
EECS 3101 - Design and Analysis of

Algorithms

Shahin Kamali

Topic 4 - Dynamic Programming

1 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Overview

Dynamic Programming Framework & Applications

Rod Cutting

Matrix Chain Multiplication

Longest Common Subsequence

2 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming Overview

Dynamic Programming is similar to Divide & Conquer in the
sense that it solves a problem by combining the solutions for
subproblems.

Divide & Conquer solves subproblems independently.
Dynamic Programming applies when subproblems overlap, i.e., they
share subsubproblems!

Dynamic Programming solves each subsubproblem just once and
then saves it in a table

We avoid work of recomputing answers for subsubproblems.
Programming in this context refers to a tabular method, not to
writing computer code.

3 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming Overview

Dynamic Programming is similar to Divide & Conquer in the
sense that it solves a problem by combining the solutions for
subproblems.

Divide & Conquer solves subproblems independently.
Dynamic Programming applies when subproblems overlap, i.e., they
share subsubproblems!

Dynamic Programming solves each subsubproblem just once and
then saves it in a table

We avoid work of recomputing answers for subsubproblems.
Programming in this context refers to a tabular method, not to
writing computer code.

3 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming Overview

Steps for designing a Dynamic Programming algorithm:

1 Characterize the structure of an optimal solution.
2 Recursively de�ne the value of an optimal solution.
3 Compute the value of an optimal solution, typically in a bottom-up

fashion, and store results in a table.
4 Construct an optimal solution from computed information in the

table.

4 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Rod Cutting

You have a rod of length n, and you want to cut up the rod and sell
the pieces ina way that maximizes the total amount of money you
get. A piece of length i is worth pi dollars.

E.g., for n = 4 and the following length/value table, we have 8
possible ways of cutting the rod, and the optimal cutting has value
10.

5 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Inspecting the Problem

How many ways are there to cut up a rod of length n?

Roughly 2n−1, because there are n − 1 places where we can choose
to make cuts, and at each place, we either make a cut or we do not
make a cut.
An exhaustive algorithm which tries all partitions runs in
exponential time.

6 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Inspecting the Problem

How many ways are there to cut up a rod of length n?

Roughly 2n−1, because there are n − 1 places where we can choose
to make cuts, and at each place, we either make a cut or we do not
make a cut.

An exhaustive algorithm which tries all partitions runs in
exponential time.

6 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Inspecting the Problem

How many ways are there to cut up a rod of length n?

Roughly 2n−1, because there are n − 1 places where we can choose
to make cuts, and at each place, we either make a cut or we do not
make a cut.
An exhaustive algorithm which tries all partitions runs in
exponential time.

6 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Basic Approach

Rod cutting is a typical optimization problem, where we want to
�nd to maximize a pro�t (or minimize a cost).

For optimization problems, �rst, we ask �what is the maximum
amount of pro�t we can get? (or minimum cost)"

Later we will extend the algorithm to give us the actual rod
decomposition that leads to that maximum value.

This general approach applies to almost all Dynamic

Programming algorithms.

7 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Basic Approach

Rod cutting is a typical optimization problem, where we want to
�nd to maximize a pro�t (or minimize a cost).

For optimization problems, �rst, we ask �what is the maximum
amount of pro�t we can get? (or minimum cost)"

Later we will extend the algorithm to give us the actual rod
decomposition that leads to that maximum value.

This general approach applies to almost all Dynamic

Programming algorithms.

7 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Basic Approach

Rod cutting is a typical optimization problem, where we want to
�nd to maximize a pro�t (or minimize a cost).

For optimization problems, �rst, we ask �what is the maximum
amount of pro�t we can get? (or minimum cost)"

Later we will extend the algorithm to give us the actual rod
decomposition that leads to that maximum value.

This general approach applies to almost all Dynamic

Programming algorithms.

7 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Formulation

Let ri be the maximum amount of money you can get with a rod of
size i . We can view the problem recursively as follows:

First, cut a piece o� the left end of the rod, and sell it.
Then, �nd the optimal way to cut the remainder of the rod.

Now we don't know how large a piece we should cut o� → try all
possible cases.

First, try cutting a piece of length 1, and combining it with the
optimal way to cut a rod of length n − 1.
Then try cutting a piece of length 2, and combining it with the
optimal way to cut a rod of length n − 2, and so on.
We try all the possible lengths and then pick the best one. We end
up with the following: (when i = n, the rod is not cut at all)

rn = max
1≤i≤n

{pi + rn−i} r0 = 0

8 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Formulation

Let ri be the maximum amount of money you can get with a rod of
size i . We can view the problem recursively as follows:

First, cut a piece o� the left end of the rod, and sell it.
Then, �nd the optimal way to cut the remainder of the rod.

Now we don't know how large a piece we should cut o� → try all
possible cases.

First, try cutting a piece of length 1, and combining it with the
optimal way to cut a rod of length n − 1.

Then try cutting a piece of length 2, and combining it with the
optimal way to cut a rod of length n − 2, and so on.
We try all the possible lengths and then pick the best one. We end
up with the following: (when i = n, the rod is not cut at all)

rn = max
1≤i≤n

{pi + rn−i} r0 = 0

8 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Formulation

Let ri be the maximum amount of money you can get with a rod of
size i . We can view the problem recursively as follows:

First, cut a piece o� the left end of the rod, and sell it.
Then, �nd the optimal way to cut the remainder of the rod.

Now we don't know how large a piece we should cut o� → try all
possible cases.

First, try cutting a piece of length 1, and combining it with the
optimal way to cut a rod of length n − 1.
Then try cutting a piece of length 2, and combining it with the
optimal

way to cut a rod of length n − 2, and so on.
We try all the possible lengths and then pick the best one. We end
up with the following: (when i = n, the rod is not cut at all)

rn = max
1≤i≤n

{pi + rn−i} r0 = 0

8 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Formulation

Let ri be the maximum amount of money you can get with a rod of
size i . We can view the problem recursively as follows:

First, cut a piece o� the left end of the rod, and sell it.
Then, �nd the optimal way to cut the remainder of the rod.

Now we don't know how large a piece we should cut o� → try all
possible cases.

First, try cutting a piece of length 1, and combining it with the
optimal way to cut a rod of length n − 1.
Then try cutting a piece of length 2, and combining it with the
optimal way to cut a rod of length n − 2, and so on.
We try all the possible lengths and then pick the best one. We end
up with the following: (when i = n, the rod is not cut at all)

rn = max
1≤i≤n

{pi + rn−i} r0 = 0

8 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Formulation

Let ri be the maximum amount of money you can get with a rod of
size i . We can view the problem recursively as follows:

First, cut a piece o� the left end of the rod, and sell it.
Then, �nd the optimal way to cut the remainder of the rod.

Now we don't know how large a piece we should cut o� → try all
possible cases.

First, try cutting a piece of length 1, and combining it with the
optimal way to cut a rod of length n − 1.
Then try cutting a piece of length 2, and combining it with the
optimal way to cut a rod of length n − 2, and so on.
We try all the possible lengths and then pick the best one. We end
up with the following: (when i = n, the rod is not cut at all)

rn = max
1≤i≤n

{pi + rn−i} r0 = 0

8 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Implementation

How should we compute rn = max
1≤i≤n

{pi + rn−i} r0 = 0?

The formula immediately translates into a recursive algorithm.

Is this good?

9 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Implementation

How should we compute rn = max
1≤i≤n

{pi + rn−i} r0 = 0?

The formula immediately translates into a recursive algorithm.

Is this good?

9 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Implementation

How should we compute rn = max
1≤i≤n

{pi + rn−i} r0 = 0?

There are many repeated computation in the recursion tree!

For the running time, we can write:

T (n) > 2T (n − 2) > 4T (n − 4) > . . . > 2n/2T (1)

= Ω(2n/2).

10 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Implementation

How should we compute rn = max
1≤i≤n

{pi + rn−i} r0 = 0?

There are many repeated computation in the recursion tree!

For the running time, we can write:

T (n) > 2T (n − 2) > 4T (n − 4) > . . . > 2n/2T (1)

= Ω(2n/2).

10 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

DP: Memoization (Top Down)

How should we compute rn = max
1≤i≤n

{pi + rn−i} r0 = 0?

We can store the result of the recursive calls, and if we need the
result in a future recursive call, we can use the precomputed value.
The answer will be stored in r [n].

Each subproblem is solved exactly once. For a subproblem of size i ,
we spend Θ(i) (we run through i iterations of the for loop) → The
running time is Θ(n) + Θ(n − 1) + . . .+Θ(1) = Θ(n2).

11 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

DP: Memoization (Top Down)

How should we compute rn = max
1≤i≤n

{pi + rn−i} r0 = 0?

We can store the result of the recursive calls, and if we need the
result in a future recursive call, we can use the precomputed value.
The answer will be stored in r [n].

Each subproblem is solved exactly once. For a subproblem of size i ,
we spend Θ(i) (we run through i iterations of the for loop) → The
running time is Θ(n) + Θ(n − 1) + . . .+Θ(1) = Θ(n2).

11 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

DP: Memoization (Bottom Up)

How should we compute rn = max
1≤i≤n

{pi + rn−i} r0 = 0?

We proactively compute the solutions for smaller rods �rst, knowing
that they will later be used to compute the solutions for larger rods.
The answer will be stored in r [n].

The running time is still Θ(n2).
Often the bottom up approach is simpler to write, and has less
overhead, because you don't have to keep a recursive call stack.

Most people will write the bottom up procedure when they

implement a dynamic programming algorithm.

12 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

DP: Memoization (Bottom Up)

How should we compute rn = max
1≤i≤n

{pi + rn−i} r0 = 0?

We proactively compute the solutions for smaller rods �rst, knowing
that they will later be used to compute the solutions for larger rods.
The answer will be stored in r [n].

The running time is still Θ(n2).

Often the bottom up approach is simpler to write, and has less
overhead, because you don't have to keep a recursive call stack.

Most people will write the bottom up procedure when they

implement a dynamic programming algorithm.

12 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

DP: Memoization (Bottom Up)

How should we compute rn = max
1≤i≤n

{pi + rn−i} r0 = 0?

We proactively compute the solutions for smaller rods �rst, knowing
that they will later be used to compute the solutions for larger rods.
The answer will be stored in r [n].

The running time is still Θ(n2).
Often the bottom up approach is simpler to write, and has less
overhead, because you don't have to keep a recursive call stack.
Most people will write the bottom up procedure when they

implement a dynamic programming algorithm.

12 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Reconstructing a solution

If we want to actually �nd the optimal way to split the rod,
instead of just the maximum pro�t we can get, we can create
another array s:

s[j] = i i� the best thing to do when we have a rod of length j is to
cut o� a piece of length i .
Using these values s[j], we can reconstruct the optimal rod
decomposition.

13 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

The Example Problem's Answer

For our example, the program produces this answer:

14 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic programming remarks

Optimal substructure: To solve a optimization problem using
dynamic programming, we must �rst characterize the structure of
an optimal solution.

Speci�cally, we must prove that we can create an optimal solution

to a problem using optimal solutions to smaller subproblems.

Then, we can store optimal solutions for all subproblems in a table
→ compute later elements in the table from earlier elements in the
table.

If the optimal solution to a problem might not require subproblem
solutions to be optimal, then we cannot use dynamic programming.

15 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic programming remarks

Optimal substructure: To solve a optimization problem using
dynamic programming, we must �rst characterize the structure of
an optimal solution.

Speci�cally, we must prove that we can create an optimal solution

to a problem using optimal solutions to smaller subproblems.

Then, we can store optimal solutions for all subproblems in a table
→ compute later elements in the table from earlier elements in the
table.
If the optimal solution to a problem might not require subproblem
solutions to be optimal, then we cannot use dynamic programming.

15 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic programming remarks

Overlapping Subproblems

For dynamic programming to be useful, the recursive algorithm
should require us to compute optimal solutions to the same
subproblems over and over again → Then we bene�t from just
computing them once and then using the results later.
In total, there should be a small number of distinct subproblems

(i.e. polynomial in the input size), even if there is an exponential
number of total subproblems.

16 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Longest common subsequence

We are given two sequences X and Y , and want to �nd the longest
possible sequence that is a subsequence of both X and Y .

E.g., for X = ABCBDAB and Y = BDCABA:

BCA is a common sequence of both X and Y .

BCBA is a longer sequence that is also common to both X and Y .
Both BCBA and BDAB are longest common subsequences, since
there are no common sequences of length 5 or greater

17 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Longest common subsequence

We are given two sequences X and Y , and want to �nd the longest
possible sequence that is a subsequence of both X and Y .

E.g., for X = ABCBDAB and Y = BDCABA:

BCA is a common sequence of both X and Y .
BCBA is a longer sequence that is also common to both X and Y .

Both BCBA and BDAB are longest common subsequences, since
there are no common sequences of length 5 or greater

17 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Longest common subsequence

We are given two sequences X and Y , and want to �nd the longest
possible sequence that is a subsequence of both X and Y .

E.g., for X = ABCBDAB and Y = BDCABA:

BCA is a common sequence of both X and Y .
BCBA is a longer sequence that is also common to both X and Y .
Both BCBA and BDAB are longest common subsequences, since
there are no common sequences of length 5 or greater

17 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Algorithms

if |X | = m, |Y | = n, then there are 2m subsequences of X ; we must
compare each with Y (n comparisons)

So the running time of the brute-force algorithm is O(n2m).

Notice that the LCS problem has optimal substructure: solutions of
subproblems are parts of the �nal solution → should we use
dynamic programming?

18 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Optimal substructures

The �rst step use dynamic programming is create an optimal
solution to this problem using optimal solutions to subproblems → a

recursive formulation of the optimal solution.

The hardest part is to decide what the subproblems are. For the
LCS we have two cases:

Case 1: The last elements of X and Y are equal.
Case 2: The last elements of X and Y are not equal.

19 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Optimal Formulation

Case 1: The last elements of X and Y are equal.

X = ABCBDAB and Y = BDCAB

.

Then the last element must both be part of the longest common
subsequence

We can chop both elements o� the ends of the subsequence (adding
them to a common subsequence) and �nd the longest common
subsequence of the smaller sequences.

The LCS of X = ABCBDAB and Y = BDCAB can be formed by
�nding the LCS of ABCBDA and BDCA, which is BDA, and adding
B to it, that is LCS of X and Y is BDAB.

20 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Optimal Formulation

Case 1: The last elements of X and Y are equal.

X = ABCBDAB and Y = BDCAB

.

Then the last element must both be part of the longest common
subsequence

We can chop both elements o� the ends of the subsequence (adding
them to a common subsequence) and �nd the longest common
subsequence of the smaller sequences.

The LCS of X = ABCBDAB and Y = BDCAB can be formed by
�nding the LCS of ABCBDA and BDCA, which is BDA, and adding
B to it, that is LCS of X and Y is BDAB.

20 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Optimal Formulation

Case 2: The last elements of X and Y are not equal.

X = ABCBDABA and Y = BDCAB

.

Either the last element of X or the last element of Y cannot be part
of the longest common subsequence.

we can �nd the LCS of X and a smaller version of Y in which the
last element is missing, or the LCS of Y and a smaller version of X
in which the last element is missing.

The LCS of X = ABCBDABA and Y = BDCAB can be formed by:

The LCS of ABCBDABA and BDCA, which is BCA.
The LCS of ABCBDAB and BDCAB, which is BDAB.
Taking the LCS with max length, i.e., BDAB.

21 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Optimal Formulation

Case 2: The last elements of X and Y are not equal.

X = ABCBDABA and Y = BDCAB

.

Either the last element of X or the last element of Y cannot be part
of the longest common subsequence.

we can �nd the LCS of X and a smaller version of Y in which the
last element is missing, or the LCS of Y and a smaller version of X
in which the last element is missing.

The LCS of X = ABCBDABA and Y = BDCAB can be formed by:

The LCS of ABCBDABA and BDCA, which is BCA.
The LCS of ABCBDAB and BDCAB, which is BDAB.
Taking the LCS with max length, i.e., BDAB.

21 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Solution

First we'll �nd the length of LCS. Later we'll modify the algorithm
to �nd LCS itself.

De�ne Xi , Yj to be the pre�xes of X and Y of length i and j ,
respectively.

De�ne c[i , j] to be the length of LCS of Xi and Yj Then the length
of LCS of X and Y will be c[m, n].

Since X0 and Y0 are empty strings, their LCS is always empty (i.e.
c[0, 0] = 0)
LCS of empty string and any other string is empty, so for every i
and j we have c[0, j] = c[i , 0] = 0.

22 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Solution

Optimal Substructure: we have characterized the optimal solution
recursively using optimal solutions to smaller problems.

Overlapping Subproblems: How many subproblems exist?

Each c[i , j] is associated with one sub-problem that asks for LCS of
Xi and Yj → There are Θ(m.n) subproblems.

23 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Solution

Using the recurrence, we can write the actual pseudocode.

We populate the table in a certain order, because some elements
depend on other elements of the table having already been
computed

24 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).

The remaining indices are �lled row by row.

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

0

0 0 0 0 0 0 0

0

0

0

0

0

0

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

1

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

2

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1 1

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1 1 2

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1 1 2 2

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1 1 2 2

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1 1 2 2 3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1 2 2 3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

2

2 2 3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

2

2

2

2 3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

2

2

2

2

2

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

2

2

2

2

2

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

2

2

2

2

2 3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

2

2

2

2

2 3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

2

2

2

2

2

2 3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

2

2

2

2

2

2

2 3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

2

2

2

2

2

2

2

3

3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

2

2

2

2

2

2

2

3 3

3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

4

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

2

2

2

2

2

2

2

3 3

3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

4

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

1

2

2

2

2

2

2

2

3 3

3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

4

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

1

2

2

2

2

2

2

2

2

3 3

3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

4

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3 3

3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

4

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

4

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

4

3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

We �rst �ll the �rst column and row (at index 0).
The remaining indices are �lled row by row.

4

4

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

4

3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

25 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

After �lling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

4

4

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

4

3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

26 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

After �lling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

4

4

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

4

3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

26 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

After �lling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

4

4

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

4

3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

26 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

After �lling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

4

4

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

4

3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

26 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

After �lling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

4

4

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

4

3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

26 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

After �lling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

4

4

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

4

3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

26 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

After �lling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

4

4

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

4

3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

26 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

After �lling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

4

4

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

4

3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

26 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

After �lling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

4

4

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

4

3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

26 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

LCS Dynamic Programming Example

Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

After �lling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

4

4

3

3

22

11

0

0 0 0 0 0 0 0

0

0

0

0

0

0

0 0 0 1 1 1

1 1 2 2

1 1 2 2

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

4

3

3

j 0 1 2 3 4 5 6

yj B D C A B A

1

0

3

2

4

5

6

B

A

B

C

D

A

B

i xi

26 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Knapsack Problem

In the 0-1 knapsack problem, we are given a set of n items
a1, . . . , an.

Each item ai has a size si and a value vi .
We are also given a size bound S (the capacity of our knapsack).
The goal is to �nd the subset of items of maximum total value such
that sum of their sizes is at most S (they all �t into the knapsack).

In the example below, where S = 15, the optimal strategy is to do
parts A, B, F, and G for a total of 34 points.

27 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Strategy

Option 1: process items in order 1, 2, . . . , n, and accepts an item as
long as it �ts (�rst A, then B, etc.)

This selects A,B,C and D for a pro�t of 33 (which is not optimal
because {A,B,F ,G} has pro�t 34)

28 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Greedy Strategy

Option 2: Sort items by their value-to-size ratio, process items in
the sorted order, and accepts an item as long as it �ts (�rst A, then
B, etc.)

This selects C(2.5),G(2.4),A(2.33), and B(2.25) for a pro�t of 33
(which is not optimal because {A,B,F ,G} has pro�t 34.

29 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming for Knapsack

Step 1: Describe the optimal solution using the optimal solution for
the subproblems.

Subproblem: �nding the optimal pro�t (value) when items are
a1, a2, . . . , ak (for k ≤ n), and the space is B (for B ≤ S).

Should I accept or reject ak?

If I accept ak , the optimal pro�t will be vk plus the pro�t of placing
a1, . . . , ak−1 in a space of B − sk .
If I reject ak , the optimal pro�t will be the pro�t of placing
a1, . . . , ak−1 in a space of B.
If I have the solution for the two sub-problems, I can take the max
between the two!

30 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming for Knapsack

Step 1: Describe the optimal solution using the optimal solution for
the subproblems.

Subproblem: �nding the optimal pro�t (value) when items are
a1, a2, . . . , ak (for k ≤ n), and the space is B (for B ≤ S).

Should I accept or reject ak?

If I accept ak , the optimal pro�t will be vk plus the pro�t of placing
a1, . . . , ak−1 in a space of B − sk .
If I reject ak , the optimal pro�t will be the pro�t of placing
a1, . . . , ak−1 in a space of B.
If I have the solution for the two sub-problems, I can take the max
between the two!

30 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming for Knapsack

Step 2: Describe the value of the optimal solution recursively

Let V (k ,B) denote the value of the highest value solution that uses
items from among the set 1, 2, . . . , k and uses space at most B.

We want to �nd the value of V (n, S)
Here is the recursive value for V (k,B).

31 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming for Knapsack

Step 3: Fill the Dynamic Programming table (in a bottom-up way)
to �nd V (n,S).

We �ll the table row by row; the value of each row depends on the
previous rows; The �rst row is all 0, V (0,B) = 0.

Knapsack (s[], v [], n,S)
1. for k = 0 to n
2. for B = 0 to S
3. if i = 0
4. V (k,B)← 0
5. else

6. if sk > B
7. V (k,B)← V (k − 1,B)
8. else

9. V (k ,B)← max{vk + V (k − 1,B − sk)V (k − 1,B)}
10. return V

32 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming for Knapsack

Step 3: Fill the Dynamic Programming table (in a bottom-up way)
to �nd V (n,S).

We �ll the table row by row; the value of each row depends on the
previous rows; The �rst row is all 0, V (0,B) = 0.

Here, S = 10; item sizes are (5, 4, 6, 3) and values are
(10, 40, 30, 50), that is, the �rst item has size 10 and value 5.

V (2, 9) = max{v2 + V (1, 9− s2) = 40+ 10,V (1, 9) = 10} = 50
V (4, 7) = max{v4 + V (3, 7− s4) = 50+ 40,V (3, 7) = 40} = 90

33 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming for Knapsack

Step 3: Fill the Dynamic Programming table (in a bottom-up way)
to �nd V (n,S).

We �ll the table row by row; the value of each row depends on the
previous rows; The �rst row is all 0, V (0,B) = 0.

Here, S = 10; item sizes are (5, 4, 6, 3) and values are
(10, 40, 30, 50), that is, the �rst item has size 10 and value 5.

V (2, 9) = max{v2 + V (1, 9− s2) = 40+ 10,V (1, 9) = 10} = 50
V (4, 7) = max{v4 + V (3, 7− s4) = 50+ 40,V (3, 7) = 40} = 90

33 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming for Knapsack

Step 3: Fill the Dynamic Programming table (in a bottom-up way)
to �nd V (n,S).

We �ll the table row by row; the value of each row depends on the
previous rows; The �rst row is all 0, V (0,B) = 0.

Here, S = 10; item sizes are (5, 4, 6, 3) and values are
(10, 40, 30, 50), that is, the �rst item has size 10 and value 5.

V (2, 9) = max{v2 + V (1, 9− s2) = 40+ 10,V (1, 9) = 10} = 50
V (4, 7) = max{v4 + V (3, 7− s4) = 50+ 40,V (3, 7) = 40} = 90

33 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming for Knapsack

Step 3: Fill the Dynamic Programming table (in a bottom-up way)
to �nd V (n,S).

We �ll the table row by row; the value of each row depends on the
previous rows; The �rst row is all 0, V (0,B) = 0.

Here, S = 10; item sizes are (5, 4, 6, 3) and values are
(10, 40, 30, 50), that is, the �rst item has size 10 and value 5.
V (2, 9) = max{v2 + V (1, 9− s2) = 40+ 10,V (1, 9) = 10} = 50

V (4, 7) = max{v4 + V (3, 7− s4) = 50+ 40,V (3, 7) = 40} = 90

33 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming for Knapsack

Step 3: Fill the Dynamic Programming table (in a bottom-up way)
to �nd V (n,S).

We �ll the table row by row; the value of each row depends on the
previous rows; The �rst row is all 0, V (0,B) = 0.

Here, S = 10; item sizes are (5, 4, 6, 3) and values are
(10, 40, 30, 50), that is, the �rst item has size 10 and value 5.
V (2, 9) = max{v2 + V (1, 9− s2) = 40+ 10,V (1, 9) = 10} = 50

V (4, 7) = max{v4 + V (3, 7− s4) = 50+ 40,V (3, 7) = 40} = 90

33 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming for Knapsack

Step 3: Fill the Dynamic Programming table (in a bottom-up way)
to �nd V (n,S).

We �ll the table row by row; the value of each row depends on the
previous rows; The �rst row is all 0, V (0,B) = 0.

Here, S = 10; item sizes are (5, 4, 6, 3) and values are
(10, 40, 30, 50), that is, the �rst item has size 10 and value 5.
V (2, 9) = max{v2 + V (1, 9− s2) = 40+ 10,V (1, 9) = 10} = 50

V (4, 7) = max{v4 + V (3, 7− s4) = 50+ 40,V (3, 7) = 40} = 90

33 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming for Knapsack

Step 3: Fill the Dynamic Programming table (in a bottom-up way)
to �nd V (n,S).

We �ll the table row by row; the value of each row depends on the
previous rows; The �rst row is all 0, V (0,B) = 0.

Here, S = 10; item sizes are (5, 4, 6, 3) and values are
(10, 40, 30, 50), that is, the �rst item has size 10 and value 5.
V (2, 9) = max{v2 + V (1, 9− s2) = 40+ 10,V (1, 9) = 10} = 50
V (4, 7) = max{v4 + V (3, 7− s4) = 50+ 40,V (3, 7) = 40} = 90

33 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming for Knapsack

Step 3: Fill the Dynamic Programming table (in a bottom-up way)
to �nd V (n,S).

We �ll the table row by row; the value of each row depends on the
previous rows; The �rst row is all 0, V (0,B) = 0.

Here, S = 10; item sizes are (5, 4, 6, 3) and values are
(10, 40, 30, 50), that is, the �rst item has size 10 and value 5.
V (2, 9) = max{v2 + V (1, 9− s2) = 40+ 10,V (1, 9) = 10} = 50
V (4, 7) = max{v4 + V (3, 7− s4) = 50+ 40,V (3, 7) = 40} = 90

33 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming for Knapsack

Step 4: Go backwards in the table to retrieve the accepted items.

KnapsackRetrieve (s[],V , n,S)
1. B ← S
2. k ← n
3. for k > 0
4. if V (k,B) = V (k − 1,B)
5. report item k as rejected
6. k ← k − 1
7. else 8. report item k as accepted
9. k ← k − 1
10. B ← B − S [k]

Here, S = 10; sizes are (5, 4, 6, 3) and values are (10, 40, 30, 50).
First, V [4, 10] = 90 and V [3, 10] = 70; we can conclude a4 is
accepted. The remaining space would be 10− s4 = 7. We should
check V [3, 7] and repeat; Accepted items are a2 and a4.

34 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming for Knapsack

Step 4: Go backwards in the table to retrieve the accepted items.

KnapsackRetrieve (s[],V , n,S)
1. B ← S
2. k ← n
3. for k > 0
4. if V (k,B) = V (k − 1,B)
5. report item k as rejected
6. k ← k − 1
7. else 8. report item k as accepted
9. k ← k − 1
10. B ← B − S [k]

Here, S = 10; sizes are (5, 4, 6, 3) and values are (10, 40, 30, 50).
First, V [4, 10] = 90 and V [3, 10] = 70; we can conclude a4 is
accepted. The remaining space would be 10− s4 = 7. We should
check V [3, 7] and repeat; Accepted items are a2 and a4.

34 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming for Knapsack

Step 4: Go backwards in the table to retrieve the accepted items.

KnapsackRetrieve (s[],V , n,S)
1. B ← S
2. k ← n
3. for k > 0
4. if V (k,B) = V (k − 1,B)
5. report item k as rejected
6. k ← k − 1
7. else 8. report item k as accepted
9. k ← k − 1
10. B ← B − S [k]

Here, S = 10; sizes are (5, 4, 6, 3) and values are (10, 40, 30, 50).
First, V [4, 10] = 90 and V [3, 10] = 70; we can conclude a4 is
accepted. The remaining space would be 10− s4 = 7. We should
check V [3, 7] and repeat; Accepted items are a2 and a4.

34 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming for Knapsack

Step 4: Go backwards in the table to retrieve the accepted items.

KnapsackRetrieve (s[],V , n,S)
1. B ← S
2. k ← n
3. for k > 0
4. if V (k,B) = V (k − 1,B)
5. report item k as rejected
6. k ← k − 1
7. else 8. report item k as accepted
9. k ← k − 1
10. B ← B − S [k]

Here, S = 10; sizes are (5, 4, 6, 3) and values are (10, 40, 30, 50).
First, V [4, 10] = 90 and V [3, 10] = 70; we can conclude a4 is
accepted. The remaining space would be 10− s4 = 7. We should
check V [3, 7] and repeat; Accepted items are a2 and a4.

34 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming for Knapsack

Step 4: Go backwards in the table to retrieve the accepted items.

KnapsackRetrieve (s[],V , n,S)
1. B ← S
2. k ← n
3. for k > 0
4. if V (k,B) = V (k − 1,B)
5. report item k as rejected
6. k ← k − 1
7. else 8. report item k as accepted
9. k ← k − 1
10. B ← B − S [k]

Here, S = 10; sizes are (5, 4, 6, 3) and values are (10, 40, 30, 50).
First, V [4, 10] = 90 and V [3, 10] = 70; we can conclude a4 is
accepted. The remaining space would be 10− s4 = 7. We should
check V [3, 7] and repeat; Accepted items are a2 and a4.

34 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming for Knapsack

Step 4: Go backwards in the table to retrieve the accepted items.

KnapsackRetrieve (s[],V , n,S)
1. B ← S
2. k ← n
3. for k > 0
4. if V (k,B) = V (k − 1,B)
5. report item k as rejected
6. k ← k − 1
7. else 8. report item k as accepted
9. k ← k − 1
10. B ← B − S [k]

Here, S = 10; sizes are (5, 4, 6, 3) and values are (10, 40, 30, 50).
First, V [4, 10] = 90 and V [3, 10] = 70; we can conclude a4 is
accepted. The remaining space would be 10− s4 = 7. We should
check V [3, 7] and repeat; Accepted items are a2 and a4.

34 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Matrix Chain Multiplication

Given a sequence of matrices A1,A2,A3, . . . ,An, �nd the best way
(using the minimal number of multiplications) to compute their
product.

Isn't there only one way?((. . . ((A1.A2).A3) . . .).An)

No, matrix multiplication is associative. e.g.
A1.(A2.(A3.(. . . (An−1.An) . . .))) yields the same matrix.
Di�erent multiplication orders do not cost the same:

Multiplying p×q matrix A and q × r matrix B takes p.q.r
multiplications; result is a p × r matrix.

Consider multiplying 10× 100 matrix A1 with 100× 5 matrix A2

and 5× 50 matrix A3.

(A1.A2).A3 takes 10 . 100 . 5 + 10 . 5 . 50 = 7500 multiplications.
A1.(A2.A3) takes 100 . 5 . 50 + 10 . 50 . 100 = 75000
multiplications.

35 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Matrix Chain Multiplication

Given a sequence of matrices A1,A2,A3, . . . ,An, �nd the best way
(using the minimal number of multiplications) to compute their
product.

Isn't there only one way?((. . . ((A1.A2).A3) . . .).An)
No, matrix multiplication is associative. e.g.
A1.(A2.(A3.(. . . (An−1.An) . . .))) yields the same matrix.
Di�erent multiplication orders do not cost the same:

Multiplying p×q matrix A and q × r matrix B takes p.q.r
multiplications; result is a p × r matrix.

Consider multiplying 10× 100 matrix A1 with 100× 5 matrix A2

and 5× 50 matrix A3.

(A1.A2).A3 takes 10 . 100 . 5 + 10 . 5 . 50 = 7500 multiplications.
A1.(A2.A3) takes 100 . 5 . 50 + 10 . 50 . 100 = 75000
multiplications.

35 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Matrix Chain Multiplication

Given a sequence of matrices A1,A2,A3, . . . ,An, �nd the best way
(using the minimal number of multiplications) to compute their
product.

Isn't there only one way?((. . . ((A1.A2).A3) . . .).An)
No, matrix multiplication is associative. e.g.
A1.(A2.(A3.(. . . (An−1.An) . . .))) yields the same matrix.
Di�erent multiplication orders do not cost the same:

Multiplying p×q matrix A and q × r matrix B takes p.q.r
multiplications; result is a p × r matrix.

Consider multiplying 10× 100 matrix A1 with 100× 5 matrix A2

and 5× 50 matrix A3.

(A1.A2).A3 takes 10 . 100 . 5 + 10 . 5 . 50 = 7500 multiplications.
A1.(A2.A3) takes 100 . 5 . 50 + 10 . 50 . 100 = 75000
multiplications.

35 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Subproblem Formulation

Step 1: De�ne sub-problems to state the optimal solution for each
sub-problem in terms of optimal solutions for smaller sub-problems

In general, let Ai be pi−1 × pi matrix.

Sub-problem (i , j): product of Ai ,Ai+1, . . . ,Aj .
Let m(i , j) be minimal number of multiplications needed to
compute Ai · Ai+1 · . . .Aj ; we want to compute m(1, n).
Observation: If (A(B((CD)(EF)))) is optimal Then
(B((CD)(EF))) is optimal as well

36 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Subproblem Formulation

Step 1: De�ne sub-problems to state the optimal solution for each
sub-problem in terms of optimal solutions for smaller sub-problems

In general, let Ai be pi−1 × pi matrix.
Sub-problem (i , j): product of Ai ,Ai+1, . . . ,Aj .
Let m(i , j) be minimal number of multiplications needed to
compute Ai · Ai+1 · . . .Aj ; we want to compute m(1, n).

Observation: If (A(B((CD)(EF)))) is optimal Then
(B((CD)(EF))) is optimal as well

36 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Subproblem Formulation

Step 1: De�ne sub-problems to state the optimal solution for each
sub-problem in terms of optimal solutions for smaller sub-problems

In general, let Ai be pi−1 × pi matrix.
Sub-problem (i , j): product of Ai ,Ai+1, . . . ,Aj .
Let m(i , j) be minimal number of multiplications needed to
compute Ai · Ai+1 · . . .Aj ; we want to compute m(1, n).
Observation: If (A(B((CD)(EF)))) is optimal Then
(B((CD)(EF))) is optimal as well

36 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Formulation

Step 2: Denote the value of the optimal solutions for subproblems
recursively.

Assume the position of the last product is k, that is, our �nal
multiplication is of the form
(Ai+1 · Ai+2 · . . .Ak) · (Ak+1 · Ak+2 · . . .Aj).
Consider the case multiplying these 4 matrices: A : 2× 4 B : 4× 2
C : 2× 3 D : 3× 1

(A)(BCD): This is a 2× 4 multiplied by a 4× 1, so 2× 4× 1 = 8
multiplications, plus whatever work it will take to multiply (BCD).
(AB)(CD): This is a 2× 2 multiplied by a 2× 1, so 2× 2× 1 = 4
multiplications, plus whatever work it will take to multiply (AB)
and (CD).
(ABC)(D): This is a 2× 3 multiplied by a 3× 1, so 2× 3× 1 = 6
multiplications, plus whatever work it will take to multiply (ABC).

37 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Formulation

Step 2: Denote the value of the optimal solutions for subproblems
recursively.

Assume the position of the last product is k, that is, our �nal
multiplication is of the form
(Ai+1 · Ai+2 · . . .Ak) · (Ak+1 · Ak+2 · . . .Aj).

Consider the case multiplying these 4 matrices: A : 2× 4 B : 4× 2
C : 2× 3 D : 3× 1

(A)(BCD): This is a 2× 4 multiplied by a 4× 1, so 2× 4× 1 = 8
multiplications, plus whatever work it will take to multiply (BCD).
(AB)(CD): This is a 2× 2 multiplied by a 2× 1, so 2× 2× 1 = 4
multiplications, plus whatever work it will take to multiply (AB)
and (CD).
(ABC)(D): This is a 2× 3 multiplied by a 3× 1, so 2× 3× 1 = 6
multiplications, plus whatever work it will take to multiply (ABC).

37 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Formulation

Step 2: Denote the value of the optimal solutions for subproblems
recursively.

Assume the position of the last product is k, that is, our �nal
multiplication is of the form
(Ai+1 · Ai+2 · . . .Ak) · (Ak+1 · Ak+2 · . . .Aj).
Consider the case multiplying these 4 matrices: A : 2× 4 B : 4× 2
C : 2× 3 D : 3× 1

(A)(BCD): This is a 2× 4 multiplied by a 4× 1, so 2× 4× 1 = 8
multiplications, plus whatever work it will take to multiply (BCD).
(AB)(CD): This is a 2× 2 multiplied by a 2× 1, so 2× 2× 1 = 4
multiplications, plus whatever work it will take to multiply (AB)
and (CD).
(ABC)(D): This is a 2× 3 multiplied by a 3× 1, so 2× 3× 1 = 6
multiplications, plus whatever work it will take to multiply (ABC).

37 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Formulation

Step 2: Denote the value of the optimal solutions for subproblems
recursively.

Assume the position of the last product is k, that is, our �nal
multiplication is of the form
(Ai+1 · Ai+2 · . . .Ak) · (Ak+1 · Ak+2 · . . .Aj).
Consider the case multiplying these 4 matrices: A : 2× 4 B : 4× 2
C : 2× 3 D : 3× 1

(A)(BCD): This is a 2× 4 multiplied by a 4× 1, so 2× 4× 1 = 8
multiplications, plus whatever work it will take to multiply (BCD).

(AB)(CD): This is a 2× 2 multiplied by a 2× 1, so 2× 2× 1 = 4
multiplications, plus whatever work it will take to multiply (AB)
and (CD).
(ABC)(D): This is a 2× 3 multiplied by a 3× 1, so 2× 3× 1 = 6
multiplications, plus whatever work it will take to multiply (ABC).

37 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Formulation

Step 2: Denote the value of the optimal solutions for subproblems
recursively.

Assume the position of the last product is k, that is, our �nal
multiplication is of the form
(Ai+1 · Ai+2 · . . .Ak) · (Ak+1 · Ak+2 · . . .Aj).
Consider the case multiplying these 4 matrices: A : 2× 4 B : 4× 2
C : 2× 3 D : 3× 1

(A)(BCD): This is a 2× 4 multiplied by a 4× 1, so 2× 4× 1 = 8
multiplications, plus whatever work it will take to multiply (BCD).
(AB)(CD): This is a 2× 2 multiplied by a 2× 1, so 2× 2× 1 = 4
multiplications, plus whatever work it will take to multiply (AB)
and (CD).

(ABC)(D): This is a 2× 3 multiplied by a 3× 1, so 2× 3× 1 = 6
multiplications, plus whatever work it will take to multiply (ABC).

37 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Formulation

Step 2: Denote the value of the optimal solutions for subproblems
recursively.

Assume the position of the last product is k, that is, our �nal
multiplication is of the form
(Ai+1 · Ai+2 · . . .Ak) · (Ak+1 · Ak+2 · . . .Aj).
Consider the case multiplying these 4 matrices: A : 2× 4 B : 4× 2
C : 2× 3 D : 3× 1

(A)(BCD): This is a 2× 4 multiplied by a 4× 1, so 2× 4× 1 = 8
multiplications, plus whatever work it will take to multiply (BCD).
(AB)(CD): This is a 2× 2 multiplied by a 2× 1, so 2× 2× 1 = 4
multiplications, plus whatever work it will take to multiply (AB)
and (CD).
(ABC)(D): This is a 2× 3 multiplied by a 3× 1, so 2× 3× 1 = 6
multiplications, plus whatever work it will take to multiply (ABC).

37 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Formulation

Step 2: Denote the value of the optimal solutions for subproblems
recursively.

We can compute recursively the best way to multiply the chain from
i to k, and from k + 1 to j , and add the cost of the �nal product.
This means that m(i , j) = m(i , k) +m(k + 1, j) + pi−1 · pk · pj
Therefore we can write:

38 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Formulation

Step 3: Fill a dynamic programming table in a bottom-up fashion

To set m[i , j], we need to look at the values of the same row on the
right (m[i , k]), or the same column but below (m[k + 1, j]).

39 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Formulation

Step 3: Fill a dynamic programming table in a bottom-up fashion

To set m[i , j], we need to look at the values of the same row on the
right (m[i , k]), or the same column but below (m[k + 1, j]).

39 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Formulation

Step 3: Fill a dynamic programming table in a bottom-up fashion

40 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Recursive Formulation

Step 4: Retrieve the actual solution using the �ag matrix s

You will work on the details on Assignment 4.

41 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

Dynamic Programming Review

1 Step 1: de�ne subproblems, and devise the value of the optimal
solution for each subproblem using the value of the optimal
solutions for smaller subproblems.

2 Step 2: write down a recursive formula for the value of optimal
solutions.

3 Step 3: �ll up the dynamic programming table in a bottom-up
fashion.

4 Step 4: retrieve the actual solution by moving backwards in the
table.

42 / 42
EECS 3101 - Design and Analysis of Algorithms

▲

