we need to go
through all nodes.

21 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency List Summary

An adjacency list requires a space of O(m + n) space, where
n = |V | and m = |E |.

There is one node for each vertex (in the array) and one node for
each directed edge (two nodes for undirected edges).

Checking for an edge (vi , vj) takes O(∆(G)); recall that ∆(G) is
the max degree and is at most n − 1.

we just need to scan the list associated with one of the vertices.
adding an edge takes the same time of O(∆(G)): method
addEdge(u,v) should check whether edge (u, v) is already in the
linked-list A[u] to avoid inserting an edge multiple times.

Degree queries:

Computing the out-degree of vi takes O(∆(G)); just scan the list of
vi and report its length.
Computing the in-degree of vi takes O(m + n); we need to go
through all nodes.

21 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency Matrix vs. Adjacency List

Recall that n denotes the number of vertices and m denotes the
number of edges.

In general, we use adjacency matrices for dense graphs (with many
edges) and adjacency lists for sparse graphs (with relatively a few
number of edges).

22 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Adjacency Matrix or Adjacency List?

How do you decide which representation to use?
You have to look at what your application needs:

If you need to be able to quickly tell if there is an edge between
vertices i and j , then use an adjacency matrix.

If you need to perform a matrix multiplication, then use an
adjacency matrix.

If you need fast access to all edges out of a vertex, use the
adjacency list.

If space is an issue (a huge number of vertices), then an adjacency
list is a good idea.

23 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Traversing in a Graph

Graph traversal: The most common graph operation is to visit all
the vertices in a systematic way, using the edges of the graph.

A graph traversal starts at a vertex v and visits all the vertices u
such that a path exists from v to u.

Two types of traversals:

Depth-�rst traversal (or depth-�rst search)
Breadth-�rst traversal (or breadth-�rst search)

24 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Traversing in a Graph

During any traversal, we will want to �nd all vertices that are

adjacent to the current vertex.

Therefore, we should use an adjacency list to store the graph.

You can do a traversal if you are using an adjacency matrix; it will
simply be less e�cient (slower).

25 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Traversing in a Graph

Since we are storing the graph as an adjacency list: we will

assume that, for any vertex i , the vertices adjacent to vertex i are
kept in an ordered linked list.

1

2

3 4

0

Adjacency List:

0

1

2

3

4

1 2 4 ∅

0 2 ∅

0 1 3 4 ∅

2 4 ∅

0 2 3 ∅

26 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Traversals and Graph Representation

Consequence of using ordered linked lists in the adjacency
list: We always examine the adjacent vertices in sorted order.

For example, if we are at vertex 2 in this graph, we will examine
adjacent vertices in the following order: 0, 1, 3, then 4.

1

2

3 4

0

Adjacency List:

0

1

2

3

4

1 2 4 ∅

0 2 ∅

0 1 3 4 ∅

2 4 ∅

0 2 3 ∅

27 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal

A depth �rst traversal searches all the way down a path before

backing up to explore alternatives � it is a recursive,

stack-based traversal.

6

3 4

7 8 9

5

1 2

0

We will traverse the above graph starting at 0, with all vertices

currently unvisited.

28 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

To depth-�rst traverse at vertex 0:

Mark the current vertex (0) as visited, and then

Recursively depth-�rst traverse each of the adjacent unvisited
vertices.

6

3 4

7 8 9

5

1 2

0curr

Stack

0

Remember that we examine the adjacent vertices in sorted order:

we �rst look at vertex 1, then at vertex 2. with 1.

29 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

Now mark the current vertex (1) as visited, and then recursively

depth-�rst traverse each of the adjacent unvisited vertices.

6

3 4

7 8 9

5

1 2

0

curr

Stack

0

1

Adjacent vertex 2 is unvisited, so we next recursively depth-�rst

traverse vertex 2.

30 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

Now mark the current vertex (2) as visited, and then recursively

depth-�rst traverse each of the adjacent unvisited vertices.

6

3 4

7 8 9

5

1 2

0

curr

Stack

0

1

2

Adjacent vertex 4 is unvisited, so we next recursively depth-�rst

traverse vertex 4.

31 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

Now mark the current vertex (4) as visited, and then recursively

depth-�rst traverse each of the adjacent unvisited vertices.

6

3 4

7 8 9

5

1 2

0

curr

Stack

0

1

2

4

Adjacent vertex 3 is unvisited, so we next recursively depth-�rst

traverse vertex 3.

32 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

Now mark the current vertex (3) as visited, and then recursively

depth-�rst traverse each of the adjacent unvisited vertices.

6

3 4

7 8 9

5

1 2

0

curr

Stack

0

1

2

4

3

Adjacent vertex 6 is unvisited, so we next recursively depth-�rst

traverse vertex 6.

33 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

Now mark the current vertex (6) as visited, and then recursively

depth-�rst traverse each of the adjacent unvisited vertices.

6

3 4

7 8 9

5

1 2

0

curr

Stack

0

1

2

4

3

6

Adjacent vertex 7 is unvisited, so we next recursively depth-�rst

traverse vertex 7.

34 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

Mark 7 as visited, and recursively depth-�rst traverse the adjacent

unvisited vertices.

6

3 4

7 8 9

5

1 2

0

curr

Stack

0

1

2

4

3

6

7

No adjacent vertices are unvisited, so pop the stack to return to a

previous vertex and look for unvisited adjacent vertices there.

35 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

6

3 4

7 8 9

5

1 2

0

curr

Stack

0

1

2

4

3

6

No vertices adjacent to 6 are unvisited, so pop the stack again.

36 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

6

3 4

7 8 9

5

1 2

0

curr

Stack

0

1

2

4

3

No vertices adjacent to 3 are unvisited, so pop the stack again.

37 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

6

3 4

7 8 9

5

1 2

0

curr

Stack

0

1

2

4

Vertex 5 is adjacent to 4 and is unvisited, so depth-�rst traverse 5.

38 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

Mark 5 as visited, and recursively depth-�rst search adjacent

unvisited vertices.

6

3 4

7 8 9

5

1 2

0

curr

Stack

0

1

2

4

5

Vertex 8 is adjacent to 5 and is unvisited, so depth-�rst traverse 8.

39 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

Mark 8 as visited, and recursively depth-�rst search adjacent

unvisited vertices.

6

3 4

7 8 9

5

1 2

0

curr

Stack

0

1

2

4

5

8

Vertex 9 is adjacent to 8 and is unvisited, so depth-�rst traverse 9.

40 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

Mark 9 as visited, and recursively depth-�rst search adjacent

unvisited vertices.

6

3 4

7 8 9

5

1 2

0

curr

Stack

0

1

2

4

5

8

9

No adjacent vertex is unvisited, so pop the stack.

41 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

6

3 4

7 8 9

5

1 2

0

curr

Stack

0

1

2

4

5

8

No adjacent vertex is unvisited, so pop the stack.

42 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

6

3 4

7 8 9

5

1 2

0

curr

Stack

0

1

2

4

5

No adjacent vertex is unvisited, so pop the stack.

43 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

6

3 4

7 8 9

5

1 2

0

curr

Stack

0

1

2

4

No adjacent vertex is unvisited, so pop the stack.

44 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

6

3 4

7 8 9

5

1 2

0

curr

Stack

0

1

2

No adjacent vertex is unvisited, so pop the stack.

45 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

6

3 4

7 8 9

5

1 2

0

curr

Stack

0

1

No adjacent vertex is unvisited, so pop the stack.

46 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

6

3 4

7 8 9

5

1 2

0

curr

Stack

0

No adjacent vertex is unvisited, so pop the stack.

47 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

Now the stack is empty, so we have traversed the whole graph.

6

3 4

7 8 9

5

1 2

0

Stack

48 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal and Paths

The stack holds the path we took from the starting vertex to the
current vertex.

To �nd a path from some vertex u to some other vertex v :
You could perform a depth-�rst traversal starting at u and simply
output the stack (from bottom to top) when you �nd v .

The path you �nd will not necessarily be the shortest path from u
to v (you will, however, �nd a path if one exists).

49 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Printing in a Depth-First Traversal

We �visit� a vertex when we mark it as visited.

In our example, we did nothing when we visited a vertex.

If we print out the contents of the vertex when we visit it, then the
output would be

0, 1, 2, 4, 3, 6, 7, 5, 8, 9

50 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

What would the output be if we performed a depth-�rst traversal

starting at vertex 6? (Assume that we always examine adjacent

vertices in sorted order because we are using an adjacency list.)

6

3 4

7 8 9

5

1 2

0

curr

Stack

51 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

What would the output be if we performed a depth-�rst traversal

starting at vertex 6? (Assume that we always examine adjacent

vertices in sorted order.)

6

3 4

7 8 9

5

1 2

0

curr

Stack

Answer: 6, 3, 1, 0, 2, 4, 5, 8, 9, 7

52 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

What path would we �nd to vertex 7 if we performed a depth-�rst

traversal starting at vertex 6? (Assume that we always examine

adjacent vertices in sorted order.)

6

3 4

7 8 9

5

1 2

0

curr

Stack

53 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal: Example

What path would we �nd to vertex 7 if we performed a depth-�rst

traversal starting at vertex 6? (Assume that we always examine

adjacent vertices in sorted order.)

6

3 4

7 8 9

5

1 2

0

curr

Stack

Answer: 6, 3, 1, 0, 2, 4, 7

54 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-�rst Traversal Pseudocode

depthFirstTraveral (vertex curr)
1. mark vertex curr as visited
2. visit curr (e.g., print)
3. for each vertex v adjacent to curr
4. if v is unvisited
5. depthFirstTraveral(v)

55 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Depth-First Traversal Applications

You are doing a depth-�rst traversal if you traverse a maze.

each intersection is a vertex, and you go to a neighbor that is not
visited before.

Detecting whether a graph is a tree!

A graph is a tree if there is no cylce in the graph!

56 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-�rst Traversal

A breadth-�rst traversal visits all nearby vertices �rst before

moving farther away. It is a queue-based, iterative traversal.

6

3 4

7 8 9

5

1 2

0

We will do a breadth-�rst traversal of the above graph starting at

vertex 6.

57 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-�rst Traversal Example

To begin the breadth-�rst traversal, visit the starting vertex and put

it on the queue.

6

3 4

7 8 9

5

1 2

0

Queue: 6

58 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-�rst Traversal Example

Remove a vertex curr from the queue.

Visit all the unvisited vertices adjacent to curr, putting each one
on the queue.

6

3 4

7 8 9

5

1 2

0

curr

Queue: 3 7

3 and 7 were the unvisited vertices we found adjacent to 6.

59 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-�rst Traversal Example

Remove a vertex curr from the queue.

Visit all the unvisited vertices adjacent to curr, putting each one
on the queue.

6

3 4

7 8 9

5

1 2

0

curr

Queue: 7 1 4

1 and 4 were the unvisited vertices we found adjacent to 3.

60 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-�rst Traversal Example

Remove a vertex curr from the queue.

Visit all the unvisited vertices adjacent to curr, putting each one
on the queue.

6

3 4

7 8 9

5

1 2

0

currQueue: 1 4

There were no unvisited vertices found adjacent to 7.

61 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-�rst Traversal Example

Remove a vertex curr from the queue.

Visit all the unvisited vertices adjacent to curr, putting each one
on the queue.

6

3 4

7 8 9

5

1 2

0

curr

Queue: 4 0 2

0 and 2 were unvisited vertices adjacent to 1.

62 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-�rst Traversal Example

Remove a vertex curr from the queue.

Visit all the unvisited vertices adjacent to curr, putting each one
on the queue.

6

3 4

7 8 9

5

1 2

0

curr

Queue: 0 2 5

5 was an unvisited vertex adjacent to 4.

63 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-�rst Traversal Example

Remove a vertex curr from the queue.

Visit all the unvisited vertices adjacent to curr, putting each one
on the queue.

6

3 4

7 8 9

5

1 2

0

curr

Queue: 2 5

No unvisited vertices were found adjacent to 0.

64 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-�rst Traversal Example

Remove a vertex curr from the queue.

Visit all the unvisited vertices adjacent to curr, putting each one
on the queue.

6

3 4

7 8 9

5

1 2

0

curr

Queue: 5

No unvisited vertices were found adjacent to 2.

65 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-�rst Traversal Example

Remove a vertex curr from the queue.

Visit all the unvisited vertices adjacent to curr, putting each one
on the queue.

6

3 4

7 8 9

5

1 2

0

curr

Queue: 8 9

8 and 9 were unvisited vertices adjacent to 5.

66 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-�rst Traversal Example

Remove a vertex curr from the queue.

Visit all the unvisited vertices adjacent to curr, putting each one
on the queue.

6

3 4

7 8 9

5

1 2

0

currQueue: 9

No unvisited vertices were found adjacent to 8.

67 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-�rst Traversal Example

Remove a vertex curr from the queue.

Visit all the unvisited vertices adjacent to curr, putting each one
on the queue.

6

3 4

7 8 9

5

1 2

0

currQueue:

No unvisited vertices were found adjacent to 9. Since the queue is

now empty, the traversal is �nished.

68 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Printing in a Breadth-�rst Traversal

In our example, we did nothing at each vertex when we visited it.

If we print out the contents of the vertex when we visit it, then the
output would be

6, 3, 7, 1, 4, 0, 2, 5, 8, 9

6

3 4

7 8 9

5

1 2

0

69 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-�rst Traversal Example

What would the output be if we performed a breadth-�rst traversal

of the following graph, beginning at vertex 0:

4

73

2 68

9

1 5

0

70 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-�rst Traversal Example

What would the output be if we performed a breadth-�rst traversal

of the following graph, beginning at vertex 0:

4

73

2 68

9

1 5

0

Answer: 0, 1, 5, 2, 6, 3, 8, 7, 9, 4

71 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-�rst Traversal Example

What would the output be if we performed a depth-�rst traversal

of the following graph, beginning at vertex 0:

4

73

2 68

9

1 5

0

Breadth-�rst answer: 0, 1, 5, 2, 6, 3, 8, 7, 9, 4

Depth-�rst answer: 0, 1, 2, 3, 4, 7, 6, 5, 8, 9

72 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-�rst Traversal Pseudocode

breadthFirstTraversal (vertex start)
1. Q ← an empty queue of vertices
2. visit start (e.g., print) and mark it as visited
3. Q.enqueue(start)
4. while Q is not empty
5. curr ← Q.dequeue()
6. for each unvisited vertex v adjacent to curr
7. visit v and mark it as visited;
8. Q.enqueue(v);

73 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-�rst Traversal and Paths

The vertices we passed through to get to a vertex v are no longer

on the queue when v is visited and placed on the queue.

To reconstruct the path to v :

When you mark a vertex w as visited, also record at w what vertex
you came from to get to w (i.e., which vertex is w adjacent to when
you visit w).

Therefore, each vertex needs to have not only a �visited� bit, but
also a �previous vertex� pointer.

When the traversal is �nished, retrieve the path from the starting
vertex to vertex v : We get the path backwards by starting at v and
following previous pointers back to the starting vertex.

74 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-First Traversal Paths

For example, beginning at vertex 0:

2 63

4

1 5

0

?

Queue: 0

75 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-First Traversal Paths

Vertex 0 is �rst out of the queue:

2 63

4

1 5

0

?

Queue:

curr

We will visit 1 and 5 next, marking �0� as their previous vertex.

76 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-First Traversal Paths

We're currently at vertex 0:

2 63

4

10 5 0

0

?

curr

Queue: 1 5

77 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-First Traversal Paths

At vertex 1, we visit vertex 2:

21 63

4

10 5 0

0

?

curr

Queue: 5 2

78 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-First Traversal Paths

At vertex 5, we visit vertex 6:

21 6 53

4

10 5 0

0

?

curr

Queue: 2 6

79 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-First Traversal Paths

At vertex 2, we visit vertex 3:

21 6 53

2

4

10 5 0

0

?

curr

Queue: 6 3

80 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-First Traversal Paths

At vertex 6, we visit vertex 4:

21 6 53

2

46

10 5 0

0

?

curr

Queue: 3 4

When we remove 3 and 4 from the queue, there is nothing left to

visit, so we will skip those steps.

81 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Breadth-First Traversal Paths

Suppose we want to �nd the path taken to 4 from 0:

21 6 53

2

46

10 5 0

0

?

We follow �previous vertex� pointers starting from vertex 4, which

gives us the path from 0 to 4 backwards:

4← 6← 5← 0

82 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Connected Component

A disconnected graph can be divided into connected components

two vertices i and j are in the same connected component if there

is a path from i to j .

0 1

2 3 4 5

6

7

8

9

Example: The above disconnected graph has 4 connected

components (inside dashed rectangles).

83 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Traversals and Disconnected Graphs

A traversal starts at a vertex v and visits all the vertices that can be
reached by paths from v .

If the graph is disconnected, then a traversal will visit all the
vertices in the same component as v .

To visit the whole graph:

1. loop

2. �nd a vertex v that has not been visited yet
3. perform a traversal from v
4. until all vertices have been visited

84 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Summary: Traversals and Paths

Depth-�rst search �nds a path from the start vertex to another
vertex, not necessarily the shortest path (the path with the fewest
edges).

Breadth-�rst search �nds the shortest path.

85 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Walks, Paths, Circuits, and Cycles

A walk from vertex v to vertex w is a
�nite sequence of adjacent vertices of G.

A path from v to w is a walk from v to w
that does not contain any repeated edges.

A circuit is a walk that begins and ends
on the same vertex.

A cycle is a circuit that does not contain
any repeated vertices.

A k-cycle is a cycle
of length k.

- 2,5,1,2,5,4 is a walk.

- 1,2,4,5 is a path
(and also a walk).

- 1,5,2,4,3,2,1 is a circuit
(also a path and a walk).

- 1,2,3,4,5,1 is a cycle
(and also a circuit, a path, and a
walk).

1

2

3

4
5

86 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Walks, Paths, Circuits, and Cycles

A walk from vertex v to vertex w is a
�nite sequence of adjacent vertices of G.

A path from v to w is a walk from v to w
that does not contain any repeated edges.

A circuit is a walk that begins and ends
on the same vertex.

A cycle is a circuit that does not contain
any repeated vertices.

A k-cycle is a cycle
of length k.

- 2,5,1,2,5,4 is a walk.

- 1,2,4,5 is a path
(and also a walk).

- 1,5,2,4,3,2,1 is a circuit
(also a path and a walk).

- 1,2,3,4,5,1 is a cycle
(and also a circuit, a path, and a
walk).

1

2

3

4
5

86 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Walks, Paths, Circuits, and Cycles

A walk from vertex v to vertex w is a
�nite sequence of adjacent vertices of G.

A path from v to w is a walk from v to w
that does not contain any repeated edges.

A circuit is a walk that begins and ends
on the same vertex.

A cycle is a circuit that does not contain
any repeated vertices.

A k-cycle is a cycle
of length k.

- 2,5,1,2,5,4 is a walk.

- 1,2,4,5 is a path
(and also a walk).

- 1,5,2,4,3,2,1 is a circuit
(also a path and a walk).

- 1,2,3,4,5,1 is a cycle
(and also a circuit, a path, and a
walk).

1

2

3

4
5

86 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Walks, Paths, Circuits, and Cycles

A walk from vertex v to vertex w is a
�nite sequence of adjacent vertices of G.

A path from v to w is a walk from v to w
that does not contain any repeated edges.

A circuit is a walk that begins and ends
on the same vertex.

A cycle is a circuit that does not contain
any repeated vertices.

A k-cycle is a cycle
of length k.

- 2,5,1,2,5,4 is a walk.

- 1,2,4,5 is a path
(and also a walk).

- 1,5,2,4,3,2,1 is a circuit
(also a path and a walk).

- 1,2,3,4,5,1 is a cycle
(and also a circuit, a path, and a
walk).

1

2

3

4
5

86 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Walks, Paths, Circuits, and Cycles

A walk from vertex v to vertex w is a
�nite sequence of adjacent vertices of G.

A path from v to w is a walk from v to w
that does not contain any repeated edges.

A circuit is a walk that begins and ends
on the same vertex.

A cycle is a circuit that does not contain
any repeated vertices.

A k-cycle is a cycle
of length k.

- 2,5,1,2,5,4 is a walk.

- 1,2,4,5 is a path
(and also a walk).

- 1,5,2,4,3,2,1 is a circuit
(also a path and a walk).

- 1,2,3,4,5,1 is a cycle
(and also a circuit, a path, and a
walk).

1

2

3

4
5

86 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Walks, Paths, Circuits, and Cycles

A walk from vertex v to vertex w is a
�nite sequence of adjacent vertices of G.

A path from v to w is a walk from v to w
that does not contain any repeated edges.

A circuit is a walk that begins and ends
on the same vertex.

A cycle is a circuit that does not contain
any repeated vertices.

A k-cycle is a cycle
of length k .

- 2,5,1,2,5,4 is a walk.

- 1,2,4,5 is a path
(and also a walk).

- 1,5,2,4,3,2,1 is a circuit
(also a path and a walk).

- 1,2,3,4,5,1 is a cycle
(and also a circuit, a path, and a
walk).

1

2

3

4
5

86 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

More Terminology

The length of a walk, path, circuit, or cycle is the number of edges
in the sequence.

The distance between vertices v and w is the length of the shortest
path from v to w .

The diameter of graph G is the maximum distance between any
two vertices v ,w in G .

The small-world phenomenon: we are all linked by short chains of
acquaintances → social networks like Facebook have small diameter.

- b and c have distance

- a and d have distance

- G has diameter

87 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

More Terminology

The length of a walk, path, circuit, or cycle is the number of edges
in the sequence.

The distance between vertices v and w is the length of the shortest
path from v to w .

The diameter of graph G is the maximum distance between any
two vertices v ,w in G .

The small-world phenomenon: we are all linked by short chains of
acquaintances → social networks like Facebook have small diameter.

- b and c have distance

- a and d have distance

- G has diameter

87 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

More Terminology

The length of a walk, path, circuit, or cycle is the number of edges
in the sequence.

The distance between vertices v and w is the length of the shortest
path from v to w .

The diameter of graph G is the maximum distance between any
two vertices v ,w in G .

The small-world phenomenon: we are all linked by short chains of
acquaintances → social networks like Facebook have small diameter.

- b and c have distance 1

- a and d have distance 2

- G has diameter 2

87 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

More Terminology

The length of a walk, path, circuit, or cycle is the number of edges
in the sequence.

The distance between vertices v and w is the length of the shortest
path from v to w .

The diameter of graph G is the maximum distance between any
two vertices v ,w in G .

The small-world phenomenon: we are all linked by short chains of
acquaintances → social networks like Facebook have small diameter.

- b and c have distance 1

- a and d have distance 2

- G has diameter 2

87 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

More Terminology

The length of a walk, path, circuit, or cycle is the number of edges
in the sequence.

The distance between vertices v and w is the length of the shortest
path from v to w .

The diameter of graph G is the maximum distance between any
two vertices v ,w in G .

The small-world phenomenon: we are all linked by short chains of
acquaintances → social networks like Facebook have small diameter.

- b and c have distance 1

- a and d have distance 2

- G has diameter 2

87 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

More Terminology

The length of a walk, path, circuit, or cycle is the number of edges
in the sequence.

The distance between vertices v and w is the length of the shortest
path from v to w .

The diameter of graph G is the maximum distance between any
two vertices v ,w in G .

The small-world phenomenon: we are all linked by short chains of
acquaintances → social networks like Facebook have small diameter.

- b and c have distance 1

- a and d have distance 2

- G has diameter 2

87 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

More Terminology

The length of a walk, path, circuit, or cycle is the number of edges
in the sequence.

The distance between vertices v and w is the length of the shortest
path from v to w .

The diameter of graph G is the maximum distance between any
two vertices v ,w in G .

The small-world phenomenon: we are all linked by short chains of
acquaintances → social networks like Facebook have small diameter.

- b and c have distance 1

- a and d have distance 2

- G has diameter 2

87 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Connected Graphs

Two vertices v and w are connected i� there is a path from v to w .

Graph G is connected i� any two vertices, v ,w in G are connected.

Here G1 is connected and G2 is not connected.

88 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Connected Graphs

Two vertices v and w are connected i� there is a path from v to w .

Graph G is connected i� any two vertices, v ,w in G are connected.

Here G1 is connected and G2 is not connected.

88 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Bipartite Graphs

A graph G = (V ,E) is bipartite if there exists a partition of its
vertices, V = V1 ∪ V2, such that:

V1 ∩ V2 = ∅, and
every edge (v1, v2) ∈ E has one endpoint in each partition:
v1 ∈ V1 and v2 ∈ V2 or v1 ∈ V2 and v2 ∈ V1.

89 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Trees

An undirected graph T is a tree if T is connected and T does not
contain any cycles.

In a rooted tree, one vertex is distinguished from the others and
called the root.

An undirected graph F is a forest if F does not contain any cycles.
F is a set of trees.

90 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Spanning Tree

A spanning tree for a graph G is a spanning subgraph of G that is
a tree.

Every connected graph has a spanning tree.
Any spanning tree for a graph G = (V ,E) has |V | vertices.
Any spanning tree for a graph G = (V ,E) has |V | − 1 edges.

91 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Spanning Trees Application

Your employer has a contract to provide high-speed internet to an
island.

Each client must be connected to the network while minimizing the
total cost of building the network.

Your are provided cost estimates for various possible links in the
network.

92 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Minimum Spanning Tree

A minimum spanning tree of a weighted graph G is a spanning
tree of G that has the least possible total weight compared to all
other spanning trees of G .

If two or more edges have equal weight in a graph G , then G may
have more than one unique minimum spanning tree.

93 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Minimum Spanning Tree

A minimum spanning tree of a weighted graph G is a spanning
tree of G that has the least possible total weight compared to all
other spanning trees of G .

If two or more edges have equal weight in a graph G , then G may
have more than one unique minimum spanning tree.

93 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

More Minimum Spanning Tree Exam-

ple

It is not always easy to derive a minimum spanning tree 'with eyes'.

Two e�cient algorithms for �nding a minimum spanning tree:

Kruskal's algorithm

Prim's algorithm

94 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

More Minimum Spanning Tree Exam-

ple

It is not always easy to derive a minimum spanning tree 'with eyes'.

Two e�cient algorithms for �nding a minimum spanning tree:

Kruskal's algorithm

Prim's algorithm

94 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Kruskal's MST algorithm
Initialize T to be Φ.

Sort edges in the non-decreasing of their weights and process them
one by one.
(B,E), (G ,H), (G ,F), (A,D), (A,C), (C ,D), (E ,G), (C ,F), (A,B), (B,C), (D,F)

If an edge e does not form a cycle in MST, add it to MST.

Maintain MST's connected component as disjoint sets of vertices
e does not form a cycle i� its endpoints are in di�erent components

The time complexity of the Kruskal's algorithm is de�ned by the sorting of

edges

Kruskal's algorithm takes O(m logm) for a graph of m edges.

Note that O(m logm) = O(m log n) (why?)

95 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Kruskal's MST algorithm
Initialize T to be Φ.

Sort edges in the non-decreasing of their weights and process them
one by one.
(B,E), (G ,H), (G ,F), (A,D), (A,C), (C ,D), (E ,G), (C ,F), (A,B), (B,C), (D,F)

If an edge e does not form a cycle in MST, add it to MST.

Maintain MST's connected component as disjoint sets of vertices
e does not form a cycle i� its endpoints are in di�erent components

The time complexity of the Kruskal's algorithm is de�ned by the sorting of

edges

Kruskal's algorithm takes O(m logm) for a graph of m edges.

Note that O(m logm) = O(m log n) (why?)

95 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Kruskal's MST algorithm
Initialize T to be Φ.

Sort edges in the non-decreasing of their weights and process them
one by one.
(B,E), (G ,H), (G ,F), (A,D), (A,C), (C ,D), (E ,G), (C ,F), (A,B), (B,C), (D,F)

If an edge e does not form a cycle in MST, add it to MST.

Maintain MST's connected component as disjoint sets of vertices
e does not form a cycle i� its endpoints are in di�erent components

The time complexity of the Kruskal's algorithm is de�ned by the sorting of

edges

Kruskal's algorithm takes O(m logm) for a graph of m edges.

Note that O(m logm) = O(m log n) (why?)

95 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Kruskal's MST algorithm
Initialize T to be Φ.

Sort edges in the non-decreasing of their weights and process them
one by one.
(B,E), (G ,H), (G ,F), (A,D), (A,C), (C ,D), (E ,G), (C ,F), (A,B), (B,C), (D,F)

If an edge e does not form a cycle in MST, add it to MST.

Maintain MST's connected component as disjoint sets of vertices
e does not form a cycle i� its endpoints are in di�erent components

The time complexity of the Kruskal's algorithm is de�ned by the sorting of

edges

Kruskal's algorithm takes O(m logm) for a graph of m edges.

Note that O(m logm) = O(m log n) (why?)

95 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Kruskal's MST algorithm
Initialize T to be Φ.

Sort edges in the non-decreasing of their weights and process them
one by one.
(B,E), (G ,H), (G ,F), (A,D), (A,C), (C ,D), (E ,G), (C ,F), (A,B), (B,C), (D,F)

If an edge e does not form a cycle in MST, add it to MST.

Maintain MST's connected component as disjoint sets of vertices
e does not form a cycle i� its endpoints are in di�erent components

The time complexity of the Kruskal's algorithm is de�ned by the sorting of

edges

Kruskal's algorithm takes O(m logm) for a graph of m edges.

Note that O(m logm) = O(m log n) (why?)

95 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Kruskal's MST algorithm
Initialize T to be Φ.

Sort edges in the non-decreasing of their weights and process them
one by one.
(B,E), (G ,H), (G ,F), (A,D), (A,C), (C ,D), (E ,G), (C ,F), (A,B), (B,C), (D,F)

If an edge e does not form a cycle in MST, add it to MST.

Maintain MST's connected component as disjoint sets of vertices
e does not form a cycle i� its endpoints are in di�erent components

The time complexity of the Kruskal's algorithm is de�ned by the sorting of

edges

Kruskal's algorithm takes O(m logm) for a graph of m edges.

Note that O(m logm) = O(m log n) (why?)

95 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Kruskal's MST algorithm
Initialize T to be Φ.

Sort edges in the non-decreasing of their weights and process them
one by one.
(B,E), (G ,H), (G ,F), (A,D), (A,C), (C ,D), (E ,G), (C ,F), (A,B), (B,C), (D,F)

If an edge e does not form a cycle in MST, add it to MST.

Maintain MST's connected component as disjoint sets of vertices
e does not form a cycle i� its endpoints are in di�erent components

The time complexity of the Kruskal's algorithm is de�ned by the sorting of

edges

Kruskal's algorithm takes O(m logm) for a graph of m edges.

Note that O(m logm) = O(m log n) (why?)

95 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Kruskal's MST algorithm
Initialize T to be Φ.

Sort edges in the non-decreasing of their weights and process them
one by one.
(B,E), (G ,H), (G ,F), (A,D), (A,C), (C ,D), (E ,G), (C ,F), (A,B), (B,C), (D,F)

If an edge e does not form a cycle in MST, add it to MST.

Maintain MST's connected component as disjoint sets of vertices
e does not form a cycle i� its endpoints are in di�erent components

The time complexity of the Kruskal's algorithm is de�ned by the sorting of

edges

Kruskal's algorithm takes O(m logm) for a graph of m edges.

Note that O(m logm) = O(m log n) (why?)

95 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Kruskal's MST algorithm
Initialize T to be Φ.

Sort edges in the non-decreasing of their weights and process them
one by one.
(B,E), (G ,H), (G ,F), (A,D), (A,C), (C ,D), (E ,G), (C ,F), (A,B), (B,C), (D,F)

If an edge e does not form a cycle in MST, add it to MST.

Maintain MST's connected component as disjoint sets of vertices
e does not form a cycle i� its endpoints are in di�erent components

The time complexity of the Kruskal's algorithm is de�ned by the sorting of

edges

Kruskal's algorithm takes O(m logm) for a graph of m edges.

Note that O(m logm) = O(m log n) (why?)

95 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Kruskal's MST algorithm
Initialize T to be Φ.

Sort edges in the non-decreasing of their weights and process them
one by one.
(B,E), (G ,H), (G ,F), (A,D), (A,C), (C ,D), (E ,G), (C ,F), (A,B), (B,C), (D,F)

If an edge e does not form a cycle in MST, add it to MST.

Maintain MST's connected component as disjoint sets of vertices
e does not form a cycle i� its endpoints are in di�erent components

The time complexity of the Kruskal's algorithm is de�ned by the sorting of

edges

Kruskal's algorithm takes O(m logm) for a graph of m edges.

Note that O(m logm) = O(m log n) (why?)

95 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Kruskal's MST algorithm
Initialize T to be Φ.

Sort edges in the non-decreasing of their weights and process them
one by one.
(B,E), (G ,H), (G ,F), (A,D), (A,C), (C ,D), (E ,G), (C ,F), (A,B), (B,C), (D,F)

If an edge e does not form a cycle in MST, add it to MST.

Maintain MST's connected component as disjoint sets of vertices
e does not form a cycle i� its endpoints are in di�erent components

The time complexity of the Kruskal's algorithm is de�ned by the sorting of

edges

Kruskal's algorithm takes O(m logm) for a graph of m edges.

Note that O(m logm) = O(m log n) (why?)

95 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Kruskal's MST algorithm
Initialize T to be Φ.

Sort edges in the non-decreasing of their weights and process them
one by one.
(B,E), (G ,H), (G ,F), (A,D), (A,C), (C ,D), (E ,G), (C ,F), (A,B), (B,C), (D,F)

If an edge e does not form a cycle in MST, add it to MST.

Maintain MST's connected component as disjoint sets of vertices
e does not form a cycle i� its endpoints are in di�erent components

The time complexity of the Kruskal's algorithm is de�ned by the sorting of

edges

Kruskal's algorithm takes O(m logm) for a graph of m edges.
Note that O(m logm) = O(m log n) (why?)

95 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm

Initialize: let T = { an edge in the graph with minimum weight }

Repeat n − 2 times:

e = an edge in G of minimum weight that has one endpoint in T
and one endpoint outside T
T = T ∪ {e}

96 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm

Initialize: let T = { an edge in the graph with minimum weight }

Repeat n − 2 times:

e = an edge in G of minimum weight that has one endpoint in T
and one endpoint outside T
T = T ∪ {e}

96 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm

Initialize: let T = { an edge in the graph with minimum weight }

Repeat n − 2 times:

e = an edge in G of minimum weight that has one endpoint in T
and one endpoint outside T
T = T ∪ {e}

96 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm

Initialize: let T = { an edge in the graph with minimum weight }

Repeat n − 2 times:

e = an edge in G of minimum weight that has one endpoint in T
and one endpoint outside T
T = T ∪ {e}

96 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm

Initialize: let T = { an edge in the graph with minimum weight }

Repeat n − 2 times:

e = an edge in G of minimum weight that has one endpoint in T
and one endpoint outside T
T = T ∪ {e}

96 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm

Initialize: let T = { an edge in the graph with minimum weight }

Repeat n − 2 times:

e = an edge in G of minimum weight that has one endpoint in T
and one endpoint outside T
T = T ∪ {e}

96 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm

Initialize: let T = { an edge in the graph with minimum weight }

Repeat n − 2 times:

e = an edge in G of minimum weight that has one endpoint in T
and one endpoint outside T
T = T ∪ {e}

96 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm

Initialize: let T = { an edge in the graph with minimum weight }

Repeat n − 2 times:

e = an edge in G of minimum weight that has one endpoint in T
and one endpoint outside T
T = T ∪ {e}

96 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm

Initialize: let T = { an edge in the graph with minimum weight }

Repeat n − 2 times:

e = an edge in G of minimum weight that has one endpoint in T
and one endpoint outside T
T = T ∪ {e}

96 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm

Initialize: let T = { an edge in the graph with minimum weight }

Repeat n − 2 times:

e = an edge in G of minimum weight that has one endpoint in T
and one endpoint outside T
T = T ∪ {e}

96 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm Implementation

How to implement the Prim's algorithm?

Let T be the {e} where e is the edge with min-weight
Insert edges incident to endpoints of e to an initially empty
min-heap H
Repeatedly extractMin (to get the next edge e′), and insert edges
incident to endpoints of e′ to H.

97 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm Implementation

How to implement the Prim's algorithm?

Let T be the {e} where e is the edge with min-weight
Insert edges incident to endpoints of e to an initially empty
min-heap H
Repeatedly extractMin (to get the next edge e′), and insert edges
incident to endpoints of e′ to H.

97 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm Implementation

How to implement the Prim's algorithm?

Let T be the {e} where e is the edge with min-weight
Insert edges incident to endpoints of e to an initially empty
min-heap H
Repeatedly extractMin (to get the next edge e′), and insert edges
incident to endpoints of e′ to H.

97 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm Implementation

How to implement the Prim's algorithm?

Let T be the {e} where e is the edge with min-weight
Insert edges incident to endpoints of e to an initially empty
min-heap H
Repeatedly extractMin (to get the next edge e′), and insert edges
incident to endpoints of e′ to H.

97 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm Implementation

How to implement the Prim's algorithm?

Let T be the {e} where e is the edge with min-weight
Insert edges incident to endpoints of e to an initially empty
min-heap H
Repeatedly extractMin (to get the next edge e′), and insert edges
incident to endpoints of e′ to H.

97 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm Implementation

How to implement the Prim's algorithm?

Let T be the {e} where e is the edge with min-weight
Insert edges incident to endpoints of e to an initially empty
min-heap H
Repeatedly extractMin (to get the next edge e′), and insert edges
incident to endpoints of e′ to H.

97 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm Implementation

How to implement the Prim's algorithm?

Let T be the {e} where e is the edge with min-weight
Insert edges incident to endpoints of e to an initially empty
min-heap H
Repeatedly extractMin (to get the next edge e′), and insert edges
incident to endpoints of e′ to H.

97 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm Implementation

How to implement the Prim's algorithm?

Let T be the {e} where e is the edge with min-weight
Insert edges incident to endpoints of e to an initially empty
min-heap H
Repeatedly extractMin (to get the next edge e′), and insert edges
incident to endpoints of e′ to H.

97 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm Implementation

How to implement the Prim's algorithm?

Let T be the {e} where e is the edge with min-weight
Insert edges incident to endpoints of e to an initially empty
min-heap H
Repeatedly extractMin (to get the next edge e′), and insert edges
incident to endpoints of e′ to H.

97 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm Implementation

How to implement the Prim's algorithm?

Let T be the {e} where e is the edge with min-weight
Insert edges incident to endpoints of e to an initially empty
min-heap H
Repeatedly extractMin (to get the next edge e′), and insert edges
incident to endpoints of e′ to H.

97 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm Implementation

How to implement the Prim's algorithm?

Let T be the {e} where e is the edge with min-weight
Insert edges incident to endpoints of e to an initially empty
min-heap H
Repeatedly extractMin (to get the next edge e′), and insert edges
incident to endpoints of e′ to H.

97 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's algorithm Implementation

How to implement the Prim's algorithm?

Let T be the {e} where e is the edge with min-weight
Insert edges incident to endpoints of e to an initially empty
min-heap H
Repeatedly extractMin (to get the next edge e′), and insert edges
incident to endpoints of e′ to H.

97 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's Algorithm Running Time

Each edge is inserted at most once and deleted at most once from
the heap.

At any given time, there are at most m = |E | = O(n2) edges in the
heap

Insert and ExtractMax take O(logm) = O(log(n2)) = O(log n)
time.

For all edges, we incur a cost of at most O(m log n).

Theorem

Both Kruskal and Prim algorithms for �nding minimum spanning

tree take O(m log n) for a graph with n vertices and m edges.

98 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Prim's Algorithm Running Time

Each edge is inserted at most once and deleted at most once from
the heap.

At any given time, there are at most m = |E | = O(n2) edges in the
heap

Insert and ExtractMax take O(logm) = O(log(n2)) = O(log n)
time.

For all edges, we incur a cost of at most O(m log n).

Theorem

Both Kruskal and Prim algorithms for �nding minimum spanning

tree take O(m log n) for a graph with n vertices and m edges.

98 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Single-source Shortest Path

In a shortest-paths problem, we are given a weighted, directed
graph G = (V ,E), with weight function w mapping edges to
real-valued weights.

The weight w(p) of a path is the sum of the weights of its edges.

In the single-source shortest path problem, we want to �nd a
shortest path from a given source vertex s ∈ V to each vertex
u ∈ V .

One shortest path between s and x is s, t, x with weight 9.
Another shortest path between s and x is s, y , x with the same
weight 9.
s, y , z , x is a path from s to x which is not a shortest path

99 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Single-source Shortest Path

In a shortest-paths problem, we are given a weighted, directed
graph G = (V ,E), with weight function w mapping edges to
real-valued weights.

The weight w(p) of a path is the sum of the weights of its edges.

In the single-source shortest path problem, we want to �nd a
shortest path from a given source vertex s ∈ V to each vertex
u ∈ V .

One shortest path between s and x is s, t, x with weight 9.

Another shortest path between s and x is s, y , x with the same
weight 9.
s, y , z , x is a path from s to x which is not a shortest path

99 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Single-source Shortest Path

In a shortest-paths problem, we are given a weighted, directed
graph G = (V ,E), with weight function w mapping edges to
real-valued weights.

The weight w(p) of a path is the sum of the weights of its edges.

In the single-source shortest path problem, we want to �nd a
shortest path from a given source vertex s ∈ V to each vertex
u ∈ V .

One shortest path between s and x is s, t, x with weight 9.
Another shortest path between s and x is s, y , x with the same
weight 9.

s, y , z , x is a path from s to x which is not a shortest path

99 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Single-source Shortest Path

In a shortest-paths problem, we are given a weighted, directed
graph G = (V ,E), with weight function w mapping edges to
real-valued weights.

The weight w(p) of a path is the sum of the weights of its edges.

In the single-source shortest path problem, we want to �nd a
shortest path from a given source vertex s ∈ V to each vertex
u ∈ V .

One shortest path between s and x is s, t, x with weight 9.
Another shortest path between s and x is s, y , x with the same
weight 9.
s, y , z , x is a path from s to x which is not a shortest path

99 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Shortest Path Variants

The algorithm for the single-source problem can solve many other
problems:

Single-destination shortest-paths: just reverse the direction of each
edge in the graph to reduce to a single-source problem.

Single-pair shortest-path: �nd a shortest path from u to v for given
pair of vertices (u, v).

Finding all shortest path from u to other vertices solves this
problem too.
There is no faster algorithm for single-source shortest path.

All-pairs shortest-paths: Find a shortest path from u to v for every
pair of vertices u and v .

We can solve this problem by running a single-source algorithm
once from each vertex.
But we usually can solve it faster as we will see later.

100 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Shortest Path Variants

The algorithm for the single-source problem can solve many other
problems:

Single-destination shortest-paths: just reverse the direction of each
edge in the graph to reduce to a single-source problem.
Single-pair shortest-path: �nd a shortest path from u to v for given
pair of vertices (u, v).

Finding all shortest path from u to other vertices solves this
problem too.
There is no faster algorithm for single-source shortest path.

All-pairs shortest-paths: Find a shortest path from u to v for every
pair of vertices u and v .

We can solve this problem by running a single-source algorithm
once from each vertex.
But we usually can solve it faster as we will see later.

100 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Shortest Path Variants

The algorithm for the single-source problem can solve many other
problems:

Single-destination shortest-paths: just reverse the direction of each
edge in the graph to reduce to a single-source problem.
Single-pair shortest-path: �nd a shortest path from u to v for given
pair of vertices (u, v).

Finding all shortest path from u to other vertices solves this
problem too.
There is no faster algorithm for single-source shortest path.

All-pairs shortest-paths: Find a shortest path from u to v for every
pair of vertices u and v .

We can solve this problem by running a single-source algorithm
once from each vertex.
But we usually can solve it faster as we will see later.

100 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Negative Weights

Negative weights are generally allowed (although most applications
involve positive weights).

If there is a negative cycle, the length of the shortest path for some
vertices will be −∞.

Some algorithms, e.g., Dijkstra's Algorithm, assume edge-weights
are positive.
Some algorithms, e.g., Bellman-Ford, allow negative weights and
return `False' if a negative cycle exists.

If the graph is disconnected, the length of the shortest path will be
+∞ for vertices in connected components that do not contain s.

101 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Negative Weights

Negative weights are generally allowed (although most applications
involve positive weights).

If there is a negative cycle, the length of the shortest path for some
vertices will be −∞.

Some algorithms, e.g., Dijkstra's Algorithm, assume edge-weights
are positive.
Some algorithms, e.g., Bellman-Ford, allow negative weights and
return `False' if a negative cycle exists.

If the graph is disconnected, the length of the shortest path will be
+∞ for vertices in connected components that do not contain s.

101 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Negative Weights

Negative weights are generally allowed (although most applications
involve positive weights).

If there is a negative cycle, the length of the shortest path for some
vertices will be −∞.

Some algorithms, e.g., Dijkstra's Algorithm, assume edge-weights
are positive.

Some algorithms, e.g., Bellman-Ford, allow negative weights and
return `False' if a negative cycle exists.

If the graph is disconnected, the length of the shortest path will be
+∞ for vertices in connected components that do not contain s.

101 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Negative Weights

Negative weights are generally allowed (although most applications
involve positive weights).

If there is a negative cycle, the length of the shortest path for some
vertices will be −∞.

Some algorithms, e.g., Dijkstra's Algorithm, assume edge-weights
are positive.
Some algorithms, e.g., Bellman-Ford, allow negative weights and
return `False' if a negative cycle exists.

If the graph is disconnected, the length of the shortest path will be
+∞ for vertices in connected components that do not contain s.

101 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Negative Weights

Negative weights are generally allowed (although most applications
involve positive weights).

If there is a negative cycle, the length of the shortest path for some
vertices will be −∞.

Some algorithms, e.g., Dijkstra's Algorithm, assume edge-weights
are positive.
Some algorithms, e.g., Bellman-Ford, allow negative weights and
return `False' if a negative cycle exists.

If the graph is disconnected, the length of the shortest path will be
+∞ for vertices in connected components that do not contain s.

101 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Representing Shortest Paths

A Shortest Path Tree represents the solution for single-source
shortest path problem, assuming no negative cycle exists.

A shortest-paths tree rooted at s is a directed subgraph
G ′ = (V ′,E ′), such that:

V ′ is the set of vertices reachable from s in G .
G ′ forms a rooted tree with root s.
for all v ∈ V ′, the unique simple path from s to v in G ′ is a
shortest path from s to v in G .
The parent of v in G ′ is called its predecessor and is denoted as v .π.

102 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Initialization

Our algorithms maintain a shortest-path estimate v .d for each
vertex v , which is an upper bound on the weight of a shortest path
from source s to v .

Estimates and parents are initialized as follows:

103 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Relaxation

We use a Relax procedure which takes and edge (u, v) and tests
whether we can improve the shortest path to v found so far by
going through u and, if so, updating v .d and v .π.

104 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Bellman-Ford Algorithm

Given a weighted, directed graph G with source s and weight
function w (with potentially negative weights), the Bellman-Ford
algorithm returns a boolean value indicating whether or not there is
a negative-weight cycle.

If there is such a cycle, the algorithm indicates that no solution
exists.
If there is no such cycle, the algorithm produces the shortest paths
and their weights.

105 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Bellman-Ford Algorithm

The algorithm relaxes edges, progressively decreasing an estimate
v .d on the weight of a shortest path from the source s to each
vertex v until it achieves the actual shortest-path weights.

The algorithm returns TRUE if and only if the graph contains no
negative-weight cycles that are reachable from the source.

106 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Bellman-Ford Example

After Initialization, all estimates are ∞ except that s.d = 0.

In Line 2, we iterate |G .V | − 1 = 4 times.

In each iteration, we go through all edges (in an arbitrary order) and
relax them.
Suppose we relax edges in the order
(t, x), (t, y), (t, z), (x , t), (y , x), (y , z), (z , x), (z , s), (s, t), (s, y).

0

∞

∞

∞

∞

s

t x

zy

6

7

8

2

9

7

−3
−4

−2

5

107 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Bellman-Ford Example

After Initialization, all estimates are ∞ except that s.d = 0.

In Line 2, we iterate |G .V | − 1 = 4 times.

In each iteration, we go through all edges (in an arbitrary order) and
relax them.
Suppose we relax edges in the order
(t, x), (t, y), (t, z), (x , t), (y , x), (y , z), (z , x), (z , s), (s, t), (s, y).

0

6

∞

∞

∞

s

t x

zy

6

7

8

2

9

7

−3
−4

−2

5

107 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Bellman-Ford Example

After Initialization, all estimates are ∞ except that s.d = 0.

In Line 2, we iterate |G .V | − 1 = 4 times.

In each iteration, we go through all edges (in an arbitrary order) and
relax them.
Suppose we relax edges in the order
(t, x), (t, y), (t, z), (x , t), (y , x), (y , z), (z , x), (z , s), (s, t), (s, y).

0

6

7

∞

∞

s

t x

zy

6

7

8

2

9

7

−3
−4

−2

5

107 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Bellman-Ford Example

After Initialization, all estimates are ∞ except that s.d = 0.

In Line 2, we iterate |G .V | − 1 = 4 times.

In each iteration, we go through all edges (in an arbitrary order) and
relax them.
Suppose we relax edges in the order
(t, x), (t, y), (t, z), (x , t), (y , x), (y , z), (z , x), (z , s), (s, t), (s, y).

0

6

7

11

∞

s

t x

zy

6

7

8

2

9

7

−3
−4

−2

5

107 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Bellman-Ford Example

After Initialization, all estimates are ∞ except that s.d = 0.

In Line 2, we iterate |G .V | − 1 = 4 times.

In each iteration, we go through all edges (in an arbitrary order) and
relax them.
Suppose we relax edges in the order
(t, x), (t, y), (t, z), (x , t), (y , x), (y , z), (z , x), (z , s), (s, t), (s, y).

0

6

7

11

2

s

t x

zy

6

7

8

2

9

7

−3
−4

−2

5

107 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Bellman-Ford Example

After Initialization, all estimates are ∞ except that s.d = 0.

In Line 2, we iterate |G .V | − 1 = 4 times.

In each iteration, we go through all edges (in an arbitrary order) and
relax them.
Suppose we relax edges in the order
(t, x), (t, y), (t, z), (x , t), (y , x), (y , z), (z , x), (z , s), (s, t), (s, y).

0

6

7

4

2

s

t x

zy

6

7

8

2

9

7

−3
−4

−2

5

107 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Bellman-Ford Example

After Initialization, all estimates are ∞ except that s.d = 0.

In Line 2, we iterate |G .V | − 1 = 4 times.

In each iteration, we go through all edges (in an arbitrary order) and
relax them.
Suppose we relax edges in the order
(t, x), (t, y), (t, z), (x , t), (y , x), (y , z), (z , x), (z , s), (s, t), (s, y).

0

2

7

4

2

s

t x

zy

6

7

8

2

9

7

−3
−4

−2

5

107 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Bellman-Ford Example

After Initialization, all estimates are ∞ except that s.d = 0.

In Line 2, we iterate |G .V | − 1 = 4 times.

In each iteration, we go through all edges (in an arbitrary order) and
relax them.
Suppose we relax edges in the order
(t, x), (t, y), (t, z), (x , t), (y , x), (y , z), (z , x), (z , s), (s, t), (s, y).

0

2

7

4

−2

s

t x

zy

6

7

8

2

9

7

−3
−4

−2

5

107 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Bellman-Ford Analysis

After iteration i , the estimate v .d is the minimum distance from s
to d using at most i edges (hops)

Since we have at most |G .V | − 1 edges on any shortest path, after
|G .V | − 1 iteration, all estimates are shortest paths.

If we can still decrease the estimates after |G .V | − 1 iterations,
there exists a negative cycle in the graph.

The running time is O(|V ||E |) = O(mn).

108 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Bellman-Ford Analysis

After iteration i , the estimate v .d is the minimum distance from s
to d using at most i edges (hops)

Since we have at most |G .V | − 1 edges on any shortest path, after
|G .V | − 1 iteration, all estimates are shortest paths.

If we can still decrease the estimates after |G .V | − 1 iterations,
there exists a negative cycle in the graph.

The running time is O(|V ||E |) = O(mn).

108 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Bellman-Ford Analysis

After iteration i , the estimate v .d is the minimum distance from s
to d using at most i edges (hops)

Since we have at most |G .V | − 1 edges on any shortest path, after
|G .V | − 1 iteration, all estimates are shortest paths.

If we can still decrease the estimates after |G .V | − 1 iterations,
there exists a negative cycle in the graph.

The running time is O(|V ||E |) = O(mn).

108 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Dijkstra's Algorithm

Dijkstra's algorithm solves the single-source shortest-paths problem
on a weighted, directed graph G in which all edge weights are

nonnegative.

It is faster than Bellman-Ford but works under the above restriction
(it fails when there are negative edges).

109 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Dijkstra's Algorithm

Dijkstra's algorithm maintains a set S of vertices whose �nal
shortest-path weights from the source s have already been
determined.

The algorithm repeatedly I) selects the vertex u ∈ V − S with the
minimum shortest-path estimate, II) adds u to S , and III)relaxes all
edges leaving u.
We use a min-priority queue Q of vertices, keyed by their estimate d
values.

110 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Dijkstra's Exmaple

Initially, Q = G .V , S = ϕ, and s.d = 0 and v .d =∞ for any v ̸= s.

Repeatedly take the vertex u with smallest estimate, add it to S ,
and relax edges leaving u.

111 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Dijkstra's Exmaple

Initially, Q = G .V , S = ϕ, and s.d = 0 and v .d =∞ for any v ̸= s.

Repeatedly take the vertex u with smallest estimate, add it to S ,
and relax edges leaving u.

111 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Dijkstra's Exmaple

Initially, Q = G .V , S = ϕ, and s.d = 0 and v .d =∞ for any v ̸= s.

Repeatedly take the vertex u with smallest estimate, add it to S ,
and relax edges leaving u.

111 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Dijkstra's Exmaple

Initially, Q = G .V , S = ϕ, and s.d = 0 and v .d =∞ for any v ̸= s.

Repeatedly take the vertex u with smallest estimate, add it to S ,
and relax edges leaving u.

111 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Dijkstra's Exmaple

Initially, Q = G .V , S = ϕ, and s.d = 0 and v .d =∞ for any v ̸= s.

Repeatedly take the vertex u with smallest estimate, add it to S ,
and relax edges leaving u.

111 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Dijkstra's Exmaple

Initially, Q = G .V , S = ϕ, and s.d = 0 and v .d =∞ for any v ̸= s.

Repeatedly take the vertex u with smallest estimate, add it to S ,
and relax edges leaving u.

111 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Dijkstra's Analysis

Dijkstra's algorithm calculates the shortest path from s to every
vertex.

Anytime we put a new vertex u in S (the vertices already added to
the tree), we can say that we already know the shortest path from s
to u.

Vertices are added to S in the sorted of their distance from s.
Notice similarities to BFS and Prim's algorithm for MTS.

112 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Dijkstra's Analysis

Dijkstra's algorithm calculates the shortest path from s to every
vertex.

Anytime we put a new vertex u in S (the vertices already added to
the tree), we can say that we already know the shortest path from s
to u.
Vertices are added to S in the sorted of their distance from s.

Notice similarities to BFS and Prim's algorithm for MTS.

112 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Dijkstra's Analysis

Dijkstra's algorithm calculates the shortest path from s to every
vertex.

Anytime we put a new vertex u in S (the vertices already added to
the tree), we can say that we already know the shortest path from s
to u.
Vertices are added to S in the sorted of their distance from s.
Notice similarities to BFS and Prim's algorithm for MTS.

112 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Dijkstra's Algorithm

What is the time complexity of the Dijkstra's algorithm?

Each vertex is extracted once from a priority queue of size n;
summing to Θ(n log n) for all vertices.
Each edge e = (u, v) is visited exactly once (in Line 7, when we
visit its starting point and relax e).
After relax, we reduce the key of the endpoint v in Q; this takes
log n times → we spend O(m log n) over all edges.
In total, the running time is Θ((m + n) log n).
If we use Fibonacci heaps instead of binary heaps, we can improve
the time complexity to Θ(m + n log n).

113 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Dijkstra's Algorithm

What is the time complexity of the Dijkstra's algorithm?

Each vertex is extracted once from a priority queue of size n;
summing to Θ(n log n) for all vertices.
Each edge e = (u, v) is visited exactly once (in Line 7, when we
visit its starting point and relax e).

After relax, we reduce the key of the endpoint v in Q; this takes
log n times → we spend O(m log n) over all edges.
In total, the running time is Θ((m + n) log n).
If we use Fibonacci heaps instead of binary heaps, we can improve
the time complexity to Θ(m + n log n).

113 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Dijkstra's Algorithm

What is the time complexity of the Dijkstra's algorithm?

Each vertex is extracted once from a priority queue of size n;
summing to Θ(n log n) for all vertices.
Each edge e = (u, v) is visited exactly once (in Line 7, when we
visit its starting point and relax e).
After relax, we reduce the key of the endpoint v in Q; this takes
log n times → we spend O(m log n) over all edges.

In total, the running time is Θ((m + n) log n).
If we use Fibonacci heaps instead of binary heaps, we can improve
the time complexity to Θ(m + n log n).

113 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Dijkstra's Algorithm

What is the time complexity of the Dijkstra's algorithm?

Each vertex is extracted once from a priority queue of size n;
summing to Θ(n log n) for all vertices.
Each edge e = (u, v) is visited exactly once (in Line 7, when we
visit its starting point and relax e).
After relax, we reduce the key of the endpoint v in Q; this takes
log n times → we spend O(m log n) over all edges.
In total, the running time is Θ((m + n) log n).

If we use Fibonacci heaps instead of binary heaps, we can improve
the time complexity to Θ(m + n log n).

113 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Dijkstra's Algorithm

What is the time complexity of the Dijkstra's algorithm?

Each vertex is extracted once from a priority queue of size n;
summing to Θ(n log n) for all vertices.
Each edge e = (u, v) is visited exactly once (in Line 7, when we
visit its starting point and relax e).
After relax, we reduce the key of the endpoint v in Q; this takes
log n times → we spend O(m log n) over all edges.
In total, the running time is Θ((m + n) log n).
If we use Fibonacci heaps instead of binary heaps, we can improve
the time complexity to Θ(m + n log n).

113 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Single-source Shortest Path

In a shortest-paths problem, we are given a weighted, directed
graph G = (V ,E), with weight function w mapping edges to
real-valued weights.

The weight w(p) of a path is the sum of the weights of its edges.

In the single-source shortest path problem, we want to �nd a
shortest path from a given source vertex s ∈ V to each vertex
u ∈ V .

The output is stored in a shortest path tree.

If negative weights are allowed, we use slower Bellman-Ford
algorithm, which runs in Θ(mn); otherwise, we use the faster
Dijkstra's algorithm, which runs in Θ((m + n) log n).

114 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Single-source Shortest Path

In a shortest-paths problem, we are given a weighted, directed
graph G = (V ,E), with weight function w mapping edges to
real-valued weights.

The weight w(p) of a path is the sum of the weights of its edges.

In the single-source shortest path problem, we want to �nd a
shortest path from a given source vertex s ∈ V to each vertex
u ∈ V .

The output is stored in a shortest path tree.
If negative weights are allowed, we use slower Bellman-Ford
algorithm, which runs in Θ(mn); otherwise, we use the faster
Dijkstra's algorithm, which runs in Θ((m + n) log n).

114 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

All Pair Shortest Path problem

Instead of the shortest path between a given source and other
vertices, we are interested in the shortest distance between any pair
of vertices.

We assume edge weights can be negative but no negative cycle.

The output is an n × n matrix, where the (i , j) entry indicates the
length of the shortest path from vertex i to vertex j .

-2 0

20

5 2

47

-4 -2

-5-7

3 0

-30

-4

-2

-6

-9

2 4 9 6 0

s

t

y

x

z

s t y x z

0

2

7

4

−2

s

t x

zy

6

7

8

2

9

7

−3
−4

−2

5

0

60

8 5

∞

-2 0

-30

-4

9

2 7 0

s

t

y

x

z

s t y x z

∞7

∞
∞ ∞
∞ ∞ ∞
∞ ∞

input matrix w output

115 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Preliminary Solutions

Solution one: run Bellman-Ford algorithm |V | = n times, once for
each vertex as the source.

The running time will be Θ(n2m), which is Θ(n4) for dense graphs
(when m = Θ(n2)).

Can we improve this? Yes, using Dynamic Programming.

116 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Preliminary Solutions

Solution one: run Bellman-Ford algorithm |V | = n times, once for
each vertex as the source.

The running time will be Θ(n2m), which is Θ(n4) for dense graphs
(when m = Θ(n2)).

Can we improve this? Yes, using Dynamic Programming.

116 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Preliminary Solutions

Solution one: run Bellman-Ford algorithm |V | = n times, once for
each vertex as the source.

The running time will be Θ(n2m), which is Θ(n4) for dense graphs
(when m = Θ(n2)).

Can we improve this? Yes, using Dynamic Programming.

116 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming Overview

Recall the steps for devising a dynamic programming solution:

Characterize the structure of an optimal solution.
Recursively de�ne the value of an optimal solution.
Compute the value of an optimal solution in a bottom-up fashion.

117 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Matrix Multiplication Solution

Let l
(m)
ij be the minimum weight of any path from vertex i to vertex

j that contains at most m edges.

For the base case, we have l
(0)
ij =

{
0 if i = j

∞ if i ̸= j

For m ≥ 1, we have two options:

Take the shortest path of length at most m − 1 from i to j , with
weight l

(m−1)
ij .

Take the shortest path of length at most m− 1 from i to a vertex k
and then a single edge (hop) from k to j , this would have weight

l
(m−1)
ik + wkj .
The DP formula will be (the last inequality holds since wjj = 0):

118 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Matrix Multiplication Solution

Let l
(m)
ij be the minimum weight of any path from vertex i to vertex

j that contains at most m edges.

For the base case, we have l
(0)
ij =

{
0 if i = j

∞ if i ̸= j

For m ≥ 1, we have two options:

Take the shortest path of length at most m − 1 from i to j , with
weight l

(m−1)
ij .

Take the shortest path of length at most m− 1 from i to a vertex k
and then a single edge (hop) from k to j , this would have weight

l
(m−1)
ik + wkj .
The DP formula will be (the last inequality holds since wjj = 0):

118 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Matrix Multiplication Solution

Let l
(m)
ij be the minimum weight of any path from vertex i to vertex

j that contains at most m edges.

For the base case, we have l
(0)
ij =

{
0 if i = j

∞ if i ̸= j

For m ≥ 1, we have two options:

Take the shortest path of length at most m − 1 from i to j , with
weight l

(m−1)
ij .

Take the shortest path of length at most m− 1 from i to a vertex k
and then a single edge (hop) from k to j , this would have weight

l
(m−1)
ik + wkj .

The DP formula will be (the last inequality holds since wjj = 0):

118 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Matrix Multiplication Solution

Let l
(m)
ij be the minimum weight of any path from vertex i to vertex

j that contains at most m edges.

For the base case, we have l
(0)
ij =

{
0 if i = j

∞ if i ̸= j

For m ≥ 1, we have two options:

Take the shortest path of length at most m − 1 from i to j , with
weight l

(m−1)
ij .

Take the shortest path of length at most m− 1 from i to a vertex k
and then a single edge (hop) from k to j , this would have weight

l
(m−1)
ik + wkj .
The DP formula will be (the last inequality holds since wjj = 0):

118 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Matrix Multiplication Solution

The shortest distance between i and j will be stored at ln−1

ij .

This is because the shortest path cannot contain more than n − 1
edges (otherwise, there will be a loop in the path).

In Step 3 of the DP solution, we compute a series of matrices

L(1), L(2), . . . , L(n−1), where L(m) = (l
(m)
ij).

L(1) = W and L(n) contains all-pair shortest-path weights.

The following procedure computes L(m) from L(m−1) and W .

119 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Matrix Multiplication Solution

The shortest distance between i and j will be stored at ln−1

ij .

This is because the shortest path cannot contain more than n − 1
edges (otherwise, there will be a loop in the path).

In Step 3 of the DP solution, we compute a series of matrices

L(1), L(2), . . . , L(n−1), where L(m) = (l
(m)
ij).

L(1) = W and L(n) contains all-pair shortest-path weights.

The following procedure computes L(m) from L(m−1) and W .

119 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Matrix Multiplication Solution

The shortest distance between i and j will be stored at ln−1

ij .

This is because the shortest path cannot contain more than n − 1
edges (otherwise, there will be a loop in the path).

In Step 3 of the DP solution, we compute a series of matrices

L(1), L(2), . . . , L(n−1), where L(m) = (l
(m)
ij).

L(1) = W and L(n) contains all-pair shortest-path weights.

The following procedure computes L(m) from L(m−1) and W .

119 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Matrix Multiplication Solution

Extend-Shortest-Paths is reminiscent of Matrix multiplication:

We take substitutions: l (m−1) → a , w → b , l (m) → c ,
min → +, and + → .
Computing l (m) from lm−1 and W is similar to multiplying lm−1 and
W .

120 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Matrix Multiplication Solution

To �nd, L(n), we apply Extend-Shortest-Paths n − 1 times.

This is similar to multiplying W by itself n − 1 times (recall that
L(1) = W).

121 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Matrix Multiplication Solution

The running time is similar to multiplying matrix W (an n × n
matrix) by itself n − 1 times.

We can alliteratively do it in a naive way in O(n4).

Alternatively, we can recursively �nd the outcome of the �rst n/2

multiplications (that is, W n/2), and multiply it with itself in O(n3).

This would take Θ(n3 log n).

The running time of Θ(n3 log n) is better than Θ(n2|E |) = Θ(n4) of
repeating Bellman-Ford algorithm. But we can still do better.

122 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Matrix Multiplication Solution

The running time is similar to multiplying matrix W (an n × n
matrix) by itself n − 1 times.

We can alliteratively do it in a naive way in O(n4).
Alternatively, we can recursively �nd the outcome of the �rst n/2

multiplications (that is, W n/2), and multiply it with itself in O(n3).

This would take Θ(n3 log n).

The running time of Θ(n3 log n) is better than Θ(n2|E |) = Θ(n4) of
repeating Bellman-Ford algorithm. But we can still do better.

122 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Matrix Multiplication Solution

The running time is similar to multiplying matrix W (an n × n
matrix) by itself n − 1 times.

We can alliteratively do it in a naive way in O(n4).
Alternatively, we can recursively �nd the outcome of the �rst n/2

multiplications (that is, W n/2), and multiply it with itself in O(n3).

This would take Θ(n3 log n).

The running time of Θ(n3 log n) is better than Θ(n2|E |) = Θ(n4) of
repeating Bellman-Ford algorithm. But we can still do better.

122 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Matrix Multiplication Solution

The running time is similar to multiplying matrix W (an n × n
matrix) by itself n − 1 times.

We can alliteratively do it in a naive way in O(n4).
Alternatively, we can recursively �nd the outcome of the �rst n/2

multiplications (that is, W n/2), and multiply it with itself in O(n3).

This would take Θ(n3 log n).

The running time of Θ(n3 log n) is better than Θ(n2|E |) = Θ(n4) of
repeating Bellman-Ford algorithm. But we can still do better.

122 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Floyd-Warshall Algorithm

Another DP algorithm for all-pair shortest path, developed
independently by Roy [1959], Floyd [1962], Warshall [1962].

Given a path (v1, v2, . . . , vm), we call vertices vk with
k ∈ {2, 3, . . . ,m − 1} intermediate vertex.

123 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Floyd-Warshall Algorithm

Let d
(k)
ij denote the weight of the shortest path between i and j ,

subject to the intermediate vertices be contained in {1, . . . , k}.

Write a recursive formula for d
(k)
ij .

In the base case, we have k = 0 (no intermediate vertex), and we

have d
(0)
ij = wij .

When k > 0, vertex k may or may not be an intermediate vertex.

If k is not an intermediate vertex, the weight of the shortest path

will be d
(k−1)
ij .

If k is an intermediate vertex, the weight of the shortest path will

be d
(k−1)
ik (the shortest distance from i to k) plus d

(k−1)
k,j (the

shortest distance from k to j). So we can write:

d
(k)
ij = min{d (k−1)

ij , d
(k−1)
ik + d

(k−1)
kj }

124 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Floyd-Warshall Algorithm

Let d
(k)
ij denote the weight of the shortest path between i and j ,

subject to the intermediate vertices be contained in {1, . . . , k}.

Write a recursive formula for d
(k)
ij .

In the base case, we have k = 0 (no intermediate vertex), and we

have d
(0)
ij = wij .

When k > 0, vertex k may or may not be an intermediate vertex.

If k is not an intermediate vertex, the weight of the shortest path

will be d
(k−1)
ij .

If k is an intermediate vertex, the weight of the shortest path will

be d
(k−1)
ik (the shortest distance from i to k) plus d

(k−1)
k,j (the

shortest distance from k to j). So we can write:

d
(k)
ij = min{d (k−1)

ij , d
(k−1)
ik + d

(k−1)
kj }

124 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Floyd-Warshall Algorithm

Let d
(k)
ij denote the weight of the shortest path between i and j ,

subject to the intermediate vertices be contained in {1, . . . , k}.

Write a recursive formula for d
(k)
ij .

In the base case, we have k = 0 (no intermediate vertex), and we

have d
(0)
ij = wij .

When k > 0, vertex k may or may not be an intermediate vertex.

If k is not an intermediate vertex, the weight of the shortest path

will be d
(k−1)
ij .

If k is an intermediate vertex, the weight of the shortest path will

be d
(k−1)
ik (the shortest distance from i to k) plus d

(k−1)
k,j (the

shortest distance from k to j). So we can write:

d
(k)
ij = min{d (k−1)

ij , d
(k−1)
ik + d

(k−1)
kj }

124 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Floyd-Warshall Algorithm

Let d
(k)
ij denote the weight of the shortest path between i and j ,

subject to the intermediate vertices be contained in {1, . . . , k}.

Write a recursive formula for d
(k)
ij .

In the base case, we have k = 0 (no intermediate vertex), and we

have d
(0)
ij = wij .

When k > 0, vertex k may or may not be an intermediate vertex.

If k is not an intermediate vertex, the weight of the shortest path

will be d
(k−1)
ij .

If k is an intermediate vertex, the weight of the shortest path will

be d
(k−1)
ik (the shortest distance from i to k) plus d

(k−1)
k,j (the

shortest distance from k to j). So we can write:

d
(k)
ij = min{d (k−1)

ij , d
(k−1)
ik + d

(k−1)
kj }

124 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Floyd-Warshall Algorithm

Let d
(k)
ij denote the weight of the shortest path between i and j ,

subject to the intermediate vertices be contained in {1, . . . , k}.

Write a recursive formula for d
(k)
ij .

In the base case, we have k = 0 (no intermediate vertex), and we

have d
(0)
ij = wij .

When k > 0, vertex k may or may not be an intermediate vertex.
If k is not an intermediate vertex, the weight of the shortest path

will be d
(k−1)
ij .

If k is an intermediate vertex, the weight of the shortest path will

be d
(k−1)
ik (the shortest distance from i to k) plus d

(k−1)
k,j (the

shortest distance from k to j). So we can write:

d
(k)
ij = min{d (k−1)

ij , d
(k−1)
ik + d

(k−1)
kj }

124 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Floyd-Warshall Algorithm

Let d
(k)
ij denote the weight of the shortest path between i and j ,

subject to the intermediate vertices be contained in {1, . . . , k}.

Write a recursive formula for d
(k)
ij .

In the base case, we have k = 0 (no intermediate vertex), and we

have d
(0)
ij = wij .

When k > 0, vertex k may or may not be an intermediate vertex.
If k is not an intermediate vertex, the weight of the shortest path

will be d
(k−1)
ij .

If k is an intermediate vertex, the weight of the shortest path will

be d
(k−1)
ik (the shortest distance from i to k) plus d

(k−1)
k,j (the

shortest distance from k to j). So we can write:

d
(k)
ij = min{d (k−1)

ij , d
(k−1)
ik + d

(k−1)
kj }

124 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Floyd-Warshall Algorithm

The recursive DP formula for the Floyd-Warshall algorithm is thus:

For �lling the table, we only need to look at the previous value of k:

The running time is clearly Θ(n3), which is an improvement over
Θ(n3 log n) of the Matrix-Multiplication method (and Θ(n4) of
repeating Bellman-Ford algorithm).

125 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Floyd-Warshall Algorithm

The recursive DP formula for the Floyd-Warshall algorithm is thus:

For �lling the table, we only need to look at the previous value of k :

The running time is clearly Θ(n3), which is an improvement over
Θ(n3 log n) of the Matrix-Multiplication method (and Θ(n4) of
repeating Bellman-Ford algorithm).

125 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Floyd-Warshall Algorithm

The recursive DP formula for the Floyd-Warshall algorithm is thus:

For �lling the table, we only need to look at the previous value of k :

The running time is clearly Θ(n3), which is an improvement over
Θ(n3 log n) of the Matrix-Multiplication method (and Θ(n4) of
repeating Bellman-Ford algorithm).

125 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Floyd-Warshall Example

Recall that d
(k)
ij = min(d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj)

126 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Floyd-Warshall Example

Recall that d
(k)
ij = min(d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj)

126 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Floyd-Warshall Example

Recall that d
(k)
ij = min(d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj)

126 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Floyd-Warshall Example

Recall that d
(k)
ij = min(d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj)

126 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Floyd-Warshall Example

Recall that d
(k)
ij = min(d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj)

126 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

Floyd-Warshall Example

Recall that d
(k)
ij = min(d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj)

126 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

All Shortes Paths Summary

The simple repetition of Bellman-Ford runs in Θ(n2m2), wich is
Θ(n4) for dense graphs.

The �rst DP solution, which resembles matrix multiplication, runs in
Θ(n3 log n).

Floyd-Warshall's algorithm is another DP solution that runs in
Θ(n3).

127 / 127
EECS 3101 - Design and Analysis of Algorithms

▲

	Overview
	Graph Definition
	Graph Applications
	Graph Applications
	Graph Applications
	Graph Applications
	Graph Applications
	Undirected vs Directed Graphs
	Terminology
	Weighted Graphs
	Subgraph
	Degree
	Size of a Graph
	Data Structures for Graphs
	Adjacency Matrix
	Adjacency Matrix of Digraphs
	Adjacency Matrix of Weighted Graphs
	Adjacency Matrix Summary
	Adjacency List
	Adjacency List Summary
	Adjacency Matrix vs. Adjacency List
	Walks, Paths, Circuits, and Cycles
	More Terminology
	Connected Graphs
	Bipartite Graphs
	Trees
	Spanning Tree
	Spanning Trees Application
	Minimum Spanning Tree
	More Minimum Spanning Tree Example
	Kruskal's MST algorithm
	Prim's algorithm
	Prim's algorithm Implementation
	Prim's Algorithm Running Time
	Single-source Shortest Path
	Negative Weights
	Representing Shortest Paths
	Initialization
	Relaxation
	Bellman-Ford Algorithm
	Bellman-Ford Algorithm
	Bellman-Ford Example
	Bellman-Ford Analysis
	Dijkstra's Algorithm
	Dijkstra's Algorithm
	Dijkstra's Exmaple
	Dijkstra's Analysis
	Dijkstra's Algorithm
	Single-source Shortest Path
	All Pair Shortest Path problem
	Preliminary Solutions
	Dynamic Programming Overview
	Matrix Multiplication Solution
	Matrix Multiplication Solution
	Matrix Multiplication Solution
	Matrix Multiplication Solution
	Matrix Multiplication Solution
	Floyd-Warshall Example
	All Shortes Paths Summary

