

EECS 3101 - Design and Analysis of Algorithms

Shahin Kamali

Topic 5 - Greedy Algorithms

- Greedy Algorithms & Applications
- Activity-selection problem
- Huffman coding
- Fractional Knapsack

Greedy Algorithms Overview

- A greedy algorithm always makes the choice that looks best at the moment.
 - it makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution.
 - Dynamic Programming applies when subproblems overlap, i.e., they share subsubproblems!

Greedy Algorithms Overview

- A greedy algorithm always makes the choice that looks best at the moment.
 - it makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution.
 - Dynamic Programming applies when subproblems overlap, i.e., they share subsubproblems!
- Greedy algorithms do not always yield optimal solutions, but for many problems they do, and sometime lead to approximation algorithms.

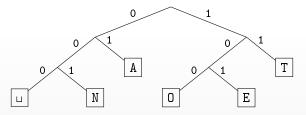
Greedy Algorithms vs Dynamic Pro-gramming

- Dynamic programming works by providing multiple candidate solutions for a problem (given by optimal solutions for the subproblem) and taking the best candidate.
- Greedy algorithms are special instances where only one candidate (given by the greedy choice) results in an optimal solution!
 - If this is the case for a problem, the greedy solution gives the optimal solution quicker!

Huffman Coding

- We want to create "codes" for different characters from a source.
 - More frequent characters, e.g., 'A' should get a smaller code than less frequent ones, e.g., 'q'.
- Source alphabet is arbitrary (say $\Sigma),$ coded alphabet is $\{0,1\}$
- We build a binary tree to store the decoding dictionary D
- Each character of Σ is a leaf of the trie

 $\mathsf{Example:} \ \Sigma = \{\mathtt{AENOT}_{\sqcup}\}$



- Consider a text with 100k characters over alphabet $\Sigma = \{a, b, c, d, e, f\}$. We want to store it in binary, using a fixed **codeword** for each character.
- We scan and see the following frequencies for characters.

	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5

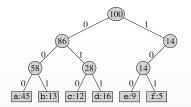
• Questions: how should we define codewords for characters to minimize the total length of the codes for (all characters of) the text?

Encoding with Frequencies

Option 1: Assign a fixed-length code to each character. The fixed length of the codes will be [log |Σ|] = [log 6] = 3.

	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101

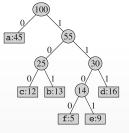
• This code requires $3 \times 100k = 300k$ bits to code the entire file. Can we do better?



Encoding with Frequencies

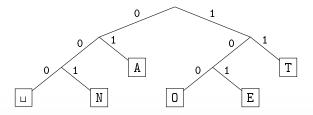
• **Option 2**: Assign a variable-length code to each character by giving frequent characters short codewords and infrequent characters long codewords.

	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100



Prefix-Free Encoding/Decoding

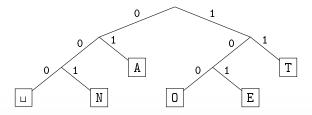
- Binary trees that represent codes are **prefix-free** in the sense that the code for a character *c* is not the prefix of a code for a character *c'*.
 - There is always an optimal encoding which is prefix-free.
 - Prefix-free codes are easy to decode!



- Encode ANuANT
- Decode 111000001010111

Prefix-Free Encoding/Decoding

- Binary trees that represent codes are **prefix-free** in the sense that the code for a character *c* is not the prefix of a code for a character *c'*.
 - There is always an optimal encoding which is prefix-free.
 - Prefix-free codes are easy to decode!



- Encode $AN_{\sqcup}ANT \rightarrow 010010000100111$
- Decode 111000001010111 \rightarrow TO_LEAT

Building the Huffman Tree

- For a given source text *S*, how to determine the "best" tree which minimizes the length of *C*?
 - ${f 0}$ Determine the frequency of each character $c\in\Sigma$ in S
 - Make |∑| height-0 trees holding each character c ∈ Σ.
 Assign a "frequency" to each tree: sum of frequencies of all letters in tree (initially, these are just the character frequencies.)
 - Merge two trees with the least frequencies, new frequency is their sum

(corresponds to adding one bit to the encoding of each character)

- Repeat Step 3 until there is only 1 tree left; this is D.
- What data structure should we store the trees in to make this efficient?

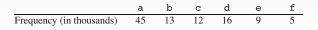
Building the Huffman Tree

- For a given source text *S*, how to determine the "best" tree which minimizes the length of *C*?
 - ${f 0}$ Determine the frequency of each character $c\in\Sigma$ in S
 - Make |∑| height-0 trees holding each character c ∈ Σ.
 Assign a "frequency" to each tree: sum of frequencies of all letters in tree (initially, these are just the character frequencies.)
 - Merge two trees with the least frequencies, new frequency is their sum

(corresponds to adding one bit to the encoding of each character)

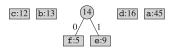
- Repeat Step 3 until there is only 1 tree left; this is D.
- What data structure should we store the trees in to make this efficient?

A min-ordered heap! Step 3 is two *delete-min*s and one *insert*

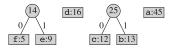


f:5	e:9	c :12	b:13	d:16	a:45

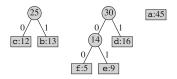
	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5



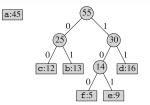
	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5



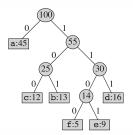
	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5



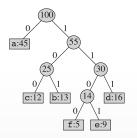
	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5



	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5



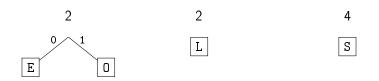
	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100



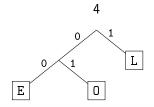
Character frequencies: E : 1, L : 2, O : 1, S : 4



Character frequencies: E : 1, L : 2, O : 1, S : 4



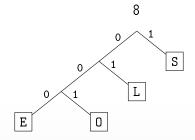
Character frequencies: E : 1, L : 2, O : 1, S : 4



4

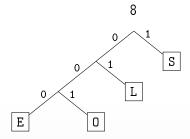
S

Character frequencies: E : 1, L : 2, O : 1, S : 4

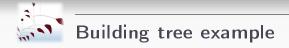


$\texttt{LOSSLESS} \rightarrow$

Character frequencies: E : 1, L : 2, O : 1, S : 4

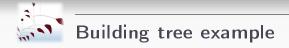


 $\texttt{LOSSLESS} \rightarrow \texttt{O1}$ <code>O01 1 1 01 000 1 1</code>



- It is possible to create alternative trees by merging trees other than the two with minimum frequencies.
 - Such trees, however, do not always the optimal solutions (shortest codes)!

Character frequencies: E: 1, L: 2, O: 1, S: 4

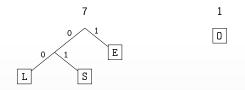


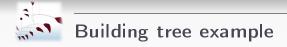
- It is possible to create alternative trees by merging trees other than the two with minimum frequencies.
 - Such trees, however, do not always the optimal solutions (shortest codes)!

 $Character\ frequencies:\ E:1, \quad L:2, \quad O:1, \quad S:4$

- It is possible to create alternative trees by merging trees other than the two with minimum frequencies.
 - Such trees, however, do not always the optimal solutions (shortest codes)!

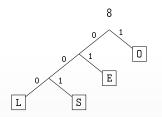
Character frequencies: E: 1, L: 2, O: 1, S: 4

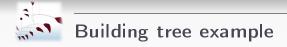




- It is possible to create alternative trees by merging trees other than the two with minimum frequencies.
 - Such trees, however, do not always the optimal solutions (shortest codes)!

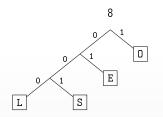
 $Character\ frequencies:\ E:1, \qquad L:2, \qquad O:1, \qquad S:4$





- It is possible to create alternative trees by merging trees other than the two with minimum frequencies.
 - Such trees, however, do not always the optimal solutions (shortest codes)!

Character frequencies: E: 1, L: 2, O: 1, S: 4



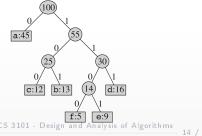
 $\texttt{LOSSLESS} \rightarrow \texttt{OOO}$ 1 001 001 000 01 001 001

Huffman Tree is Greedy

- The cost of a tree is the total length of the code for it.
- Whenever an algorithm merges two trees, its cost is increased by frequency of the merged tree: the codelength for all characters in the leaves of the two trees increase by 1.
 - Here the cost is

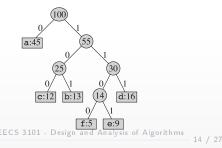
(5+9) + (12+13) + (14+16) + (25+30) + (45+55) = 224k

• This code requires $(45 \cdot 1 + 13 \cdot 3 + 12 \cdot 3 + 16 \cdot 3 + 9 \cdot 4 + 5 \cdot 4) \cdot 1,000 = 224k$ bits. • This code requires



Huffman Tree is Greedy

- The cost of a tree is the total length of the code for it.
- Whenever an algorithm merges two trees, its cost is increased by frequency of the merged tree: the codelength for all characters in the leaves of the two trees increase by 1.
 - Here the cost is (5+9) + (12+13) + (14+16) + (25+30) + (45+55) = 224k
- Huffman tree is greedy in the sense that it selects the merger with minimum cost!



Greedy Algorithms Framework

- A greedy algorithm solves a problem sequentially, by making greedy choices that seems best at the moment.
- To ensure optimality by a greedy algorithm, a problem must have two properties:
 - Optimal substructure: an optimal solution to the problem contains within it optimal solutions to subproblems.
 - The optimal solution can be described recursively as a function of optimal solutions for subproblems.
 - This property is necessary for dynamic programming solutions as well.
 - Greedy-choice property: we can assemble a globally optimal solution by making locally optimal (greedy) choices.
 - We make the choice that looks best in the current problem, without considering results from subproblems.

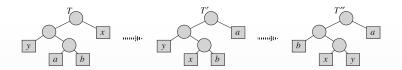
Greedy vs Dynamic Programming

- In both paradigms, the optimal substructure property is present.
- In Dynamic Programming, there are often a few choices (candidates) at each step, and making the optimal choice requires looking at the outcome (value) of the optimal solution for the subproblems.
- In problems with Greedy-choice property, one candidate, selected by the greedy choice, results in an optimal solution, regardless of the value of the subproblems!

- At each step, we must select two trees to merge:
 - Optimal substructure property: Given k trees, we have $\binom{n}{2}$ ways to choose two to merge.
 - If we choose two trees t_1 and t_2 to merge, the cost of this choice is $freq(t_1) + freq(t_2)$ plus the cost of merging the updated set of trees (in which t_1 and t_2 are merged with one merged tree).
 - A Dynamic Programming solution: One can try all possible candidates and take the one with minimum cost among them.

Huffman Code Revisit

- At each step, we must select two trees to merge:
 - Greedy-choice property: It is best to choose the two trees with lowest frequencies to merge.
 - Let x and y be the two trees with lowest frequencies.
 - For the sake of contradiction, suppose there is an optimal tree T' where two other nodes a and b are merged before x and y.
 - Replacing x with a and y with b results in a better tree than T'' with a cost no more than T, where x and y are merged first!



Activity Selection Problem

- We have a set $S = \{a_1, a_2, ..., a_n\}$ of n. Activity a_i has a start time s_i and a finish time f_i , where $0 \le s_i < f_i$.
- Activities are sorted in monotonically increasing order of finish time: $f_1 \leq f_2 \leq \ldots \leq f_n$

i	1	2	3	4	5	6	7	8	9	10	11
Si	1	3	0	5	3	5	6	8	8	2 14	12
fi	4	5	6	7	9	9	10	11	12	14	16

Activity Selection Problem

- We have a set $S = \{a_1, a_2, ..., a_n\}$ of n. Activity a_i has a start time s_i and a finish time f_i , where $0 \le s_i < f_i$.
- Activities are sorted in monotonically increasing order of finish time: $f_1 \leq f_2 \leq \ldots \leq f_n$
- Activities a_i and a_j (i < j) are compatible if their intervals do not overlap, that is a_i ends before a_j finishes.

i	1	2	3	4	5	6	7	8	9	10	11
Si	1	3	0	5	3	5	6	8	8	2 14	12
fi	4	5	6	7	9	9	10	11	12	14	16

Activity Selection Problem

- We have a set $S = \{a_1, a_2, ..., a_n\}$ of n. Activity a_i has a start time s_i and a finish time f_i , where $0 \le s_i < f_i$.
- Activities are sorted in monotonically increasing order of finish time: $f_1 \leq f_2 \leq \ldots \leq f_n$
- Activities a_i and a_j (i < j) are compatible if their intervals do not overlap, that is a_i ends before a_j finishes.
- We want to select (accept) the largest set of mutually compatible activities.
 - $\{a_3, a_9, a_{11}\}$ consists of mutually compatible activities. But $\{a_1, a_4, a_8, a_{11}\}$ is an even larger (thus better) such subset.

i	1	2	3	4	5	6	7	8	9	10	11
Si	1	3	0	5	3	5	6	8	8	2	12 16
f_i	4	5	6	7	9	9	10	11	12	14	16

- Trying a DP approach: Let S_{ij} the set of activities that start after a_i finishes and that finish before a_j starts.
- If the optimal solution for S_{ij} contains a_k , then it must also include optimal solutions to the two subproblems for S_{ik} and S_{kj} .

- Trying a DP approach: Let S_{ij} the set of activities that start after a_i finishes and that finish before a_j starts.
- If the optimal solution for S_{ij} contains a_k , then it must also include optimal solutions to the two subproblems for S_{ik} and S_{kj} .

- Trying a DP approach: Let S_{ij} the set of activities that start after a_i finishes and that finish before a_j starts.
- If the optimal solution for S_{ij} contains a_k , then it must also include optimal solutions to the two subproblems for S_{ik} and S_{kj} .

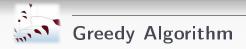
Subproblem Optimality

- Trying a DP approach: Let S_{ij} the set of activities that start after a_i finishes and that finish before a_j starts.
- If the optimal solution for S_{ij} contains a_k , then it must also include optimal solutions to the two subproblems for S_{ik} and S_{kj} .
- If we denote the size of an optimal solution for the set S_{ij} by c[i, j], then we have:

$$c[i, j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \{c[i, k] + c[k, j] + 1\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$

Greedy-Choice Property

- Greedy choice: Select activity ak that ends earliest!
- There is an optimal solution that contains a_k :
 - For the sake of contradiction, suppose no optimal solution contains a_k , and let X be any optimal set of activities (X does not contain a_k).
 - If X does not contain any interval that intersect a_k , we can simply add a_k to X to get a better solution; this contradicts optimality of a_k .
 - If X contains an a_{k'} which intersects a_k, replace a_k with a_{k'} in X
 → since a_k ends earlier than a'_k all activities in X {a_{k'}} are
 compatible with a_k.



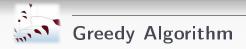
- Since both subproblem optimality and greedy-choice property hold, we can devise a simple greedy algorithm which repeatedly applies the greedy choice.
- Recall that $f_1 \leq f_2 \leq \ldots \leq f_n$

```
GREEDY-ACTIVITY-SELECTOR (s, f)
```

1
$$n = s.length$$

2 $A = \{a_1\}$
3 $k = 1$
4 for $m = 2$ to n
5 if $s[m] \ge f[k]$
6 $A = A \cup \{a_m\}$
7 $k = m$
8 return A

$$- \underbrace{\begin{array}{c} a_1 \\ a_2 \end{array}}_{a_3} \underbrace{\begin{array}{c} a_6 \\ a_5 \end{array}}_{a_7} \underbrace{\begin{array}{c} a_6 \\ a_7 \end{array}}_{a_7} \underbrace{\begin{array}{c} a_9 \\ a_{10} \end{array}}_{a_{10}} a_{11}$$



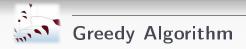
- Since both subproblem optimality and greedy-choice property hold, we can devise a simple greedy algorithm which repeatedly applies the greedy choice.
- Recall that $f_1 \leq f_2 \leq \ldots \leq f_n$

```
GREEDY-ACTIVITY-SELECTOR (s, f)
```

1
$$n = s.length$$

2 $A = \{a_1\}$
3 $k = 1$
4 for $m = 2$ to n
5 if $s[m] \ge f[k]$
6 $A = A \cup \{a_m\}$
7 $k = m$
8 return A

$$\underbrace{\begin{array}{c} \underline{a_1} \\ \underline{a_2} \\ \overline{a_3} \\ a_5 \end{array}}_{a_7} \underbrace{\begin{array}{c} \underline{a_6} \\ \underline{a_6} \\ a_7 \\ \overline{a_{10}} \\ a_{10} \\ a_{11} \end{array}}_{a_{10}} \underbrace{\begin{array}{c} \underline{a_9} \\ \underline{a_9} \\ \underline{a_{10}} \\ a_{11} \\$$



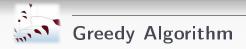
- Since both subproblem optimality and greedy-choice property hold, we can devise a simple greedy algorithm which repeatedly applies the greedy choice.
- Recall that $f_1 \leq f_2 \leq \ldots \leq f_n$

```
GREEDY-ACTIVITY-SELECTOR (s, f)
```

1
$$n = s.length$$

2 $A = \{a_1\}$
3 $k = 1$
4 for $m = 2$ to n
5 if $s[m] \ge f[k]$
6 $A = A \cup \{a_m\}$
7 $k = m$
8 return A

$$- \underbrace{\frac{a_1}{a_2}}_{a_3} \underbrace{a_4}_{a_5} \underbrace{a_6}_{a_7} \underbrace{a_8}_{a_7} \underbrace{a_9}_{a_{10}} a_{11}$$

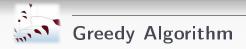


- Since both subproblem optimality and greedy-choice property hold, we can devise a simple greedy algorithm which repeatedly applies the greedy choice.
- Recall that $f_1 \leq f_2 \leq \ldots \leq f_n$

```
GREEDY-ACTIVITY-SELECTOR (s, f)
```

1
$$n = s.length$$

2 $A = \{a_1\}$
3 $k = 1$
4 for $m = 2$ to n
5 if $s[m] \ge f[k]$
6 $A = A \cup \{a_m\}$
7 $k = m$
8 return A

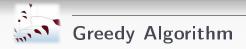


- Since both subproblem optimality and greedy-choice property hold, we can devise a simple greedy algorithm which repeatedly applies the greedy choice.
- Recall that $f_1 \leq f_2 \leq \ldots \leq f_n$

```
GREEDY-ACTIVITY-SELECTOR (s, f)
```

1
$$n = s.length$$

2 $A = \{a_1\}$
3 $k = 1$
4 for $m = 2$ to n
5 if $s[m] \ge f[k]$
6 $A = A \cup \{a_m\}$
7 $k = m$
8 return A



- Since both subproblem optimality and greedy-choice property hold, we can devise a simple greedy algorithm which repeatedly applies the greedy choice.
- Recall that $f_1 \leq f_2 \leq \ldots \leq f_n$

```
GREEDY-ACTIVITY-SELECTOR (s, f)
```

1
$$n = s.length$$

2 $A = \{a_1\}$
3 $k = 1$
4 for $m = 2$ to n
5 if $s[m] \ge f[k]$
6 $A = A \cup \{a_m\}$
7 $k = m$
8 return A

Knapsack Problem

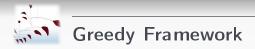
- The input is a set of items a_1, \ldots, a_n ; item a_i has a size s_i and a value v_i .
- The goal is to place items of total size at most S such that sum of the value of itedwqms in the knapsack is maximized.
- In the 0-1 knapsack problem, we have to accept or reject each item.
 - In the example below, where S = 15, the optimal strategy is to do parts A, B, F, and G for a total of 34 points.
- In the fractional knapsack, we can accept fractions of each item.
 - Here, the optimal solution is (1, A), (1, B), (1, C), (1/6, D), (1, G), for a total value of 7 + 9 + 5 + 2 + 12 = 35 and total size of 3 + 4 + 2 + 1 + 5 = 15.

	A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	\mathbf{G}
value					14	6	12
Size	3	4	2	6	7	3	5

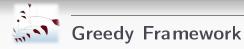
Greedy Strategy

- Sort items by their value-to-size ratio, process items in the sorted order, and accept full fraction of an item as long as it fits (first *A*, then *B*, etc.); for the last item, accept a fraction to completely fill the knapsack.
 - For 0-1 knapsack, this selects C(2.5), G(2.4), A(2.33), and B(2.25) for a profit of 33 (which is not optimal because $\{A, B, F, G\}$ has profit 34.
 - For factional knpasack, this selects (1, C), (1, G), (1, A), (1, B), (1/6, D).

value Size	A	В	С	D	Ε	\mathbf{F}	G
value	7	9	5	12	14	6	12
Size	3	4	2	6	7	3	5
	7/3	9/4	5/2	12/6	14/7	6/3	12/5
=	2.33	2.25	2.5	2	2	2	2.4



- Fractional knapsack has **Optimal substructure**: an optimal solution to the problem contains within it optimal solutions to subproblems.
 - If we know a fraction f_1 of the first items a_1 is accepted, we know the rest of the items should be optimally packed in a space $S f_1 size(a_1)$.



- Fractional knapsack has the Greedy-choice property
 - There is an optimal solution that takes the item x with maximum frequency f_{max} . Let d denote the weight-to-size ratio of x. Here, we have x = C and d = 2.5.

	А	В	\mathbf{C}	D	Е	\mathbf{F}	\mathbf{G}
value	7	9	5	12	14	6	12
value Size	3	4	2	6	7	3	5
	7/3	9/4	5/2	12/6	14/7	6/3	12/5
=	2.33	3 2.25	2.5	2	2	2	2.4

Greedy Framework

- Fractional knapsack has the Greedy-choice property
 - There is an optimal solution that takes the item x with maximum frequency f_{max} . Let d denote the weight-to-size ratio of x. Here, we have x = C and d = 2.5.
 - Consider any solution O which takes a smaller frequency of x, say $f' < f_{max}$, e.g., $O' = (0.9, C), (1, G), (1, A), (1, B), (0.2\overline{6}, D)$.

	А	В	\mathbf{C}	D	Е	\mathbf{F}	\mathbf{G}
value	7	9	5	12	14	6	12
value Size	3	4	2	6	7	3	5
				12/6			
=	2.33	3 2.25	2.5	2	2	2	2.4

Greedy Framework

- Fractional knapsack has the Greedy-choice property
 - There is an optimal solution that takes the item x with maximum frequency f_{max} . Let d denote the weight-to-size ratio of x. Here, we have x = C and d = 2.5.
 - Consider any solution O which takes a smaller frequency of x, say $f' < f_{max}$, e.g., $O' = (0.9, C), (1, G), (1, A), (1, B), (0.2\overline{6}, D)$.
 - We increase share of x in O from f' to f_{max} , e.g., from 0.9 to 1 in the above example.
 - To make room for a more fraction of x, we must decrease share of any set of other items (say with density d'). In the example above, the density of A may be decreased from 1 to 0.9.
 - The total value increases, by $(f' f_{max})(d d')$ is non-negative, e.g., 0.1(2.5 - 2.25) > 0, i.e., the updated solution with greedy choice property is no worse than O.

	Α	В	\mathbf{C}	D	Е	\mathbf{F}	\mathbf{G}
value	7	9	5	12	14	6	12
value Size	3	4	2	6	7	3	5
				12/6			
=	2.33	2.25	2.5	2	2	2	2.4

Greedy Algorithms Summary

• Dynamic programming, is a powerful tool that applies for all problems with optimal substructure. But it is an overkill sometimes, for problems that have greedy-choice property.

Greedy Algorithms Summary

- Dynamic programming, is a powerful tool that applies for all problems with optimal substructure. But it is an overkill sometimes, for problems that have greedy-choice property.
- Greedy algorithm are "greedy" for local optimization with the hope it will lead to a global optimal solution, not always, but in many situations, it works.

Greedy Algorithms Summary

- Dynamic programming, is a powerful tool that applies for all problems with optimal substructure. But it is an overkill sometimes, for problems that have greedy-choice property.
- Greedy algorithm are "greedy" for local optimization with the hope it will lead to a global optimal solution, not always, but in many situations, it works.
- Typical greedy algorithms that you must know:
 - Huffman encoding
 - Prim's algorithm for Minimum Spanning Tree: at each time add a new node which is closest to the existing subtree.
 - Kruskal's algorithm: at each time, add the edge with minimum weight which will not create cycle after added.
 - Dijkstra's algorithm Single source shortest path.