
EECS 3101 - Design and Analysis of

Algorithms

Shahin Kamali

Topic 5 - Greedy Algorithms

1 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Overview

Greedy Algorithms & Applications

Activity-selection problem

Hu�man coding

Fractional Knapsack

2 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Algorithms Overview

A greedy algorithm always makes the choice that looks best at the
moment.

it makes a locally optimal choice in the hope that this choice will
lead to a globally optimal solution.
Dynamic Programming applies when subproblems overlap, i.e., they
share subsubproblems!

Greedy algorithms do not always yield optimal solutions, but for
many problems they do, and sometime lead to approximation

algorithms.

3 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Algorithms Overview

A greedy algorithm always makes the choice that looks best at the
moment.

it makes a locally optimal choice in the hope that this choice will
lead to a globally optimal solution.
Dynamic Programming applies when subproblems overlap, i.e., they
share subsubproblems!

Greedy algorithms do not always yield optimal solutions, but for
many problems they do, and sometime lead to approximation

algorithms.

3 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Algorithms vs Dynamic Pro-
gramming

Dynamic programming works by providing multiple candidate
solutions for a problem (given by optimal solutions for the
subproblem) and taking the best candidate.

Greedy algorithms are special instances where only one candidate
(given by the greedy choice) results in an optimal solution!

If this is the case for a problem, the greedy solution gives the
optimal solution quicker!

4 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Hu�man Coding

We want to create �codes" for di�erent characters from a source.

More frequent characters, e.g., `A' should get a smaller code than
less frequent ones, e.g., `q'.

Source alphabet is arbitrary (say Σ), coded alphabet is {0, 1}
We build a binary tree to store the decoding dictionary D

Each character of Σ is a leaf of the trie

Example: Σ = {AENOT }

0

N

1

0

A

1

0

O

0

E

1

0

T

1

1

5 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Encoding with Frequencies

Consider a text with 100k characters over alphabet
Σ = {a, b, c , d , e, f }. We want to store it in binary, using a �xed
codeword for each character.

We scan and see the following frequencies for characters.

Questions: how should we de�ne codewords for characters to
minimize the total length of the codes for (all characters of) the
text?

6 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Encoding with Frequencies

Option 1: Assign a �xed-length code to each character. The �xed
length of the codes will be ⌈log |Σ|⌉ = ⌈log 6⌉ = 3.

This code requires 3× 100k = 300k bits to code the entire �le. Can
we do better?

7 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Encoding with Frequencies

Option 2: Assign a variable-length code to each character by
giving frequent characters short codewords and infrequent
characters long codewords.

This code requires
(45 · 1+ 13 · 3+ 12 · 3+ 16 ·
3+9 ·4+5 ·4) ·1, 000 = 224k
bits.

8 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Pre�x-Free Encoding/Decoding

Binary trees that represent codes are pre�x-free in the sense that
the code for a character c is not the pre�x of a code for a character
c ′.

There is always an optimal encoding which is pre�x-free.
Pre�x-free codes are easy to decode!

0

N

1

0

A

1

0

O

0

E

1

0

T

1

1

Encode AN ANT

→ 010010000100111

Decode 111000001010111

→ TO EAT

9 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Pre�x-Free Encoding/Decoding

Binary trees that represent codes are pre�x-free in the sense that
the code for a character c is not the pre�x of a code for a character
c ′.

There is always an optimal encoding which is pre�x-free.
Pre�x-free codes are easy to decode!

0

N

1

0

A

1

0

O

0

E

1

0

T

1

1

Encode AN ANT → 010010000100111

Decode 111000001010111 → TO EAT

9 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Building the Hu�man Tree

For a given source text S , how to determine the �best� tree which
minimizes the length of C?

1 Determine the frequency of each character c ∈ Σ in S
2 Make |Σ| height-0 trees holding each character c ∈ Σ.

Assign a �frequency� to each tree: sum of frequencies of all letters
in tree (initially, these are just the character frequencies.)

3 Merge two trees with the least frequencies, new frequency is their
sum
(corresponds to adding one bit to the encoding of each character)

4 Repeat Step 3 until there is only 1 tree left; this is D.

What data structure should we store the trees in to make this
e�cient?

A min-ordered heap! Step 3 is two delete-mins and one insert

10 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Building the Hu�man Tree

For a given source text S , how to determine the �best� tree which
minimizes the length of C?

1 Determine the frequency of each character c ∈ Σ in S
2 Make |Σ| height-0 trees holding each character c ∈ Σ.

Assign a �frequency� to each tree: sum of frequencies of all letters
in tree (initially, these are just the character frequencies.)

3 Merge two trees with the least frequencies, new frequency is their
sum
(corresponds to adding one bit to the encoding of each character)

4 Repeat Step 3 until there is only 1 tree left; this is D.

What data structure should we store the trees in to make this
e�cient?
A min-ordered heap! Step 3 is two delete-mins and one insert

10 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Building Hu�man Example

11 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Building Hu�man Example

11 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Building Hu�man Example

11 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Building Hu�man Example

11 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Building Hu�man Example

11 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Building Hu�man Example

11 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Building Hu�man Example

11 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Building tree example

Example text: LOSSLESS

Character frequencies: E : 1, L : 2, O : 1, S : 4

1

E

2

L

1

O

4

S

LOSSLESS → 01 001 1 1 01 000 1 1

12 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Building tree example

Example text: LOSSLESS

Character frequencies: E : 1, L : 2, O : 1, S : 4

2

E

0

O

1

2

L

4

S

LOSSLESS → 01 001 1 1 01 000 1 1

12 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Building tree example

Example text: LOSSLESS

Character frequencies: E : 1, L : 2, O : 1, S : 4

4

E

0

O

1

0

L

1

4

S

LOSSLESS → 01 001 1 1 01 000 1 1

12 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Building tree example

Example text: LOSSLESS

Character frequencies: E : 1, L : 2, O : 1, S : 4

8

E

0

O

1

0

L

1

0

S

1

LOSSLESS →

01 001 1 1 01 000 1 1

12 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Building tree example

Example text: LOSSLESS

Character frequencies: E : 1, L : 2, O : 1, S : 4

8

E

0

O

1

0

L

1

0

S

1

LOSSLESS → 01 001 1 1 01 000 1 1

12 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Building tree example

It is possible to create alternative trees by merging trees other than
the two with minimum frequencies.

Such trees, however, do not always the optimal solutions (shortest
codes)!

Example text: LOSSLESS

Character frequencies: E : 1, L : 2, O : 1, S : 4

1

E

2

L

1

O

4

S

LOSSLESS → 000 1 001 001 000 01 001 001

13 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Building tree example

It is possible to create alternative trees by merging trees other than
the two with minimum frequencies.

Such trees, however, do not always the optimal solutions (shortest
codes)!

Example text: LOSSLESS

Character frequencies: E : 1, L : 2, O : 1, S : 4

6

L

0

S

1

1

E

1

O

LOSSLESS → 000 1 001 001 000 01 001 001

13 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Building tree example

It is possible to create alternative trees by merging trees other than
the two with minimum frequencies.

Such trees, however, do not always the optimal solutions (shortest
codes)!

Example text: LOSSLESS

Character frequencies: E : 1, L : 2, O : 1, S : 4

7

L

0

S

1

0

E

1

1

O

LOSSLESS → 000 1 001 001 000 01 001 001

13 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Building tree example

It is possible to create alternative trees by merging trees other than
the two with minimum frequencies.

Such trees, however, do not always the optimal solutions (shortest
codes)!

Example text: LOSSLESS

Character frequencies: E : 1, L : 2, O : 1, S : 4

8

L

0

S

1

0

E

1

0

O

1

LOSSLESS →

000 1 001 001 000 01 001 001

13 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Building tree example

It is possible to create alternative trees by merging trees other than
the two with minimum frequencies.

Such trees, however, do not always the optimal solutions (shortest
codes)!

Example text: LOSSLESS

Character frequencies: E : 1, L : 2, O : 1, S : 4

8

L

0

S

1

0

E

1

0

O

1

LOSSLESS → 000 1 001 001 000 01 001 001

13 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Hu�man Tree is Greedy

The cost of a tree is the total length of the code for it.

Whenever an algorithm merges two trees, its cost is increased by
frequency of the merged tree: the codelength for all characters in
the leaves of the two trees increase by 1.

Here the cost is
(5+ 9) + (12+ 13) + (14+ 16) + (25+ 30) + (45+ 55) = 224k

Hu�man tree is greedy in the sense that it selects the merger with
minimum cost!

This code requires
(45 · 1+ 13 · 3+ 12 · 3+ 16 ·
3+9 ·4+5 ·4) ·1, 000 = 224k
bits.

14 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Hu�man Tree is Greedy

The cost of a tree is the total length of the code for it.

Whenever an algorithm merges two trees, its cost is increased by
frequency of the merged tree: the codelength for all characters in
the leaves of the two trees increase by 1.

Here the cost is
(5+ 9) + (12+ 13) + (14+ 16) + (25+ 30) + (45+ 55) = 224k

Hu�man tree is greedy in the sense that it selects the merger with
minimum cost!

This code requires
(45 · 1+ 13 · 3+ 12 · 3+ 16 ·
3+9 ·4+5 ·4) ·1, 000 = 224k
bits.

14 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Algorithms Framework

A greedy algorithm solves a problem sequentially, by making
greedy choices that seems best at the moment.

To ensure optimality by a greedy algorithm, a problem must have
two properties:

Optimal substructure: an optimal solution to the problem contains
within it optimal solutions to subproblems.

The optimal solution can be described recursively as a function of
optimal solutions for subproblems.
This property is necessary for dynamic programming solutions as
well.

Greedy-choice property: we can assemble a globally optimal
solution by making locally optimal (greedy) choices.

We make the choice that looks best in the current problem, without
considering results from subproblems.

15 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy vs Dynamic Programming

In both paradigms, the optimal substructure property is present.

In Dynamic Programming, there are often a few choices
(candidates) at each step, and making the optimal choice requires
looking at the outcome (value) of the optimal solution for the
subproblems.

In problems with Greedy-choice property, one candidate, selected by
the greedy choice, results in an optimal solution, regardless of the
value of the subproblems!

16 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Hu�man Code Revisit

At each step, we must select two trees to merge:

Optimal substrcuture property: Given k trees, we have
(
n
2

)
ways to

choose two to merge.

If we choose two trees t1 and t2 to merge, the cost of this choice is
freq(t1) + freq(t2) plus the cost of merging the updated set of trees
(in which t1 and t2 are merged with one merged tree).
A Dynamic Programming solution: One can try all possible
candidates and take the one with minimum cost among them.

17 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Hu�man Code Revisit

At each step, we must select two trees to merge:

Greedy-choice property: It is best to choose the two trees with
lowest frequencies to merge.

Let x and y be the two trees with lowest frequencies.
For the sake of contradiction, suppose there is an optimal tree T ′

where two other nodes a and b are merged before x and y .
Replacing x with a and y with b results in a better tree than T ′′

with a cost no more than T , where x and y are merged �rst!

18 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Activity Selection Problem

We have a set S = {a1, a2, . . . , an} of n. Activity ai has a start time
si and a �nish time fi , where 0 ≤ si < fi .

Activities are sorted in monotonically increasing order of �nish time:
f1 ≤ f2 ≤ . . . ≤ fn

Activities ai and aj (i < j) are compatible if their intervals do not
overlap, that is ai ends before aj �nishes.

We want to select (accept) the largest set of mutually compatible
activities.

{a3, a9, a11} consists of mutually compatible activities. But
{a1, a4, a8, a11} is an even larger (thus better) such subset.

19 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Activity Selection Problem

We have a set S = {a1, a2, . . . , an} of n. Activity ai has a start time
si and a �nish time fi , where 0 ≤ si < fi .

Activities are sorted in monotonically increasing order of �nish time:
f1 ≤ f2 ≤ . . . ≤ fn

Activities ai and aj (i < j) are compatible if their intervals do not
overlap, that is ai ends before aj �nishes.

We want to select (accept) the largest set of mutually compatible
activities.

{a3, a9, a11} consists of mutually compatible activities. But
{a1, a4, a8, a11} is an even larger (thus better) such subset.

19 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Activity Selection Problem

We have a set S = {a1, a2, . . . , an} of n. Activity ai has a start time
si and a �nish time fi , where 0 ≤ si < fi .

Activities are sorted in monotonically increasing order of �nish time:
f1 ≤ f2 ≤ . . . ≤ fn

Activities ai and aj (i < j) are compatible if their intervals do not
overlap, that is ai ends before aj �nishes.

We want to select (accept) the largest set of mutually compatible
activities.

{a3, a9, a11} consists of mutually compatible activities. But
{a1, a4, a8, a11} is an even larger (thus better) such subset.

19 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Subproblem Optimality

Trying a DP approach: Let Sij the set of activities that start after ai
�nishes and that �nish before aj starts.

If the optimal solution for Sij contains ak , then it must also include
optimal solutions to the two subproblems for Sik and Skj .

If we denote the size of an optimal solution for the set Sij by c[i , j],
then we have:

20 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Subproblem Optimality

Trying a DP approach: Let Sij the set of activities that start after ai
�nishes and that �nish before aj starts.

If the optimal solution for Sij contains ak , then it must also include
optimal solutions to the two subproblems for Sik and Skj .

If we denote the size of an optimal solution for the set Sij by c[i , j],
then we have:

Si

ak

Sj

20 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Subproblem Optimality

Trying a DP approach: Let Sij the set of activities that start after ai
�nishes and that �nish before aj starts.

If the optimal solution for Sij contains ak , then it must also include
optimal solutions to the two subproblems for Sik and Skj .

If we denote the size of an optimal solution for the set Sij by c[i , j],
then we have:

Si

ak

Sj
Sik Skj

20 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Subproblem Optimality

Trying a DP approach: Let Sij the set of activities that start after ai
�nishes and that �nish before aj starts.

If the optimal solution for Sij contains ak , then it must also include
optimal solutions to the two subproblems for Sik and Skj .

If we denote the size of an optimal solution for the set Sij by c[i , j],
then we have:

Si

ak

Sj
Sik Skj

20 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy-Choice Property

Greedy choice: Select activity ak that ends earliest!

There is an optimal solution that contains ak :

For the sake of contradiction, suppose no optimal solution contains
ak , and let X be any optimal set of activities (X does not contain
ak).

If X does not contain any interval that intersect ak , we can simply
add ak to X to get a better solution; this contradicts optimality of
ak .
If X contains an ak′ which intersects ak , replace ak with ak′ in X
→ since ak ends earlier than a′k all activities in X − {ak′} are
compatible with ak .

ak
ak′

21 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Algorithm

Since both subproblem optimality and greedy-choice property hold,
we can devise a simple greedy algorithm which repeatedly applies
the greedy choice.

Recall that f1 ≤ f2 ≤ . . . ≤ fn

a1
a2

a3

a4

a5

a6

a7

a8 a9

a10
a11

22 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Algorithm

Since both subproblem optimality and greedy-choice property hold,
we can devise a simple greedy algorithm which repeatedly applies
the greedy choice.

Recall that f1 ≤ f2 ≤ . . . ≤ fn

a1
a2

a3

a4

a5

a6

a7

a8 a9

a10
a11

22 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Algorithm

Since both subproblem optimality and greedy-choice property hold,
we can devise a simple greedy algorithm which repeatedly applies
the greedy choice.

Recall that f1 ≤ f2 ≤ . . . ≤ fn

a1
a2

a3

a4

a5

a6

a7

a8 a9

a10
a11

22 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Algorithm

Since both subproblem optimality and greedy-choice property hold,
we can devise a simple greedy algorithm which repeatedly applies
the greedy choice.

Recall that f1 ≤ f2 ≤ . . . ≤ fn

a1
a2

a3

a4

a5

a6

a7

a8 a9

a10
a11

22 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Algorithm

Since both subproblem optimality and greedy-choice property hold,
we can devise a simple greedy algorithm which repeatedly applies
the greedy choice.

Recall that f1 ≤ f2 ≤ . . . ≤ fn

a1
a2

a3

a4

a5

a6

a7

a8 a9

a10
a11

22 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Algorithm

Since both subproblem optimality and greedy-choice property hold,
we can devise a simple greedy algorithm which repeatedly applies
the greedy choice.

Recall that f1 ≤ f2 ≤ . . . ≤ fn

a1
a2

a3

a4

a5

a6

a7

a8 a9

a10
a11

22 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Knapsack Problem

The input is a set of items a1, . . . , an; item ai has a size si and a
value vi .

The goal is to place items of total size at most S such that sum of
the value of itedwqms in the knapsack is maximized.

In the 0-1 knapsack problem, we have to accept or reject each
item.

In the example below, where S = 15, the optimal strategy is to do
parts A, B, F, and G for a total of 34 points.

In the fractional knapsack, we can accept fractions of each item.

Here, the optimal solution is (1,A), (1,B), (1,C), (1/6,D), (1,G),
for a total value of 7+ 9+ 5+ 2+ 12 = 35 and total size of
3+ 4+ 2+ 1+ 5 = 15.

23 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Strategy

Sort items by their value-to-size ratio, process items in the sorted
order, and accept full fraction of an item as long as it �ts (�rst A,
then B, etc.); for the last item, accept a fraction to completely �ll
the knapsack.

For 0-1 knapsack, this selects C(2.5),G(2.4),A(2.33), and B(2.25)
for a pro�t of 33 (which is not optimal because {A,B,F ,G} has
pro�t 34.
For factional knpasack, this selects
(1,C), (1,G), (1,A), (1,B), (1/6,D).

24 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Framework

Fractional knapsack has Optimal substructure: an optimal solution
to the problem contains within it optimal solutions to subproblems.

If we know a fraction f1 of the �rst items a1 is accepted, we know
the rest of the items should be optimally packed in a space
S − f1size(a1).

25 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Framework

Fractional knapsack has the Greedy-choice property

There is an optimal solution that takes the item x with maximum
frequency fmax . Let d denote the weight-to-size ratio of x . Here, we
have x = C and d = 2.5.

Consider any solution O which takes a smaller frequency of x , say
f ′ < fmax , e.g., O′ = (0.9,C), (1,G), (1,A), (1,B), (0.26̄,D).
We increase share of x in O from f ′ to fmax , e.g., from 0.9 to 1 in
the above example.
To make room for a more fraction of x , we must decrease share of
any set of other items (say with density d ′). In the example above,
the density of A may be decreased from 1 to 0.9.
The total value increases, by (f ′ − fmax)(d − d ′) is non-negative,
e.g., 0.1(2.5− 2.25) > 0, i.e., the updated solution with greedy
choice property is no worse than O.

26 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Framework

Fractional knapsack has the Greedy-choice property

There is an optimal solution that takes the item x with maximum
frequency fmax . Let d denote the weight-to-size ratio of x . Here, we
have x = C and d = 2.5.

Consider any solution O which takes a smaller frequency of x , say
f ′ < fmax , e.g., O′ = (0.9,C), (1,G), (1,A), (1,B), (0.26̄,D).

We increase share of x in O from f ′ to fmax , e.g., from 0.9 to 1 in
the above example.
To make room for a more fraction of x , we must decrease share of
any set of other items (say with density d ′). In the example above,
the density of A may be decreased from 1 to 0.9.
The total value increases, by (f ′ − fmax)(d − d ′) is non-negative,
e.g., 0.1(2.5− 2.25) > 0, i.e., the updated solution with greedy
choice property is no worse than O.

26 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Framework

Fractional knapsack has the Greedy-choice property

There is an optimal solution that takes the item x with maximum
frequency fmax . Let d denote the weight-to-size ratio of x . Here, we
have x = C and d = 2.5.

Consider any solution O which takes a smaller frequency of x , say
f ′ < fmax , e.g., O′ = (0.9,C), (1,G), (1,A), (1,B), (0.26̄,D).
We increase share of x in O from f ′ to fmax , e.g., from 0.9 to 1 in
the above example.
To make room for a more fraction of x , we must decrease share of
any set of other items (say with density d ′). In the example above,
the density of A may be decreased from 1 to 0.9.
The total value increases, by (f ′ − fmax)(d − d ′) is non-negative,
e.g., 0.1(2.5− 2.25) > 0, i.e., the updated solution with greedy
choice property is no worse than O.

26 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Algorithms Summary

Dynamic programming, is a powerful tool that applies for all
problems with optimal substructure. But it is an overkill sometimes,
for problems that have greedy-choice property.

Greedy algorithm are �greedy" for local optimization with the hope
it will lead to a global optimal solution, not always, but in many
situations, it works.

Typical greedy algorithms that you must know:

Hu�man encoding
Prim's algorithm for Minimum Spanning Tree: at each time add a
new node which is closest to the existing subtree.
Kruskal's algorithm: at each time, add the edge with minimum
weight which will not create cycle after added.
Dijkstra's algorithm Single source shortest path.

27 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Algorithms Summary

Dynamic programming, is a powerful tool that applies for all
problems with optimal substructure. But it is an overkill sometimes,
for problems that have greedy-choice property.

Greedy algorithm are �greedy" for local optimization with the hope
it will lead to a global optimal solution, not always, but in many
situations, it works.

Typical greedy algorithms that you must know:

Hu�man encoding
Prim's algorithm for Minimum Spanning Tree: at each time add a
new node which is closest to the existing subtree.
Kruskal's algorithm: at each time, add the edge with minimum
weight which will not create cycle after added.
Dijkstra's algorithm Single source shortest path.

27 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Algorithms Summary

Dynamic programming, is a powerful tool that applies for all
problems with optimal substructure. But it is an overkill sometimes,
for problems that have greedy-choice property.

Greedy algorithm are �greedy" for local optimization with the hope
it will lead to a global optimal solution, not always, but in many
situations, it works.

Typical greedy algorithms that you must know:

Hu�man encoding
Prim's algorithm for Minimum Spanning Tree: at each time add a
new node which is closest to the existing subtree.
Kruskal's algorithm: at each time, add the edge with minimum
weight which will not create cycle after added.
Dijkstra's algorithm Single source shortest path.

27 / 27
EECS 3101 - Design and Analysis of Algorithms

▲

	Overview
	Greedy Algorithms Overview
	Greedy Algorithms vs Dynamic Programming
	Huffman Coding
	 Encoding with Frequencies
	Encoding with Frequencies
	Encoding with Frequencies
	Prefix-Free Encoding/Decoding
	Building the Huffman Tree
	Building Huffman Example
	Alternatives to Greedy Choice
	Activity Selection Problem
	Subproblem Optimality
	Greedy-Choice Property
	Greedy Algorithm
	Knapsack Problem
	Greedy Strategy
	Greedy Framework
	Greedy Framework
	Greedy Algorithms Summary

