

EECS 3101 - Design and Analysis of Algorithms

Shahin Kamali

Topic 4 - Dynamic Programming

EECS 3101 - Design and Analysis of Algorithms 1 / 42

- Dynamic Programming Framework & Applications
- Rod Cutting
- Matrix Chain Multiplication
- Longest Common Subsequence

Dynamic Programming Overview

- **Dynamic Programming** is similar to Divide & Conquer in the sense that it solves a problem by combining the solutions for subproblems.
 - Divide & Conquer solves subproblems independently.
 - Dynamic Programming applies when subproblems overlap, i.e., they share subsubproblems!

Dynamic Programming Overview

- **Dynamic Programming** is similar to Divide & Conquer in the sense that it solves a problem by combining the solutions for subproblems.
 - Divide & Conquer solves subproblems independently.
 - Dynamic Programming applies when subproblems overlap, i.e., they share subsubproblems!
- Dynamic Programming solves each subsubproblem just once and then saves it in a **table**
 - We avoid work of recomputing answers for subsubproblems.
 - **Programming** in this context refers to a tabular method, not to writing computer code.

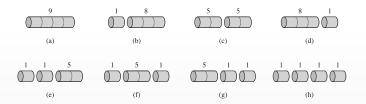
Dynamic Programming Overview

- Steps for designing a Dynamic Programming algorithm:
 - Characterize the structure of an optimal solution.
 - 2 Recursively define the value of an optimal solution.
 - Compute the value of an optimal solution, typically in a bottom-up fashion, and store results in a table.

 - Construct an optimal solution from computed information in the table

Rod Cutting

- You have a rod of length *n*, and you want to cut up the rod and sell the pieces ina way that maximizes the total amount of money you get. A piece of length *i* is worth *p_i* dollars.
 - E.g., for n = 4 and the following length/value table, we have 8 possible ways of cutting the rod, and the optimal cutting has value 10.



• How many ways are there to cut up a rod of length n?

- How many ways are there to cut up a rod of length n?
 - Roughly 2^{n-1} , because there are n-1 places where we can choose to make cuts, and at each place, we either make a cut or we do not make a cut.

Inspecting the Problem

- How many ways are there to cut up a rod of length n?
 - Roughly 2^{n-1} , because there are n-1 places where we can choose to make cuts, and at each place, we either make a cut or we do not make a cut.
 - An exhaustive algorithm which tries all partitions runs in exponential time.

• Rod cutting is a typical **optimization problem**, where we want to find to maximize a profit (or minimize a cost).

Basic Approach

- Rod cutting is a typical **optimization problem**, where we want to find to maximize a profit (or minimize a cost).
- For optimization problems, first, we ask "what is the maximum amount of profit we can get? (or minimum cost)"
 - Later we will extend the algorithm to give us the actual rod decomposition that leads to that maximum value.

Basic Approach

- Rod cutting is a typical **optimization problem**, where we want to find to maximize a profit (or minimize a cost).
- For optimization problems, first, we ask "what is the maximum amount of profit we can get? (or minimum cost)"
 - Later we will extend the algorithm to give us the actual rod decomposition that leads to that maximum value.
- This general approach applies to almost all Dynamic Programming algorithms.

- Let *r_i* be the maximum amount of money you can get with a rod of size *i*. We can view the problem recursively as follows:
 - First, cut a piece off the left end of the rod, and sell it.
 - Then, find the optimal way to cut the remainder of the rod.

- Let *r_i* be the maximum amount of money you can get with a rod of size *i*. We can view the problem recursively as follows:
 - First, cut a piece off the left end of the rod, and sell it.
 - Then, find the optimal way to cut the remainder of the rod.
- $\bullet\,$ Now we don't know how large a piece we should cut off \to try all possible cases.
 - First, try cutting a piece of length 1, and combining it with the optimal way to cut a rod of length n-1.

- Let *r_i* be the maximum amount of money you can get with a rod of size *i*. We can view the problem recursively as follows:
 - First, cut a piece off the left end of the rod, and sell it.
 - Then, find the optimal way to cut the remainder of the rod.
- $\bullet\,$ Now we don't know how large a piece we should cut off \to try all possible cases.
 - First, try cutting a piece of length 1, and combining it with the optimal way to cut a rod of length n-1.
 - Then try cutting a piece of length 2, and combining it with the optimal

- Let *r_i* be the maximum amount of money you can get with a rod of size *i*. We can view the problem recursively as follows:
 - First, cut a piece off the left end of the rod, and sell it.
 - Then, find the optimal way to cut the remainder of the rod.
- $\bullet\,$ Now we don't know how large a piece we should cut off \to try all possible cases.
 - First, try cutting a piece of length 1, and combining it with the optimal way to cut a rod of length n-1.
 - Then try cutting a piece of length 2, and combining it with the optimal way to cut a rod of length n-2, and so on.
 - We try all the possible lengths and then pick the best one. We end up with the following: (when i = n, the rod is not cut at all)

$$r_n = \max_{1 \le i \le n} \{ p_i + r_{n-i} \}$$
 $r_0 = 0$

- Let *r_i* be the maximum amount of money you can get with a rod of size *i*. We can view the problem recursively as follows:
 - First, cut a piece off the left end of the rod, and sell it.
 - Then, find the optimal way to cut the remainder of the rod.
- $\bullet\,$ Now we don't know how large a piece we should cut off \to try all possible cases.
 - First, try cutting a piece of length 1, and combining it with the optimal way to cut a rod of length n-1.
 - Then try cutting a piece of length 2, and combining it with the optimal way to cut a rod of length n-2, and so on.
 - We try all the possible lengths and then pick the best one. We end up with the following: (when i = n, the rod is not cut at all)

$$r_n = \max_{1 \le i \le n} \{ p_i + r_{n-i} \}$$
 $r_0 = 0$

- How should we compute $r_n = \max_{1 \le i \le n} \{p_i + r_{n-i}\}$ $r_0 = 0$?
 - The formula immediately translates into a recursive algorithm.

```
CUT-ROD(p, n)

1 if n == 0

2 return 0

3 q = -\infty

4 for i = 1 to n

5 q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))

6 return q
```


- How should we compute $r_n = \max_{1 \le i \le n} \{p_i + r_{n-i}\}$ $r_0 = 0$?
 - The formula immediately translates into a recursive algorithm.

```
CUT-ROD(p, n)

1 if n == 0

2 return 0

3 q = -\infty

4 for i = 1 to n

5 q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))

6 return q
```

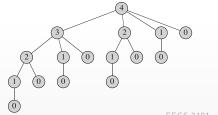
• Is this good?

9 / 42

Recursive Implementation

• How should we compute $r_n = \max_{1 \le i \le n} \{p_i + r_{n-i}\}$ $r_0 = 0$? CUT-ROD(p, n)1 if n = 02 return 0 3 $q = -\infty$ 4 for i = 1 to n5 $q = \max(q, p[i] + \text{CUT-ROD}(p, n-i))$ 6 return q

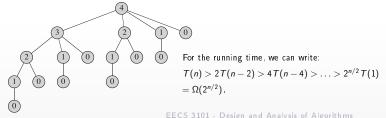
• There are many repeated computation in the recursion tree!



Recursive Implementation

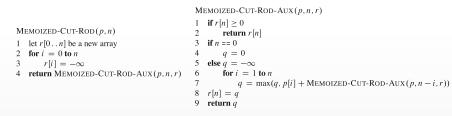
• How should we compute $r_n = \max_{1 \le i \le n} \{p_i + r_{n-i}\}$ $r_0 = 0$? CUT-ROD(p,n)1 if n = 02 return 0 3 $q = -\infty$ 4 for i = 1 to n5 $q = \max(q, p[i] + \text{CUT-ROD}(p, n-i))$ 6 return q

• There are many repeated computation in the recursion tree!



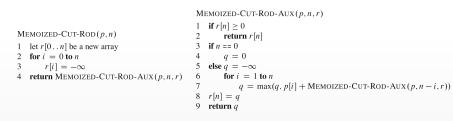
DP: Memoization (Top Down)

- How should we compute $r_n = \max_{1 \le i \le n} \{p_i + r_{n-i}\}$ $r_0 = 0$?
- We can store the result of the recursive calls, and if we need the result in a future recursive call, we can use the precomputed value. The answer will be stored in *r*[*n*].



DP: Memoization (Top Down)

- How should we compute $r_n = \max_{1 \le i \le n} \{p_i + r_{n-i}\}$ $r_0 = 0$?
- We can store the result of the recursive calls, and if we need the result in a future recursive call, we can use the precomputed value. The answer will be stored in *r*[*n*].
 - Each subproblem is solved exactly once. For a subproblem of size *i*, we spend $\Theta(i)$ (we run through *i* iterations of the for loop) \rightarrow The running time is $\Theta(n) + \Theta(n-1) + \ldots + \Theta(1) = \Theta(n^2)$.



DP: Memoization (Bottom Up)

- How should we compute $r_n = \max_{1 \le i \le n} \{p_i + r_{n-i}\}$ $r_0 = 0$?
- We proactively compute the solutions for smaller rods first, knowing that they will later be used to compute the solutions for larger rods. The answer will be stored in *r*[*n*].

• Most people will write the bottom up procedure when they implement a dynamic programming algorithm.

BOTTOM-UP-CUT-ROD(p, n)1 let r[0 ...n] be a new array 2 r[0] = 03 for j = 1 to n4 $q = -\infty$ 5 for i = 1 to j6 $q = \max(q, p[i] + r[j - i])$ 7 r[j] = q8 return r[n]

DP: Memoization (Bottom Up)

- How should we compute $r_n = \max_{1 \le i \le n} \{p_i + r_{n-i}\}$ $r_0 = 0$?
- We proactively compute the solutions for smaller rods first, knowing that they will later be used to compute the solutions for larger rods. The answer will be stored in *r*[*n*].
 - The running time is still $\Theta(n^2)$.
 - Most people will write the bottom up procedure when they implement a dynamic programming algorithm.

BOTTOM-UP-CUT-ROD(p, n)1 let r[0..n] be a new array 2 r[0] = 03 for j = 1 to n4 $q = -\infty$ 5 for i = 1 to j6 $q = \max(q, p[i] + r[j - i])$ 7 r[j] = q8 return r[n]

DP: Memoization (Bottom Up)

- How should we compute $r_n = \max_{1 \le i \le n} \{p_i + r_{n-i}\}$ $r_0 = 0$?
- We proactively compute the solutions for smaller rods first, knowing that they will later be used to compute the solutions for larger rods. The answer will be stored in *r*[*n*].
 - The running time is still $\Theta(n^2)$.
 - Often the bottom up approach is simpler to write, and has less overhead, because you don't have to keep a recursive call stack.
 - Most people will write the bottom up procedure when they implement a dynamic programming algorithm.

```
BOTTOM-UP-CUT-ROD(p, n)
```

```
1 let r[0..n] be a new array

2 r[0] = 0

3 for j = 1 to n

4 q = -\infty

5 for i = 1 to j

6 q = \max(q, p[i] + r[j - i])

7 r[j] = q

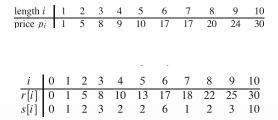
8 return r[n]
```


Reconstructing a solution

- If we want to actually find **the optimal way to split the rod**, instead of just the maximum profit we can get, we can create another array *s*:
 - s[j] = i iff the best thing to do when we have a rod of length j is to cut off a piece of length i.
 - Using these values *s*[*j*], we can reconstruct the optimal rod decomposition.

```
EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
    let r[0 \dots n] and s[0 \dots n] be new arrays
   r[0] = 0
                                              PRINT-CUT-ROD-SOLUTION (p, n)
 3
   for i = 1 to n
        a = -\infty
                                                 (r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)
 5
        for i = 1 to i
                                                 while n > 0
            if q < p[i] + r[j-i]
 6
                                                    print s[n]
 7
                q = p[i] + r[j - i]
                                              4
                                               n = n - s[n]
 8
                s[i] = i
 9
        r[i] = a
10
    return r and s
```


• For our example, the program produces this answer:



Dynamic programming remarks

- Optimal substructure: To solve a optimization problem using dynamic programming, we must first characterize the structure of an optimal solution.
 - Specifically, we must prove that we can create an optimal solution to a problem using optimal solutions to smaller subproblems.
 - Then, we can store optimal solutions for all subproblems in a table \rightarrow compute later elements in the table from earlier elements in the table.

Dynamic programming remarks

- Optimal substructure: To solve a optimization problem using dynamic programming, we must first characterize the structure of an optimal solution.
 - Specifically, we must prove that we can create an optimal solution to a problem using optimal solutions to smaller subproblems.
 - Then, we can store optimal solutions for all subproblems in a table \rightarrow compute later elements in the table from earlier elements in the table.
 - If the optimal solution to a problem might not require subproblem solutions to be optimal, then we cannot use dynamic programming.

Dynamic programming remarks

• Overlapping Subproblems

- For dynamic programming to be useful, the recursive algorithm should require us to compute optimal solutions to the same subproblems over and over again → Then we benefit from just computing them once and then using the results later.
- In total, there should be a small number of distinct subproblems (i.e. polynomial in the input size), even if there is an exponential number of total subproblems.

- We are given two sequences X and Y, and want to find the longest possible sequence that is a subsequence of both X and Y.
- E.g., for X = ABCBDAB and Y = BDCABA:
 - BCA is a common sequence of both X and Y.

Longest common subsequence

- We are given two sequences X and Y, and want to find the longest possible sequence that is a subsequence of both X and Y.
- E.g., for X = ABCBDAB and Y = BDCABA:
 - BCA is a common sequence of both X and Y.
 - BCBA is a longer sequence that is also common to both X and Y.

Longest common subsequence

- We are given two sequences X and Y, and want to find the longest possible sequence that is a subsequence of both X and Y.
- E.g., for X = ABCBDAB and Y = BDCABA:
 - BCA is a common sequence of both X and Y.
 - BCBA is a longer sequence that is also common to both X and Y.
 - Both *BCBA* and *BDAB* are longest common subsequences, since there are no common sequences of length 5 or greater

• if |X| = m, |Y| = n, then there are 2^m subsequences of X; we must compare each with Y (n comparisons)

• So the running time of the brute-force algorithm is $O(n2^m)$.

 Notice that the LCS problem has optimal substructure: solutions of subproblems are parts of the final solution → should we use dynamic programming?



- The first step use dynamic programming is create an optimal solution to this problem using optimal solutions to subproblems → a recursive formulation of the optimal solution.
- The hardest part is to decide what the subproblems are. For the LCS we have two cases:
 - Case 1: The last elements of X and Y are equal.
 - Case 2: The last elements of X and Y are not equal.

• Case 1: The last elements of X and Y are equal.

X = ABCBDAB and Y = BDCAB

EECS 3101 - Design and Analysis of Algorithms

20 / 42

• Case 1: The last elements of X and Y are equal.

X = ABCBDAB and Y = BDCAB

- Then the last element must both be part of the longest common subsequence
- We can chop both elements off the ends of the subsequence (adding them to a common subsequence) and find the longest common subsequence of the smaller sequences.
- The LCS of X = ABCBDAB and Y = BDCAB can be formed by finding the LCS of ABCBDA and BDCA, which is BDA, and adding B to it, that is LCS of X and Y is BDAB.

• Case 2: The last elements of X and Y are not equal.

X = ABCBDABA and Y = BDCAB

• Case 2: The last elements of X and Y are not equal.

X = ABCBDABA and Y = BDCAB

- Either the last element of X or the last element of Y cannot be part of the longest common subsequence.
- we can find the LCS of X and a smaller version of Y in which the last element is missing, or the LCS of Y and a smaller version of X in which the last element is missing.
- The LCS of X = ABCBDABA and Y = BDCAB can be formed by:
 - The LCS of ABCBDABA and BDCA, which is BCA.
 - The LCS of ABCBDAB and BDCAB, which is BDAB.
 - Taking the LCS with max length, i.e., BDAB.

LCS Dynamic Programming Solution

- First we'll find the length of LCS. Later we'll modify the algorithm to find LCS itself.
- Define X_i, Y_j to be the prefixes of X and Y of length i and j, respectively.
- Define c[i, j] to be the length of LCS of X_i and Y_j Then the length of LCS of X and Y will be c[m, n].
 - Since X_0 and Y_0 are empty strings, their LCS is always empty (i.e. c[0,0] = 0)
 - LCS of empty string and any other string is empty, so for every *i* and *j* we have c[0, j] = c[i, 0] = 0.

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1, j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\ \max(c[i, j-1], c[i-1, j]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

LCS Dynamic Programming Solution

- **Optimal Substructure:** we have characterized the optimal solution recursively using optimal solutions to smaller problems.
- Overlapping Subproblems: How many subproblems exist?
 - Each c[i,j] is associated with one sub-problem that asks for LCS of X_i and $Y_j \rightarrow$ There are $\Theta(m.n)$ subproblems.

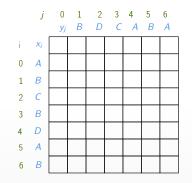
$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1, j-1] + 1 & \text{if } i, j > 0 \text{ and } x_i = y_j, \\ \max(c[i, j-1], c[i-1, j]) & \text{if } i, j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

LCS Dynamic Programming Solution

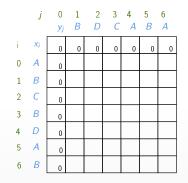
- Using the recurrence, we can write the actual pseudocode.
 - We populate the table in a certain order, because some elements depend on other elements of the table having already been computed

```
LCS-LENGTH(X, Y)
     m = X.length
 2 \quad n = Y.length
    let b[1 \dots m, 1 \dots n] and c[0 \dots m, 0 \dots n] be new tables
    for i = 1 to m
 4
          c[i, 0] = 0
   for i = 0 to n
          c[0, j] = 0
 8
     for i = 1 to m
          for i = 1 to n
 9
10
              if x_i == v_i
                   c[i, j] = c[i-1, j-1] + 1
12
                   b[i, i] = ``\]
13
              elseif c[i - 1, j] \ge c[i, j - 1]
14
                   c[i, j] = c[i - 1, j]
15
                   b[i, i] = ``\uparrow"
16
              else c[i, j] = c[i, j-1]
17
                   b[i, i] = " \leftarrow "
18
    return c and b
```

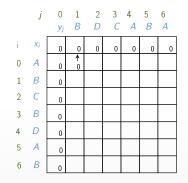

- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).



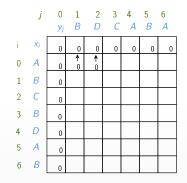
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



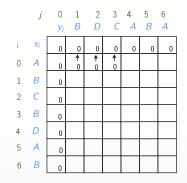
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



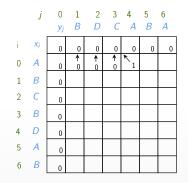
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



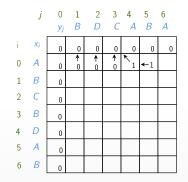
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



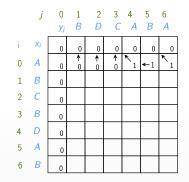
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



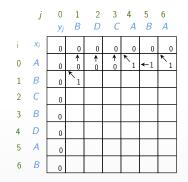
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



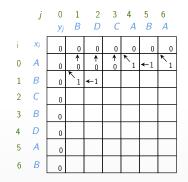
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



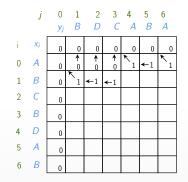
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



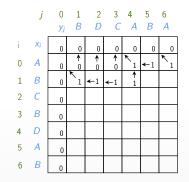
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



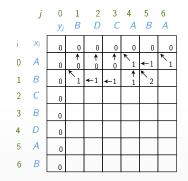
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



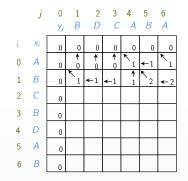
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



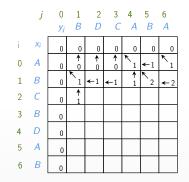
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



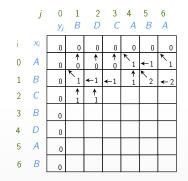
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



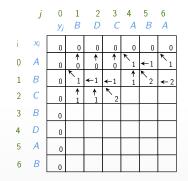
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



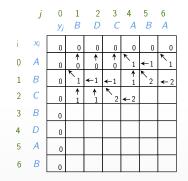
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



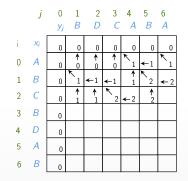
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



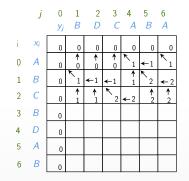
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



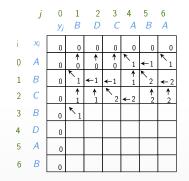
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



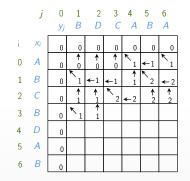
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



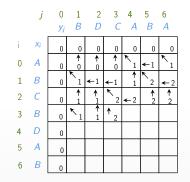
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



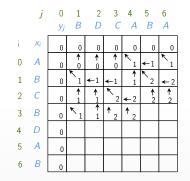
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



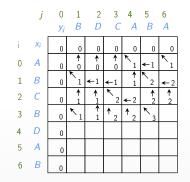
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



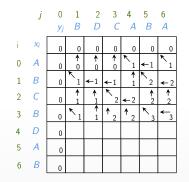
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



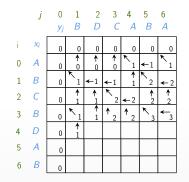
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



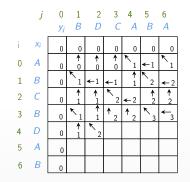
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



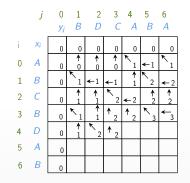
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



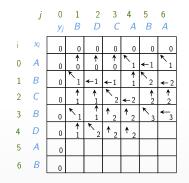
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



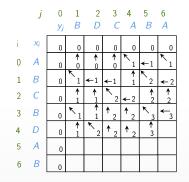
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



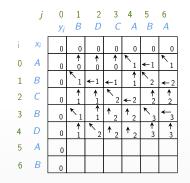
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



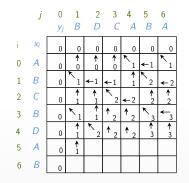
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



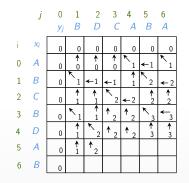
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



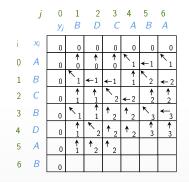
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



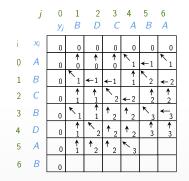
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



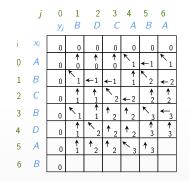
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



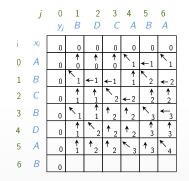
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



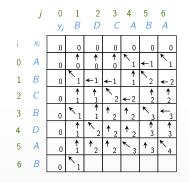
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



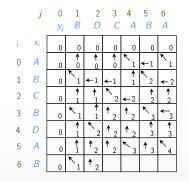
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



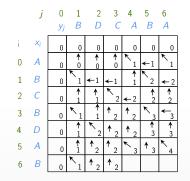
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



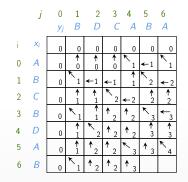
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



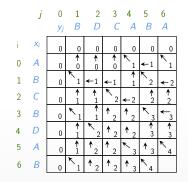
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



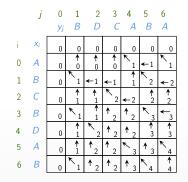
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



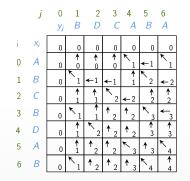
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



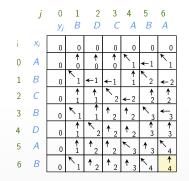
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - We first fill the first column and row (at index 0).
 - The remaining indices are filled row by row.



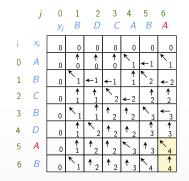
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - After filling the table, we use arrows to detect the LCS (formed by indices at which the arrow points to Top and Left)



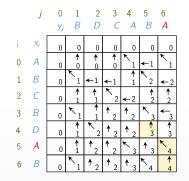
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - After filling the table, we use arrows to detect the LCS (formed by indices at which the arrow points to Top and Left)



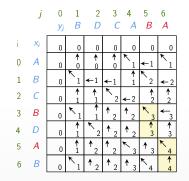
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - After filling the table, we use arrows to detect the LCS (formed by indices at which the arrow points to Top and Left)



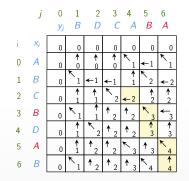
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - After filling the table, we use arrows to detect the LCS (formed by indices at which the arrow points to Top and Left)



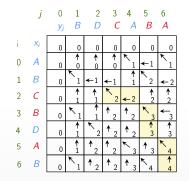
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - After filling the table, we use arrows to detect the LCS (formed by indices at which the arrow points to Top and Left)



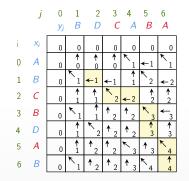
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - After filling the table, we use arrows to detect the LCS (formed by indices at which the arrow points to Top and Left)



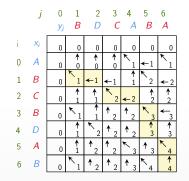
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - After filling the table, we use arrows to detect the LCS (formed by indices at which the arrow points to Top and Left)



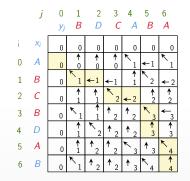
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - After filling the table, we use arrows to detect the LCS (formed by indices at which the arrow points to Top and Left)



- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - After filling the table, we use arrows to detect the LCS (formed by indices at which the arrow points to Top and Left)



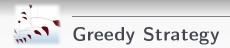
- Let's see how LCS algorithm works when X = ABCBDAB and Y = BDCABA
 - After filling the table, we use arrows to detect the LCS (formed by indices at which the arrow points to Top and Left)



Knapsack Problem

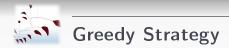
- In the 0-1 knapsack problem, we are given a set of n items a_1, \ldots, a_n .
 - Each item a_i has a size s_i and a value v_i .
 - We are also given a size bound S (the capacity of our knapsack).
 - The goal is to find the subset of items of maximum total value such that sum of their sizes is at most *S* (they all fit into the knapsack).
 - In the example below, where *S* = 15, the optimal strategy is to do parts A, B, F, and G for a total of 34 points.

	A	В	\mathbf{C}	D	Ε	\mathbf{F}	G
value	7	9	5	12	14	6	12
Size	3	4	2	6	7	3	5



- **Option 1**: process items in order 1, 2, ..., *n*, and accepts an item as long as it fits (first *A*, then *B*, etc.)
 - This selects A, B, C and D for a profit of 33 (which is not optimal because {A, B, F, G} has profit 34)

	A	В	\mathbf{C}	D	Ε	\mathbf{F}	G
value	7	9	5	12	14	6	12
Size	3	4	2	6	7	3	5



- **Option 2:** Sort items by their value-to-size ratio, process items in the sorted order, and accepts an item as long as it fits (first *A*, then *B*, etc.)
 - This selects C(2.5), G(2.4), A(2.33), and B(2.25) for a profit of 33 (which is not optimal because $\{A, B, F, G\}$ has profit 34.

	A	В	\mathbf{C}	D	Ε	\mathbf{F}	G
value	7	9	5	12	14	6	12
value Size	3	4	2	6	7	3	5
				12/6			

EECS 3101 - Design and Analysis of Algorithms

• **Step 1**: Describe the optimal solution using the optimal solution for the subproblems.

- **Step 1**: Describe the optimal solution using the optimal solution for the subproblems.
- Subproblem: finding the optimal profit (value) when items are a_1, a_2, \ldots, a_k (for $k \le n$), and the space is B (for $B \le S$).
- Should I accept or reject a_k ?
 - If I accept a_k , the optimal profit will be v_k plus the profit of placing a_1, \ldots, a_{k-1} in a space of $B s_k$.
 - If I reject a_k , the optimal profit will be the profit of placing a_1, \ldots, a_{k-1} in a space of B.
 - If I have the solution for the two sub-problems, I can take the max between the two!

- Step 2: Describe the value of the optimal solution recursively
- Let V(k, B) denote the value of the highest value solution that uses items from among the set 1, 2, ..., k and uses space at most B.
 - We want to find the value of V(n,S)
 - Here is the recursive value for V(k, B).

$$V(k,B) = \begin{cases} 0 & \text{if } k = 0\\ V(k-1,B) & \text{if } s_k > B\\ \max\{v_k + V(k-1,B-s_k), V(k-1,B)\} & \text{otherwise} \end{cases}$$

• **Step 3**: Fill the Dynamic Programming table (in a bottom-up way) to find *V*(*n*, *S*).

$$V(k,B) = \begin{cases} 0 & \text{if } k = 0\\ V(k-1,B) & \text{if } s_k > B\\ \max\{v_k + V(k-1,B-s_k), V(k-1,B)\} & \text{otherwise} \end{cases}$$

• We fill the table row by row; the value of each row depends on the previous rows; The first row is all 0, V(0, B) = 0.

$$\begin{array}{lll} \mathsf{Kn} \mathsf{aps} \operatorname{ack} \ (s[], v[], n, S) \\ 1. & \mathsf{for} \ k = 0 \ \mathsf{to} \ n \\ 2. & \mathsf{for} \ B = 0 \ \mathsf{to} \ S \\ 3. & \mathsf{if} \ i = 0 \\ 4. & V(k, B) \leftarrow 0 \\ 5. & \mathsf{else} \\ 6. & \mathsf{if} \ s_k > B \\ 7. & V(k, B) \leftarrow V(k-1, B) \\ 8. & \mathsf{else} \\ 9. & V(k, B) \leftarrow \max\{v_k + V(k-1, B - s_k)V(k-1, B)\} \\ 10. & \mathsf{return} \ V \end{array}$$

$$V(k,B) = \begin{cases} 0 & \text{if } k = 0 \\ V(k-1,B) & \text{if } s_k > B \\ \max\{v_k + V(k-1,B-s_k), V(k-1,B)\} & \text{otherwise} \end{cases}$$

- We fill the table row by row; the value of each row depends on the previous rows; The first row is all 0, V(0, B) = 0.
 - Here, S = 10; item sizes are (5, 4, 6, 3) and values are (10, 40, 30, 50), that is, the first item has size 10 and value 5.

V(i,B)	B.=0	B=1	B=2	B=3	B =4	B=5	B=6	B=7	B=8	B=9	B=10
k=0	0	0	0	0	0	0	0	0	0	0	0
k=1											
k=2											
k=3											
k=4											
	V -									~	

$$V(k,B) = \begin{cases} 0 & \text{if } k = 0 \\ V(k-1,B) & \text{if } s_k > B \\ \max\{v_k + V(k-1,B-s_k), V(k-1,B)\} & \text{otherwise} \end{cases}$$

- We fill the table row by row; the value of each row depends on the previous rows; The first row is all 0, V(0, B) = 0.
 - Here, S = 10; item sizes are (5, 4, 6, 3) and values are (10, 40, 30, 50), that is, the first item has size 10 and value 5.

V(i,B)	B.=0	B=1	B.=2	B=3	B=4	B=5	B=6	B=7	B=8	B=9	B=10
k=0	0	0	0	0	0	0	0	0	0	0	0
k=1	0	0	0	0	0	10	10	10	10	10	10
k=2											
k=3											
k=4											
	¥ -									~	

$$V(k,B) = \begin{cases} 0 & \text{if } k = 0\\ V(k-1,B) & \text{if } s_k > B\\ \max\{v_k + V(k-1,B-s_k), V(k-1,B)\} & \text{otherwise} \end{cases}$$

- We fill the table row by row; the value of each row depends on the previous rows; The first row is all 0, V(0, B) = 0.
 - Here, S = 10; item sizes are (5, 4, 6, 3) and values are (10, 40, 30, 50), that is, the first item has size 10 and value 5.

B.=0	B=1	B.=2	B=3	B.=4	B=5	B=6	B=7	B=8	B=9	B=10
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	10	10	10	10	10	10
0	0	0	0	40	40	40	40	40		
	0	0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 10	0 10 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 10	0 0	0 0

$$V(k,B) = \begin{cases} 0 & \text{if } k = 0\\ V(k-1,B) & \text{if } s_k > B\\ \max\{v_k + V(k-1,B-s_k), V(k-1,B)\} & \text{otherwise} \end{cases}$$

- We fill the table row by row; the value of each row depends on the previous rows; The first row is all 0, V(0, B) = 0.
 - Here, S = 10; item sizes are (5, 4, 6, 3) and values are (10, 40, 30, 50), that is, the first item has size 10 and value 5.
 - $V(2,9) = \max\{v_2 + V(1,9-s_2) = 40 + 10, V(1,9) = 10\} = 50$

B.=0	B=1	B.=2	B=3	B = 4	B=5	B=6	B=7	B=8	B=9	B=10
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	10	10	10	10	10	10
0	0	0	0	40	40	40	40	40	50	50
	0	0 0	0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 10	0 0 0 0 0 10 10	0 0 0 0 0 10 10	0 0 0 0 0 10 10 10	0 0 0 0 0 10 10 10 10

$$V(k,B) = \begin{cases} 0 & \text{if } k = 0\\ V(k-1,B) & \text{if } s_k > B\\ \max\{v_k + V(k-1,B-s_k), V(k-1,B)\} & \text{otherwise} \end{cases}$$

- We fill the table row by row; the value of each row depends on the previous rows; The first row is all 0, V(0, B) = 0.
 - Here, S = 10; item sizes are (5, 4, 6, 3) and values are (10, 40, 30, 50), that is, the first item has size 10 and value 5.
 - $V(2,9) = \max\{v_2 + V(1,9-s_2) = 40 + 10, V(1,9) = 10\} = 50$

V(i,B)	В	=0	B=1	B.=2	B=3	B.=4	B=5	B=6	B=7	B=8	B=9	B=10
k=0		0	0	0	0	0	0	0	0	0	0	0
k=1		0	0	0	0	0	10	10	10	10	10	10
k=2		0	0	0	0	40	40	40	40	40	50	50
k=3	Π	0	0	0	0	40	40	40	40	40	50	70
k=4	Π											
k=3		0	-		-							

$$V(k,B) = \begin{cases} 0 & \text{if } k = 0\\ V(k-1,B) & \text{if } s_k > B\\ \max\{v_k + V(k-1,B-s_k), V(k-1,B)\} & \text{otherwise} \end{cases}$$

- We fill the table row by row; the value of each row depends on the previous rows; The first row is all 0, V(0, B) = 0.
 - Here, S = 10; item sizes are (5, 4, 6, 3) and values are (10, 40, 30, 50), that is, the first item has size 10 and value 5.
 - $V(2,9) = \max\{v_2 + V(1,9-s_2) = 40 + 10, V(1,9) = 10\} = 50$

V (i, B)	B.=0	B=1	B.=2	B=3	B.=4	B=5	B=6	B=7	B=8	B=9	B=10
k=0	0	0	0	0	0	0	0	0	0	0	0
k=1	0	0	0	0	0	10	10	10	10	10	10
k=2	0	0	0	0	40	40	40	40	40	50	50
k=3	0	0	0	0	40	40	40	40	40	50	70
k=4	0	0	0	50	50	50	50				

$$V(k,B) = \begin{cases} 0 & \text{if } k = 0\\ V(k-1,B) & \text{if } s_k > B\\ \max\{v_k + V(k-1,B-s_k), V(k-1,B)\} & \text{otherwise} \end{cases}$$

- We fill the table row by row; the value of each row depends on the previous rows; The first row is all 0, V(0, B) = 0.
 - Here, S = 10; item sizes are (5,4,6,3) and values are (10,40,30,50), that is, the first item has size 10 and value 5.

•
$$V(2,9) = \max\{v_2 + V(1,9-s_2) = 40 + 10, V(1,9) = 10\} = 50$$

•
$$V(4,7) = \max\{v_4 + V(3,7-s_4) = 50 + 40, V(3,7) = 40\} = 90$$

V (i, B)	B.=0	B=1	B=2	B=3	B =4	B=5	B=6	B=7	B=8	B=9	B=10
k=0	0	0	0	0	0	0	0	0	0	0	0
k=1	0	0	0	0	0	10	10	10	10	10	10
k=2	0	0	0	0	40	40	40	40	40	50	50
k=3	0	0	0	0	40	40	40	40	40	50	70
k=4	0	0	0	50	50	50	50				

$$V(k,B) = \begin{cases} 0 & \text{if } k = 0\\ V(k-1,B) & \text{if } s_k > B\\ \max\{v_k + V(k-1,B-s_k), V(k-1,B)\} & \text{otherwise} \end{cases}$$

- We fill the table row by row; the value of each row depends on the previous rows; The first row is all 0, V(0, B) = 0.
 - Here, S = 10; item sizes are (5,4,6,3) and values are (10,40,30,50), that is, the first item has size 10 and value 5.

•
$$V(2,9) = \max\{v_2 + V(1,9-s_2) = 40 + 10, V(1,9) = 10\} = 50$$

•
$$V(4,7) = \max\{v_4 + V(3,7-s_4) = 50 + 40, V(3,7) = 40\} = 90$$

V (i, B)	B.=) B=1	B=2	B=3	B.=4	B=5	B=6	B=7	B=8	B=9	B=10
k=0	0	0	0	0			0	0	0	0	0
k=1	0	0	0	0		10	10	10	10	10	10
k=2	0	0	0	0	40	40	40	40	40	50	50
k=3	0	0	0	0	40	40	40	40	40	50	70
k=4	0	0	0	50	50	50	50	90			


```
 \begin{array}{l} \mathsf{Knp} \operatorname{acck} \mathsf{Rterivev} \left\{ \mathsf{s}[], V, n, \mathsf{S} \right\} \\ 1, B \leftarrow \mathsf{S} \\ 2, k \leftarrow n \\ 3, \quad \mathsf{for} \ k > 0 \\ 4, \quad \mathsf{if} \ V(k, B) = V(k-1, B) \\ 5, \quad \mathsf{repot} \ \mathsf{item} \ k \ \mathsf{as} \ \mathsf{rejected} \\ 6, \quad k \leftarrow k-1 \\ 7, \quad \mathsf{else} \\ 8, \quad \mathsf{repot} \ \mathsf{item} \ k \ \mathsf{as} \ \mathsf{accepted} \\ 9, \quad k \leftarrow k - 1 \\ 10, \quad B \leftarrow B - \mathsf{S}[k] \end{array}
```

- Here, *S* = 10; sizes are (5, 4, 6, 3) and values are (10, 40, 30, 50).
- First, V[4,10] = 90 and V[3,10] = 70; we can conclude a_4 is accepted. The remaining space would be $10 s_4 = 7$. We should check V[3,7] and repeat; Accepted items are a_2 and a_4 .

V (i, B)	B.=0	B=1	B=2	B=3	B=4	B=5	B=6	B=7	B=8	B=9	B=10
k=0	0	0	0	0	0	0	0	0	0	0	0
k=1	0	0	0	0	0	10	10	10	10	10	10
k=2	0	0	0	0	40	40	40	40	40	50	50
k=3	0	0	0	0	40	40	40	40	40	50	70
k=4	0	0	0 0 0 0	50	50	50	50	90	90	_90	90


```
 \begin{aligned} & \operatorname{Knn} \operatorname{pack} kterieve \left( s[], V, n, S \right) \\ & 1, \quad B \leftarrow S \\ & 2, \quad k \leftarrow n \\ & 3, \quad \operatorname{for} k > 0 \\ & 4, \quad \operatorname{if} V(k, B) = V(k-1, B) \\ & 5, \quad \operatorname{report} \operatorname{ifem} k \text{ as rejected} \\ & 6, \quad k \leftarrow k-1 \\ & 7, \quad \text{else} \quad 8, \quad \operatorname{report} \operatorname{ifem} k \text{ as accepted} \\ & 9, \quad k \leftarrow k-1 \\ & 10, \quad B \leftarrow B - S[k] \end{aligned}
```

- Here, *S* = 10; sizes are (5, 4, 6, 3) and values are (10, 40, 30, 50).
- First, V[4,10] = 90 and V[3,10] = 70; we can conclude a_4 is accepted. The remaining space would be $10 s_4 = 7$. We should check V[3,7] and repeat; Accepted items are a_2 and a_4 .

V(i,B)	B.=0	B=1	B=2	B=3	B=4	B=5	B=6	B=7	B=8	B=9	B=10
							0				0
k=1	0	0	0	0	0	10	10	10	10	10	10
k=2	0	0	0	0	40	40		40	40	50	50
k=3	0	0	0	0	40	40	40	40	40	50	70
k=4	0	0	0	50	50	50	50	90	90	_90	90


```
 \begin{array}{l} \mathsf{Knp} \operatorname{acck} \mathsf{Rterivev} \left\{ \mathsf{s}[], V, n, \mathsf{S} \right\} \\ 1, B \leftarrow \mathsf{S} \\ 2, k \leftarrow n \\ 3, \quad \mathsf{for} \ k > 0 \\ 4, \quad \mathsf{if} \ V(k, B) = V(k-1, B) \\ 5, \quad \mathsf{repot} \ \mathsf{item} \ k \ \mathsf{as} \ \mathsf{rejected} \\ 6, \quad k \leftarrow k-1 \\ 7, \quad \mathsf{else} \\ 8, \quad \mathsf{repot} \ \mathsf{item} \ k \ \mathsf{as} \ \mathsf{accepted} \\ 9, \quad k \leftarrow k - 1 \\ 10, \quad B \leftarrow B - \mathsf{S}[k] \end{array}
```

- Here, *S* = 10; sizes are (5, 4, 6, 3) and values are (10, 40, 30, 50).
- First, V[4,10] = 90 and V[3,10] = 70; we can conclude a_4 is accepted. The remaining space would be $10 s_4 = 7$. We should check V[3,7] and repeat; Accepted items are a_2 and a_4 .

V(i,B)	B.=0	B=1	B=2	B=3	B.=4	B=5	B=6	B=7	B=8	B=9	B=10
			0								0
k=1	0	0	0	0	0	10	10	10	10	10	10
k=2	0	0	0	0	40	40		40		50	50
k=3	0	0	0	0	40	40	40	40	40	50	70
k=4	0	0	0	50	50	50	50	90	90	_90	90


```
 \begin{array}{l} \mathsf{Knp} \operatorname{acck} \mathsf{Rterivev} \left\{ \mathsf{s}[], V, n, \mathsf{S} \right\} \\ 1, B \leftarrow \mathsf{S} \\ 2, k \leftarrow n \\ 3, \quad \mathsf{for} \ k > 0 \\ 4, \quad \mathsf{if} \ V(k, B) = V(k-1, B) \\ 5, \quad \mathsf{repot} \ \mathsf{item} \ k \ \mathsf{as} \ \mathsf{rejected} \\ 6, \quad k \leftarrow k-1 \\ 7, \quad \mathsf{else} \\ 8, \quad \mathsf{repot} \ \mathsf{item} \ k \ \mathsf{as} \ \mathsf{accepted} \\ 9, \quad k \leftarrow k - 1 \\ 10, \quad B \leftarrow B - \mathsf{S}[k] \end{array}
```

- Here, *S* = 10; sizes are (5, 4, 6, 3) and values are (10, 40, 30, 50).
- First, V[4,10] = 90 and V[3,10] = 70; we can conclude a_4 is accepted. The remaining space would be $10 s_4 = 7$. We should check V[3,7] and repeat; Accepted items are a_2 and a_4 .

V(i,B)	B.=0	B=1	B=2	B=3	B.=4	B=5	B=6	B=7	B=8	B=9	B=10
			0								0
k=1	0	0	0	0	0	10	10	10	10	10	10
k=2	0	0	0	0	40	40		40		50	50
k=3	0	0	0	0	40	40	40	40	40	50	70
k=4	0	0	0	50	50	50	50	90	90	_90	90


```
 \begin{array}{l} \mathsf{Knp} \operatorname{acck} \mathsf{Rterivev} \left\{ \mathsf{s}[], V, n, \mathsf{S} \right\} \\ 1, B \leftarrow \mathsf{S} \\ 2, k \leftarrow n \\ 3, \quad \mathsf{for} \ k > 0 \\ 4, \quad \mathsf{if} \ V(k, B) = V(k-1, B) \\ 5, \quad \mathsf{repot} \ \mathsf{item} \ k \ \mathsf{as} \ \mathsf{rejected} \\ 6, \quad k \leftarrow k-1 \\ 7, \quad \mathsf{else} \\ 8, \quad \mathsf{repot} \ \mathsf{item} \ k \ \mathsf{as} \ \mathsf{accepted} \\ 9, \quad k \leftarrow k - 1 \\ 10, \quad B \leftarrow B - \mathsf{S}[k] \end{array}
```

- Here, *S* = 10; sizes are (5, 4, 6, 3) and values are (10, 40, 30, 50).
- First, V[4,10] = 90 and V[3,10] = 70; we can conclude a_4 is accepted. The remaining space would be $10 s_4 = 7$. We should check V[3,7] and repeat; Accepted items are a_2 and a_4 .

V(i,B)	B.=0	B=1	B=2	B=3	B=4	B=5	B=6	B=7	B=8	B=9	B=10
k=0	0	0	0	0	0	0	0	0	0	0	0
k=1	0	0	0	0	0	10	10	10	10	10	10
k=2	0	0	0	0	40	40	40	40	40	50	50
k=3	0	0	0	0	40	40	40	40	40	50	70
k=4	0	0	0 0 0 0	50	50	50	50	90	90	_90	90


```
 \begin{array}{l} \mathsf{Knp} \operatorname{acck} \mathsf{Rterivev} \left\{ \mathsf{s}[], V, n, \mathsf{S} \right\} \\ 1, B \leftarrow \mathsf{S} \\ 2, k \leftarrow n \\ 3, \quad \mathsf{for} \ k > 0 \\ 4, \quad \mathsf{if} \ V(k, B) = V(k-1, B) \\ 5, \quad \mathsf{repot} \ \mathsf{item} \ k \ \mathsf{as} \ \mathsf{rejected} \\ 6, \quad k \leftarrow k-1 \\ 7, \quad \mathsf{else} \\ 8, \quad \mathsf{repot} \ \mathsf{item} \ k \ \mathsf{as} \ \mathsf{accepted} \\ 9, \quad k \leftarrow k - 1 \\ 10, \quad B \leftarrow B - \mathsf{S}[k] \end{array}
```

- Here, *S* = 10; sizes are (5, 4, 6, 3) and values are (10, 40, 30, 50).
- First, V[4,10] = 90 and V[3,10] = 70; we can conclude a_4 is accepted. The remaining space would be $10 s_4 = 7$. We should check V[3,7] and repeat; Accepted items are a_2 and a_4 .

V (i, B)	B.=0	B=1	B=2	B=3	B=4	B=5	B=6	B=7	B=8	B=9	B=10
k=0	0	0	0	0	0	0	0	0	0	0	0
k=1	0	0	0	0	0	10	10	10	10	10	10
k=2	0	0	0	0	40	40	40	40	40	50	50
k=3	0	0	0	0	40	40	40	40	40	50	70
k=4	0	0	0 0 0	50	50	50	50	90	90	_90	90

Matrix Chain Multiplication

- Given a sequence of matrices $A_1, A_2, A_3, \ldots, A_n$, find the best way (using the minimal number of multiplications) to compute their product.
 - Isn't there only one way? $((\ldots ((A_1.A_2).A_3)\ldots).A_n)$

Matrix Chain Multiplication

- Given a sequence of matrices $A_1, A_2, A_3, \ldots, A_n$, find the best way (using the minimal number of multiplications) to compute their product.
 - Isn't there only one way? $((\ldots ((A_1.A_2).A_3)\ldots).A_n)$
 - No, matrix multiplication is associative. e.g.
 - $A_1.(A_2.(A3.(\ldots(A_{n-1}.A_n)\ldots)))$ yields the same matrix.
 - Different multiplication orders do not cost the same:
 - Multiplying $p \times q$ matrix A and $q \times r$ matrix B takes p.q.r multiplications; result is a $p \times r$ matrix.

Matrix Chain Multiplication

- Given a sequence of matrices $A_1, A_2, A_3, \ldots, A_n$, find the best way (using the minimal number of multiplications) to compute their product.
 - Isn't there only one way? $((\ldots ((A_1.A_2).A_3)\ldots).A_n)$
 - No, matrix multiplication is associative. e.g.
 - $A_1.(A_2.(A3.(\ldots(A_{n-1}.A_n)\ldots)))$ yields the same matrix.
 - Different multiplication orders do not cost the same:
 - Multiplying $p \times q$ matrix A and $q \times r$ matrix B takes p.q.r multiplications; result is a $p \times r$ matrix.
 - Consider multiplying 10 \times 100 matrix A_1 with 100 \times 5 matrix A_2 and 5 \times 50 matrix $A_3.$
 - $(A_1.A_2).A_3$ takes 10 · 100 · 5 + 10 · 5 · 50 = 7500 multiplications.
 - A₁.(A₂.A₃) takes 100 . 5 . 50 + 10 . 50 . 100 = 75000 multiplications.

- Step 1: Define sub-problems to state the optimal solution for each sub-problem in terms of optimal solutions for smaller sub-problems
 - In general, let A_i be $p_{i-1} \times p_i$ matrix.

- Step 1: Define sub-problems to state the optimal solution for each sub-problem in terms of optimal solutions for smaller sub-problems
 - In general, let A_i be $p_{i-1} \times p_i$ matrix.
 - Sub-problem (i, j): product of $A_i, A_{i+1}, \ldots, A_j$.
 - Let m(i,j) be minimal number of multiplications needed to compute $A_i \cdot A_{i+1} \cdot \ldots \cdot A_j$; we want to compute m(1, n).

- Step 1: Define sub-problems to state the optimal solution for each sub-problem in terms of optimal solutions for smaller sub-problems
 - In general, let A_i be $p_{i-1} \times p_i$ matrix.
 - Sub-problem (i, j): product of $A_i, A_{i+1}, \ldots, A_j$.
 - Let m(i,j) be minimal number of multiplications needed to compute $A_i \cdot A_{i+1} \cdot \ldots \cdot A_j$; we want to compute m(1, n).
 - Observation: If (A(B((CD)(EF)))) is optimal Then (B((CD)(EF))) is optimal as well

• Step 2: Denote the value of the optimal solutions for subproblems recursively.

- Step 2: Denote the value of the optimal solutions for subproblems recursively.
 - Assume the position of the last product is k, that is, our final multiplication is of the form

 $(A_{i+1} \cdot A_{i+2} \cdot \ldots \cdot A_k) \cdot (A_{k+1} \cdot A_{k+2} \cdot \ldots \cdot A_j).$

- Step 2: Denote the value of the optimal solutions for subproblems recursively.
 - Assume the position of the last product is *k*, that is, our final multiplication is of the form

 $(A_{i+1} \cdot A_{i+2} \cdot \ldots \cdot A_k) \cdot (A_{k+1} \cdot A_{k+2} \cdot \ldots \cdot A_j)$

• Consider the case multiplying these 4 matrices: $A: 2 \times 4$ $B: 4 \times 2$ $C: 2 \times 3$ $D: 3 \times 1$

- Step 2: Denote the value of the optimal solutions for subproblems recursively.
 - Assume the position of the last product is *k*, that is, our final multiplication is of the form

 $(A_{i+1} \cdot A_{i+2} \cdot \ldots \cdot A_k) \cdot (A_{k+1} \cdot A_{k+2} \cdot \ldots \cdot A_j)$

- Consider the case multiplying these 4 matrices: A : 2 \times 4 B : 4 \times 2 C : 2 \times 3 D : 3 \times 1
 - (A)(BCD): This is a 2 × 4 multiplied by a 4 × 1, so 2 × 4 × 1 = 8 multiplications, plus whatever work it will take to multiply (BCD).

- Step 2: Denote the value of the optimal solutions for subproblems recursively.
 - Assume the position of the last product is *k*, that is, our final multiplication is of the form

 $(A_{i+1} \cdot A_{i+2} \cdot \ldots \cdot A_k) \cdot (A_{k+1} \cdot A_{k+2} \cdot \ldots \cdot A_j)$

- Consider the case multiplying these 4 matrices: $A: 2 \times 4$ $B: 4 \times 2$ $C: 2 \times 3$ $D: 3 \times 1$
 - (A)(BCD): This is a 2 × 4 multiplied by a 4 × 1, so 2 × 4 × 1 = 8 multiplications, plus whatever work it will take to multiply (BCD).
 - (AB)(CD): This is a 2 × 2 multiplied by a 2 × 1, so 2 × 2 × 1 = 4 multiplications, plus whatever work it will take to multiply (AB) and (CD).

- Step 2: Denote the value of the optimal solutions for subproblems recursively.
 - Assume the position of the last product is *k*, that is, our final multiplication is of the form

 $(A_{i+1} \cdot A_{i+2} \cdot \ldots \cdot A_k) \cdot (A_{k+1} \cdot A_{k+2} \cdot \ldots \cdot A_j)$

- Consider the case multiplying these 4 matrices: $A: 2 \times 4$ $B: 4 \times 2$ $C: 2 \times 3$ $D: 3 \times 1$
 - (A)(BCD): This is a 2 × 4 multiplied by a 4 × 1, so 2 × 4 × 1 = 8 multiplications, plus whatever work it will take to multiply (BCD).
 - (AB)(CD): This is a 2 × 2 multiplied by a 2 × 1, so 2 × 2 × 1 = 4 multiplications, plus whatever work it will take to multiply (AB) and (CD).
 - (ABC)(D): This is a 2 × 3 multiplied by a 3 × 1, so 2 × 3 × 1 = 6 multiplications, plus whatever work it will take to multiply (ABC).

- Step 2: Denote the value of the optimal solutions for subproblems recursively.
 - We can compute recursively the best way to multiply the chain from *i* to *k*, and from *k* + 1 to *j*, and add the cost of the final product.
 - This means that $m(i,j) = m(i,k) + m(k+1,j) + p_{i-1} \cdot p_k \cdot p_j$
 - Therefore we can write:

$$m(i,j) = \begin{cases} 0 & \text{If } i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1} \cdot p_k \cdot p_j \} & \text{If } i < j \end{cases}$$

- Step 3: Fill a dynamic programming table in a bottom-up fashion
- To set m[i,j], we need to look at the values of the same row on the right (m[i,k]), or the same column but below (m[k+1,j]).

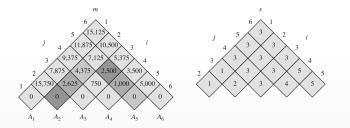
$$m(i,j) = \begin{cases} 0 & \text{If } i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1} \cdot p_k \cdot p_j \} & \text{If } i < j \end{cases}$$

```
MATRIX-CHAIN-ORDER(p)
```

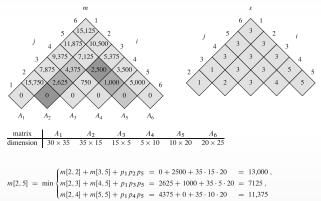
```
1 \quad n = p.length - 1
    let m[1 \dots n, 1 \dots n] and s[1 \dots n - 1, 2 \dots n] be new tables
     for i = 1 to n
         m[i, i] = 0
     for l = 2 to n
                                 // l is the chain length
         for i = 1 to n - l + 1
              i = i + l - 1
              m[i, j] = \infty
 9
              for k = i to j - 1
                   q = m[i,k] + m[k+1,j] + p_{i-1}p_kp_i
10
                   if q < m[i, j]
                       m[i, j] = q
13
                       s[i, j] = k
14
     return m and s
```

- Step 3: Fill a dynamic programming table in a bottom-up fashion
- To set m[i, j], we need to look at the values of the same row on the right (m[i, k]), or the same column but below (m[k + 1, j]).

$$m(i,j) = \begin{cases} 0 & \text{If } i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1} \cdot p_k \cdot p_j \} & \text{If } i < j \end{cases}$$



• Step 3: Fill a dynamic programming table in a bottom-up fashion



= 7125.

EECS 3101 - Design and Analysis of Algorithm

40 / 42

- Step 4: Retrieve the actual solution using the flag matrix s
- You will work on the details on Assignment 4.

Dynamic Programming Review

- **Step 1**: define subproblems, and devise the value of the optimal solution for each subproblem using the value of the optimal solutions for smaller subproblems.
- **Step 2:** write down a recursive formula for the value of optimal solutions.
- **Step 3:** fill up the dynamic programming table in a bottom-up fashion.
- **Step 4**: retrieve the actual solution by moving backwards in the table.