EECS 3101 - Design and Analysis of
v Algorithms

/)

\ .’f‘—’ \‘ Shahin Kamali
e |
“‘ Topic 4 - Dynamic Programming

EECS 3101 - Design and Analysis of Algorithms

v
PN
N\

.”Ai h ‘ .
WYY Overview

o Dynamic Programming Framework & Applications
o Rod Cutting

o Matrix Chain Multiplication

Longest Common Subsequence

EECS 3101 - Design and Analysis of Algorithms

v
PN
~

‘ L] L] L]
WYY Dynamic Programming Overview

o Dynamic Programming is similar to Divide & Conquer in the
sense that it solves a problem by combining the solutions for
subproblems.

o Divide & Conquer solves subproblems independently.
o Dynamic Programming applies when subproblems overlap, i.e., they
share subsubproblems!

v

PN
~

‘ L] L] L]
WY Dynamic Programming Overview

o Dynamic Programming is similar to Divide & Conquer in the
sense that it solves a problem by combining the solutions for
subproblems.

o Divide & Conquer solves subproblems independently.
o Dynamic Programming applies when subproblems overlap, i.e., they
share subsubproblems!

o Dynamic Programming solves each subsubproblem just once and
then saves it in a table

o We avoid work of recomputing answers for subsubproblems.
o Programming in this context refers to a tabular method, not to
writing computer code.

v
-
~

A . . .
Y Dynamic Programming Overview

s
o)

o Steps for designing a Dynamic Programming algorithm:

@ Characterize the structure of an optimal solution.

@ Recursively define the value of an optimal solution.

© Compute the value of an optimal solution, typically in a bottom-up
fashion, and store results in a table.

O Construct an optimal solution from computed information in the
table.

v

PN
~

‘ -
W™ Rod Cutting

o You have a rod of length n, and you want to cut up the rod and sell
the pieces ina way that maximizes the total amount of money you
get. A piece of length i is worth p; dollars.

o E.g., for n = 4 and the following length/value table, we have 8
possible ways of cutting the rod, and the optimal cutting has value
10.

lengthi |1 2 3 4
pricep; | 1 5 8 9 10 17 17 20 24 30

9 1 8
Q11D OClD BB, IDEBD)

(a) (b) (©) (@

DOED OO0 MO0 OOOO

(e)) (€3] (h)

_

PN
~

. "A""‘ .
W™ Inspecting the Problem

o How many ways are there to cut up a rod of length n?

EECS 3101 - Design and Analysis of Algorithms

v
PN
1

. .
W Inspecting the Problem

W

o How many ways are there to cut up a rod of length n?

o Roughly 2”71, because there are n — 1 places where we can choose
to make cuts, and at each place, we either make a cut or we do not
make a cut.

v
-
~

. .
) Inspecting the Problem

A\

o How many ways are there to cut up a rod of length n?
o Roughly 2”71, because there are n — 1 places where we can choose
to make cuts, and at each place, we either make a cut or we do not

make a cut.
o An exhaustive algorithm which tries all partitions runs in

exponential time.

v
PN

. ”A""‘ .
Y Basic Approach

o Rod cutting is a typical optimization problem, where we want to
find to maximize a profit (or minimize a cost).

EECS 3101 - Design and Analysis of Algorithms

~
P

v

PN
N\
.

A " Basic Approach

W

o Rod cutting is a typical optimization problem, where we want to
find to maximize a profit (or minimize a cost).

o For optimization problems, first, we ask “what is the maximum
amount of profit we can get? (or minimum cost)"

o Later we will extend the algorithm to give us the actual rod
decomposition that leads to that maximum value.

v
-
~

A " Basic Approach

W

o Rod cutting is a typical optimization problem, where we want to
find to maximize a profit (or minimize a cost).

o For optimization problems, first, we ask “what is the maximum
amount of profit we can get? (or minimum cost)"

o Later we will extend the algorithm to give us the actual rod
decomposition that leads to that maximum value.

o This general approach applies to almost all Dynamic
Programming algorithms.

v
-
~

V ‘ L] L]
‘™Y Recursive Formulation

o Let r; be the maximum amount of money you can get with a rod of
size i. We can view the problem recursively as follows:

o First, cut a piece off the left end of the rod, and sell it.
o Then, find the optimal way to cut the remainder of the rod.

v
PN
~

\ : :
N Recursive Formulation

W
o Let r; be the maximum amount of money you can get with a rod of
size i. We can view the problem recursively as follows:

o First, cut a piece off the left end of the rod, and sell it.
o Then, find the optimal way to cut the remainder of the rod.

o Now we don’t know how large a piece we should cut off — try all
possible cases.

o First, try cutting a piece of length 1, and combining it with the
optimal way to cut a rod of length n — 1.

v
PN
~

‘ L] L]

N Recursive Formulation

o Let r; be the maximum amount of money you can get with a rod of
size i. We can view the problem recursively as follows:

o First, cut a piece off the left end of the rod, and sell it.
o Then, find the optimal way to cut the remainder of the rod.

o Now we don’t know how large a piece we should cut off — try all
possible cases.

o First, try cutting a piece of length 1, and combining it with the
optimal way to cut a rod of length n — 1.

o Then try cutting a piece of length 2, and combining it with the
optimal

v

PN
~

‘ L] L]

N Recursive Formulation

o Let r; be the maximum amount of money you can get with a rod of
size i. We can view the problem recursively as follows:

o First, cut a piece off the left end of the rod, and sell it.
o Then, find the optimal way to cut the remainder of the rod.

o Now we don’t know how large a piece we should cut off — try all
possible cases.

o First, try cutting a piece of length 1, and combining it with the
optimal way to cut a rod of length n — 1.

o Then try cutting a piece of length 2, and combining it with the
optimal way to cut a rod of length n — 2, and so on.

o We try all the possible lengths and then pick the best one. We end
up with the following: (when i = n, the rod is not cut at all)

rhn= max {pi + rn_; =20
n ISISH{P: n 1}

v

PN
~

‘ L] L]

N Recursive Formulation

o Let r; be the maximum amount of money you can get with a rod of
size i. We can view the problem recursively as follows:

o First, cut a piece off the left end of the rod, and sell it.
o Then, find the optimal way to cut the remainder of the rod.

o Now we don’t know how large a piece we should cut off — try all
possible cases.

o First, try cutting a piece of length 1, and combining it with the
optimal way to cut a rod of length n — 1.

o Then try cutting a piece of length 2, and combining it with the
optimal way to cut a rod of length n — 2, and so on.

o We try all the possible lengths and then pick the best one. We end
up with the following: (when i = n, the rod is not cut at all)

rhn= max {pi + rn_; =20
n ISISH{P: n 1}

v

‘ L] L]
Y Recursive Implementation

o How should we compute r, = max {p; + r,—;} r =07
1<i<n
o The formula immediately translates into a recursive algorithm.

CuT-ROD(p, n)
1 ifn==0

2 return 0

3 g =—-00

4 fori =1ton
5 q = max(q, p[i] + CUT-ROD(p,n —i))
6 return g

EE(101 - Design and Analysi Igorithm

v

‘ L] L]
Y Recursive Implementation

o How should we compute r, = max {p; + r,—;} r =07
1<i<n
o The formula immediately translates into a recursive algorithm.

CuT-ROD(p, n)
1 ifn==0

2 return 0

3 g =—-00

4 fori =1ton
5 q = max(q, p[i] + CUT-ROD(p,n —i))
6 return g

o Is this good?

EE 101 - Design and Analysi Igorithm

v
-
~

‘ L] L]
Y Recursive Implementation

o How should we compute r, = e {pi +r-i} rn=07
sSisn

CuTt-ROD(p, n)
1 ifn==0

2 return 0

3 ¢g=—-00

4 fori = 1ton
5 q = max(q, p[i] + CUT-ROD(p,n —1i))
6 return g

o There are many repeated computation in the recursion tree!

v
-
~

< ‘ L] L]
Y Recursive Implementation

o How should we compute r, = e {pi +r-i} rn=07
sSisn

CuTt-ROD(p, n)
1 ifn==0

2 return 0

3 ¢g=—-00

4 fori = 1ton
5 q = max(q, p[i] + CUT-ROD(p,n —1i))
6 return g

o There are many repeated computation in the recursion tree!

For the running time, we can write:
T(n)>2T(n—2)>4T(n—4)>...>2"2T(1)
=Q(2"/?).

v
PN
~

)" DP: Memoization (Top Down)

o How should we compute r, = max {p; + r,_;} ro =07
1<i<n
o We can store the result of the recursive calls, and if we need the

result in a future recursive call, we can use the precomputed value.
The answer will be stored in r[n].

MEMOIZED-CUT-ROD-AUX (p, 1, r)

1 ifr[n]=0
MEMOIZED-CUT-ROD (p, n) 2 return r[n]
1 letr[0..n] be a new array 3 ifn==
2 fori =0ton 4 q =0
3 rli] = —oo 5 elseq = —o0
4 return MEMOIZED-CUT-ROD-AUX (p,n,r) 6 fori = 1ton
7 q = max(q, p[i] + MEMOIZED-CUT-ROD-AUX (p,n —i,r))
8 rlnl=¢q
9 return g

v
PN
~

«~) DP: Memoization (Top Down)

W
o How should we compute r, = max {pi+ r-i} rn=07
sSiIsn

o We can store the result of the recursive calls, and if we need the
result in a future recursive call, we can use the precomputed value.
The answer will be stored in r[n].

o Each subproblem is solved exactly once. For a subproblem of size /,
we spend ©(/7) (we run through i iterations of the for loop) — The
running time is ©(n) + ©(n — 1) + ... + O(1) = O(n?).

MEMOIZED-CUT-ROD-AUX (p, 1, r)
1 ifr[n]=0
MEMOIZED-CUT-ROD (p, n) 2 return 7]
1 letr[0..n] be a new array 3 ifn==
2 fori =0ton 4 qg=0
3 rli] = —oo 5 elseq = —oo
6
7
8
9

4 return MEMOIZED-CUT-ROD-AUX (p,n, 1) fori = 1ton
q = max(q, p[i] + MEMOIZED-CUT-ROD-AUX (p,n —i,r))
rin] = ¢
return ¢

v
-
~

.~ DP: Memoization (Bottom Up)

W
o How should we compute r, = max {pi +r-i} rn=07
sSisn

o We proactively compute the solutions for smaller rods first, knowing
that they will later be used to compute the solutions for larger rods.
The answer will be stored in r[n].

o Most people will write the bottom up procedure when they
implement a dynamic programming algorithm.

BoTTOM-UP-CUT-ROD(p, 1)

1 letr[0..n]be anew array

2 r0]=0

3 forj =1ton

4 g = —00

5 fori = 1toj

6 q = max(q. pli] +r[j —i])
7 rlil=gq

8 return r[n]

v
-
~

Y DP: Memoization (Bottom Up)

W
o How should we compute r, = max {pi +r-i} rn=07
sSisn

o We proactively compute the solutions for smaller rods first, knowing
that they will later be used to compute the solutions for larger rods.
The answer will be stored in r[n].

o The running time is still @(n?).

o Most people will write the bottom up procedure when they
implement a dynamic programming algorithm.

BoTTOM-UP-CUT-ROD(p, 1)

1 letr[0..n]be anew array

2 r0]=0

3 forj =1ton

4 g = —00

5 fori = 1toj

6 q = max(q. pli] +r[j —i])
7 rlil=gq

8 return r[n]

v

PN
~

.~ DP: Memoization (Bottom Up)

W
o How should we compute r, = max {pi +r-i} rn=07
sSisn

o We proactively compute the solutions for smaller rods first, knowing
that they will later be used to compute the solutions for larger rods.
The answer will be stored in r[n].

o The running time is still @(n?).

o Often the bottom up approach is simpler to write, and has less
overhead, because you don't have to keep a recursive call stack.

o Most people will write the bottom up procedure when they
implement a dynamic programming algorithm.

BOTTOM-UP-CUT-ROD(p, 1)
1 letr[0..n] be anew array

2 r0]=0

3 forj =1ton

4 g = —00

5 fori = 1toj

6 q = max(q. pli] +r[j —i])
7 rlil=gq

8 return r[n]

v
-
~

‘ L] L]
WY Reconstructing a solution

o If we want to actually find the optimal way to split the rod,
instead of just the maximum profit we can get, we can create
another array s:

o s[j] = i iff the best thing to do when we have a rod of length j is to
cut off a piece of length i.

o Using these values s[j], we can reconstruct the optimal rod
decomposition.

EXTENDED-BOTTOM-UP-CUT-ROD (p, 1)
1 letr[0..n]and s[0..n] be new arrays

2 r[0]=0
3 forj =1ton PRINT-CUT-ROD-SOLUTION (p, 1)
q = —00 1 (r,s) = EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
fori = 1toj 2 whilen >0
ifqg < plil+rlj —i] 3 print s[n]
4 n =n-—sn

s[jl =i
rljl=q

4
5
6
7 q = plil+rlj —i]
8
9
10 return r and s

v
PN

TN -
oY The Example Problem’s Answer

o For our example, the program produces this answer:

lengthi |1 2 3 4 5 6 7 8 9 10
pricep; | 1 5 8 9 10 17 17 20 24 30

i 0123 4 5 6 7 8 9 10
riJ{0 1 5 8 10 13 17 18 22 25 30
sifjfo1r 23 2 2 6 1 2 3 10

EE(101 - Design and Analysi Igorithm

v
-
~

‘ L] L]
WYY Dynamic programming remarks

o Optimal substructure: To solve a optimization problem using
dynamic programming, we must first characterize the structure of
an optimal solution.

o Specifically, we must prove that we can create an optimal solution
to a problem using optimal solutions to smaller subproblems.

o Then, we can store optimal solutions for all subproblems in a table
— compute later elements in the table from earlier elements in the
table.

v

PN
~

‘ L] L]
WY Dynamic programming remarks

o Optimal substructure: To solve a optimization problem using
dynamic programming, we must first characterize the structure of
an optimal solution.

o Specifically, we must prove that we can create an optimal solution
to a problem using optimal solutions to smaller subproblems.

o Then, we can store optimal solutions for all subproblems in a table
— compute later elements in the table from earlier elements in the
table.

o If the optimal solution to a problem might not require subproblem
solutions to be optimal, then we cannot use dynamic programming.

v
-
~

‘ L] L]
WY Dynamic programming remarks

o Overlapping Subproblems

o For dynamic programming to be useful, the recursive algorithm
should require us to compute optimal solutions to the same
subproblems over and over again — Then we benefit from just
computing them once and then using the results later.

o In total, there should be a small number of distinct subproblems
(i.e. polynomial in the input size), even if there is an exponential
number of total subproblems.

v
PN
~

[,
»“;“‘%“ Longest common subsequence

o We are given two sequences X and Y , and want to find the longest
possible sequence that is a subsequence of both X and Y.

o E.g., for X = ABCBDAB and Y = BDCABA:

o BCA is a common sequence of both X and Y.

v
PN
~

i A
WY Longest common subsequence

o We are given two sequences X and Y , and want to find the longest
possible sequence that is a subsequence of both X and Y.

o E.g., for X = ABCBDAB and Y = BDCABA:

o BCA is a common sequence of both X and Y.
o BCBA is a longer sequence that is also common to both X and Y.

v

PN
~

\i=

A
Y Longest common subsequence

o We are given two sequences X and Y , and want to find the longest
possible sequence that is a subsequence of both X and Y.

o E.g., for X = ABCBDAB and Y = BDCABA:

o BCA is a common sequence of both X and Y.

o BCBA is a longer sequence that is also common to both X and Y.

o Both BCBA and BDAB are longest common subsequences, since
there are no common sequences of length 5 or greater

v
-
~

;.;“;\‘ *LCcs Algorithms

o if |[X| = m, |Y] = n, then there are 2™ subsequences of X; we must
compare each with Y (n comparisons)

o So the running time of the brute-force algorithm is O(n2™).
o Notice that the LCS problem has optimal substructure: solutions of

subproblems are parts of the final solution — should we use
dynamic programming?

v
-
~

\i=

N :
WY Optimal substructures

o The first step use dynamic programming is create an optimal
solution to this problem using optimal solutions to subproblems — a
recursive formulation of the optimal solution.

o The hardest part is to decide what the subproblems are. For the
LCS we have two cases:

o Case 1: The last elements of X and Y are equal.
o Case 2: The last elements of X and Y are not equal.

v
PN

."“""‘ . .
W) LCS Optimal Formulation

o Case 1: The last elements of X and Y are equal.

X = ABCBDAB and Y =BDCAB

EECS 3101 - Design and Analysis of Algorithms
20 / 42

v

PN
~

Ao . .
W™ LCS Optimal Formulation

o Case 1: The last elements of X and Y are equal.

X = ABCBDAB and Y =BDCAB

o Then the last element must both be part of the longest common
subsequence

o We can chop both elements off the ends of the subsequence (adding
them to a common subsequence) and find the longest common
subsequence of the smaller sequences.

o The LCS of X = ABCBDAB and Y = BDCAB can be formed by
finding the LCS of ABCBDA and BDCA, which is BDA, and adding
B to it, that is LCS of X and Y is BDAB.

v
PN

."“""‘ . .
W) LCS Optimal Formulation

o Case 2: The last elements of X and Y are not equal.

X = ABCBDABA and Y =BDCAB

EECS 3101 - Design and Analysis of Algorithms
21/ 42

v

PN
~

Ao . .
W™ LCS Optimal Formulation

o Case 2: The last elements of X and Y are not equal.

X = ABCBDABA and Y =BDCAB

o Either the last element of X or the last element of Y cannot be part
of the longest common subsequence.

o we can find the LCS of X and a smaller version of Y in which the
last element is missing, or the LCS of Y and a smaller version of X
in which the last element is missing.

o The LCS of X = ABCBDABA and Y = BDCAB can be formed by:

o The LCS of ABCBDABA and BDCA, which is BCA.
o The LCS of ABCBDAB and BDCAB, which is BDAB.
o Taking the LCS with max length, i.e., BDAB.

v

PN
~

»“.‘;i“‘ LCS Dynamic Programming Solution

o First we'll find the length of LCS. Later we'll modify the algorithm
to find LCS itself.

o Define X;, Y; to be the prefixes of X and Y of length i and J,
respectively.

o Define c[i,j] to be the length of LCS of X; and Y} Then the length
of LCS of X and Y will be ¢c[m, n].
o Since Xp and Yy are empty strings, their LCS is always empty (i.e.
c[0,0] = 0)
o LCS of empty string and any other string is empty, so for every i
and j we have [0,] = ¢[i,0] = 0.

0 ifi =0o0rj =0,
cli,jl=Acli—1,7—1]+1 ifi,j>0and x; = y;,
max(c[i,j —1],c[i —1,j]) ifi,j >0andx; # y; .

v
-
~

2.;6“‘ LCS Dynamic Programming Solution

o Optimal Substructure: we have characterized the optimal solution
recursively using optimal solutions to smaller problems.
o Overlapping Subproblems: How many subproblems exist?

o Each c[i,j] is associated with one sub-problem that asks for LCS of
X;i and Y; — There are ©(m.n) subproblems.

0 ifi =0o0rj =0,
cli,jl=Acli—1,7—-1]+1 ifi,j>0and x; = y;,
max(c[i,j —1],c[i —1,j]) ifi,j >0andx; # y; .

v

PN
~
.

;;;i“‘ LCS Dynamic Programming Solution

o Using the recurrence, we can write the actual pseudocode.

o We populate the table in a certain order, because some elements
depend on other elements of the table having already been

computed

LCS-LENGTH(X.Y)

[~ IS e NEV I N VO

m = X.length
n = Y.length
letb[1..m,1..n]and c[0..m,0..n] be new tables
fori = ltom
c[i,0] =0
for j = Oton
cl0,j]=0
fori = 1tom
for j = 1ton
if x; ==y,
cli,jl=cli-1,j—-1+1
bli, j] ="N\”

elseif c[i — 1,] > cli,j — 1]
cli,jl = cli —1,j]

bli, j] =1
elsecli, j] = cli,j —1]
bli,j] ="<"

return ¢ and b

v
-
~

N LS Dynamic Programming Example

A\

o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).

1 2 3 4 5 6
B D C A B A

[
< o

o o B w N = O
™ > 0 ®™m® O ™ >

v
-
~

;.;;i“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
vy B D CABA

X

0 0 0 0 0 0 0

o

o G~ W N = O
™ > 0 ®™® N ™ >
o |lo | |o

o

v
-
~

;.;;i“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
vy B D CABA

X

0 0 0 0 0 0 0

o

o G~ W N = O
™ > 0 ®™® N ™ >
o |lo | |o

o

v
-
~

;.;;i“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
vy B D CAB A
% o] o] o] of o] o o
A A
0 Al ol of o
1 B
2 |
3 B
4 D
5 Al
6 B 4

v
-
~

".;5“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
vy B D CAB A
% o] o] o] of o] o o
AL A A
ol o] ol o

o

o b~ W N = O
™ > 0 ®™® N ™ >
o |lo | |o

o

v
-
~

".;5“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
vy B D CAB A
% o] o] o] of o] o o
A AT A
0| o] o o] 1

o

o b~ W N = O
™ > 0 ®™® N ™ >
o |lo | |o

o

v
-
~

".;5“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
vy B D CAB A
% o] o] o] of o] o o
A AT A
0] o] of of 1]<1

o

o b~ W N = O
™ > 0 ®™® N ™ >
o |lo | |o

o

v
-
~

".;5“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and

Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 0
Yi

2
D

A

5 6
B A

X

0

0

0 0

o >lo

o >|o

1

N

<1 1

o

o b~ W N = O
™ > 0 ®™® N ™ >
o |lo | |o

o

v
-
~

".;5“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and

Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

X

j 0 1 2 5 6

yy B D B A

0] 0] 0] O 0] 0

AAL A N

ol o] of o <1i] 1
AN
ol 1

o |lo |o |o

o b~ W N = O
™ > 0 ®™® N ™ >

o

v
-
~

".;5“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and

Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

X

j 0 1 2 5 6
yy, B D A B A
0 0 0 0 0 0 0
AAL A AN
0 0 0 0 1|<1 1
N
0 1

o |lo |o |o

o b~ W N = O
™ > 0 ®™® N ™ >

o

v
-
~

".;5“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6

vy B D CAB A
%1 o] of o] of of o] o
0 A 0333\1*1\1
1 B o\1<—1<—1
2 |,
3 B o
4 D
5 Al
6 B| o

v
-
~

".;5“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6

vy B D CAB A
%1 o] of o] of of o] o
0 A 0333\1*1\1
1 B o\1<—1<—1§
2 |,
3 B o
4 D
5 Al
6 B| o

v
-
~

".;5“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6

vy B D CAB A
%1 o] of o] of of o] o
0 A 0333\1*1\1
1 B 0\1<—1<—1§\2
2 |,
3 B o
4 D
5 Al
6 B| o

v
-
~

".;5“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y B D CAB A
% o] of o] of o] o] o
0 A 0333\1*1\1
1 B 0\1*14—11\24—2
2 |,
3 B o
4 D
5 Al
6 B| o

v
-
~

".;5“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and

Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y, B D C AB A
% o] o] o] of o] o] o
AL AT AN AN
0] o]l o]l o] 1|«<1] 1
AN AN
o| 1fetfer| 1] 2«2
A
1

o B W N = O
™ > 0O ® O ™ >
o |lo [|e

o

v
-
~

".;5“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y, B D C AB A
% o] o] o] of o] o] o
A A
OAooT)o\l*l\l
A
1 B 0\14—14—1 1\24—2
A
2 | o M
3 B
4 D
5 Al
6 B o

v
-
~

".;5“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y, B D C AB A
% o] o] o] of o] o] o
AL AT AN AN
0] o]l o]l o] 1|«<1] 1
AN AN
o| 1fetfer| 1] 2«2
A AN
o] 1| 1] 2

o OB W N = O
™ > 0O ® O ™ >
o

v
-
~

".;5“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y, B D C AB A
% o] o] o] of o] o] o
AL AT AN AN
0 0 0 0 1[<1 1
AN AN
o| 1fetfer| 1] 2«2
A AN
0 1 1 2[«2

o OB W N = O
™ > 0O ® O ™ >
o

v
-
~

".;5“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y, B D C AB A
% o] o] o] of o] o] o
AL AT AN AN
0 0 0 0 1[<1 1
AN AN
o| 1fetfer| 1] 2«2
Al AN A
0 1 1 2[«2 2

o B W N = O
™ > 0O ® O ™ >
o

v
-
~

".;5“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y, B D C AB A

% o] o] o] of o] o] o
AL AT AN AN

0 0 0 0 1[<1 1

AN AN

0 1[«1|«1 1| 2 |«2

Al AN Al A

0 1 1 2[«2 2|1 2

o B W N = O
™ > 0O ® O ™ >
o

v

PN
~

".;5“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and

Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y B D CAB A

% o] of o] of o] o] o
0 A 0333\1*1\1
1 B 0\1*14—11\24—2
2C0§ﬁ\2«222
3 B | o™
4 D
5 Al
6 B| o

v
-
~

! ‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y B D CAB A
% o] of o] of o] o] o
0 A 0333\1*1\1
1 B 0\14—14—1 +1'\24—2
2 ¢ Uﬁﬁ\2«22+2
3 B 0\12
4 D 0
5 Al
6 B| o

v
-
~

! ‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y B D CAB A
% o] of o] of o] o] o
0 A 0333\1*1\1
1 B 0\14—14—1 +1'\24—2
2 ¢ Uﬁﬁ\2«22+2
3 B 0\1242
4 D 0
5 Al
6 B| o

v
-
~

! ‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y B D CAB A
% o] of o] of o] o] o
0 A 0333\1*1\1
1 B 0\14—1<—1 +1'\24—2
2 ¢ Uﬁﬁ\2«22+2
3 B 0\1$14242
4 D 0
5 Al
6 B| o

v

.‘ ‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y B D CAB A
% o] of o] of o] o] o
0 A 0333\1*1\1
1 B 0\14—14—1 +1'\24—2
2 ¢ Uﬁﬁ\2«22+2
3 B 0\1*14242\3
4 D 0
5 Al
6 B| o

v
-
~

! ‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y B D CAB A
% o] of o] of o] o] o
0 A 0333\1*1\1
1 B 0\14—1<—1 +1'\24—2
2 ¢ Uﬁﬁ\2«22+2
3 B 0\1*142*2\31_3
4 D 0
5 Al
6 B o

v
-
~

! ‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y, B D C AB A
% o] of o] of o] o] o
0 A 0333\1*1\1
1 B 0\14—14—1 +1'\24—2
2 ¢ Uﬁﬁ\2«22+2
3 B 0\1*142*2\31_3
4 D o}
5 Al
6 B o

v
-
~

! ‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y, B D C AB A
% o] of o] of o] o] o
0 A 0333\1*1\1
1 B 0\14—14—1 +1'\24—2
2 ¢ Uﬁﬁ\2«22+2
3 B 0\1*142*2\31_3
a | o I,
5 Al
6 B o

v
-
~

‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y B D CAB A
% o] o] o] of of of o
0 A 0333\1*1\1
1 B 0\1<-1<—1 +1\2 <2
2 ¢ Uﬁﬁ\2«22+2
3 B 0\1*142*2\31_3
4 D 03\2*2
5 Al
6 B| o

v
-
~

‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y, B D C AB A
% o] of o] of o] o] o
0 A 0333\1*1\1
1 B 0\14—14—1 +1'\24—2
2 ¢ Uﬁﬁ\2«22+2
3 B 0\1*142*2\31_3
4 D 03\2*2*2
5 Al
6 B o

v
-
~

‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y, B D C AB A
% o] of o] of o] o] o
0 A 0333\1«1\1
1 B 0\14—14—1 +1'\24—2
2 ¢ Uﬁﬁ\2«22+2
3 B 0\1*142*2\31_3
4 D 03\2*2*22
5 A 0
6 B o

v
-
~

‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y, B D C AB A
% o] of o] of o] o] o
0 A 0333\1*1\1
1 B 0\14—14—1 +1'\24—2
2 ¢ Uﬁﬁ\2«22+2
3 B 0\1*142*2\31_3
4 D 0§\2*2*22§
5 Al
6 B o

v
-
~

‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y B D CAB A

% o] of o] of o] o] o
0 Al o T) E 3\1*1\1
1 B 0\14—1<—1 +1'\24—2
2 ¢ Uﬁﬁ\Q«Z 2+2
3 B 0\1*142*2\31_3
4 D o 3\2*2*2 gg
5 A of 4
6 B| o

v
-
~

2;5“‘ LCS Dynamic Programming Example

o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 0 1 34 5 6
v C AB A

vy}
WY

o >o

d
o>
w*wT N",t »—n/o

[g P T 2 N
N-)N/.-.-»-A"i o >|o
>
->
Vad

o ¢ A W N = O
™ > O ™m® N T >
o
Vel

v
-
~

‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

J 0 1 2 3 4 5 6
y, B D C AB A

% o] of o] of o] o] o
0 Al o f) T) 3\1«1\1
1 B 0\1*14—1 +1'\24—2
2 ¢ Uﬁﬁ\Q«Z 2+2
3 B 0\1*142*2\31_3
4 D o 3\2*2*2 gg
5 Al o Y[,
6 B 0

v
-
~

‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

J 0 1 2 3 4 5 6
y B D CAB A

% o] of o] of o] o] o
0 Al o f) T) 3\1«1\1
1 B 0\14—14—1 +1'\24—2
2 ¢ Uﬁﬁ\Q«Z 2+2
3 B 0\1*142*2\31_3
4 D o 3\2*2*2 gg
5 A o MM,
6 B 0

v
-
~

‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y, B D C AB A

% o] of o] of o] o] o
0 Al o T) E 3\1*1\1
1 B 0\14—14—1 +1'\24—2
2 ¢ Uﬁﬁ\Q«Z 2+2
3 B 0\1*142*2\31_3
4 D o 3\2*2*2 gg
SR Y I Y P P
6 B o

v
-
~

‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y, B D C AB A
% o] of o] of o] o] o
0 Al o T) E 3\1*1\1
1 B 0\14—14—1 +1'\24—2
2 ¢ Uﬁﬁ\Q«Z 2+2
3 B 0\1*142*2\31_3
4 D o 3\2*2*2 gg
5 AL ol MMM NaltsN
6 B o

v
-
~

‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y, B D C AB A
% o] of o] of o] o] o
0 Al o T) E 3\1*1\1
1 B 0\14—14—1 +1'\24—2
2 ¢ Uﬁﬁ\Q«Z 2+2
3 B 0\1*142*2\31_3
4 D o 3\2*2*2 gg
5 AL ol MMM st
6 B | o™

v
PN
~

‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

J 0 1 2 3 4 5 6
y B D CAB A
%] o] o] of of of of o
0 Al o ?, % 3\1*1\1
1 B 0\1<—1<—1 +1‘\24_2
2 ¢ 0§q\2+2 22
3 B 0\1$1+2*2\3(_3
4 D 0 41\2*2*2 gg
5 A ol A% M Nat s
6 B oMt

v
PN
~

‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

J 0 1 2 3 4 5 6
y B D CAB A
%] o] o] of of of of o
0 Al o ?, % 3\1*1\1
1 B 0\1<—1<—1 +1‘\24_2
2 ¢ 0§q\2+2 22
3 B 0\1$1+2*2\3(_3
4 D 0 41\2*2*2 gg
5 A ol A% M Nat s
6 B o i*a]*s

v
-
~

‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

J 0 1 2 3 4 5 6
y B D CAB A
%1 o] of o] of o] o] o
0 Al o ?) % 3\1*1\1
1 B 0\14—1<—1 41\24—2
2 ¢ 0+1+1\2<—2 22
3 B 0\1*14242\34_3
4 D o +1\2*2*2 2+3
5 A o AN NNt
6 B | o u[*2]*2]%s

v
-
~

‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

J 0 1 2 3 4 5 6
y B D CAB A
%1 o] of o] of o] o] o
0 Al o ?) % 3\1*1\1
1 B 0\14—1<—1 41\24—2
2 ¢ 0 +1 +1'\2<—2 22
3 B o™ *142%\3(_3
4 D o +1\2*2*2 2+3
5 A o AN NNt
6 B ofSu[t2t2ts s

v
-
~

‘ L] L]
WY LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o We first fill the first column and row (at index 0).
o The remaining indices are filled row by row.

j 01 2 34 5 6
y, B D CAB A
%1 o] of o] of o] o] 0
o Al of b B e [
1 B 0\14—14—1 +1'\24—2
2 ¢ 0 ¢1 ﬁ\2«2 2+2
3 B| o™ €42*2\3<_3
4 D o 3\2*2*2 2 g
5 A o MM NatsN
6 B o[u[*a|ta[*s]]

v
PN
~

‘ L] -
W™ LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o After filling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

J 0 1 2 3 4 5 6
y, B D C AB A
%1 o] of o] of o] o] o
0 A 0 T) E ?)\191\1
1 B o\1<-1<—1 41‘\2«2
2ol o M ANl 38
3 B | o™ *142%\3(_3
4 D 0 +1\242*2 2+3
5 A 03‘242\3+3\4
6 B o a2t 2]t s j

v
PN
~

‘ L] -
W™ LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o After filling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

J 0 1 2 3 4 5 6
y, B D C AB A
%1 o] of o] of o] o] o
0 A 0 T) E ?)\191\1
1 B o\1<-1<—1 41‘\2«2
2ol o Aol 38
3 B | o™ *142%\3(_3
4 D 0 +1\242*2 2+3
5 A 03‘242\3+3\4
6 B o a2t 2]t s j

v
PN
~

‘ L] -
W™ LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o After filling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

J 0 1 2 3 4 5 6
y, B D CAB A
%1 o] of o] of o] o] o
0 A 0 T) E ?)\191\1
1 B o\1<-1<—1 41‘\2«2
2ol o Aol 38
3 B | o™ *142%\3(_3
4 D 0 +1\242*2 2+3
5 A 03‘242\3+3\4
6 B o a2t 2]t s j

v
PN
~

‘ L] -
W™ LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o After filling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

J 0 1 2 3 4 5 6
y, B D CAB A
%1 o] of o] of o] o] o
0 A 0 T) E ?)\191\1
1 B o\1<-1<—1 41‘\2«2
2ol o Aol 38
3 B | o™ *142%\3(_3
4 D 0 +1\242*2 2+3
5 A 03‘242\3+3\4
6 B o a2t 2]t s j

v
PN
~

‘ L] -
W™ LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and

Y = BDCABA

o After filling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

j 0 2 34 5 6
y B D CAB A

%1 o] of o] of o] o] o
0 A 0 T) E ?)\191\1
1 B o\1<-1<—1 41‘\2«2
2ol o ANl 38
3 B 0\1*14242\34_3
4 D 0 +1\242*2 2+3
5 A 03‘242\3+3\4
6 B o a2t 2]t s j

v
PN
~

‘ L] -
W™ LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and

Y = BDCABA

o After filling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

j 0 2 34 5 6
y B D CAB A

%1 o] of o] of o] o] o
0 A 0 T) E ?)\191\1
1 B o\1<-1<—1 41‘\2«2
2ol o M A een] 8
3 B 0\1*14242\34_3
4 D 0 +1\242*2 2+3
5 A 03‘242\3+3\4
6 B o a2t 2]t s j

v
PN
~

‘ L] -
W™ LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and

Y = BDCABA

o After filling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

j 0 2 34 5 6
y, B D CAB A

%1 o] of o] of o] o] o
0 A 0 T) E ?)\191\1
1 B o\1<-1<—1 41‘\2«2
2l o M A eeo| 8
3 B 0\1*14242\34_3
4 D 0 +1\242*2 2+3
5 A 03‘242\3+3\4
6 B o a2t 2]t s j

v
PN
~

‘ L] -
W™ LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and

Y = BDCABA

o After filling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

j 0 2 34 5 6
y, B D CAB A

%1 o] of o] of o] o] o
0 A 0 T) E ?)\191\1
1 B o\1<-1<—1 41‘\2«2
2 | o M A e]en| 38
3 B 0\1*14242\34_3
4 D 0 +1\242*2 2+3
5 A 03‘242\3+3\4
6 B o a2t 2]t s j

v
PN
~

‘ L] -
W™ LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o After filling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

J 0 1 2 3 4 5 6
y B D CAB A
%1 o] of o] of o] o] o
0 A 0 T) E ?)\191\1
1 B o\1<-1<—1 41‘\2«2
2 | o M A e]en| 38
3 B | o™ *142%\3(_3
4 D 0 +1\242*2 2+3
5 A 03‘242\3+3\4
6 B o a2t 2]t s j

v
PN
~

‘ L] -
W™ LCS Dynamic Programming Example
o Let's see how LCS algorithm works when X = ABCBDAB and
Y = BDCABA

o After filling the table, we use arrows to detect the LCS (formed by
indices at which the arrow points to Top and Left)

J 0 1 2 3 4 5 6
y B D CAB A
%1 o] of o] of o] o] o
0 A 0 T) E ?)\191\1
1 B o\1<-1<—1 41‘\2«2
2 | o M A e]en| 38
3 B | o™ *142%\3(_3
4 D 0 +1\242*2 2+3
5 A 03‘242\3+3\4
6 B o a2t 2]t s j

v

PN
~

Sh Knapsack Problem

e
Y

o In the 0-1 knapsack problem, we are given a set of n items
ail,...,dn.

o Each item a; has a size s; and a value v;.
o We are also given a size bound S (the capacity of our knapsack).
o The goal is to find the subset of items of maximum total value such
that sum of their sizes is at most S (they all fit into the knapsack).
o In the example below, where S = 15, the optimal strategy is to do
parts A, B, F, and G for a total of 34 points.

/A B C D EF G
value | 7 9 5 12 14 6 12
Size | 3 4 2 6 7 3 5

v
-
~

.
At

,“;;0‘ Greedy Strategy

o Option 1: process items in order 1,2, ..., n, and accepts an item as
long as it fits (first A, then B, etc.)

o This selects A, B, C and D for a profit of 33 (which is not optimal
because {A, B, F, G} has profit 34)

/A B C D EF G
value | 7 9 5 12 14 6 12
Siee 13 4 2 6 7 3 5

v
PN
~

;.;“; Sh Greedy Strategy

o Option 2: Sort items by their value-to-size ratio, process items in
the sorted order, and accepts an item as long as it fits (first A, then
B, etc.)

o This selects C(2.5), G(2.4), A(2.33), and B(2.25) for a profit of 33
(which is not optimal because {A, B, F, G} has profit 34.

/A B C D EF G
value | 7 9 5 12 14 6 12
see |3 4 2 6 7 3 5

7/3 9/4 5/2 12/6 14/7 6/3 12/5

v
-
~

;;“\\“ Dynamic Programming for Knapsack

o Step 1: Describe the optimal solution using the optimal solution for
the subproblems.

EECS 3101 - Design and Analysis of Algorithms
30 / 42

v

PN
~

»‘“{i“‘ Dynamic Programming for Knapsack

o Step 1: Describe the optimal solution using the optimal solution for
the subproblems.

o Subproblem: finding the optimal profit (value) when items are
a1, az, ..., ak (for k < n), and the space is B (for B < S).

o Should I accept or reject a,?

o If | accept ax, the optimal profit will be vk plus the profit of placing

ai,...,ak—1 in a space of B — s.
o If | reject ax, the optimal profit will be the profit of placing
ai,...,ak—1 in a space of B.

o If I have the solution for the two sub-problems, | can take the max
between the two!

v
-
~

2;5“‘ Dynamic Programming for Knapsack

o Step 2: Describe the value of the optimal solution recursively

o Let V(k, B) denote the value of the highest value solution that uses
items from among the set 1,2,..., k and uses space at most B.

o We want to find the value of V/(n,S)
o Here is the recursive value for V(k, B).

0 ifk=0
V(k,B)=<¢ V(k—1,B) if sy >B
max{vy + V(k—1,B —s;),V(k—1,B)} otherwise

v
-
~

) . .
WYY Dynamic Programming for Knapsack

o Step 3: Fill the Dynamic Programming table (in a bottom-up way)
to find V/(n, S).

0 ifk=0
V(k,B)={ V(k—1,B) if s > B
max{vy + V(k—1,B —s;),V(k—1,B)} otherwise

o We fill the table row by row; the value of each row depends on the
previous rows; The first row is all 0, V(0, B) = 0.

Knapsack (s[], v[], n, S)

1 for k=0ton

2 forB=0to S

3 ifi=0

4 V(k,B) 0

5 else

6. if s, > B

7 V(k,B) < V(k—1,B)
8 else

9. V(k,B) < max{vx + V(k—1,B —s)V(k—1,B)}
10. return V

v
PN
~
.

SN Dynamic Programming for Knapsack

e
Y

o Step 3: Fill the Dynamic Programming table (in a bottom-up way)
to find V/(n, S).

0 if k=0
V(k,B)={ V(k—1,B) if 5 > B
max{vy + V(k—1,B —s;),V(k—1,B)} otherwise

o We fill the table row by row; the value of each row depends on the
previous rows; The first row is all 0, V(0, B) = 0.
o Here, S =10; item sizes are (5,4,6,3) and values are
(10, 40, 30,50), that is, the first item has size 10 and value 5.

v(i,B)|B=0 B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=10
k=0 || 0 0 0 0 0 0 0 0 0 0 0
k=1

k=2

k=3

k=4 _

v

PN
~

2;6“‘ Dynamic Programming for Knapsack

o Step 3: Fill the Dynamic Programming table (in a bottom-up way)
to find V/(n, S).

0 if k=0
V(k,B)={ V(k—1,B) if 5 > B
max{vy + V(k—1,B —s;),V(k—1,B)} otherwise

o We fill the table row by row; the value of each row depends on the
previous rows; The first row is all 0, V(0, B) = 0.
o Here, S =10; item sizes are (5,4,6,3) and values are
(10, 40, 30,50), that is, the first item has size 10 and value 5.

=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=10
0 0 0 0 0 0 0 0 0
0 0 0 10 10 10 10 10 10

v(i,B)| B=0 B=
k=0 [|0 o
k=1 [lo o
k=2
k=3
k=4 N

1 B

v

PN
~

2;6“‘ Dynamic Programming for Knapsack

o Step 3: Fill the Dynamic Programming table (in a bottom-up way)
to find V/(n, S).

0 if k=0
V(k,B)={ V(k—1,B) if 5 > B
max{vy + V(k—1,B —s;),V(k—1,B)} otherwise

o We fill the table row by row; the value of each row depends on the
previous rows; The first row is all 0, V(0, B) = 0.
o Here, S =10; item sizes are (5,4,6,3) and values are
(10, 40, 30,50), that is, the first item has size 10 and value 5.

V(i,B)|B=0 B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=I0
k=0 || 0 0 0 0 0 0 0 0 o0 0 0
k=1 || 0 0 0 0 0 10 10 10 10 10 10
k=2 || o 0 0 0 40 40 40 40 40
k=3

k=4

v

PN
~

‘ - -
WYY Dynamic Programming for Knapsack
o Step 3: Fill the Dynamic Programming table (in a bottom-up way)
to find V/(n, S).

0 ifk=0
V(k,B)={ V(k—1,B) if 5 > B
max{vy + V(k—1,B —s;),V(k—1,B)} otherwise

o We fill the table row by row; the value of each row depends on the
previous rows; The first row is all 0, V(0, B) = 0.
o Here, S =10; item sizes are (5,4,6,3) and values are
(10, 40, 30,50), that is, the first item has size 10 and value 5.
o V(2,9) = max{va + V(1,9 — sp) = 40 + 10, V(1,9) = 10} = 50

V(i,B)|B=0 B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=I0
k=0 || 0 0 0 0 0 0 0 0 o0 0 0
k=1 || 0 0 0 0 0 10 10 10 10 10 10
k=2 || o 0 0 0 40 40 40 40 40 50 50
k=3

k=4 _

v

PN
~

‘ - -
WYY Dynamic Programming for Knapsack
o Step 3: Fill the Dynamic Programming table (in a bottom-up way)
to find V/(n, S).

0 ifk=0
V(k,B)={ V(k—1,B) if 5 > B
max{vy + V(k—1,B —s;),V(k—1,B)} otherwise

o We fill the table row by row; the value of each row depends on the
previous rows; The first row is all 0, V(0, B) = 0.
o Here, S =10; item sizes are (5,4,6,3) and values are
(10, 40, 30,50), that is, the first item has size 10 and value 5.
o V(2,9) = max{va + V(1,9 — sp) = 40 + 10, V(1,9) = 10} = 50

V(i,B)|B=0 B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=I0
k=0 || 0 0 0 0 0 0 0 o0 0 0
k=1 || 0 0 0 0 0 10 10 10 10 10 10
k=2 || o 0 0 0 40 40 40 40 40 50 50
k=3 || 0 0 0 0 40 40 40 40 40 50 70

k=4 _

v

PN
~

»‘“{i“‘ Dynamic Programming for Knapsack

o Step 3: Fill the Dynamic Programming table (in a bottom-up way)
to find V/(n, S).

0 ifk=0
V(k,B)={ V(k—1,B) if 5 > B
max{vy + V(k—1,B —s;),V(k—1,B)} otherwise

o We fill the table row by row; the value of each row depends on the
previous rows; The first row is all 0, V(0, B) = 0.
o Here, S =10; item sizes are (5,4,6,3) and values are
(10, 40, 30,50), that is, the first item has size 10 and value 5.
o V(2,9) = max{va + V(1,9 — sp) = 40 + 10, V(1,9) = 10} = 50

V(i,B)|B=0 B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=I0
k=0 || 0 0 0 0 0 0 0 o0 0 0
k=1 || 0 0 0 0 0 10 10 10 10 10 10
k=2 || o 0 0 0 40 40 40 40 40 50 50
k=3 || 0 0 0 0 40 40 40 40 40 50 70
k=4 || 0 0 0 50 50 50 50

>

v

PN
~

Sh Dynamic Programming for Knapsack

e
Y

o Step 3: Fill the Dynamic Programming table (in a bottom-up way)
to find V/(n, S).

0 ifk=0
V(k,B)={ V(k—1,B) if 5 > B
max{vy + V(k—1,B —s;),V(k—1,B)} otherwise

o We fill the table row by row; the value of each row depends on the
previous rows; The first row is all 0, V(0, B) = 0.
o Here, S =10; item sizes are (5,4,6,3) and values are
(10, 40, 30,50), that is, the first item has size 10 and value 5.
o V(2,9) = max{va + V(1,9 — sp) = 40 + 10, V(1,9) = 10} = 50
o V(4,7) = max{vs + V(3,7 — s4) = 50 + 40, V/(3,7) = 40} = 90

V(i,B)|B=0 B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=I0
k=0 || 0 0 0 0 0 0 0 0 o0 0 0
k=1 || 0 0 0 0 0 10 10 10 10 10 10
k=2 || o 0 0 0 40 40 40 40 40 50 50
k=3 || 0 0 0 0 40 40 40 40 40 50 70
k=4 || 0 0 0 50 50 50 50

>

v

PN
~

Sh Dynamic Programming for Knapsack

e
Y

o Step 3: Fill the Dynamic Programming table (in a bottom-up way)
to find V/(n, S).

0 ifk=0
V(k,B)={ V(k—1,B) if 5 > B
max{vy + V(k—1,B —s;),V(k—1,B)} otherwise

o We fill the table row by row; the value of each row depends on the
previous rows; The first row is all 0, V(0, B) = 0.
o Here, S =10; item sizes are (5,4,6,3) and values are
(10, 40, 30,50), that is, the first item has size 10 and value 5.
o V(2,9) = max{va + V(1,9 — sp) = 40 + 10, V(1,9) = 10} = 50
o V(4,7) = max{vs + V(3,7 — s4) = 50 + 40, V/(3,7) = 40} = 90

V(i,B)|B=0 B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=I0
k=0 || 0 0 0 0 0 0 0 0 o0 0 0
k=1 || 0 0 0 0 0 10 10 10 10 10 10
k=2 || o 0 0 0 40 40 40 40 40 50 50
k=3 || 0 0 0 0 40 40 40 40 40 50 70
k=4 || 0 0 0 50 50 50 50 90 N

v

PN
~

Loy

e
Y

Dynamic Programming for Knapsack

o Step 4: Go backwards in the table to retrieve the accepted items.

KnapsackRetrieve (s[], V. 1, S)
B+S
ken
for k >0
if V(k.B) = V(k-1,B)
report item k as rejected
ke k-1

kek-1
0. B« B-S[k

O I S

report item k as accepted

o Here, S = 10; sizes are (5,4,6,3) and values are (10, 40, 30, 50).
o First, V[4,10] =90 and V[3,10] = 70; we can conclude as is
accepted. The remaining space would be 10 — s, = 7. We should

check V[3,7] and repeat; Accepted items are a; and as.

V(i,B)| B=0 B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=10
k=0 | 0 o 0 0o 0 0 0 0 0
k=<1 | 0 0 0 0 0 10 10 10 10 10 10
k2| o o 0 0O 40 40 40 40 40 50 50
k3| 0 o 0 O 40 40 40 40 40 50 70
k=4 | o o 0 50 50 50 50 90 9 9 90

v

PN
~

Loy

e
Y

Dynamic Programming for Knapsack

o Step 4: Go backwards in the table to retrieve the accepted items.

KnapsackRetrieve (s[], V. 1, S)
B+S
ken
for k >0
if V(k.B) = V(k-1,B)
report item k as rejected
ke k-1

kek-1
0. B« B-S[k

O I S

report item k as accepted

o Here, S = 10; sizes are (5,4,6,3) and values are (10, 40, 30, 50).
o First, V[4,10] =90 and V[3,10] = 70; we can conclude as is
accepted. The remaining space would be 10 — s, = 7. We should

check V[3,7] and repeat; Accepted items are a; and as.

V(i,B)| B=0 B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=10
k=0 | 0 o 0 0o 0 0 0 0 0
k=<1 | 0 0 0 0 0 10 10 10 10 10 10
k2| o o 0 0O 40 40 40 40 40 50 50
k3| 0 o 0 O 40 40 40 40 40 50 70
k=4 | o o 0 50 50 50 50 90 9 9 90

v

PN
~

Loy

e
Y

Dynamic Programming for Knapsack

o Step 4: Go backwards in the table to retrieve the accepted items.

KnapsackRetrieve (s[], V. 1, S)
B+S
ken
for k >0
if V(k.B) = V(k-1,B)
report item k as rejected
ke k-1

kek-1
0. B« B-S[k

O I S

report item k as accepted

o Here, S = 10; sizes are (5,4,6,3) and values are (10, 40, 30, 50).
o First, V[4,10] =90 and V[3,10] = 70; we can conclude as is
accepted. The remaining space would be 10 — s, = 7. We should

check V[3,7] and repeat; Accepted items are a; and as.

V(i,B)| B=0 B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=10
k=0 | 0 o 0 0o 0 0 0 0 0
k=<1 | 0 0 0 0 0 10 10 10 10 10 10
k2| o o 0 0O 40 40 40 40 40 50 50
k3| 0 o 0 O 40 40 40 40 40 50 70
k=4 | o o 0 50 50 50 50 90 9 9 90

v

PN
~

Loy

e
Y

Dynamic Programming for Knapsack

o Step 4: Go backwards in the table to retrieve the accepted items.

KnapsackRetrieve (s[], V. 1, S)
B+S
ken
for k >0
if V(k.B) = V(k-1,B)
report item k as rejected
ke k-1

kek-1
0. B« B-S[k

O I S

report item k as accepted

o Here, S = 10; sizes are (5,4,6,3) and values are (10, 40, 30, 50).
o First, V[4,10] =90 and V[3,10] = 70; we can conclude as is
accepted. The remaining space would be 10 — s, = 7. We should

check V[3,7] and repeat; Accepted items are a; and as.

V(i,B)| B=0 B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=10
k=0 | 0 o 0 0o 0 0 0 0 0
k=<1 | 0 0 0 0 0 10 10 10 10 10 10
k2| o o 0 0O 40 40 40 40 40 50 50
k3| 0 o 0 O 40 40 40 40 40 50 70
k=4 | o o 0 50 50 50 50 90 9 9 90

v

PN
~

Loy

e
Y

Dynamic Programming for Knapsack

o Step 4: Go backwards in the table to retrieve the accepted items.

KnapsackRetrieve (s[], V. 1, S)
B+S
ken
for k >0
if V(k.B) = V(k-1,B)
report item k as rejected
ke k-1

kek-1
0. B« B-S[k

O I S

report item k as accepted

o Here, S = 10; sizes are (5,4,6,3) and values are (10, 40, 30, 50).
o First, V[4,10] =90 and V[3,10] = 70; we can conclude as is
accepted. The remaining space would be 10 — s, = 7. We should

check V[3,7] and repeat; Accepted items are a; and as.

V(i,B)| B=0 B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=10
k=0 | 0 o 0 0o 0 0 0 0 0
k=<1 | 0 0 0 0 0 10 10 10 10 10 10
k2| o o 0 0O 40 40 40 40 40 50 50
k3| 0 o 0 O 40 40 40 40 40 50 70
k=4 | o o 0 50 50 50 50 90 9 9 90

v

PN
~

Loy

e
Y

Dynamic Programming for Knapsack

o Step 4: Go backwards in the table to retrieve the accepted items.

KnapsackRetrieve (s[], V. 1, S)
B+S
ken
for k >0
if V(k.B) = V(k-1,B)
report item k as rejected
ke k-1

kek-1
0. B« B-S[k

O I S

report item k as accepted

o Here, S = 10; sizes are (5,4,6,3) and values are (10, 40, 30, 50).
o First, V[4,10] =90 and V[3,10] = 70; we can conclude as is
accepted. The remaining space would be 10 — s, = 7. We should

check V[3,7] and repeat; Accepted items are a; and as.

V(i,B)|B=0 B=1 B=2 B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=10
k=0 | 0 o 0 0o 0 0 0 0 0
k=<1 | 0 0 0 0 0 10 10 10 10 10 10
k2| o o 0 0O 40 40 40 40 40 50 50
k3| 0 o 0 O 40 40 40 40 40 50 70
k=4 | o o 0 50 50 50 50 90 9 9 90

v
PN
N\

\

1 : ‘ . - L] - L]
WY Matrix Chain Multiplication

o Given a sequence of matrices Ay, Az, As, ..., A, find the best way
(using the minimal number of multiplications) to compute their
product.

o Isn’t there only one way?((...((A1.A2).A3)...).An)

v

PN
~

‘ - - L] - L]
) Matrix Chain Multiplication

o Given a sequence of matrices Ay, Az, As, ..., A, find the best way
(using the minimal number of multiplications) to compute their
product.

o Isn’t there only one way?((...((A1.A2).A3)...).An)

o No, matrix multiplication is associative. e.g.
A1.(A2.(A3.(...(An=1.An)...))) yields the same matrix.

o Different multiplication orders do not cost the same:

o Multiplying pxq matrix A and g X r matrix B takes p.q.r
multiplications; result is a p X r matrix.

v

PN
~

‘ - - L] - L]
) Matrix Chain Multiplication

o Given a sequence of matrices Ay, Az, As, ..., A, find the best way
(using the minimal number of multiplications) to compute their
product.

o Isn’t there only one way?((...((A1.A2).A3)...).An)
o No, matrix multiplication is associative. e.g.
A1.(A2.(A3.(...(An=1.An)...))) yields the same matrix.
o Different multiplication orders do not cost the same:
o Multiplying pxq matrix A and g X r matrix B takes p.q.r
multiplications; result is a p X r matrix.
o Consider multiplying 10 x 100 matrix A; with 100 x 5 matrix A
and 5 x 50 matrix As.
o (A1.A2).As takes 10 . 100 . 5 + 10 . 5. 50 = 7500 multiplications.
o A;1.(A2.A3) takes 100 . 5. 50 + 10 . 50 . 100 = 75000
multiplications.

v
PN
1

. h ‘ .
‘) Subproblem Formulation

o Step 1: Define sub-problems to state the optimal solution for each
sub-problem in terms of optimal solutions for smaller sub-problems

o In general, let A; be pj_1 X pi matrix.

v
-
~

\i=

A .
W™ Subproblem Formulation

o Step 1: Define sub-problems to state the optimal solution for each
sub-problem in terms of optimal solutions for smaller sub-problems

o In general, let A; be pj_1 X pi matrix.

o Sub-problem (i,): product of A;, Aiy1,...,A;.

o Let m(i, j) be minimal number of multiplications needed to
compute A; - Ait1 - ... Aj; we want to compute m(1, n).

v

PN
~

A _
™) Subproblem Formulation

o Step 1: Define sub-problems to state the optimal solution for each
sub-problem in terms of optimal solutions for smaller sub-problems

o In general, let A; be pj_1 X pi matrix.

o Sub-problem (i,): product of A;, Aiy1,...,A;.

o Let m(i, j) be minimal number of multiplications needed to
compute A; - Ait1 - ... Aj; we want to compute m(1, n).

o Observation: If (A(B((CD)(EF)))) is optimal Then
(B((CD)(EF))) is optimal as well

v
-
~

! ’”""‘ . .
‘™Y Recursive Formulation

o Step 2: Denote the value of the optimal solutions for subproblems
recursively.

EECS 3101 - Design and Analysis of Algorithms
37 / 42

v
PN
N\

\

. _ :
o) Recursive Formulation

o Step 2: Denote the value of the optimal solutions for subproblems
recursively.

o Assume the position of the last product is k, that is, our final
multiplication is of the form
(Aigr - Aigz - o Ak) - (Akgr - Akga - . A)).

v
-
~

* V ‘ L] L]
=Y Recursive Formulation

Al

o Step 2: Denote the value of the optimal solutions for subproblems
recursively.

o Assume the position of the last product is k, that is, our final
multiplication is of the form
(Aigr - Aigz - o Ak) - (Akgr - Aga - . L A)).

o Consider the case multiplying these 4 matrices: A:2 x4 B:4 x 2
C:2x3D:3x1

v

PN
~

e
Y

A . o
=Y Recursive Formulation

o Step 2: Denote the value of the optimal solutions for subproblems
recursively.

o Assume the position of the last product is k, that is, our final
multiplication is of the form
(Aigr - Aigz - o Ak) - (Akgr - Aga - . L A)).
o Consider the case multiplying these 4 matrices: A:2 x4 B:4 x 2
C:2x3D:3x1
o (A)(BCD): Thisis a 2 x 4 multiplied by a4 x1,s02x4x1=28
multiplications, plus whatever work it will take to multiply (BCD).

v

PN
~

\

A . .
‘™Y Recursive Formulation

o Step 2: Denote the value of the optimal solutions for subproblems
recursively.

o Assume the position of the last product is k, that is, our final
multiplication is of the form
(Aigr - Aigz - o Ak) - (Akgr - Aga - . L A)).
o Consider the case multiplying these 4 matrices: A:2 x4 B:4 x 2
C:2x3D:3x1
o (A)(BCD): Thisis a 2 x 4 multiplied by a4 x1,s02x4x1=28
multiplications, plus whatever work it will take to multiply (BCD).
o (AB)(CD): Thisis a 2 x 2 multiplied by a2 x 1,50 2 x 2 x 1 = 4
multiplications, plus whatever work it will take to multiply (AB)
and (CD).

v

PN
~

\

A . .
‘™Y Recursive Formulation

o Step 2: Denote the value of the optimal solutions for subproblems
recursively.

o Assume the position of the last product is k, that is, our final
multiplication is of the form
(Aigr - Aigz - o Ak) - (Akgr - Aga - . L A)).
o Consider the case multiplying these 4 matrices: A:2 x4 B:4 x 2
C:2x3D:3x1
o (A)(BCD): Thisis a 2 x 4 multiplied by a4 x1,s02x4x1=28
multiplications, plus whatever work it will take to multiply (BCD).
o (AB)(CD): Thisis a 2 x 2 multiplied by a2 x 1,50 2 x 2 x 1 = 4
multiplications, plus whatever work it will take to multiply (AB)
and (CD).
o (ABC)(D): Thisis a 2 x 3 multiplied bya3 x1,s02x3x1=6
multiplications, plus whatever work it will take to multiply (ABC).

v
-
~

‘ L] L]
‘™Y Recursive Formulation

o Step 2: Denote the value of the optimal solutions for subproblems
recursively.

o We can compute recursively the best way to multiply the chain from
i to k, and from k + 1 to j, and add the cost of the final product.

o This means that m(i,j) = m(i, k) +m(k +1,j) + pi—1 - px - p;

o Therefore we can write:

i) = | 0 Ifi=j
= mini<po i {m(i, k) +m(k +1,5) + pi-1-pp -pj} Hi<j

v

PN
N\

A . o
=Y Recursive Formulation

AN
o Step 3: Fill a dynamic programming table in a bottom-up fashion
o To set mli, j], we need to look at the values of the same row on the
right (m[i, k]), or the same column but below (m[k + 1,]).
miigy =1 ° fi=j
) min; <o {m(i, k) + mk +1,7) + pic1 - p - pj} i <j

MATRIX-CHAIN-ORDER (p)

1 n = p.length—1

2 letm[l..n.1..n]and s[1..n —1,2..n] be new tables
3 fori =1ton

4 mli.i] = 0

5 forl =2ton // 1 is the chain length

6 fori = 1ton—1+1

7 j=i4l—1

8 mli.j] = oo

9 fork =itoj—1

10 g = mli.k] +mlk + 1. j] + pi-1pip;
11 ifg <mli. j]

12 mli.j]=q

13 sli jl =k

return 2 and s

IS

v
-
~

V ‘ L] L]
‘™Y Recursive Formulation

o Step 3: Fill a dynamic programming table in a bottom-up fashion

o To set mli,j], we need to look at the values of the same row on the
right (m[i, k]), or the same column but below (m[k + 1,]).

mi,g) = 0 Ifi=j
PPN mingepa {mli k) + mk+1,5) + picypropi} i<

matrix

| A Az A3

As As

dimension‘30><35 35x15 15x5 5x10 10x20 20x25

m[2,5]

7125 .

m(2.2] + m(3.5] + p1p2ps
m[2,3] +m[4,5] + p1p3ps
m[2,4] +ml[5,5] + p1paps

0+ 2500 + 35-15-20
2625 + 1000 + 35-5-20
4375+ 0+ 35-10-20

EE(101 - [

13,000 ,
7125,

= 11,375

ign and Analysi Igorithm

v
-
~

‘™Y Recursive Formulation

o Step 4: Retrieve the actual solution using the flag matrix s

@ You will work on the details on Assignment 4.

EECS 3101 - Design and Analysis of Algorithms
1/ 42

v

PN
~

‘ - - -
WYY Dynamic Programming Review

1 Step 1: define subproblems, and devise the value of the optimal
solution for each subproblem using the value of the optimal
solutions for smaller subproblems.

2 Step 2: write down a recursive formula for the value of optimal
solutions.

3 Step 3: fill up the dynamic programming table in a bottom-up
fashion.

4 Step 4: retrieve the actual solution by moving backwards in the
table.

