EECS 3101 - Design and Analysis of Algorithms

Shahin Kamali

Topic 6 - Graph Algorithms

Overview

- Graph Applications \& Representation
- Breadth-First Search and Depth-First Search
- Minimum Spanning Trees
- Shortest Path Algorithms

Graph Definition

- A graph $G=(V, E)$ consists of:
- a set of vertices, V, representing objects in a set
- a set of edges, $E \in V \times V$.
- A vertex is usually represented by a point.
- An edge (u, v) is usually represented by a line segment from u to v.

Graph Applications

- Computer Networks: pairs of computers (vertices) joined by a network connection (edge).

Graph Applications

- World Wide Web: pairs of web pages (vertices) joined by a hyperlink (edge).

Graph Applications

- Social networks: pairs of users (vertices) joined by a friendship-relation (edge).

https://www.google.com/url?sa=i\&source=images\&cd=\&cad=rja\&uact=8\&ved=
2ahUKEwirgef_K7hAhVin-AKHevaA1UQjRx6BAgBEAU\&url=http $\% 3 \mathrm{~A} \% 2 \mathrm{~F} \%$
2Fblog.soton.ac.uk $\% 2$ Fskillted $\% 2$ F2015 $\% 2$ F04 $\% 2$ F05 $\% 2$ Fgraph-theory-for-skillted $\%$
2F\&psig=A0vVaw3pQ6sgNWv7y1GGIrpJnG8T\&ust=1554210749566524

Graph Applications

- Road networks: pairs of locations (vertices) joined by a road (edge).

$1 \rightarrow$
 (..") Graph Applications

- Air map: pairs of cities (vertices) joined by a direct flight (edge).

Undirected vs Directed Graphs

- In undirected graphs, there is no direction for edges.
- In directed graphs, also called digraphs, edges have one-way direction.
- (u, v) and (v, u) are distinct possible edges between vertices v and u.

An undirected graph

a directed graph

Terminology

- An edge $e=(v, w)$ is incident on vertices v and w.
- v and w are said to be adjacent or neighbouring vertices.
- An edge coming from a vertex u into vertex v is called an in-edge of v.
- Conversely, an edge going from vertex v out to a vertex u is described as an out-edge of v.

Weighted Graphs

- A numerical value may be assigned to every edge to form a weighted graph.

Weighted Graphs

- A numerical value may be assigned to every edge to form a weighted graph.
- Edge weight may represent:
- distance
- cost
- speed
- network traffic

Subgraph

- Given graphs $G=(V, E)$ and $H=\left(V^{\prime}, E^{\prime}\right), H$ is a subgraph of G if and only if V^{\prime} is a subset of V and E^{\prime} is a subset of E.
- If $V^{\prime}=V$ then H is a spanning subgraph of G.

- Is G a subgraph of H ?
- We have $V=\{1,2,3,4\}, E=\{(1,2),(2,4),(1,3),(3,4),(2,3)\}$
- Also $V^{\prime}=\{1,2,3\}$, and $E^{\prime}=\{(1,2),(2,3)\}$.

Subgraph

- Given graphs $G=(V, E)$ and $H=\left(V^{\prime}, E^{\prime}\right), H$ is a subgraph of G if and only if V^{\prime} is a subset of V and E^{\prime} is a subset of E.
- If $V^{\prime}=V$ then H is a spanning subgraph of G.

- Is G a subgraph of H ?
- We have $V=\{1,2,3,4\}, E=\{(1,2),(2,4),(1,3),(3,4),(2,3)\}$
- Also $V^{\prime}=\{1,2,3\}$, and $E^{\prime}=\{(1,2),(2,3)\}$.
- H is a subgraph of G but since $V \neq V^{\prime}$, it is not a spanning subgraph.

Degree

- The degree of a vertex v is the total number of edges incident upon v.
- In case of a directed graph, the in-degree of v is the number of in-edges at v, and and the out-degree of v is the number of out-edges at v.

Degree

- The degree of a vertex v is the total number of edges incident upon v.
- In case of a directed graph, the in-degree of v is the number of in-edges at v, and and the out-degree of v is the number of out-edges at v.
- v has degree 5 , in-degree 2 , and out-degree 3.

Degree

- The degree of a vertex v is the total number of edges incident upon v.
- In case of a directed graph, the in-degree of v is the number of in-edges at v, and and the out-degree of v is the number of out-edges at v.
- v has degree 5 , in-degree 2 , and out-degree 3.
- The maximum degree of a graph G, denoted $\Delta(G)$, is defined as the maximum degree amongst all vertices $v \in V$.

Degree

- The degree of a vertex v is the total number of edges incident upon v.
- In case of a directed graph, the in-degree of v is the number of in-edges at v, and and the out-degree of v is the number of out-edges at v.
- v has degree 5 , in-degree 2 , and out-degree 3.
- The maximum degree of a graph G, denoted $\Delta(G)$, is defined as the maximum degree amongst all vertices $v \in V$.
- G_{1} has maximum degree 3.

Degree

- The degree of a vertex v is the total number of edges incident upon v.
- In case of a directed graph, the in-degree of v is the number of in-edges at v, and and the out-degree of v is the number of out-edges at v.
- v has degree 5 , in-degree 2 , and out-degree 3.
- The maximum degree of a graph G, denoted $\Delta(G)$, is defined as the maximum degree amongst all vertices $v \in V$.
- G_{1} has maximum degree 3.
- All vertices in a regular graph have the same degree (e.g., G_{2} is regular).

Size of a Graph

- If a graph has n vertices, what is the maximum number of edges it can have?
- This depends on whether self-loops (edges between a vertex and itself) are permitted and wehther are directed.

Size of a Graph

- If a graph has n vertices, what is the maximum number of edges it can have?
- This depends on whether self-loops (edges between a vertex and itself) are permitted and wehther are directed.
- If there is no self-loop and edges are not directed, there will be $\binom{n}{2}=n(n-1) / 2$ possible edges.

Size of a Graph

- If a graph has n vertices, what is the maximum number of edges it can have?
- This depends on whether self-loops (edges between a vertex and itself) are permitted and wehther are directed.
- If there is no self-loop and edges are not directed, there will be $\binom{n}{2}=n(n-1) / 2$ possible edges.

Size of a Graph

- If a graph has n vertices, what is the maximum number of edges it can have?
- This depends on whether self-loops (edges between a vertex and itself) are permitted and wehther are directed.
- If there is no self-loop and edges are not directed, there will be $\binom{n}{2}=n(n-1) / 2$ possible edges.

Size of a Graph

- If a graph has n vertices, what is the maximum number of edges it can have?
- This depends on whether self-loops (edges between a vertex and itself) are permitted and wehther are directed.
- If there is no self-loop and edges are not directed, there will be $\binom{n}{2}=n(n-1) / 2$ possible edges.

	undirected	directed
self-loops not permitted	$n(n-1) / 2$	$n(n-1)$
self-loops permitted	$n(n+1) / 2$	n^{2}

Data Structures for Graphs

- How can we store the following graph in a data structure?

- The two common data structures for storing a graph are:

Data Structures for Graphs

- How can we store the following graph in a data structure?

- The two common data structures for storing a graph are:
- adjacency matrix
- adjacency list

Adjacency Matrix

- Let $G=(V, E)$ be a graph where $V=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$.
- The adjacency matrix of G is an $n \times n$ matrix A such that
- $A[i, j]=1$ if $\left(v_{i}, v_{j}\right) \in E$.
- $A[i, j]=0$ if $\left(v_{i}, v_{j}\right) \notin E$.

$$
A=\begin{aligned}
& \\
& 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5
\end{aligned}\left[\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Adjacency Matrix of Digraphs

- The adjacency matrix of an undirected graph is symmetric.
- The adjacency matrix of a directed graph may not be asymmetric.

$A=$| |
| :--- |
| 0 |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |\(\left[\begin{array}{llllll}0 \& 1 \& 2 \& 3 \& 4 \& 5

0 \& 1 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 1 \& 0 \& 0 \& 0

0 \& 1 \& 0 \& 1 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 1 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 1

0 \& 0 \& 0 \& 1 \& 0 \& 0\end{array}\right]\)

Adjacency Matrix of Weighted Graphs

- We represent a weighted graph by storing the weight of edge $\left(v_{i}, v_{j}\right)$ at $A[i, j]$.
- We assume all weights are non-zero

$A=$| |
| :---: |
| 0 |
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |\(\left[\begin{array}{clllll}0 \& 1 \& 2 \& 3 \& 4 \& 5

0 \& 10 \& 0 \& 0 \& 0 \& 0

10 \& 0 \& 16 \& 0 \& 0 \& 0

0 \& 16 \& 0 \& 5 \& 7 \& 0

0 \& 0 \& 5 \& 0 \& 32 \& 0

0 \& 0 \& 7 \& 32 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0\end{array}\right]\)

Adjacency Matrix Summary

- Let n denote the number of vertices and m be the number of edges.
- Storing the matrix takes

Adjacency Matrix Summary

- Let n denote the number of vertices and m be the number of edges.
- Storing the matrix takes $O\left(n^{2}\right)$.
- We can check whether an edge (edge-search) between v_{i} and v_{j} exists in

Adjacency Matrix Summary

- Let n denote the number of vertices and m be the number of edges.
- Storing the matrix takes $O\left(n^{2}\right)$.
- We can check whether an edge (edge-search) between v_{i} and v_{j} exists in $O(1)$ time (just check the index $a[i][j]$).
- Similar time for adding an edge (just set the value of a[i][j] to 1 or another number to indicate weight).

Adjacency Matrix Summary

- Let n denote the number of vertices and m be the number of edges.
- Storing the matrix takes $O\left(n^{2}\right)$.
- We can check whether an edge (edge-search) between v_{i} and v_{j} exists in $O(1)$ time (just check the index $a[i][j]$).
- Similar time for adding an edge (just set the value of a[i][j] to 1 or another number to indicate weight).
- We can compute the indegree of a vertex v_{i} in time

Adjacency Matrix Summary

- Let n denote the number of vertices and m be the number of edges.
- Storing the matrix takes $O\left(n^{2}\right)$.
- We can check whether an edge (edge-search) between v_{i} and v_{j} exists in $O(1)$ time (just check the index $a[i][j]$).
- Similar time for adding an edge (just set the value of a[i][j] to 1 or another number to indicate weight).
- We can compute the indegree of a vertex v_{i} in time $O(n)$ (just scan the i 'th column and count non-zero elements).
- We can compute the outdegree of a vertex v_{i} in time

Adjacency Matrix Summary

- Let n denote the number of vertices and m be the number of edges.
- Storing the matrix takes $O\left(n^{2}\right)$.
- We can check whether an edge (edge-search) between v_{i} and v_{j} exists in $O(1)$ time (just check the index $a[i][j]$).
- Similar time for adding an edge (just set the value of a[i][j] to 1 or a nother number to indicate weight).
- We can compute the indegree of a vertex v_{i} in time $O(n)$ (just scan the i 'th column and count non-zero elements).
- We can compute the outdegree of a vertex v_{i} in time $O(n)$ (just scan the i 'th row and count non-zero elements).

Adjacency List

- An adjacency matrix requires $O\left(n^{2}\right)$ space, where $n=|V|$.
- For a sparse matrix (when m is small relative to n), a data structure that uses less space may be useful.
- Adjacency List: use a linked list for each vertex.

Adjacency List Summary

- An adjacency list requires a space of

Adjacency List Summary

- An adjacency list requires a space of $O(m+n)$ space, where $n=|V|$ and $m=|E|$.
- There is one node for each vertex (in the array) and one node for each directed edge (two nodes for undirected edges).
- Checking for an edge $\left(v_{i}, v_{j}\right)$ takes

Adjacency List Summary

- An adjacency list requires a space of $O(m+n)$ space, where $n=|V|$ and $m=|E|$.
- There is one node for each vertex (in the array) and one node for each directed edge (two nodes for undirected edges).
- Checking for an edge $\left(v_{i}, v_{j}\right)$ takes $O(\Delta(G))$; recall that $\Delta(G)$ is the max degree and is at most $n-1$.
- we just need to scan the list associated with one of the vertices.

Adjacency List Summary

- An adjacency list requires a space of $O(m+n)$ space, where $n=|V|$ and $m=|E|$.
- There is one node for each vertex (in the array) and one node for each directed edge (two nodes for undirected edges).
- Checking for an edge $\left(v_{i}, v_{j}\right)$ takes $O(\Delta(G))$; recall that $\Delta(G)$ is the max degree and is at most $n-1$.
- we just need to scan the list associated with one of the vertices.
- adding an edge takes the same time of $O(\Delta(G))$: method addEdge (u, v) should check whether edge (u, v) is already in the linked-list $A[u]$ to avoid inserting an edge multiple times.

Adjacency List Summary

- An adjacency list requires a space of $O(m+n)$ space, where $n=|V|$ and $m=|E|$.
- There is one node for each vertex (in the array) and one node for each directed edge (two nodes for undirected edges).
- Checking for an edge $\left(v_{i}, v_{j}\right)$ takes $O(\Delta(G))$; recall that $\Delta(G)$ is the max degree and is at most $n-1$.
- we just need to scan the list associated with one of the vertices.
- adding an edge takes the same time of $O(\Delta(G))$: method addEdge (u, v) should check whether edge (u, v) is already in the linked-list $A[u]$ to avoid inserting an edge multiple times.

Adjacency List Summary

- An adjacency list requires a space of $O(m+n)$ space, where $n=|V|$ and $m=|E|$.
- There is one node for each vertex (in the array) and one node for each directed edge (two nodes for undirected edges).
- Checking for an edge $\left(v_{i}, v_{j}\right)$ takes $O(\Delta(G))$; recall that $\Delta(G)$ is the max degree and is at most $n-1$.
- we just need to scan the list associated with one of the vertices.
- adding an edge takes the same time of $O(\Delta(G))$: method addEdge (u, v) should check whether edge (u, v) is already in the linked-list $A[u]$ to avoid inserting an edge multiple times.
- Degree queries:
- Computing the out-degree of v_{i} takes

Adjacency List Summary

- An adjacency list requires a space of $O(m+n)$ space, where $n=|V|$ and $m=|E|$.
- There is one node for each vertex (in the array) and one node for each directed edge (two nodes for undirected edges).
- Checking for an edge $\left(v_{i}, v_{j}\right)$ takes $O(\Delta(G))$; recall that $\Delta(G)$ is the max degree and is at most $n-1$.
- we just need to scan the list associated with one of the vertices.
- adding an edge takes the same time of $O(\Delta(G))$: method addEdge (u, v) should check whether edge (u, v) is already in the linked-list $A[u]$ to avoid inserting an edge multiple times.
- Degree queries:
- Computing the out-degree of v_{i} takes $O(\Delta(G))$; just scan the list of v_{i} and report its length.

Adjacency List Summary

- An adjacency list requires a space of $O(m+n)$ space, where $n=|V|$ and $m=|E|$.
- There is one node for each vertex (in the array) and one node for each directed edge (two nodes for undirected edges).
- Checking for an edge $\left(v_{i}, v_{j}\right)$ takes $O(\Delta(G))$; recall that $\Delta(G)$ is the max degree and is at most $n-1$.
- we just need to scan the list associated with one of the vertices.
- adding an edge takes the same time of $O(\Delta(G))$: method addEdge (u, v) should check whether edge (u, v) is already in the linked-list $A[u]$ to avoid inserting an edge multiple times.
- Degree queries:
- Computing the out-degree of v_{i} takes $O(\Delta(G))$; just scan the list of v_{i} and report its length.
- Computing the in-degree of v_{i} takes

Adjacency List Summary

- An adjacency list requires a space of $O(m+n)$ space, where $n=|V|$ and $m=|E|$.
- There is one node for each vertex (in the array) and one node for each directed edge (two nodes for undirected edges).
- Checking for an edge $\left(v_{i}, v_{j}\right)$ takes $O(\Delta(G))$; recall that $\Delta(G)$ is the max degree and is at most $n-1$.
- we just need to scan the list associated with one of the vertices.
- adding an edge takes the same time of $O(\Delta(G))$: method addEdge (u, v) should check whether edge (u, v) is already in the linked-list $A[u]$ to avoid inserting an edge multiple times.
- Degree queries:
- Computing the out-degree of v_{i} takes $O(\Delta(G))$; just scan the list of v_{i} and report its length.
- Computing the in-degree of v_{i} takes $O(m+n)$; we need to go through all nodes.

Adjacency Matrix vs. Adjacency List

- Recall that n denotes the number of vertices and m denotes the number of edges.
- In general, we use adjacency matrices for dense graphs (with many edges) and adjacency lists for sparse graphs (with relatively a few number of edges).

	adjacency matrix	adjacency list
space	$\Theta\left(n^{2}\right)$	$\Theta(n+m)$
edge search	$\Theta(1)$	$\Theta(\Delta(G))$
compute out-degree of v	$\Theta(n)$	$\Theta(\Delta(G))$
compute in-degree of v	$\Theta(n)$	$\Theta(n+m)$

Adjacency Matrix or Adjacency List?

How do you decide which representation to use?
You have to look at what your application needs:

- If you need to be able to quickly tell if there is an edge between vertices i and j, then use an adjacency matrix.
- If you need to perform a matrix multiplication, then use an adjacency matrix.
- If you need fast access to all edges out of a vertex, use the adjacency list.
- If space is an issue (a huge number of vertices), then an adjacency list is a good idea.

Traversing in a Graph

- Graph traversal: The most common graph operation is to visit all the vertices in a systematic way, using the edges of the graph.
- A graph traversal starts at a vertex v and visits all the vertices u such that a path exists from v to u.
- Two types of traversals:
- Depth-first traversal (or depth-first search)
- Breadth-first traversal (or breadth-first search)

Traversing in a Graph

- During any traversal, we will want to find all vertices that are adjacent to the current vertex.
- Therefore, we should use an adjacency list to store the graph.
- You can do a traversal if you are using an adjacency matrix; it will simply be less efficient (slower).

Traversing in a Graph

Since we are storing the graph as an adjacency list: we will assume that, for any vertex i, the vertices adjacent to vertex i are kept in an ordered linked list.

Adjacency List:

Traversals and Graph Representation

Consequence of using ordered linked lists in the adjacency list: We always examine the adjacent vertices in sorted order.

- For example, if we are at vertex 2 in this graph, we will examine adjacent vertices in the following order: $0,1,3$, then 4.

Adjacency List:

Depth-first Traversal

A depth first traversal searches all the way down a path before backing up to explore alternatives - it is a recursive, stack-based traversal.

We will traverse the above graph starting at 0 , with all vertices currently unvisited.

Depth-first Traversal: Example

To depth-first traverse at vertex 0 :

- Mark the current vertex (0) as visited, and then
- Recursively depth-first traverse each of the adjacent unvisited vertices.

Remember that we examine the adjacent vertices in sorted order: we first look at vertex 1 , then at vertex 2 . with 1 .

Depth-first Traversal: Example

Now mark the current vertex (1) as visited, and then recursively depth-first traverse each of the adjacent unvisited vertices.

Adjacent vertex 2 is unvisited, so we next recursively depth-first traverse vertex 2 .

Depth-first Traversal: Example

Now mark the current vertex (2) as visited, and then recursively depth-first traverse each of the adjacent unvisited vertices.

Adjacent vertex 4 is unvisited, so we next recursively depth-first traverse vertex 4 .

Depth-first Traversal: Example

Now mark the current vertex (4) as visited, and then recursively depth-first traverse each of the adjacent unvisited vertices.

Adjacent vertex 3 is unvisited, so we next recursively depth-first traverse vertex 3 .

Depth-first Traversal: Example

Now mark the current vertex (3) as visited, and then recursively depth-first traverse each of the adjacent unvisited vertices.

Adjacent vertex 6 is unvisited, so we next recursively depth-first traverse vertex 6 .

Depth-first Traversal: Example

Now mark the current vertex (6) as visited, and then recursively depth-first traverse each of the adjacent unvisited vertices.

Adjacent vertex 7 is unvisited, so we next recursively depth-first traverse vertex 7 .

Depth-first Traversal: Example

Mark 7 as visited, and recursively depth-first traverse the adjacent unvisited vertices.

No adjacent vertices are unvisited, so pop the stack to return to a previous vertex and look for unvisited adjacent vertices there.

Depth-first Traversal: Example

No vertices adjacent to 6 are unvisited, so pop the stack again.

Depth-first Traversal: Example

No vertices adjacent to 3 are unvisited, so pop the stack again.

Depth-first Traversal: Example

Vertex 5 is adjacent to 4 and is unvisited, so depth-first traverse 5.

Depth-first Traversal: Example

Mark 5 as visited, and recursively depth-first search adjacent unvisited vertices.

Vertex 8 is adjacent to 5 and is unvisited, so depth-first traverse 8.

Depth-first Traversal: Example

Mark 8 as visited, and recursively depth-first search adjacent unvisited vertices.

Vertex 9 is adjacent to 8 and is unvisited, so depth-first traverse 9 .

Depth-first Traversal: Example

Mark 9 as visited, and recursively depth-first search adjacent unvisited vertices.

No adjacent vertex is unvisited, so pop the stack.

Depth-first Traversal: Example

No adjacent vertex is unvisited, so pop the stack.

Depth-first Traversal: Example

No adjacent vertex is unvisited, so pop the stack.

Depth-first Traversal: Example

No adjacent vertex is unvisited, so pop the stack.

Depth-first Traversal: Example

No adjacent vertex is unvisited, so pop the stack.

Depth-first Traversal: Example

No adjacent vertex is unvisited, so pop the stack.

Depth-first Traversal: Example

No adjacent vertex is unvisited, so pop the stack.

Depth-first Traversal: Example

Now the stack is empty, so we have traversed the whole graph.

Depth-first Traversal and Paths

- The stack holds the path we took from the starting vertex to the current vertex.
- To find a path from some vertex u to some other vertex v : You could perform a depth-first traversal starting at u and simply output the stack (from bottom to top) when you find v.
- The path you find will not necessarily be the shortest path from u to v (you will, however, find a path if one exists).

Printing in a Depth-First Traversal

We "visit" a vertex when we mark it as visited.

- In our example, we did nothing when we visited a vertex.
- If we print out the contents of the vertex when we visit it, then the output would be

$$
0,1,2,4,3,6,7,5,8,9
$$

Depth-first Traversal: Example

What would the output be if we performed a depth-first traversal starting at vertex 6? (Assume that we always examine adjacent vertices in sorted order because we are using an adjacency list.)

Depth-first Traversal: Example

What would the output be if we performed a depth-first traversal starting at vertex 6? (Assume that we always examine adjacent vertices in sorted order.)

Answer: 6, 3, 1, 0, 2, 4, 5, 8, 9, 7

Depth-first Traversal: Example

What path would we find to vertex 7 if we performed a depth-first traversal starting at vertex 6 ? (Assume that we always examine adjacent vertices in sorted order.)

Depth-first Traversal: Example

What path would we find to vertex 7 if we performed a depth-first traversal starting at vertex 6 ? (Assume that we always examine adjacent vertices in sorted order.)

Answer: 6, 3, 1, 0, 2, 4, 7

Depth-first Traversal Pseudocode

```
depthFirstTraveral (vertex curr)
    1. mark vertex curr as visited
    2. visit curr (e.g., print)
    3. for each vertex v adjacent to curr
    4. if v}\mathrm{ is unvisited
    5. depthFirstTraveral(v)
```


Depth-First Traversal Applications

- You are doing a depth-first traversal if you traverse a maze.
- each intersection is a vertex, and you go to a neighbor that is not visited before.
- Detecting whether a graph is a tree!
- A graph is a tree if there is no cylce in the graph!

Breadth-first Traversal

A breadth-first traversal visits all nearby vertices first before moving farther away. It is a queue-based, iterative traversal.

We will do a breadth-first traversal of the above graph starting at vertex 6 .

Breadth-first Traversal Example

To begin the breadth-first traversal, visit the starting vertex and put it on the queue.

Queue: 6

Breadth-first Traversal Example

- Remove a vertex curr from the queue.
- Visit all the unvisited vertices adjacent to curr, putting each one on the queue.

3 and 7 were the unvisited vertices we found adjacent to 6 .

Breadth-first Traversal Example

- Remove a vertex curr from the queue.
- Visit all the unvisited vertices adjacent to curr, putting each one on the queue.

1 and 4 were the unvisited vertices we found adjacent to 3 .

Breadth-first Traversal Example

- Remove a vertex curr from the queue.
- Visit all the unvisited vertices adjacent to curr, putting each one on the queue.

There were no unvisited vertices found adjacent to 7 .

Breadth-first Traversal Example

- Remove a vertex curr from the queue.
- Visit all the unvisited vertices adjacent to curr, putting each one on the queue.

Queue: | 4 | 0 | 2 |
| :--- | :--- | :--- |

0 and 2 were unvisited vertices adjacent to 1 .

Breadth-first Traversal Example

- Remove a vertex curr from the queue.
- Visit all the unvisited vertices adjacent to curr, putting each one on the queue.

Queue: | 0 | 2 | 5 |
| :--- | :--- | :--- |

5 was an unvisited vertex adjacent to 4.

Breadth-first Traversal Example

- Remove a vertex curr from the queue.
- Visit all the unvisited vertices adjacent to curr, putting each one on the queue.

Queue: 2×5
No unvisited vertices were found adjacent to 0 .

Breadth-first Traversal Example

- Remove a vertex curr from the queue.
- Visit all the unvisited vertices adjacent to curr, putting each one on the queue.

Queue: 5
No unvisited vertices were found adjacent to 2 .

Breadth-first Traversal Example

- Remove a vertex curr from the queue.
- Visit all the unvisited vertices adjacent to curr, putting each one on the queue.

Queue: 88
8 and 9 were unvisited vertices adjacent to 5 .

Breadth-first Traversal Example

- Remove a vertex curr from the queue.
- Visit all the unvisited vertices adjacent to curr, putting each one on the queue.

No unvisited vertices were found adjacent to 8 .

Breadth-first Traversal Example

- Remove a vertex curr from the queue.
- Visit all the unvisited vertices adjacent to curr, putting each one on the queue.

No unvisited vertices were found adjacent to 9 . Since the queue is now empty, the traversal is finished.

Printing in a Breadth-first Traversal

- In our example, we did nothing at each vertex when we visited it.
- If we print out the contents of the vertex when we visit it, then the output would be

$$
6,3,7,1,4,0,2,5,8,9
$$

Breadth-first Traversal Example

What would the output be if we performed a breadth-first traversal of the following graph, beginning at vertex 0 :

Breadth-first Traversal Example

What would the output be if we performed a breadth-first traversal of the following graph, beginning at vertex 0 :

Answer: 0, 1, 5, 2, 6, 3, 8, 7, 9, 4

Breadth-first Traversal Example

What would the output be if we performed a depth-first traversal of the following graph, beginning at vertex 0 :

Breadth-first answer: $0,1,5,2,6,3,8,7,9,4$
Depth-first answer: 0, 1, 2, 3, 4, 7, 6, 5, 8, 9

Breadth-first Traversal Pseudocode

```
breadthFirstTraversal (vertex start)
1. }Q\leftarrow\mathrm{ an empty queue of vertices
2. visit start (e.g., print) and mark it as visited
3. Q.enqueue(start)
4. while Q is not empty
5. curr }\leftarrowQ\mathrm{ Q.dequeue()
6. for each unvisited vertex v adjacent to curr
7. visit v and mark it as visited;
8.
    Q.enqueue(v);
```


Breadth-first Traversal and Paths

The vertices we passed through to get to a vertex v are no longer on the queue when v is visited and placed on the queue.

To reconstruct the path to v :

- When you mark a vertex w as visited, also record at w what vertex you came from to get to w (i.e., which vertex is w adjacent to when you visit w).
- Therefore, each vertex needs to have not only a "visited" bit, but also a "previous vertex" pointer.
- When the traversal is finished, retrieve the path from the starting vertex to vertex v : We get the path backwards by starting at v and following previous pointers back to the starting vertex.

Breadth-First Traversal Paths

For example, beginning at vertex 0 :

Queue: 0

Breadth-First Traversal Paths

Vertex 0 is first out of the queue:

Queue:

We will visit 1 and 5 next, marking " 0 " as their previous vertex.

Breadth-First Traversal Paths

We're currently at vertex 0 :

Queue: | 1 | 5 |
| :--- | :--- |

Breadth-First Traversal Paths

At vertex 1 , we visit vertex 2 :

Queue: | 5 | 2 |
| :--- | :--- |

\therefore Breadth-First Traversal Paths

At vertex 5, we visit vertex 6 :

Queue: 276

Breadth-First Traversal Paths

At vertex 2, we visit vertex 3 :

Queue: 63

Breadth-First Traversal Paths

At vertex 6, we visit vertex 4:

$$
\text { Queue: } 334
$$

When we remove 3 and 4 from the queue, there is nothing left to visit, so we will skip those steps.

Breadth-First Traversal Paths

Suppose we want to find the path taken to 4 from 0 :

We follow "previous vertex" pointers starting from vertex 4, which gives us the path from 0 to 4 backwards:

$$
4 \leftarrow 6 \leftarrow 5 \leftarrow 0
$$

Connected Component

A disconnected graph can be divided into connected components two vertices i and j are in the same connected component if there is a path from i to j.

Example: The above disconnected graph has 4 connected components (inside dashed rectangles).

Traversals and Disconnected Graphs

- A traversal starts at a vertex v and visits all the vertices that can be reached by paths from v.
- If the graph is disconnected, then a traversal will visit all the vertices in the same component as v.
- To visit the whole graph:

```
1. loop
    find a vertex v that has not been visited yet
    perform a traversal from v
    4. until all vertices have been visited
```


Summary: Traversals and Paths

- Depth-first search finds a path from the start vertex to another vertex, not necessarily the shortest path (the path with the fewest edges).
- Breadth-first search finds the shortest path.

Walks, Paths, Circuits, and Cycles

- A walk from vertex v to vertex w is a finite sequence of adjacent vertices of G. $\quad-2,5,1,2,5,4$ is a walk.

Walks, Paths, Circuits, and Cycles

- A walk from vertex v to vertex w is a finite sequence of adjacent vertices of G. $\quad-2,5,1,2,5,4$ is a walk.

Walks, Paths, Circuits, and Cycles

- A walk from vertex v to vertex w is a finite sequence of adjacent vertices of G. $\quad-2,5,1,2,5,4$ is a walk.
- A path from v to w is a walk from v to $w-1,2,4,5$ is a path that does not contain any repeated edges. (and also a walk).

Walks, Paths, Circuits, and Cycles

- A walk from vertex v to vertex w is a finite sequence of adjacent vertices of G. $\quad-2,5,1,2,5,4$ is a walk.
- A path from v to w is a walk from v to $w-1,2,4,5$ is a path that does not contain any repeated edges. (and also a walk).
- A circuit is a walk that begins and ends - $1,5,2,4,3,2,1$ is a circuit on the same vertex.
(also a path and a walk).

Walks, Paths, Circuits, and Cycles

- A walk from vertex v to vertex w is a finite sequence of adjacent vertices of G. $\quad-2,5,1,2,5,4$ is a walk.
- A path from v to w is a walk from v to $w-1,2,4,5$ is a path that does not contain any repeated edges. (and also a walk).
- A circuit is a walk that begins and ends - $1,5,2,4,3,2,1$ is a circuit on the same vertex. (also a path and a walk).
- A cycle is a circuit that does not contain - 1,2,3,4,5,1 is a cycle any repeated vertices.

Walks, Paths, Circuits, and Cycles

- A walk from vertex v to vertex w is a finite sequence of adjacent vertices of G. $\quad-2,5,1,2,5,4$ is a walk.
- A path from v to w is a walk from v to $w-1,2,4,5$ is a path that does not contain any repeated edges. (and also a walk).
- A circuit is a walk that begins and ends - $1,5,2,4,3,2,1$ is a circuit on the same vertex. (also a path and a walk).
- A cycle is a circuit that does not contain - $\underset{2}{ }, 2,3,4,5,1$ is a cycle any repeated vertices.
- A \mathbf{k}-cycle is a cycle of length k.

More Terminology

- The length of a walk, path, circuit, or cycle is the number of edges in the sequence.
- The distance between vertices v and w is the length of the shortest path from v to w.
- The diameter of graph G is the maximum distance between any two vertices v, w in G.

More Terminology

- The length of a walk, path, circuit, or cycle is the number of edges in the sequence.
- The distance between vertices v and w is the length of the shortest path from v to w.
- The diameter of graph G is the maximum distance between any two vertices v, w in G.
- b and c have distance

More Terminology

- The length of a walk, path, circuit, or cycle is the number of edges in the sequence.
- The distance between vertices v and w is the length of the shortest path from v to w.
- The diameter of graph G is the maximum distance between any two vertices v, w in G.
- b and c have distance 1

More Terminology

- The length of a walk, path, circuit, or cycle is the number of edges in the sequence.
- The distance between vertices v and w is the length of the shortest path from v to w.
- The diameter of graph G is the maximum distance between any two vertices v, w in G.
- b and c have distance 1
- a and d have distance 2

More Terminology

- The length of a walk, path, circuit, or cycle is the number of edges in the sequence.
- The distance between vertices v and w is the length of the shortest path from v to w.
- The diameter of graph G is the maximum distance between any two vertices v, w in G.
- b and c have distance 1
- a and d have distance 2

More Terminology

- The length of a walk, path, circuit, or cycle is the number of edges in the sequence.
- The distance between vertices v and w is the length of the shortest path from v to w.
- The diameter of graph G is the maximum distance between any two vertices v, w in G.
- b and c have distance 1
- a and d have distance 2
- G has diameter 2

More Terminology

- The length of a walk, path, circuit, or cycle is the number of edges in the sequence.
- The distance between vertices v and w is the length of the shortest path from v to w.
- The diameter of graph G is the maximum distance between any two vertices v, w in G.
- The small-world phenomenon: we are all linked by short chains of acquaintances \rightarrow social networks like Facebook have small diameter.
- b and c have distance 1
- a and d have distance 2
- G has diameter 2

Connected Graphs

- Two vertices v and w are connected iff there is a path from v to w.
- Graph G is connected iff any two vertices, v, w in G are connected.

Connected Graphs

- Two vertices v and w are connected iff there is a path from v to w.
- Graph G is connected iff any two vertices, v, w in G are connected.
- Here G_{1} is connected and G_{2} is not connected.

Bipartite Graphs

- A graph $G=(V, E)$ is bipartite if there exists a partition of its vertices, $V=V_{1} \cup V_{2}$, such that:
- $V_{1} \cap V_{2}=\emptyset$, and
- every edge (v_{1}, v_{2}) $\in E$ has one endpoint in each partition: $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$ or $v_{1} \in V_{2}$ and $v_{2} \in V_{1}$.

Trees

- An undirected graph T is a tree if T is connected and T does not contain any cycles.
- In a rooted tree, one vertex is distinguished from the others and called the root.
- An undirected graph F is a forest if F does not contain any cycles. F is a set of trees.

a tree

a rooted tree

a forest

Spanning Tree

- A spanning tree for a graph G is a spanning subgraph of G that is a tree.
- Every connected graph has a spanning tree.
- Any spanning tree for a graph $G=(V, E)$ has $|V|$ vertices.
- Any spanning tree for a graph $G=(V, E)$ has $|V|-1$ edges.

Spanning Trees Application

- Your employer has a contract to provide high-speed internet to an island.
- Each client must be connected to the network while minimizing the total cost of building the network.
- Your are provided cost estimates for various possible links in the network.

Minimum Spanning Tree

- A minimum spanning tree of a weighted graph G is a spanning tree of G that has the least possible total weight compared to all other spanning trees of G.

Minimum Spanning Tree

- A minimum spanning tree of a weighted graph G is a spanning tree of G that has the least possible total weight compared to all other spanning trees of G.
- If two or more edges have equal weight in a graph G, then G may have more than one unique minimum spanning tree.

More Minimum Spanning Tree Example

- It is not always easy to derive a minimum spanning tree 'with eyes'.
 ple
- It is not always easy to derive a minimum spanning tree 'with eyes'.
- Two efficient algorithms for finding a minimum spanning tree:
- Kruskal's algorithm
- Prim's algorithm

Kruskal’s MST algorithm

- Initialize T to be Φ.
- Sort edges in the non-decreasing of their weights and process them one by one.
$(B, E),(G, H),(G, F),(A, D),(A, C),(C, D),(E, G),(C, F),(A, B),(B, C),(D, F)$
- If an edge e does not form a cycle in MST, add it to MST.

Kruskal’s MST algorithm

- Initialize T to be Φ.
- Sort edges in the non-decreasing of their weights and process them one by one.
$(B, E),(G, H),(G, F),(A, D),(A, C),(C, D),(E, G),(C, F),(A, B),(B, C),(D, F)$
- If an edge e does not form a cycle in MST, add it to MST.

Kruskal’s MST algorithm

- Initialize T to be Φ.
- Sort edges in the non-decreasing of their weights and process them one by one.
$(B, E),(G, H),(G, F),(A, D),(A, C),(C, D),(E, G),(C, F),(A, B),(B, C),(D, F)$
- If an edge e does not form a cycle in MST, add it to MST.
- Maintain MST's connected component as disjoint sets of vertices
- e does not form a cycle iff its endpoints are in different components

Kruskal’s MST algorithm

- Initialize T to be Φ.
- Sort edges in the non-decreasing of their weights and process them one by one.
$(B, E),(G, H),(G, F),(A, D),(A, C),(C, D),(E, G),(C, F),(A, B),(B, C),(D, F)$
- If an edge e does not form a cycle in MST, add it to MST.
- Maintain MST's connected component as disjoint sets of vertices
- e does not form a cycle iff its endpoints are in different components

Kruskal’s MST algorithm

- Initialize T to be Φ.
- Sort edges in the non-decreasing of their weights and process them one by one.
$(B, E),(G, H),(G, F),(A, D),(A, C),(C, D),(E, G),(C, F),(A, B),(B, C),(D, F)$
- If an edge e does not form a cycle in MST, add it to MST.
- Maintain MST's connected component as disjoint sets of vertices
- e does not form a cycle iff its endpoints are in different components

Kruskal’s MST algorithm

- Initialize T to be Φ.
- Sort edges in the non-decreasing of their weights and process them one by one.
$(B, E),(G, H),(G, F),(A, D),(A, C),(C, D),(E, G),(C, F),(A, B),(B, C),(D, F)$
- If an edge e does not form a cycle in MST, add it to MST.
- Maintain MST's connected component as disjoint sets of vertices
- e does not form a cycle iff its endpoints are in different components

Kruskal’s MST algorithm

- Initialize T to be Φ.
- Sort edges in the non-decreasing of their weights and process them one by one.
$(B, E),(G, H),(G, F),(A, D),(A, C),(C, D),(E, G),(C, F),(A, B),(B, C),(D, F)$
- If an edge e does not form a cycle in MST, add it to MST.
- Maintain MST's connected component as disjoint sets of vertices
- e does not form a cycle iff its endpoints are in different components

Kruskal’s MST algorithm

- Initialize T to be Φ.
- Sort edges in the non-decreasing of their weights and process them one by one.
$(B, E),(G, H),(G, F),(A, D),(A, C),(C, D),(E, G),(C, F),(A, B),(B, C),(D, F)$
- If an edge e does not form a cycle in MST, add it to MST.
- Maintain MST's connected component as disjoint sets of vertices
- e does not form a cycle iff its endpoints are in different components

Kruskal’s MST algorithm

- Initialize T to be Φ.
- Sort edges in the non-decreasing of their weights and process them one by one.
$(B, E),(G, H),(G, F),(A, D),(A, C),(C, D),(E, G),(C, F),(A, B),(B, C),(D, F)$
- If an edge e does not form a cycle in MST, add it to MST.
- Maintain MST's connected component as disjoint sets of vertices
- e does not form a cycle iff its endpoints are in different components

Kruskal’s MST algorithm

- Initialize T to be Φ.
- Sort edges in the non-decreasing of their weights and process them one by one.
$(B, E),(G, H),(G, F),(A, D),(A, C),(C, D),(E, G),(C, F),(A, B),(B, C),(D, F)$
- If an edge e does not form a cycle in MST, add it to MST.
- Maintain MST's connected component as disjoint sets of vertices
- e does not form a cycle iff its endpoints are in different components
- The time complexity of the Kruskal's algorithm is defined by the sorting of edges

Kruskal’s MST algorithm

- Initialize T to be Φ.
- Sort edges in the non-decreasing of their weights and process them one by one.
$(B, E),(G, H),(G, F),(A, D),(A, C),(C, D),(E, G),(C, F),(A, B),(B, C),(D, F)$
- If an edge e does not form a cycle in MST, add it to MST.
- Maintain MST's connected component as disjoint sets of vertices
- e does not form a cycle iff its endpoints are in different components
- The time complexity of the Kruskal's algorithm is defined by the sorting of edges
- Kruskal's algorithm takes $O(m \log m)$ for a graph of m edges.

Kruskal’s MST algorithm

- Initialize T to be Φ.
- Sort edges in the non-decreasing of their weights and process them one by one.
$(B, E),(G, H),(G, F),(A, D),(A, C),(C, D),(E, G),(C, F),(A, B),(B, C),(D, F)$
- If an edge e does not form a cycle in MST, add it to MST.
- Maintain MST's connected component as disjoint sets of vertices
- e does not form a cycle iff its endpoints are in different components
- The time complexity of the Kruskal's algorithm is defined by the sorting of edges
- Kruskal's algorithm takes $O(m \log m)$ for a graph of m edges.
- Note that $O(m \log m)=O(m \log n)$ (why?)

Prim's algorithm

- Initialize: let $T=\{$ an edge in the graph with minimum weight $\}$
- Repeat $n-2$ times:
- $e=$ an edge in G of minimum weight that has one endpoint in T and one endpoint outside T
- $T=T \cup\{e\}$

Prim's algorithm

- Initialize: let $T=\{$ an edge in the graph with minimum weight $\}$
- Repeat $n-2$ times:
- $e=$ an edge in G of minimum weight that has one endpoint in T and one endpoint outside T
- $T=T \cup\{e\}$

Prim's algorithm

- Initialize: let $T=\{$ an edge in the graph with minimum weight $\}$
- Repeat $n-2$ times:
- $e=$ an edge in G of minimum weight that has one endpoint in T and one endpoint outside T
- $T=T \cup\{e\}$

Prim's algorithm

- Initialize: let $T=\{$ an edge in the graph with minimum weight $\}$
- Repeat $n-2$ times:
- $e=$ an edge in G of minimum weight that has one endpoint in T and one endpoint outside T
- $T=T \cup\{e\}$

Prim's algorithm

- Initialize: let $T=\{$ an edge in the graph with minimum weight $\}$
- Repeat $n-2$ times:
- $e=$ an edge in G of minimum weight that has one endpoint in T and one endpoint outside T
- $T=T \cup\{e\}$

Prim's algorithm

- Initialize: let $T=\{$ an edge in the graph with minimum weight $\}$
- Repeat $n-2$ times:
- $e=$ an edge in G of minimum weight that has one endpoint in T and one endpoint outside T
- $T=T \cup\{e\}$

Prim's algorithm

- Initialize: let $T=\{$ an edge in the graph with minimum weight $\}$
- Repeat $n-2$ times:
- $e=$ an edge in G of minimum weight that has one endpoint in T and one endpoint outside T
- $T=T \cup\{e\}$

Prim's algorithm

- Initialize: let $T=\{$ an edge in the graph with minimum weight $\}$
- Repeat $n-2$ times:
- $e=$ an edge in G of minimum weight that has one endpoint in T and one endpoint outside T
- $T=T \cup\{e\}$

Prim's algorithm

- Initialize: let $T=\{$ an edge in the graph with minimum weight $\}$
- Repeat $n-2$ times:
- $e=$ an edge in G of minimum weight that has one endpoint in T and one endpoint outside T
- $T=T \cup\{e\}$

Prim's algorithm

- Initialize: let $T=\{$ an edge in the graph with minimum weight $\}$
- Repeat $n-2$ times:
- $e=$ an edge in G of minimum weight that has one endpoint in T and one endpoint outside T
- $T=T \cup\{e\}$

Prim's algorithm Implementation

- How to implement the Prim's algorithm?
- Let T be the $\{e\}$ where e is the edge with min-weight
- Insert edges incident to endpoints of e to an initially empty min-heap H
- Repeatedly extractMin (to get the next edge e^{\prime}), and insert edges incident to endpoints of e^{\prime} to H.

Prim's algorithm Implementation

- How to implement the Prim's algorithm?
- Let T be the $\{e\}$ where e is the edge with min-weight
- Insert edges incident to endpoints of e to an initially empty min-heap H
- Repeatedly extractMin (to get the next edge e^{\prime}), and insert edges incident to endpoints of e^{\prime} to H.

Prim's algorithm Implementation

- How to implement the Prim's algorithm?
- Let T be the $\{e\}$ where e is the edge with min-weight
- Insert edges incident to endpoints of e to an initially empty min-heap H
- Repeatedly extractMin (to get the next edge e^{\prime}), and insert edges incident to endpoints of e^{\prime} to H.

Prim's algorithm Implementation

- How to implement the Prim's algorithm?
- Let T be the $\{e\}$ where e is the edge with min-weight
- Insert edges incident to endpoints of e to an initially empty min-heap H
- Repeatedly extractMin (to get the next edge e^{\prime}), and insert edges incident to endpoints of e^{\prime} to H.

Prim's algorithm Implementation

- How to implement the Prim's algorithm?
- Let T be the $\{e\}$ where e is the edge with min-weight
- Insert edges incident to endpoints of e to an initially empty min-heap H
- Repeatedly extractMin (to get the next edge e^{\prime}), and insert edges incident to endpoints of e^{\prime} to H.

Prim's algorithm Implementation

- How to implement the Prim's algorithm?
- Let T be the $\{e\}$ where e is the edge with min-weight
- Insert edges incident to endpoints of e to an initially empty min-heap H
- Repeatedly extractMin (to get the next edge e^{\prime}), and insert edges incident to endpoints of e^{\prime} to H.

Prim's algorithm Implementation

- How to implement the Prim's algorithm?
- Let T be the $\{e\}$ where e is the edge with min-weight
- Insert edges incident to endpoints of e to an initially empty min-heap H
- Repeatedly extractMin (to get the next edge e^{\prime}), and insert edges incident to endpoints of e^{\prime} to H.

Prim's algorithm Implementation

- How to implement the Prim's algorithm?
- Let T be the $\{e\}$ where e is the edge with min-weight
- Insert edges incident to endpoints of e to an initially empty min-heap H
- Repeatedly extractMin (to get the next edge e^{\prime}), and insert edges incident to endpoints of e^{\prime} to H.

Prim's algorithm Implementation

- How to implement the Prim's algorithm?
- Let T be the $\{e\}$ where e is the edge with min-weight
- Insert edges incident to endpoints of e to an initially empty min-heap H
- Repeatedly extractMin (to get the next edge e^{\prime}), and insert edges incident to endpoints of e^{\prime} to H.

Prim's algorithm Implementation

- How to implement the Prim's algorithm?
- Let T be the $\{e\}$ where e is the edge with min-weight
- Insert edges incident to endpoints of e to an initially empty min-heap H
- Repeatedly extractMin (to get the next edge e^{\prime}), and insert edges incident to endpoints of e^{\prime} to H.

Prim's algorithm Implementation

- How to implement the Prim's algorithm?
- Let T be the $\{e\}$ where e is the edge with min-weight
- Insert edges incident to endpoints of e to an initially empty min-heap H
- Repeatedly extractMin (to get the next edge e^{\prime}), and insert edges incident to endpoints of e^{\prime} to H.

Prim's algorithm Implementation

- How to implement the Prim's algorithm?
- Let T be the $\{e\}$ where e is the edge with min-weight
- Insert edges incident to endpoints of e to an initially empty min-heap H
- Repeatedly extractMin (to get the next edge e^{\prime}), and insert edges incident to endpoints of e^{\prime} to H.

Prim's Algorithm Running Time

- Each edge is inserted at most once and deleted at most once from the heap.
- At any given time, there are at most $m=|E|=O\left(n^{2}\right)$ edges in the heap
- Insert and ExtractMax take $O(\log m)=O\left(\log \left(n^{2}\right)\right)=O(\log n)$ time.
- For all edges, we incur a cost of at most $O(m \log n)$.

Prim's Algorithm Running Time

- Each edge is inserted at most once and deleted at most once from the heap.
- At any given time, there are at most $m=|E|=O\left(n^{2}\right)$ edges in the heap
- Insert and ExtractMax take $O(\log m)=O\left(\log \left(n^{2}\right)\right)=O(\log n)$ time.
- For all edges, we incur a cost of at most $O(m \log n)$.

Theorem

Both Kruskal and Prim algorithms for finding minimum spanning tree take $O(m \log n)$ for a graph with n vertices and m edges.

Single-source Shortest Path

- In a shortest-paths problem, we are given a weighted, directed graph $G=(V, E)$, with weight function w mapping edges to real-valued weights.
- The weight $w(p)$ of a path is the sum of the weights of its edges.
- In the single-source shortest path problem, we want to find a shortest path from a given source vertex $s \in V$ to each vertex $u \in V$.

Single-source Shortest Path

- In a shortest-paths problem, we are given a weighted, directed graph $G=(V, E)$, with weight function w mapping edges to real-valued weights.
- The weight $w(p)$ of a path is the sum of the weights of its edges.
- In the single-source shortest path problem, we want to find a shortest path from a given source vertex $s \in V$ to each vertex $u \in V$.
- One shortest path between s and x is s, t, x with weight 9 .

Single-source Shortest Path

- In a shortest-paths problem, we are given a weighted, directed graph $G=(V, E)$, with weight function w mapping edges to real-valued weights.
- The weight $w(p)$ of a path is the sum of the weights of its edges.
- In the single-source shortest path problem, we want to find a shortest path from a given source vertex $s \in V$ to each vertex $u \in V$.
- One shortest path between s and x is s, t, x with weight 9 .
- Another shortest path between s and x is s, y, x with the same weight 9.

Single-source Shortest Path

- In a shortest-paths problem, we are given a weighted, directed graph $G=(V, E)$, with weight function w mapping edges to real-valued weights.
- The weight $w(p)$ of a path is the sum of the weights of its edges.
- In the single-source shortest path problem, we want to find a shortest path from a given source vertex $s \in V$ to each vertex $u \in V$.
- One shortest path between s and x is s, t, x with weight 9 .
- Another shortest path between s and x is s, y, x with the same weight 9.
- s, y, z, x is a path from s to x which is not a shortest path

Shortest Path Variants

- The algorithm for the single-source problem can solve many other problems:
- Single-destination shortest-paths: just reverse the direction of each edge in the graph to reduce to a single-source problem.

Shortest Path Variants

- The algorithm for the single-source problem can solve many other problems:
- Single-destination shortest-paths: just reverse the direction of each edge in the graph to reduce to a single-source problem.
- Single-pair shortest-path: find a shortest path from u to v for given pair of vertices (u, v).
- Finding all shortest path from u to other vertices solves this problem too.
- There is no faster algorithm for single-source shortest path.

Shortest Path Variants

- The algorithm for the single-source problem can solve many other problems:
- Single-destination shortest-paths: just reverse the direction of each edge in the graph to reduce to a single-source problem.
- Single-pair shortest-path: find a shortest path from u to v for given pair of vertices (u, v).
- Finding all shortest path from u to other vertices solves this problem too.
- There is no faster algorithm for single-source shortest path.
- All-pairs shortest-paths: Find a shortest path from u to v for every pair of vertices u and v.
- We can solve this problem by running a single-source algorithm once from each vertex.
- But we usually can solve it faster as we will see later.

Negative Weights

- Negative weights are generally allowed (although most applications involve positive weights).

EECS 3101 - Design and Analysis of Algorithms

Negative Weights

- Negative weights are generally allowed (although most applications involve positive weights).
- If there is a negative cycle, the length of the shortest path for some vertices will be $-\infty$.

Negative Weights

- Negative weights are generally allowed (although most applications involve positive weights).
- If there is a negative cycle, the length of the shortest path for some vertices will be $-\infty$.
- Some algorithms, e.g., Dijkstra's Algorithm, assume edge-weights are positive.

Negative Weights

- Negative weights are generally allowed (although most applications involve positive weights).
- If there is a negative cycle, the length of the shortest path for some vertices will be $-\infty$.
- Some algorithms, e.g., Dijkstra's Algorithm, assume edge-weights are positive.
- Some algorithms, e.g., Bellman-Ford, allow negative weights and return 'False' if a negative cycle exists.

Negative Weights

- Negative weights are generally allowed (although most applications involve positive weights).
- If there is a negative cycle, the length of the shortest path for some vertices will be $-\infty$.
- Some algorithms, e.g., Dijkstra's Algorithm, assume edge-weights are positive.
- Some algorithms, e.g., Bellman-Ford, allow negative weights and return 'False' if a negative cycle exists.
- If the graph is disconnected, the length of the shortest path will be $+\infty$ for vertices in connected components that do not contain s.

Representing Shortest Paths

- A Shortest Path Tree represents the solution for single-source shortest path problem, assuming no negative cycle exists.
- A shortest-paths tree rooted at s is a directed subgraph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, such that:
- V^{\prime} is the set of vertices reachable from s in G.
- G^{\prime} forms a rooted tree with root s.
- for all $v \in V^{\prime}$, the unique simple path from s to v in G^{\prime} is a shortest path from s to v in G.
- The parent of v in G^{\prime} is called its predecessor and is denoted as $v . \pi$.

Initialization

- Our algorithms maintain a shortest-path estimate v.d for each vertex v, which is an upper bound on the weight of a shortest path from source s to v.
- Estimates and parents are initialized as follows:

$$
\begin{aligned}
& \text { Initialize-Single-Source }(G, s) \\
& \begin{array}{lc}
1 & \text { for each vertex } v \in G . V \\
2 & v . d=\infty \\
3 & v . \pi=\mathrm{NIL} \\
4 & \text { s. } d=0
\end{array}
\end{aligned}
$$

Relaxation

- We use a Relax procedure which takes and edge (u, v) and tests whether we can improve the shortest path to v found so far by going through u and, if so, updating $v . d$ and $v . \pi$.

$$
\begin{aligned}
& \operatorname{RELAX}(u, v, w) \\
& 1 \quad \text { if } v \cdot d>u \cdot d+w(u, v) \\
& 2
\end{aligned} \quad v \cdot d=u \cdot d+w(u, v) \text { } \begin{aligned}
& \text { } 2=u
\end{aligned}
$$

(a)

(b)

Bellman-Ford Algorithm

- Given a weighted, directed graph G with source s and weight function w (with potentially negative weights), the Bellman-Ford algorithm returns a boolean value indicating whether or not there is a negative-weight cycle.
- If there is such a cycle, the algorithm indicates that no solution exists.
- If there is no such cycle, the algorithm produces the shortest paths and their weights.

Bellman-Ford Algorithm

- The algorithm relaxes edges, progressively decreasing an estimate $v . d$ on the weight of a shortest path from the source s to each vertex v until it achieves the actual shortest-path weights.
- The algorithm returns TRUE if and only if the graph contains no negative-weight cycles that are reachable from the source.

```
BELLMAN-Ford (G,w,s)
    Initialize-Single-Source(G,s)
    for }i=1\mathrm{ to |G.V|-1
    for each edge (u,v) \inG.E
            Relax (u,v,w)
    for each edge (u,v) \inG.E
    if v.d>u.d+w(u,v)
            return FALSE
    return TRUE
```


Bellman-Ford Example

- After Initialization, all estimates are ∞ except that $s . d=0$.
- In Line 2, we iterate $|G . V|-1=4$ times.
- In each iteration, we go through all edges (in an arbitrary order) and relax them.
- Suppose we relax edges in the order

$$
(t, x),(t, y),(t, z),(x, t),(y, x),(y, z),(z, x),(z, s),(s, t),(s, y)
$$

Bellman-Ford Example

- After Initialization, all estimates are ∞ except that $s . d=0$.
- In Line 2, we iterate $|G . V|-1=4$ times.
- In each iteration, we go through all edges (in an arbitrary order) and relax them.
- Suppose we relax edges in the order

$$
(t, x),(t, y),(t, z),(x, t),(y, x),(y, z),(z, x),(z, s),(s, t),(s, y)
$$

Bellman-Ford Example

- After Initialization, all estimates are ∞ except that $s . d=0$.
- In Line 2, we iterate $|G . V|-1=4$ times.
- In each iteration, we go through all edges (in an arbitrary order) and relax them.
- Suppose we relax edges in the order

$$
(t, x),(t, y),(t, z),(x, t),(y, x),(y, z),(z, x),(z, s),(s, t),(s, y)
$$

Bellman-Ford Example

- After Initialization, all estimates are ∞ except that $s . d=0$.
- In Line 2, we iterate $|G . V|-1=4$ times.
- In each iteration, we go through all edges (in an arbitrary order) and relax them.
- Suppose we relax edges in the order

$$
(t, x),(t, y),(t, z),(x, t),(y, x),(y, z),(z, x),(z, s),(s, t),(s, y)
$$

Bellman-Ford Example

- After Initialization, all estimates are ∞ except that $s . d=0$.
- In Line 2, we iterate $|G . V|-1=4$ times.
- In each iteration, we go through all edges (in an arbitrary order) and relax them.
- Suppose we relax edges in the order

$$
(t, x),(t, y),(t, z),(x, t),(y, x),(y, z),(z, x),(z, s),(s, t),(s, y)
$$

Bellman-Ford Example

- After Initialization, all estimates are ∞ except that $s . d=0$.
- In Line 2, we iterate $|G . V|-1=4$ times.
- In each iteration, we go through all edges (in an arbitrary order) and relax them.
- Suppose we relax edges in the order

$$
(t, x),(t, y),(t, z),(x, t),(y, x),(y, z),(z, x),(z, s),(s, t),(s, y)
$$

Bellman-Ford Example

- After Initialization, all estimates are ∞ except that $s . d=0$.
- In Line 2, we iterate $|G . V|-1=4$ times.
- In each iteration, we go through all edges (in an arbitrary order) and relax them.
- Suppose we relax edges in the order

$$
(t, x),(t, y),(t, z),(x, t),(y, x),(y, z),(z, x),(z, s),(s, t),(s, y)
$$

Bellman-Ford Example

- After Initialization, all estimates are ∞ except that $s . d=0$.
- In Line 2, we iterate $|G . V|-1=4$ times.
- In each iteration, we go through all edges (in an arbitrary order) and relax them.
- Suppose we relax edges in the order

$$
(t, x),(t, y),(t, z),(x, t),(y, x),(y, z),(z, x),(z, s),(s, t),(s, y)
$$

Bellman-Ford Analysis

- After iteration i, the estimate $v . d$ is the minimum distance from s to d using at most i edges (hops)
- Since we have at most $|G . V|-1$ edges on any shortest path, after $|G . V|-1$ iteration, all estimates are shortest paths.

```
Bellman-Ford \((G, w, s)\)
Initialize-Single-Source \((G, s)\)
for \(i=1\) to \(|G . V|-1\)
    for each edge \((u, v) \in G . E\)
                        \(\operatorname{Relax}(u, v, w)\)
for each edge \((u, v) \in G . E\)
    if \(v . d>u . d+w(u, v)\)
    return FALSE
    return TRUE
```


Bellman-Ford Analysis

- After iteration i, the estimate $v . d$ is the minimum distance from s to d using at most i edges (hops)
- Since we have at most $|G . V|-1$ edges on any shortest path, after $|G . V|-1$ iteration, all estimates are shortest paths.
- If we can still decrease the estimates after $|G . V|-1$ iterations, there exists a negative cycle in the graph.

```
Bellman-Ford (G,w,s)
Initialize-Single-Source( }G,s
for }i=1\mathrm{ to |G.V|-1
    for each edge (u,v) \inG.E
        Relax( }u,v,w
    for each edge (u,v) \inG.E
        if v.d>u.d+w(u,v)
        return FALSE
    return TRUE
```


Bellman-Ford Analysis

- After iteration i, the estimate $v . d$ is the minimum distance from s to d using at most i edges (hops)
- Since we have at most $|G . V|-1$ edges on any shortest path, after $|G . V|-1$ iteration, all estimates are shortest paths.
- If we can still decrease the estimates after $|G . V|-1$ iterations, there exists a negative cycle in the graph.
- The running time is $O(|V||E|)=O(m n)$.

```
BELLMAN-Ford (G,w,s)
Initialize-Single-Source( }G,s
for }i=1\mathrm{ to |G.V|-1
        for each edge (u,v) \inG.E
        Relax(u,v,w)
    for each edge (u,v) \inG.E
        if v.d>u.d+w(u,v)
        return FALSE
    return TRUE
```


Dijkstra's Algorithm

- Dijkstra's algorithm solves the single-source shortest-paths problem on a weighted, directed graph G in which all edge weights are nonnegative.
- It is faster than Bellman-Ford but works under the above restriction (it fails when there are negative edges).

Dijkstra's Algorithm

- Dijkstra's algorithm maintains a set S of vertices whose final shortest-path weights from the source s have already been determined.
- The algorithm repeatedly I) selects the vertex $u \in V-S$ with the minimum shortest-path estimate, II) adds u to S, and III)relaxes all edges leaving u.
- We use a min-priority queue Q of vertices, keyed by their estimate d values.

```
Dijkstra \((G, w, s)\)
Initialize-Single-Source \((G, s)\)
\(S=\emptyset\)
\(Q=G . V\)
while \(Q \neq \emptyset\)
    \(u=\operatorname{Extract-Min}(Q)\)
    \(S=S \cup\{u\}\)
    for each vertex \(v \in \operatorname{G} . \operatorname{Adj}[u]\)
        \(\operatorname{Relax}(u, v, w)\)
```


Dijkstra's Exmaple

- Initially, $Q=G . V, S=\phi$, and $s . d=0$ and $v . d=\infty$ for any $v \neq s$.
- Repeatedly take the vertex u with smallest estimate, add it to S, and relax edges leaving u.

(a)

Dijkstra's Exmaple

- Initially, $Q=G . V, S=\phi$, and $s . d=0$ and $v . d=\infty$ for any $v \neq s$.
- Repeatedly take the vertex u with smallest estimate, add it to S, and relax edges leaving u.

(a)

(b)

Dijkstra's Exmaple

- Initially, $Q=G . V, S=\phi$, and $s . d=0$ and $v . d=\infty$ for any $v \neq s$.
- Repeatedly take the vertex u with smallest estimate, add it to S, and relax edges leaving u.

(a)

(b)

(c)

Dijkstra's Exmaple

- Initially, $Q=G . V, S=\phi$, and $s . d=0$ and $v . d=\infty$ for any $v \neq s$.
- Repeatedly take the vertex u with smallest estimate, add it to S, and relax edges leaving u.

(a)

(b)

(c)

\rightarrow
 Dijkstra's Exmaple

- Initially, $Q=G . V, S=\phi$, and $s . d=0$ and $v . d=\infty$ for any $v \neq s$.
- Repeatedly take the vertex u with smallest estimate, add it to S, and relax edges leaving u.

(a)

(b)

(c)

$:$
 Dijkstra's Exmaple

- Initially, $Q=G . V, S=\phi$, and $s . d=0$ and $v . d=\infty$ for any $v \neq s$.
- Repeatedly take the vertex u with smallest estimate, add it to S, and relax edges leaving u.

(a)

(b)

(c)

Dijkstra's Analysis

- Dijkstra's algorithm calculates the shortest path from s to every vertex.
- Anytime we put a new vertex u in S (the vertices already added to the tree), we can say that we already know the shortest path from s to u.

(a)

(b)

(c)

Dijkstra's Analysis

- Dijkstra's algorithm calculates the shortest path from s to every vertex.
- Anytime we put a new vertex u in S (the vertices already added to the tree), we can say that we already know the shortest path from s to u.
- Vertices are added to S in the sorted of their distance from s.

(a)

(b)

(c)

Dijkstra's Analysis

- Dijkstra's algorithm calculates the shortest path from s to every vertex.
- Anytime we put a new vertex u in S (the vertices already added to the tree), we can say that we already know the shortest path from s to u.
- Vertices are added to S in the sorted of their distance from s.
- Notice similarities to BFS and Prim's algorithm for MTS.

(a)

(b)

(c)

Dijkstra's Algorithm

- What is the time complexity of the Dijkstra's algorithm?

```
DIJKSTRA(G,w,s)
1 Initialize-Single-Source( }G,s
2 S = \emptyset
3 Q = G.V
4 while Q 
5 u = EXTRACt-Min(Q)
6 S=S\cup{u}
for each vertex v}\in\operatorname{G.Adj[u]
R RELAX (u,v,w)

\section*{Dijkstra's Algorithm}
- What is the time complexity of the Dijkstra's algorithm?
- Each vertex is extracted once from a priority queue of size \(n\); summing to \(\Theta(n \log n)\) for all vertices.
- Each edge \(e=(u, v)\) is visited exactly once (in Line 7, when we visit its starting point and relax e).
```

DIJKSTRA(G,w,s)
Initialize-Single-Source(}G,s
S=\emptyset
Q = G.V
while }Q\not=
u= EXtract-Min(Q)
S=S\cup{u}
for each vertex v}\inG.\operatorname{Adj}[u
8 Relax (u,v,w)

Dijkstra's Algorithm

- What is the time complexity of the Dijkstra's algorithm?
- Each vertex is extracted once from a priority queue of size n; summing to $\Theta(n \log n)$ for all vertices.
- Each edge $e=(u, v)$ is visited exactly once (in Line 7, when we visit its starting point and relax e).
- After relax, we reduce the key of the endpoint v in Q; this takes $\log n$ times \rightarrow we spend $O(m \log n)$ over all edges.

```
Dijkstra \((G, w, s)\)
Initialize-Single-Source \((G, s)\)
\(S=\emptyset\)
\(Q=G . V\)
while \(Q \neq \emptyset\)
    \(u=\operatorname{Extract-Min}(Q)\)
    \(S=S \cup\{u\}\)
    for each vertex \(v \in \operatorname{G} . \operatorname{Adj}[u]\)
    \(\operatorname{ReLax}(u, v, w)\)

\section*{Dijkstra's Algorithm}
- What is the time complexity of the Dijkstra's algorithm?
- Each vertex is extracted once from a priority queue of size \(n\); summing to \(\Theta(n \log n)\) for all vertices.
- Each edge \(e=(u, v)\) is visited exactly once (in Line 7, when we visit its starting point and relax e).
- After relax, we reduce the key of the endpoint \(v\) in \(Q\); this takes \(\log n\) times \(\rightarrow\) we spend \(O(m \log n)\) over all edges.
- In total, the running time is \(\Theta((m+n) \log n)\).
```

DIJKSTRA(G,w,s)
Initialize-Single-Source(}G,s
S=\emptyset
Q = G.V
while}Q\not=
u= Extract-Min(Q)
S=SU{u}
for each vertex v\inG.Adj[u]
RELAX}(u,v,w

```

\section*{Dijkstra's Algorithm}
- What is the time complexity of the Dijkstra's algorithm?
- Each vertex is extracted once from a priority queue of size \(n\); summing to \(\Theta(n \log n)\) for all vertices.
- Each edge \(e=(u, v)\) is visited exactly once (in Line 7, when we visit its starting point and relax e).
- After relax, we reduce the key of the endpoint \(v\) in \(Q\); this takes \(\log n\) times \(\rightarrow\) we spend \(O(m \log n)\) over all edges.
- In total, the running time is \(\Theta((m+n) \log n)\).
- If we use Fibonacci heaps instead of binary heaps, we can improve the time complexity to \(\Theta(m+n \log n)\).
```

DIJKSTRA(G,w,s)
Initialize-Single-Source(}G,s
S=\emptyset
Q = G.V
while Q\not=\emptyset
u= EXtract-Min(Q)
S=S\cup{u}
for each vertex v}\inG.\operatorname{Adj}[u
RELAX}(u,v,w

Single-source Shortest Path

- In a shortest-paths problem, we are given a weighted, directed graph $G=(V, E)$, with weight function w mapping edges to real-valued weights.
- The weight $w(p)$ of a path is the sum of the weights of its edges.
- In the single-source shortest path problem, we want to find a shortest path from a given source vertex $s \in V$ to each vertex $u \in V$.
- The output is stored in a shortest path tree.

Single-source Shortest Path

- In a shortest-paths problem, we are given a weighted, directed graph $G=(V, E)$, with weight function w mapping edges to real-valued weights.
- The weight $w(p)$ of a path is the sum of the weights of its edges.
- In the single-source shortest path problem, we want to find a shortest path from a given source vertex $s \in V$ to each vertex $u \in V$.
- The output is stored in a shortest path tree.
- If negative weights are allowed, we use slower Bellman-Ford algorithm, which runs in $\Theta(m n)$; otherwise, we use the faster Dijkstra's algorithm, which runs in $\Theta((m+n) \log n)$.

All Pair Shortest Path problem

- Instead of the shortest path between a given source and other vertices, we are interested in the shortest distance between any pair of vertices.
- We assume edge weights can be negative but no negative cycle.
- The output is an $n \times n$ matrix, where the (i, j) entry indicates the length of the shortest path from vertex i to vertex j.

input matrix w

output

Preliminary Solutions

- Solution one: run Bellman-Ford algorithm $|V|=n$ times, once for each vertex as the source.

Preliminary Solutions

- Solution one: run Bellman-Ford algorithm $|V|=n$ times, once for each vertex as the source.
- The running time will be $\Theta\left(n^{2} m\right)$, which is $\Theta\left(n^{4}\right)$ for dense graphs (when $m=\Theta\left(n^{2}\right)$).

Preliminary Solutions

- Solution one: run Bellman-Ford algorithm $|V|=n$ times, once for each vertex as the source.
- The running time will be $\Theta\left(n^{2} m\right)$, which is $\Theta\left(n^{4}\right)$ for dense graphs (when $m=\Theta\left(n^{2}\right)$).
- Can we improve this? Yes, using Dynamic Programming.

Dynamic Programming Overview

- Recall the steps for devising a dynamic programming solution:
- Characterize the structure of an optimal solution.
- Recursively define the value of an optimal solution.
- Compute the value of an optimal solution in a bottom-up fashion.

Matrix Multiplication Solution

- Let $l_{i j}^{(m)}$ be the minimum weight of any path from vertex i to vertex j that contains at most m edges.
- For the base case, we have $l_{i j}^{(0)}= \begin{cases}0 & \text { if } i=j \\ \infty & \text { if } i \neq j\end{cases}$

Matrix Multiplication Solution

- Let $l_{i j}^{(m)}$ be the minimum weight of any path from vertex i to vertex j that contains at most m edges.
- For the base case, we have $\iota_{i j}^{(0)}= \begin{cases}0 & \text { if } i=j \\ \infty & \text { if } i \neq j\end{cases}$
- For $m \geq 1$, we have two options:
- Take the shortest path of length at most $m-1$ from i to j, with weight $l_{i j}^{(m-1)}$.

Matrix Multiplication Solution

- Let $I_{i j}^{(m)}$ be the minimum weight of any path from vertex i to vertex j that contains at most m edges.
- For the base case, we have $\iota_{i j}^{(0)}= \begin{cases}0 & \text { if } i=j \\ \infty & \text { if } i \neq j\end{cases}$
- For $m \geq 1$, we have two options:
- Take the shortest path of length at most $m-1$ from i to j, with weight $l_{i j}^{(m-1)}$.
- Take the shortest path of length at most $m-1$ from i to a vertex k and then a single edge (hop) from k to j, this would have weight $l_{i k}^{(m-1)}+w_{k j}$.

Matrix Multiplication Solution

- Let $I_{i j}^{(m)}$ be the minimum weight of any path from vertex i to vertex j that contains at most m edges.
- For the base case, we have $I_{i j}^{(0)}= \begin{cases}0 & \text { if } i=j \\ \infty & \text { if } i \neq j\end{cases}$
- For $m \geq 1$, we have two options:
- Take the shortest path of length at most $m-1$ from i to j, with weight $l_{i j}^{(m-1)}$.
- Take the shortest path of length at most $m-1$ from i to a vertex k and then a single edge (hop) from k to j, this would have weight $l_{i k}^{(m-1)}+w_{k j}$.
- The DP formula will be (the last inequality holds since $w_{j j}=0$):

$$
\begin{aligned}
l_{i j}^{(m)} & =\min \left(l_{i j}^{(m-1)}, \min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}\right) \\
& =\min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}
\end{aligned}
$$

Matrix Multiplication Solution

- The shortest distance between i and j will be stored at $l_{i j}^{n-1}$.
- This is because the shortest path cannot contain more than $n-1$ edges (otherwise, there will be a loop in the path).

$$
\begin{aligned}
l_{i j}^{(m)} & =\min \left(l_{i j}^{(m-1)}, \min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}\right) \\
& =\min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\} .
\end{aligned}
$$

Matrix Multiplication Solution

- The shortest distance between i and j will be stored at $l_{i j}^{n-1}$.
- This is because the shortest path cannot contain more than $n-1$ edges (otherwise, there will be a loop in the path).
- In Step 3 of the DP solution, we compute a series of matrices
$L^{(1)}, L^{(2)}, \ldots, L^{(n-1)}$, where $L^{(m)}=\left(l_{i j}^{(m)}\right)$.
- $L^{(1)}=W$ and $L^{(n)}$ contains all-pair shortest-path weights.

$$
\begin{aligned}
l_{i j}^{(m)} & =\min \left(l_{i j}^{(m-1)}, \min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}\right) \\
& =\min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\} .
\end{aligned}
$$

Matrix Multiplication Solution

- The shortest distance between i and j will be stored at $l_{i j}^{n-1}$.
- This is because the shortest path cannot contain more than $n-1$ edges (otherwise, there will be a loop in the path).
- In Step 3 of the DP solution, we compute a series of matrices $L^{(1)}, L^{(2)}, \ldots, L^{(n-1)}$, where $L^{(m)}=\left(l_{i j}^{(m)}\right)$.
- $L^{(1)}=W$ and $L^{(n)}$ contains all-pair shortest-path weights.
- The following procedure computes $L^{(m)}$ from $L^{(m-1)}$ and W.

$$
\begin{aligned}
& \text { Extend-Shortest-Paths (} L, W \text {) } \\
& l_{i j}^{(m)}=\min \left(l_{i j}^{(m-1)}, \min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\}\right) \\
& =\min _{1 \leq k \leq n}\left\{l_{i k}^{(m-1)}+w_{k j}\right\} . \\
& n=\text { L.rows } \\
& 2 \text { let } L^{\prime}=\left(l_{i j}^{\prime}\right) \text { be a new } n \times n \text { matrix } \\
& 3 \text { for } i=1 \text { to } n \\
& 4 \quad \text { for } j=1 \text { to } n \\
& l_{i j}^{\prime}=\infty \\
& \text { for } k=1 \text { to } n \\
& l_{i j}^{\prime}=\min \left(l_{i j}^{\prime}, l_{i k}+w_{k j}\right) \\
& \text { return } L^{\prime}
\end{aligned}
$$

Matrix Multiplication Solution

- Extend-Shortest-Paths is reminiscent of Matrix multiplication:
- We take substitutions: $I^{(m-1)} \rightarrow a \quad, w \rightarrow b \quad, I^{(m)} \rightarrow c \quad$, $\min \rightarrow+$, and $+\rightarrow$.
- Computing $I^{(m)}$ from I^{m-1} and W is similar to multiplying I^{m-1} and W.

```
Extend-Shortest-Paths ( \(L, W\) )
    \(n=\) L.rows
    let \(L^{\prime}=\left(l_{i j}^{\prime}\right)\) be a new \(n \times n\) matrix
    for \(i=1\) to \(n\)
        for \(j=1\) to \(n\)
            \(l_{i j}^{\prime}=\infty\)
            for \(k=1\) to \(n\)
            \(l_{i j}^{\prime}=\min \left(l_{i j}^{\prime}, l_{i k}+w_{k j}\right)\)
    return \(L^{\prime}\)
```

Square-Matrix-Multiply (A, B)

```
\(n=A\).rows
    let \(C\) be a new \(n \times n\) matrix
    for \(i=1\) to \(n\)
        for \(j=1\) to \(n\)
            \(c_{i j}=0\)
            for \(k=1\) to \(n\)
                \(c_{i j}=c_{i j}+a_{i k} \cdot b_{k j}\)
    return \(C\)
```


Matrix Multiplication Solution

- To find, $L^{(n)}$, we apply Extend-Shortest-Paths $n-1$ times.
- This is similar to multiplying W by itself $n-1$ times (recall that $\left.L^{(1)}=W\right)$.

$$
\begin{aligned}
L^{(1)} & =L^{(0)} \cdot W \\
L^{(2)} & =L^{(1)} \cdot W=W^{2} \\
L^{(3)} & =L^{(2)} \cdot W=W^{3}, \\
& \vdots \\
L^{(n-1)} & =L^{(n-2)} \cdot W=W^{n-1} .
\end{aligned}
$$

```
Slow-All-Pairs-Shortest-Paths ( \(W\) )
\(1 \quad n=W\).rows
\(2 L^{(1)}=W\)
3 for \(m=2\) to \(n-1\)
\(4 \quad\) let \(L^{(m)}\) be a new \(n \times n\) matrix
\(5 \quad L^{(m)}=\) EXTEND-SHORTEST-PATHS \(\left(L^{(m-1)}, W\right)\)
6 return \(L^{(n-1)}\)
```


Matrix Multiplication Solution

- The running time is similar to multiplying matrix W (an $n \times n$ matrix) by itself $n-1$ times.
- We can alliteratively do it in a naive way in $O\left(n^{4}\right)$.

Matrix Multiplication Solution

- The running time is similar to multiplying matrix W (an $n \times n$ matrix) by itself $n-1$ times.
- We can alliteratively do it in a naive way in $O\left(n^{4}\right)$.
- Alternatively, we can recursively find the outcome of the first $n / 2$ multiplications (that is, $W^{n / 2}$), and multiply it with itself in $O\left(n^{3}\right)$.

Matrix Multiplication Solution

- The running time is similar to multiplying matrix W (an $n \times n$ matrix) by itself $n-1$ times.
- We can alliteratively do it in a naive way in $O\left(n^{4}\right)$.
- Alternatively, we can recursively find the outcome of the first $n / 2$ multiplications (that is, $W^{n / 2}$), and multiply it with itself in $O\left(n^{3}\right)$.
- This would take $\Theta\left(n^{3} \log n\right)$.

Matrix Multiplication Solution

- The running time is similar to multiplying matrix W (an $n \times n$ matrix) by itself $n-1$ times.
- We can alliteratively do it in a naive way in $O\left(n^{4}\right)$.
- Alternatively, we can recursively find the outcome of the first $n / 2$ multiplications (that is, $W^{n / 2}$), and multiply it with itself in $O\left(n^{3}\right)$.
- This would take $\Theta\left(n^{3} \log n\right)$.
- The running time of $\Theta\left(n^{3} \log n\right)$ is better than $\Theta\left(n^{2}|E|\right)=\Theta\left(n^{4}\right)$ of repeating Bellman-Ford algorithm. But we can still do better.

Floyd-Warshall Algorithm

- Another DP algorithm for all-pair shortest path, developed independently by Roy [1959], Floyd [1962], Warshall [1962].
- Given a path $\left(v_{1}, v_{2}, \ldots, v_{m}\right)$, we call vertices v_{k} with $k \in\{2,3, \ldots, m-1\}$ intermediate vertex.

Floyd-Warshall Algorithm

- Let $d_{i j}^{(k)}$ denote the weight of the shortest path between i and j, subject to the intermediate vertices be contained in $\{1, \ldots, k\}$.

Floyd-Warshall Algorithm

- Let $d_{i j}^{(k)}$ denote the weight of the shortest path between i and j, subject to the intermediate vertices be contained in $\{1, \ldots, k\}$.
- Write a recursive formula for $d_{i j}^{(k)}$.

Floyd-Warshall Algorithm

- Let $d_{i j}^{(k)}$ denote the weight of the shortest path between i and j, subject to the intermediate vertices be contained in $\{1, \ldots, k\}$.
- Write a recursive formula for $d_{i j}^{(k)}$.
- In the base case, we have $k=0$ (no intermediate vertex), and we have $d_{i j}^{(0)}=w_{i j}$.

Floyd-Warshall Algorithm

- Let $d_{i j}^{(k)}$ denote the weight of the shortest path between i and j, subject to the intermediate vertices be contained in $\{1, \ldots, k\}$.
- Write a recursive formula for $d_{i j}^{(k)}$.
- In the base case, we have $k=0$ (no intermediate vertex), and we have $d_{i j}^{(0)}=w_{i j}$.
- When $k>0$, vertex k may or may not be an intermediate vertex.

Floyd-Warshall Algorithm

- Let $d_{i j}^{(k)}$ denote the weight of the shortest path between i and j, subject to the intermediate vertices be contained in $\{1, \ldots, k\}$.
- Write a recursive formula for $d_{i j}^{(k)}$.
- In the base case, we have $k=0$ (no intermediate vertex), and we have $d_{i j}^{(0)}=w_{i j}$.
- When $k>0$, vertex k may or may not be an intermediate vertex.
- If k is not an intermediate vertex, the weight of the shortest path will be $d_{i j}^{(k-1)}$.

Floyd-Warshall Algorithm

- Let $d_{i j}^{(k)}$ denote the weight of the shortest path between i and j, subject to the intermediate vertices be contained in $\{1, \ldots, k\}$.
- Write a recursive formula for $d_{i j}^{(k)}$.
- In the base case, we have $k=0$ (no intermediate vertex), and we have $d_{i j}^{(0)}=w_{i j}$.
- When $k>0$, vertex k may or may not be an intermediate vertex.
- If k is not an intermediate vertex, the weight of the shortest path will be $d_{i j}^{(k-1)}$.
- If k is an intermediate vertex, the weight of the shortest path will be $d_{i k}^{(k-1)}$ (the shortest distance from i to k) plus $d_{k, j}^{(k-1)}$ (the shortest distance from k to j). So we can write:

$$
d_{i j}^{(k)}=\min \left\{d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right\}
$$

Floyd-Warshall Algorithm

- The recursive DP formula for the Floyd-Warshall algorithm is thus:

$$
d_{i j}^{(k)}= \begin{cases}w_{i j} & \text { if } k=0, \\ \min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right) & \text { if } k \geq 1 .\end{cases}
$$

Floyd-Warshall Algorithm

- The recursive DP formula for the Floyd-Warshall algorithm is thus:

$$
d_{i j}^{(k)}= \begin{cases}w_{i j} & \text { if } k=0, \\ \min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right) & \text { if } k \geq 1 .\end{cases}
$$

- For filling the table, we only need to look at the previous value of k :

```
Floyd-Warshall \((W)\)
    \(n=W\).rows
    \(D^{(0)}=W\)
    for \(k=1\) to \(n\)
        let \(D^{(k)}=\left(d_{i j}^{(k)}\right)\) be a new \(n \times n\) matrix
        for \(i=1\) to \(n\)
            for \(j=1\) to \(n\)
return \(D^{(n)} d_{i j}^{(k)}=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)\)
```


Floyd-Warshall Algorithm

- The recursive DP formula for the Floyd-Warshall algorithm is thus:

$$
d_{i j}^{(k)}= \begin{cases}w_{i j} & \text { if } k=0 \\ \min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right) & \text { if } k \geq 1\end{cases}
$$

- For filling the table, we only need to look at the previous value of k :
- The running time is clearly $\Theta\left(n^{3}\right)$, which is an improvement over $\Theta\left(n^{3} \log n\right)$ of the Matrix-Multiplication method (and $\Theta\left(n^{4}\right)$ of repeating Bellman-Ford algorithm).

```
Floyd-Warshall ( \(W\) )
    \(n=W\). rows
    \(D^{(0)}=W\)
    for \(k=1\) to \(n\)
        let \(D^{(k)}=\left(d_{i j}^{(k)}\right)\) be a new \(n \times n\) matrix
        for \(i=1\) to \(n\)
            for \(j=1\) to \(n\)
\(d_{i j}^{(k)}=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)\)
```


Floyd-Warshall Example

- Recall that $d_{i j}^{(k)}=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)$

	1	2	3	4	5
1	0	6	7	∞	∞
2	∞	0	8	5	-4
3	∞	∞	0	-3	9
4	∞	-2	∞	0	∞
5	2	∞	∞	7	0
$D^{0}=w$					

Floyd-Warshall Example

- Recall that $d_{i j}^{(k)}=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)$

	1	2	3	4	5
1	0	6	7	∞	∞
2	∞	0	8	5	-4
3	∞	∞	0	-3	9
4	∞	-2	∞	0	∞
5	2	∞	∞	7	0
	$D^{0}=w$				

1					2			3		4	5
	0	6	7	∞	∞						
2	∞	0	8	5	-4						
3	∞	∞	0	-3	9						
4	∞	-2	∞	0	∞						
	2	8	9	7	0						
	D^{1}										

Floyd-Warshall Example

- Recall that $d_{i j}^{(k)}=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)$

	1	2	3	4	5
1	0	6	7	∞	∞
2	∞	0	8	5	-4
3	∞	∞	0	-3	9
4	∞	-2	∞	0	∞
5	2	∞	∞	7	0
$D^{0}=w$					

	1	2	3	4	5
1	0	6	7	∞	∞
2	∞	0	8	5	-4
3	∞	∞	0	-3	9
4	∞	-2	∞	0	∞
5	2	8	9	7	0
D^{1}					

1	2		3	4	5
	0	6	7	11	2
2	∞	0	8	5	-4
3	∞	∞	0	-3	9
4	∞	-2	6	0	-6
5	2	8	9	7	0
	D^{2}				

Floyd-Warshall Example

- Recall that $d_{i j}^{(k)}=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)$

	1				2
3	4	5			
	0	6	7	∞	∞
2	∞	0	8	5	-4
3	∞	∞	0	-3	9
4	∞	-2	∞	0	∞
	2	∞	∞	7	0
$D^{0}=w$					

	1	2	3	4	5
1	0	6	7	∞	∞
2	∞	0	8	5	-4
3	∞	∞	0	-3	9
4	∞	-2	∞	0	∞
5	2	8	9	7	0
D^{1}					

	1				2
3	4	5			
1	0	6	7	11	2
2	∞	0	8	5	-4
3	∞	∞	0	-3	9
4	∞	-2	6	0	-6
5	2	8	9	7	0
	D^{2}				

	1	2	3	4	5
1	0	6	7	4	2
2	∞	0	8	5	-4
3	∞	∞	0	-3	9
4	∞	-2	6	0	-6
5	2	8	9	6	0
D^{3}					

Floyd-Warshall Example

- Recall that $d_{i j}^{(k)}=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)$

	1	2	3	4	5		1	2	3	4	5		1	2	3	4	5
1	0	6	7	-	∞	1	0	6	7	∞	∞	1	0	6	7	11	2
2	∞	0	8	5	-4	2	∞	0	8	5	-4	2	∞	0	8	5	-4
3	∞	∞	0	-3	9	3	∞	∞	0	-3	9	3	∞	∞	0	-3	9
4	∞	-2	∞	0	∞	4	∞	-2	∞	0	∞	4	∞	-2	6	0	-6
5	2	∞	∞	7	0	5	2	8	9	7	0	5	2	8	9	7	0
		D^{0}	$=$	w											D^{2}		
	1	2	3	4	5		1	2	3	4	5						
1	0	6	7	4	2	1	0	2	7	4	-2						
2	∞	0	8	5	-4	2	∞	0	8	5	-4						
3	∞	∞	0	-3	9	3	∞	-5	0	-3	-9						
4	∞	-2	6	0	-6	4	∞	-2	6	0	-6						
5	2	8	9	6	0	5	2	4	9	6	0						
	D^{3}						D^{4}										

Floyd-Warshall Example

- Recall that $d_{i j}^{(k)}=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)$

	1			2	3		5
	0	6	7	∞	∞		
2	∞	0	8	5	-4		
	∞	∞	0	-3	9		
	∞	-2	∞	0	∞		
	2	∞	∞	7	0		

	1	2	3	4	5
1	0	6	7	∞	∞
2	∞	0	8	5	-4
3	∞	∞	0	-3	9
4	∞	-2	∞	0	∞
5	2	8	9	7	0
D^{1}					

	1	2	3	4	5
1	0	6	7	11	2
2	∞	0	8	5	-4
3	∞	∞	0	-3	9
4	∞	-2	6	0	-6
5	2	8	9	7	0
D^{2}					

	1			2	3		5
	0	6	7	4	2		
2	∞	0	8	5	-4		
	∞	∞	0	-3	9		
4	∞	-2	6	0	-6		
	2	8	9	6	0		

D^{3}

	1	2	3	4	5
1	0	2	7	4	-2
2	∞	0	8	5	-4
3	∞	-5	0	-3	-9
4	∞	-2	6	0	-6
5	2	4	9	6	0

D^{4}

	1	2	3	4	5
1	0	2	7	4	-2
2	-2	0	5	2	-4
3	-7	-5	0	-3	-9
4	-4	-2	3	0	-6
5	2	4	9	6	0
D^{5}					

All Shortes Paths Summary

- The simple repetition of Bellman-Ford runs in $\Theta\left(n^{2} m^{2}\right)$, wich is $\Theta\left(n^{4}\right)$ for dense graphs.
- The first DP solution, which resembles matrix multiplication, runs in $\Theta\left(n^{3} \log n\right)$.
- Floyd-Warshall's algorithm is another DP solution that runs in $\Theta\left(n^{3}\right)$.

