EECS 3101 - Design and Analysis of Algorithms

Shahin Kamali

Topic 4 - Dynamic Programming

Overview

- Dynamic Programming Framework \& Applications
- Rod Cutting
- Matrix Chain Multiplication
- Longest Common Subsequence

Dynamic Programming Overview

- Dynamic Programming is similar to Divide \& Conquer in the sense that it solves a problem by combining the solutions for subproblems.
- Divide \& Conquer solves subproblems independently.
- Dynamic Programming applies when subproblems overlap, i.e., they share subsubproblems!

Dynamic Programming Overview

- Dynamic Programming is similar to Divide \& Conquer in the sense that it solves a problem by combining the solutions for subproblems.
- Divide \& Conquer solves subproblems independently.
- Dynamic Programming applies when subproblems overlap, i.e., they share subsubproblems!
- Dynamic Programming solves each subsubproblem just once and then saves it in a table
- We avoid work of recomputing answers for subsubproblems.
- Programming in this context refers to a tabular method, not to writing computer code.

Dynamic Programming Overview

- Steps for designing a Dynamic Programming algorithm:
(1) Characterize the structure of an optimal solution.
(2) Recursively define the value of an optimal solution.
(3) Compute the value of an optimal solution, typically in a bottom-up fashion, and store results in a table.
(4) Construct an optimal solution from computed information in the table.

Rod Cutting

- You have a rod of length n, and you want to cut up the rod and sell the pieces ina way that maximizes the total amount of money you get. A piece of length i is worth p_{i} dollars.
- E.g., for $n=4$ and the following length/value table, we have 8 possible ways of cutting the rod, and the optimal cutting has value 10.

length i	1	2	3	4	5	6	7	8	9	10
price p_{i}	1	5	8	9	10	17	17	20	24	30

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Inspecting the Problem

- How many ways are there to cut up a rod of length n ?

Inspecting the Problem

- How many ways are there to cut up a rod of length n ?
- Roughly 2^{n-1}, because there are $n-1$ places where we can choose to make cuts, and at each place, we either make a cut or we do not make a cut.

Inspecting the Problem

- How many ways are there to cut up a rod of length n ?
- Roughly 2^{n-1}, because there are $n-1$ places where we can choose to make cuts, and at each place, we either make a cut or we do not make a cut.
- An exhaustive algorithm which tries all partitions runs in exponential time.

Basic Approach

- Rod cutting is a typical optimization problem, where we want to find to maximize a profit (or minimize a cost).

Basic Approach

- Rod cutting is a typical optimization problem, where we want to find to maximize a profit (or minimize a cost).
- For optimization problems, first, we ask "what is the maximum amount of profit we can get? (or minimum cost)"
- Later we will extend the algorithm to give us the actual rod decomposition that leads to that maximum value.

Basic Approach

- Rod cutting is a typical optimization problem, where we want to find to maximize a profit (or minimize a cost).
- For optimization problems, first, we ask "what is the maximum amount of profit we can get? (or minimum cost)"
- Later we will extend the algorithm to give us the actual rod decomposition that leads to that maximum value.
- This general approach applies to almost all Dynamic Programming algorithms.

Recursive Formulation

- Let r_{i} be the maximum amount of money you can get with a rod of size i. We can view the problem recursively as follows:
- First, cut a piece off the left end of the rod, and sell it.
- Then, find the optimal way to cut the remainder of the rod.

Recursive Formulation

- Let r_{i} be the maximum amount of money you can get with a rod of size i. We can view the problem recursively as follows:
- First, cut a piece off the left end of the rod, and sell it.
- Then, find the optimal way to cut the remainder of the rod.
- Now we don't know how large a piece we should cut off \rightarrow try all possible cases.
- First, try cutting a piece of length 1 , and combining it with the optimal way to cut a rod of length $n-1$.

Recursive Formulation

- Let r_{i} be the maximum amount of money you can get with a rod of size i. We can view the problem recursively as follows:
- First, cut a piece off the left end of the rod, and sell it.
- Then, find the optimal way to cut the remainder of the rod.
- Now we don't know how large a piece we should cut off \rightarrow try all possible cases.
- First, try cutting a piece of length 1 , and combining it with the optimal way to cut a rod of length $n-1$.
- Then try cutting a piece of length 2 , and combining it with the optimal

Recursive Formulation

- Let r_{i} be the maximum amount of money you can get with a rod of size i. We can view the problem recursively as follows:
- First, cut a piece off the left end of the rod, and sell it.
- Then, find the optimal way to cut the remainder of the rod.
- Now we don't know how large a piece we should cut off \rightarrow try all possible cases.
- First, try cutting a piece of length 1 , and combining it with the optimal way to cut a rod of length $n-1$.
- Then try cutting a piece of length 2, and combining it with the optimal way to cut a rod of length $n-2$, and so on.
- We try all the possible lengths and then pick the best one. We end up with the following: (when $i=n$, the rod is not cut at all)

$$
r_{n}=\max _{1 \leq i \leq n}\left\{p_{i}+r_{n-i}\right\} \quad r_{0}=0
$$

Recursive Formulation

- Let r_{i} be the maximum amount of money you can get with a rod of size i. We can view the problem recursively as follows:
- First, cut a piece off the left end of the rod, and sell it.
- Then, find the optimal way to cut the remainder of the rod.
- Now we don't know how large a piece we should cut off \rightarrow try all possible cases.
- First, try cutting a piece of length 1 , and combining it with the optimal way to cut a rod of length $n-1$.
- Then try cutting a piece of length 2, and combining it with the optimal way to cut a rod of length $n-2$, and so on.
- We try all the possible lengths and then pick the best one. We end up with the following: (when $i=n$, the rod is not cut at all)

$$
r_{n}=\max _{1 \leq i \leq n}\left\{p_{i}+r_{n-i}\right\} \quad r_{0}=0
$$

Recursive Implementation

- How should we compute $r_{n}=\max _{1 \leq i \leq n}\left\{p_{i}+r_{n-i}\right\} \quad r_{0}=0$?
- The formula immediately translates into a recursive algorithm.

```
\(\operatorname{CuT}-\operatorname{Rod}(p, n)\)
1 if \(n==0\)
2 return 0
\(3 \quad q=-\infty\)
4 for \(i=1\) to \(n\)
\(5 \quad q=\max (q, p[i]+\operatorname{CuT}-\operatorname{Rod}(p, n-i))\)
6 return \(q\)
```


Recursive Implementation

- How should we compute $r_{n}=\max _{1 \leq i \leq n}\left\{p_{i}+r_{n-i}\right\} \quad r_{0}=0$?
- The formula immediately translates into a recursive algorithm.

```
\(\operatorname{CuT}-\operatorname{Rod}(p, n)\)
1 if \(n==0\)
2 return 0
\(3 \quad q=-\infty\)
4 for \(i=1\) to \(n\)
\(5 \quad q=\max (q, p[i]+\operatorname{CuT}-\operatorname{Rod}(p, n-i))\)
6 return \(q\)
```

- Is this good?

Recursive Implementation

- How should we compute $r_{n}=\max _{1 \leq i \leq n}\left\{p_{i}+r_{n-i}\right\} \quad r_{0}=0$?

- There are many repeated computation in the recursion tree!

Recursive Implementation

- How should we compute $r_{n}=\max _{1 \leq i \leq n}\left\{p_{i}+r_{n-i}\right\} \quad r_{0}=0$?

```
Cut-Rod \((p, n)\)
\(1 \quad\) if \(n==0\)
2 return 0
\(3 q=-\infty\)
4 for \(i=1\) to \(n\)
\(5 \quad q=\max (q, p[i]+\operatorname{CuT}-\operatorname{Rod}(p, n-i))\)
6 return \(q\)
```

- There are many repeated computation in the recursion tree!

DP: Memoization (Top Down)

- How should we compute $r_{n}=\max _{1 \leq i \leq n}\left\{p_{i}+r_{n-i}\right\} \quad r_{0}=0$?
- We can store the result of the recursive calls, and if we need the result in a future recursive call, we can use the precomputed value. The answer will be stored in $r[n]$.

DP: Memoization (Top Down)

- How should we compute $r_{n}=\max _{1 \leq i \leq n}\left\{p_{i}+r_{n-i}\right\} \quad r_{0}=0$?
- We can store the result of the recursive calls, and if we need the result in a future recursive call, we can use the precomputed value. The answer will be stored in $r[n]$.
- Each subproblem is solved exactly once. For a subproblem of size i, we spend $\Theta(i)$ (we run through i iterations of the for loop) \rightarrow The running time is $\Theta(n)+\Theta(n-1)+\ldots+\Theta(1)=\Theta\left(n^{2}\right)$.

```
Memoized-Cut-Rod-Aux \((p, n, r)\)
if \(r[n] \geq 0\)
        return \(r[n]\)
    if \(n=0\)
\(q=0\)
else \(q=-\infty\)
    for \(i=1\) to \(n\)
        \(q=\max (q, p[i]+\) MEMOIzED-Cut-Rod-AuX \((p, n-i, r))\)
    \(r[n]=q\)
    return \(q\)
```


DP: Memoization (Bottom Up)

- How should we compute $r_{n}=\max _{1 \leq i \leq n}\left\{p_{i}+r_{n-i}\right\} \quad r_{0}=0$?
- We proactively compute the solutions for smaller rods first, knowing that they will later be used to compute the solutions for larger rods. The answer will be stored in $r[n]$.
- Most people will write the bottom up procedure when they implement a dynamic programming algorithm.

```
Bottom-Up-CUT-ROD \((p, n)\)
let \(r[0 \ldots n]\) be a new array
    \(r[0]=0\)
    for \(j=1\) to \(n\)
        \(q=-\infty\)
        for \(i=1\) to \(j\)
            \(q=\max (q, p[i]+r[j-i])\)
            \(r[j]=q\)
    return \(r[n]\)
```


DP: Memoization (Bottom Up)

- How should we compute $r_{n}=\max _{1 \leq i \leq n}\left\{p_{i}+r_{n-i}\right\} \quad r_{0}=0$?
- We proactively compute the solutions for smaller rods first, knowing that they will later be used to compute the solutions for larger rods.
The answer will be stored in $r[n]$.
- The running time is still $\Theta\left(n^{2}\right)$.
- Most people will write the bottom up procedure when they implement a dynamic programming algorithm.

Bottom-Up-Cut-Rod (p, n)	
1	let r [$0 . \ldots n$] be a new array
2	$r[0]=0$
3	for $j=1$ to n
4	$q=-\infty$
5	for $i=1$ to j
6	$q=\max (q, p[i]+r[j-i])$
7	$r[j]=q$
	return r [n]

DP: Memoization (Bottom Up)

- How should we compute $r_{n}=\max _{1 \leq i \leq n}\left\{p_{i}+r_{n-i}\right\} \quad r_{0}=0$?
- We proactively compute the solutions for smaller rods first, knowing that they will later be used to compute the solutions for larger rods. The answer will be stored in $r[n]$.
- The running time is still $\Theta\left(n^{2}\right)$.
- Often the bottom up approach is simpler to write, and has less overhead, because you don't have to keep a recursive call stack.
- Most people will write the bottom up procedure when they implement a dynamic programming algorithm.

```
Bотtom-Up-Cut-Rod \((p, n)\)
let \(r[0 \ldots n]\) be a new array
    \(r[0]=0\)
    for \(j=1\) to \(n\)
        \(q=-\infty\)
        for \(i=1\) to \(j\)
            \(q=\max (q, p[i]+r[j-i])\)
            \(r[j]=q\)
    return \(r[n]\)
```


Reconstructing a solution

- If we want to actually find the optimal way to split the rod, instead of just the maximum profit we can get, we can create another array s :
- $s[j]=i$ iff the best thing to do when we have a rod of length j is to cut off a piece of length i.
- Using these values $s[j]$, we can reconstruct the optimal rod decomposition.

```
Extended-Bottom-Up-Cut-Rod ( }p,n
```

```
let \(r[0 \ldots n]\) and \(s[0 \ldots n]\) be new arrays
```

let $r[0 \ldots n]$ and $s[0 \ldots n]$ be new arrays
$r[0]=0$
$r[0]=0$
for $j=1$ to $n \quad$ Print-Cut-Rod-Solution (p, n)
for $j=1$ to $n \quad$ Print-Cut-Rod-Solution (p, n)
$q=-\infty \quad 1 \quad(r, s)=\operatorname{EXTENDED}-\operatorname{BotTOM}-\operatorname{UP}-\operatorname{Cut}-\operatorname{Rod}(p, n)$
$q=-\infty \quad 1 \quad(r, s)=\operatorname{EXTENDED}-\operatorname{BotTOM}-\operatorname{UP}-\operatorname{Cut}-\operatorname{Rod}(p, n)$
for $i=1$ to $j \quad 2$ while $n>0$
for $i=1$ to $j \quad 2$ while $n>0$
if $q<p[i]+r[j-i] \quad 3 \quad$ print $s[n]$
if $q<p[i]+r[j-i] \quad 3 \quad$ print $s[n]$
$q=p[i]+r[j-i] \quad 4 \quad n=n-s[n]$
$q=p[i]+r[j-i] \quad 4 \quad n=n-s[n]$
$s[j]=i$
$s[j]=i$
$r[j]=q$
$r[j]=q$
return r and s

```
    return \(r\) and \(s\)
```


The Example Problem's Answer

- For our example, the program produces this answer:

length i	1	2	3	4	5	6	7	8	9	10
price p_{i}	1	5	8	9	10	17	17	20	24	30
i	0	1	2	3	4	5	6	7	8	9
10										
$r[i]$	0	1	5	8	10	13	17	18	22	25
30										
$s[i]$	0	1	2	3	2	2	6	1	2	3
10										

Dynamic programming remarks

- Optimal substructure: To solve a optimization problem using dynamic programming, we must first characterize the structure of an optimal solution.
- Specifically, we must prove that we can create an optimal solution to a problem using optimal solutions to smaller subproblems.
- Then, we can store optimal solutions for all subproblems in a table \rightarrow compute later elements in the table from earlier elements in the table.

Dynamic programming remarks

- Optimal substructure: To solve a optimization problem using dynamic programming, we must first characterize the structure of an optimal solution.
- Specifically, we must prove that we can create an optimal solution to a problem using optimal solutions to smaller subproblems.
- Then, we can store optimal solutions for all subproblems in a table \rightarrow compute later elements in the table from earlier elements in the table.
- If the optimal solution to a problem might not require subproblem solutions to be optimal, then we cannot use dynamic programming.

Dynamic programming remarks

- Overlapping Subproblems
- For dynamic programming to be useful, the recursive algorithm should require us to compute optimal solutions to the same subproblems over and over again \rightarrow Then we benefit from just computing them once and then using the results later.
- In total, there should be a small number of distinct subproblems (i.e. polynomial in the input size), even if there is an exponential number of total subproblems.

Longest common subsequence

- We are given two sequences X and Y, and want to find the longest possible sequence that is a subsequence of both X and Y.
- E.g., for $X=A B C B D A B$ and $Y=B D C A B A$:
- BCA is a common sequence of both X and Y.

Longest common subsequence

- We are given two sequences X and Y, and want to find the longest possible sequence that is a subsequence of both X and Y.
- E.g., for $X=A B C B D A B$ and $Y=B D C A B A$:
- BCA is a common sequence of both X and Y.
- BCBA is a longer sequence that is also common to both X and Y.

Longest common subsequence

- We are given two sequences X and Y, and want to find the longest possible sequence that is a subsequence of both X and Y.
- E.g., for $X=A B C B D A B$ and $Y=B D C A B A$:
- BCA is a common sequence of both X and Y.
- BCBA is a longer sequence that is also common to both X and Y.
- Both BCBA and BDAB are longest common subsequences, since there are no common sequences of length 5 or greater

LCS Algorithms

- if $|X|=m,|Y|=n$, then there are 2^{m} subsequences of X; we must compare each with Y (n comparisons)
- So the running time of the brute-force algorithm is $O\left(n 2^{m}\right)$.
- Notice that the LCS problem has optimal substructure: solutions of subproblems are parts of the final solution \rightarrow should we use dynamic programming?

Optimal substructures

- The first step use dynamic programming is create an optimal solution to this problem using optimal solutions to subproblems \rightarrow a recursive formulation of the optimal solution.
- The hardest part is to decide what the subproblems are. For the LCS we have two cases:
- Case 1: The last elements of X and Y are equal.
- Case 2: The last elements of X and Y are not equal.

LCS Optimal Formulation

- Case 1: The last elements of X and Y are equal.

$$
X=\mathrm{ABCBDAB} \text { and } Y=\mathrm{BDCAB}
$$

LCS Optimal Formulation

- Case 1: The last elements of X and Y are equal.

$$
X=\mathrm{ABCBDAB} \text { and } Y=\mathrm{BDCAB}
$$

- Then the last element must both be part of the longest common subsequence
- We can chop both elements off the ends of the subsequence (adding them to a common subsequence) and find the longest common subsequence of the smaller sequences.
- The LCS of $X=A B C B D A B$ and $Y=B D C A B$ can be formed by finding the LCS of $A B C B D A$ and $B D C A$, which is $B D A$, and adding B to it, that is LCS of X and Y is $B D A B$.

LCS Optimal Formulation

- Case 2: The last elements of X and Y are not equal.

$$
X=\mathrm{ABCBDABA} \text { and } Y=\mathrm{BDCAB}
$$

LCS Optimal Formulation

- Case 2: The last elements of X and Y are not equal.

$$
X=\mathrm{ABCBDABA} \text { and } Y=\mathrm{BDCAB}
$$

- Either the last element of X or the last element of Y cannot be part of the longest common subsequence.
- we can find the LCS of X and a smaller version of Y in which the last element is missing, or the LCS of Y and a smaller version of X in which the last element is missing.
- The LCS of $X=A B C B D A B A$ and $Y=B D C A B$ can be formed by:
- The LCS of $A B C B D A B A$ and BDCA, which is BCA.
- The LCS of $A B C B D A B$ and BDCAB, which is BDAB.
- Taking the LCS with max length, i.e., $B D A B$.

LCS Dynamic Programming Solution

- First we'll find the length of LCS. Later we'll modify the algorithm to find LCS itself.
- Define X_{i}, Y_{j} to be the prefixes of X and Y of length i and j, respectively.
- Define $c[i, j]$ to be the length of LCS of X_{i} and Y_{j} Then the length of LCS of X and Y will be $c[m, n]$.
- Since X_{0} and Y_{0} are empty strings, their LCS is always empty (i.e. $c[0,0]=0)$
- LCS of empty string and any other string is empty, so for every i and j we have $c[0, j]=c[i, 0]=0$.

$$
c[i, j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0 \\ c[i-1, j-1]+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j} \\ \max (c[i, j-1], c[i-1, j]) & \text { if } i, j>0 \text { and } x_{i} \neq y_{j}\end{cases}
$$

LCS Dynamic Programming Solution

- Optimal Substructure: we have characterized the optimal solution recursively using optimal solutions to smaller problems.
- Overlapping Subproblems: How many subproblems exist?
- Each $c[i, j]$ is associated with one sub-problem that asks for LCS of X_{i} and $Y_{j} \rightarrow$ There are $\Theta(m . n)$ subproblems.

$$
c[i, j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0, \\ c[i-1, j-1]+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j}, \\ \max (c[i, j-1], c[i-1, j]) & \text { if } i, j>0 \text { and } x_{i} \neq y_{j} .\end{cases}
$$

LCS Dynamic Programming Solution

- Using the recurrence, we can write the actual pseudocode.
- We populate the table in a certain order, because some elements depend on other elements of the table having already been computed

```
LCS-LENGTH \((X, Y)\)
    \(m=\) X.length
    \(n=Y\).length
    let \(b[1 \ldots m, 1 \ldots n]\) and \(c[0 \ldots m, 0 \ldots n]\) be new tables
    for \(i=1\) to \(m\)
        \(c[i, 0]=0\)
    for \(j=0\) to \(n\)
    \(c[0, j]=0\)
    for \(i=1\) to \(m\)
        for \(j=1\) to \(n\)
            if \(x_{i}==y_{j}\)
                        \(c[i, j]=c[i-1, j-1]+1\)
                        \(b[i, j]=" \nwarrow "\)
            elseif \(c[i-1, j] \geq c[i, j-1]\)
                        \(c[i, j]=c[i-1, j]\)
                        \(b[i, j]=" \uparrow "\)
            else \(c[i, j]=c[i, j-1]\)
            \(b[i, j]=\) " \(\leftarrow "\)
    return \(c\) and \(b\)
```


LCS Dynamic Programming Example

- Let's see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
- We first fill the first column and row (at index 0).

LCS Dynamic Programming Example

- Let's see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
- We first fill the first column and row (at index 0).
- The remaining indices are filled row by row.

	j	$\begin{gathered} 0 \\ y_{j} \end{gathered}$		$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	4	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0						
1	B	0						
2	C	0						
3	B	0						
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

- Let's see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
- We first fill the first column and row (at index 0).
- The remaining indices are filled row by row.

	j	$\begin{gathered} 0 \\ y_{j} \end{gathered}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{aligned} & 4 \\ & A \end{aligned}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	¢ 0					
1	B	0						
2	C	0						
3	B	0						
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

- Let's see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
- We first fill the first column and row (at index 0).
- The remaining indices are filled row by row.

	j	$\begin{gathered} 0 \\ y_{j} \end{gathered}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{aligned} & 4 \\ & A \end{aligned}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个 0				
1	B	0						
2	C	0						
3	B	0						
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{aligned} & 4 \\ & A \end{aligned}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个	个 0			
1	B	0						
2	C	0						
3	B	0						
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

- Let's see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
- We first fill the first column and row (at index 0).
- The remaining indices are filled row by row.

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{aligned} & 4 \\ & A \end{aligned}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个	\uparrow 0	π_{1}		
1	B	0						
2	C	0						
3	B	0						
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{aligned} & 4 \\ & A \end{aligned}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个	个	π_{1}	$\leftarrow 1$	
1	B	0						
2	C	0						
3	B	0						
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{aligned} & 4 \\ & A \end{aligned}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个	个	π_{1}	$\leftarrow 1$	${ }_{1}$
1	B	0						
2	C	0						
3	B	0						
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{gathered} 0 \\ y_{j} \end{gathered}$	$\begin{aligned} & 1 \\ & B \end{aligned}$		$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{aligned} & 4 \\ & A \end{aligned}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个	个 0	${ }^{\text {r }}$	$\leftarrow 1$	${ }_{1}$
1	B	0	${ }_{1}$					
2	C	0						
3	B	0						
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$		$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{aligned} & 4 \\ & A \end{aligned}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个	个 0	${ }^{\text {r }}$	$\leftarrow 1$	${ }_{1}$
1	B	0	${ }_{1}$	$\leftarrow 1$				
2	C	0						
3	B	0						
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{gathered} 4 \\ -\quad A \end{gathered}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个	个	\nwarrow_{1}	$\leftarrow 1$	${ }_{1}$
1	B	0	${ }_{1}$	$\leftarrow 1$	$\leftarrow 1$			
2	C	0						
3	B	0						
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{aligned} & 4 \\ & A \end{aligned}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个	个	π_{1}	$\leftarrow 1$	${ }_{1}$
1	B	0	${ }^{\text {K }}$	$\leftarrow 1$	$\leftarrow 1$	个 1		
2	C	0						
3	B	0						
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{gathered} 0 \\ y_{j} \end{gathered}$	$\begin{aligned} & 1 \\ & B \end{aligned}$			$\begin{aligned} & 4 \\ & A \end{aligned}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个	个	π_{1}	$\leftarrow 1$	${ }_{1}$
1	B	0	${ }^{\text {K }}$	$\leftarrow 1$	$\leftarrow 1$	个 1	K_{2}	
2	C	0						
3	B	0						
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{gathered} 4 \\ A \end{gathered}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个	个	${ }^{1} 1$	$\leftarrow 1$	${ }^{\text {® }}$
1	B	0	${ }^{-}$	$\leftarrow 1$	$\leftarrow 1$	个 1	${ }^{\text {K }}$	$\leftarrow 2$
2	C	0						
3	B	0						
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j			$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{aligned} & 4 \\ & A \end{aligned}$		$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个	个	${ }^{1}$	$\leftarrow 1$	${ }^{1}$
1	B	0	${ }_{1}$	$\leftarrow 1$	$\leftarrow 1$	个	${ }^{\text {K }}$	$\leftarrow 2$
2	C	0	个 1					
3	B	0						
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{gathered} 4 \\ A \end{gathered}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个	个	${ }^{1} 1$	$\leftarrow 1$	${ }^{\text {® }}$
1	B	0	${ }^{-}$	$\leftarrow 1$	$\leftarrow 1$	个 1	K_{2}	$\leftarrow 2$
2	C	0	个	个				
3	B	0						
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{array}{r} 4 \\ -\quad A \end{array}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个	个	${ }^{*}{ }_{1}$	$\leftarrow 1$	${ }^{*} 1$
1	B	0	${ }^{-}$	$\leftarrow 1$	$\leftarrow 1$	个	K_{2}	$\leftarrow 2$
2	C	0	个	\uparrow 1	\nwarrow_{2}			
3	B	0						
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j			$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{aligned} & 4 \\ & A \end{aligned}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个	个	\nwarrow_{1}	$\leftarrow 1$	${ }^{1} 1$
1	B	0	${ }_{1}$	$\leftarrow 1$	$\leftarrow 1$	¢	${ }^{\text {K }}$	$\leftarrow 2$
2	C	0	¢ 1	$\begin{gathered} \hline \uparrow \\ 1 \\ \hline \end{gathered}$	π_{2}	$\leftarrow 2$		
3	B	0						
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j			$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{aligned} & 4 \\ & A \end{aligned}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个	个	\nwarrow_{1}	$\leftarrow 1$	${ }^{1} 1$
1	B	0	${ }_{1}$	$\leftarrow 1$	$\leftarrow 1$	个 1	${ }^{\text {K }}$	$\leftarrow 2$
2	C	0	¢ 1	$\begin{gathered} \uparrow \uparrow \\ 1 \\ \hline \end{gathered}$	π_{2}	$\leftarrow 2$	个	
3	B	0						
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$		$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{gathered} 4 \\ A \end{gathered}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个	个	${ }^{1}$	$\leftarrow 1$	${ }^{\text {® }}$
1	B	0	${ }^{\text {K }} 1$	$\leftarrow 1$	$\leftarrow 1$	个	${ }^{1}$	$\leftarrow 2$
2	C	0	\uparrow	\uparrow 1	π_{2}	$\leftarrow 2$	个	\uparrow 2
3	B	0						
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$		$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{array}{r} 4 \\ -\quad A \end{array}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个	个	${ }^{\text {T }} 1$	$\leftarrow 1$	${ }^{*} 1$
1	B	0	${ }^{-}$	$\leftarrow 1$	$\leftarrow 1$	个	K_{2}	$\leftarrow 2$
2	C	0	个	\uparrow	\nwarrow_{2}	$\leftarrow 2$	个	\uparrow 2
3	B	0	\gtrless_{1}					
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{array}{r} 4 \\ -\quad A \end{array}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	，	0	0	0
0	A	0	个 0	个 0	个	${ }^{\text {T }} 1$	$\leftarrow 1$	${ }^{*} 1$
1	B	0	${ }^{-}$	$\leftarrow 1$	$\leftarrow 1$	个	K_{2}	$\leftarrow 2$
2	C	0	个 1	\uparrow	\nwarrow_{2}	$\leftarrow 2$	个	\uparrow 2
3	B	0	${ }^{1} 1$	个 1 1				
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	3	$\begin{aligned} & 4 \\ & A \end{aligned}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个	个	${ }^{-}$	$\leftarrow 1$	${ }^{\star}{ }_{1}$
1	B	0	${ }^{\text {K }}$	$\leftarrow 1$	$\leftarrow 1$	¢	K_{2}	$\leftarrow 2$
2	C	0	$\begin{aligned} & \uparrow \\ & 1 \\ & \hline \end{aligned}$	\uparrow 1 1	T_{2}	$\leftarrow 2$	$\begin{aligned} & \uparrow \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{r}\uparrow \\ 2 \\ \hline\end{array}$
3	B	0	${ }^{*} 1$	$\begin{aligned} & \hline \uparrow \\ & 1 \\ & \hline \end{aligned}$	${ }^{\text {¢ }} 2$			
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{aligned} & 4 \\ & A \end{aligned}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个	个	${ }^{-}$	$\leftarrow 1$	${ }^{\star}{ }_{1}$
1	B	0	${ }^{\text {K }}$	$\leftarrow 1$	$\leftarrow 1$	¢	K_{2}	$\leftarrow 2$
2	C	0	$\begin{aligned} & \uparrow \\ & 1 \\ & \hline \end{aligned}$	\uparrow 1	\nwarrow_{2}	$\leftarrow 2$	个	$\begin{array}{r}\uparrow \\ 2 \\ \hline\end{array}$
3	B	0	${ }^{\star} 1$	$\begin{aligned} & \hline \uparrow \\ & 1 \\ & \hline \end{aligned}$	\uparrow_{2}	${ }^{+}{ }_{2}$		
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{aligned} & 4 \\ & A \end{aligned}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个	个	${ }^{-}$	$\leftarrow 1$	${ }^{\star}{ }_{1}$
1	B	0	${ }^{\text {K }}$	$\leftarrow 1$	$\leftarrow 1$	¢	K_{2}	$\leftarrow 2$
2	C	0	1 1	\uparrow 1	\nwarrow_{2}	$\leftarrow 2$	个 2	\uparrow 2
3	B	0	${ }^{\star} 1$	$\begin{aligned} & \hline \uparrow \\ & 1 \\ & \hline \end{aligned}$	\uparrow_{2}	${ }^{+}{ }_{2}$	${ }^{1}$	
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{aligned} & 4 \\ & A \end{aligned}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个	个	${ }^{-}$	$\leftarrow 1$	${ }^{\wedge}$
1	B	0	${ }^{\text {K }}$	$\leftarrow 1$	$\leftarrow 1$	¢	K_{2}	$\leftarrow 2$
2	C	0	1 1	\uparrow 1	\nwarrow_{2}	$\leftarrow 2$	个 2	$\begin{array}{r}\uparrow \\ 2 \\ \hline\end{array}$
3	B	0	${ }^{\star} 1$	$\begin{aligned} & \hline \uparrow \\ & 1 \\ & \hline \end{aligned}$	\uparrow_{2}	${ }^{+}{ }_{2}$	${ }^{1}$	$\leftarrow 3$
4	D	0						
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	3	$\begin{aligned} & 4 \\ & A \end{aligned}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个	个	${ }^{-}$	$\leftarrow 1$	${ }^{\wedge}$
1	B	0	${ }^{\text {K }}$	$\leftarrow 1$	$\leftarrow 1$	¢	K_{2}	$\leftarrow 2$
2	C	0	1 1	\uparrow 1	T_{2}	$\leftarrow 2$	个 2	$\begin{array}{r}\uparrow \\ 2 \\ \hline\end{array}$
3	B	0	${ }^{*} 1$	$\begin{aligned} & \hline \uparrow \\ & 1 \\ & \hline \end{aligned}$	\uparrow_{2}	${ }^{\text {¢ }}$	${ }^{\text {N}}$	$\leftarrow 3$
4	D	0	¢ 1					
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	3	$\begin{aligned} & 4 \\ & A \end{aligned}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个	个	${ }^{-}$	$\leftarrow 1$	${ }^{\star}{ }_{1}$
1	B	0	${ }_{1}{ }_{1}$	$\leftarrow 1$	$\leftarrow 1$	¢	K_{2}	$\leftarrow 2$
2	C	0	个	\uparrow 1	T_{2}	$\leftarrow 2$	¢ 2	$\begin{array}{r}\uparrow \\ 2 \\ \hline\end{array}$
3	B	0	${ }^{1} 1$	$\begin{aligned} & \hline \uparrow \\ & 1 \\ & \hline \end{aligned}$	${ }^{\uparrow}{ }_{2}$	${ }^{\text {¢ }}$	${ }^{\text {N}}$	$\leftarrow 3$
4	D	0	¢ 1	\nwarrow_{2}				
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$				$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个	个	${ }^{\star}$	$\leftarrow 1$	${ }^{\wedge}$
1	B	0	${ }_{1}{ }_{1}$	$\leftarrow 1$	$\leftarrow 1$	¢	K_{2}	$\leftarrow 2$
2	C	0	个	\uparrow 1	T_{2}	$\leftarrow 2$	¢ 2	$\begin{array}{r}\uparrow \\ 2 \\ \hline\end{array}$
3	B	0	${ }^{1} 1$	$\begin{aligned} & \hline \uparrow \\ & 1 \\ & \hline \end{aligned}$	\uparrow_{2}	${ }^{\text {¢ }} 2$	${ }^{\text {N}}$	\leftarrow
4	D	0	¢ 1	T_{2}	\uparrow_{2}			
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$				$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个	个	${ }^{1}$	$\leftarrow 1$	${ }^{\wedge}$
1	B	0	${ }_{1}{ }_{1}$	$\leftarrow 1$	$\leftarrow 1$	个	K_{2}	$\leftarrow 2$
2	C	0	个	\uparrow 1	T_{2}	$\leftarrow 2$	¢ 2	$\begin{array}{r}\uparrow \\ 2 \\ \hline\end{array}$
3	B	0	${ }^{1} 1$	$\begin{aligned} & \hline \uparrow \\ & 1 \\ & \hline \end{aligned}$	\uparrow_{2}	${ }^{\uparrow}{ }_{2}$	${ }^{\text {N}}$	\leftarrow
4	D	0	¢ 1	$\begin{array}{r} 1 \\ \hline \end{array}$	${ }^{\uparrow}{ }_{2}$	${ }^{\text {¢ }} 2$		
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	3			$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个	个	${ }^{\star}$	$\leftarrow 1$	${ }^{\wedge}$
1	B	0	${ }^{\text {K }}$	$\leftarrow 1$	$\leftarrow 1$	¢	K_{2}	$\leftarrow 2$
2	C	0	1 1	\uparrow 1	T_{2}	$\leftarrow 2$	¢ 2	$\begin{array}{r}\uparrow \\ 2 \\ \hline\end{array}$
3	B	0	${ }^{\star} 1$	$\begin{aligned} & \hline \uparrow \\ & 1 \\ & \hline \end{aligned}$	${ }^{\uparrow}{ }_{2}$	${ }^{\text {¢ }}$	N_{3}	\leftarrow_{3}
4	D	0	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{array}{r} 1 \\ \hline \end{array}$	${ }^{\uparrow}{ }_{2}$	${ }^{+}{ }_{2}$	$\begin{aligned} & \hat{1} \\ & \hline \\ & \hline \end{aligned}$	
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$		$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{gathered} 4 \\ A \end{gathered}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个	个	${ }^{\star}$	$\leftarrow 1$	${ }^{\star}{ }_{1}$
1	B	0	${ }_{1}{ }_{1}$	$\leftarrow 1$	$\leftarrow 1$	个	K_{2}	$\leftarrow 2$
2	C	0	$\begin{aligned} & \uparrow \\ & 1 \\ & \hline \end{aligned}$	\uparrow 1 1	\nwarrow_{2}	$\leftarrow 2$	个 2	$\begin{array}{r}\uparrow \\ 2 \\ \hline\end{array}$
3	B	0	${ }^{\Gamma_{1}}$	个 1 1	\uparrow_{2}	${ }^{\uparrow}{ }_{2}$	${ }^{1}{ }_{3}$	\leftarrow
4	D	0	$\begin{aligned} & 1 \\ & \hline 1 \\ & \hline \end{aligned}$	T_{2}	\uparrow_{2}	${ }^{\text {¢ }} 2$	$\begin{aligned} & \mathrm{u} \\ & \hline \\ & \hline \end{aligned}$	个 3
5	A	0						
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$		$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{gathered} 4 \\ A \end{gathered}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个	个 0	${ }^{\text {T }}$	$\leftarrow 1$	${ }^{1}$
1	B	0	${ }_{1}{ }_{1}$	$\leftarrow 1$	$\leftarrow 1$	个	K_{2}	$\leftarrow 2$
2	C	0	¢ 1	\uparrow 1	K_{2}	$\leftarrow 2$	个 2	$\begin{array}{r}\uparrow \\ 2 \\ \hline\end{array}$
3	B	0	${ }^{\star} 1$	¢ 1 1	\uparrow_{2}	${ }^{\uparrow}{ }_{2}$	${ }^{1}$	\leftarrow
4	D	0	$\begin{aligned} & \hline \uparrow \\ & 1 \\ & \hline \end{aligned}$	T_{2}	\uparrow_{2}	\uparrow_{2}	$\begin{aligned} & \hline \uparrow \\ & 3 \\ & 3 \end{aligned}$	\uparrow 3
5	A	0	¢ 1					
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{gathered} 4 \\ A \end{gathered}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个	个	${ }^{\star}$	$\leftarrow 1$	${ }^{\star}{ }_{1}$
1	B	0	${ }_{1}{ }_{1}$	$\leftarrow 1$	$\leftarrow 1$	个	K_{2}	$\leftarrow 2$
2	C	0	$\begin{aligned} & \uparrow \\ & 1 \\ & \hline \end{aligned}$	\uparrow 1 1	\nwarrow_{2}	$\leftarrow 2$	个 2	$\begin{array}{r}\uparrow \\ 2 \\ \hline\end{array}$
3	B	0	${ }^{\Gamma_{1}}$	个 1 1	\uparrow_{2}	${ }^{\uparrow}{ }_{2}$	${ }^{1}{ }_{3}$	\leftarrow
4	D	0	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	T_{2}	\uparrow_{2}	${ }^{\text {¢ }} 2$	$\begin{aligned} & \mathrm{u} \\ & \hline \\ & \hline \end{aligned}$	个 3
5	A	0	¢ 1 1	\uparrow_{2}				
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$		$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{gathered} 4 \\ A \end{gathered}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个	个	${ }^{\star}$	$\leftarrow 1$	${ }^{\star}{ }_{1}$
1	B	0	${ }_{1}{ }_{1}$	$\leftarrow 1$	$\leftarrow 1$	个	K_{2}	$\leftarrow 2$
2	C	0	$\begin{aligned} & \uparrow \\ & 1 \\ & \hline \end{aligned}$	\uparrow 1 1	\nwarrow_{2}	$\leftarrow 2$	个 2	$\begin{array}{r}\uparrow \\ 2 \\ \hline\end{array}$
3	B	0	${ }^{\Gamma_{1}}$	个 1 1	\uparrow_{2}	${ }^{\uparrow}{ }_{2}$	${ }^{1}{ }_{3}$	\leftarrow
4	D	0	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	T_{2}	\uparrow_{1}	${ }^{\text {¢ }} 2$	$\begin{aligned} & \mathrm{u} \\ & \hline \\ & \hline \end{aligned}$	个 3
5	A	0	¢ 1 1	\uparrow_{2}	${ }^{\uparrow}{ }_{2}$			
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	3	$\begin{array}{r} 4 \\ -\quad A \end{array}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个	个	${ }^{\text {N }}$	$\leftarrow 1$	${ }^{1}$
1	B	0	${ }^{\text {K }} 1$	$\leftarrow 1$	$\leftarrow 1$	个	K_{2}	$\leftarrow 2$
2	C	0	¢ 1	\uparrow 1	\nwarrow_{2}	$\leftarrow 2$	个 2	$\begin{array}{r}\uparrow \\ 2 \\ \hline\end{array}$
3	B	0	${ }^{\nwarrow_{1}}$	¢ 1	${ }_{\text {¢ }}{ }_{2}$	${ }^{+}{ }_{2}$	${ }^{1}$	\leftarrow
4	D	0	个 1	T_{2}	\uparrow_{2}	\uparrow_{2}	个	\uparrow 3
5	A	0	¢ 1	\uparrow_{2}	${ }^{\text {¢ }}$	K_{3}		
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{gathered} 4 \\ A \end{gathered}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个	个	${ }^{\star}$	$\leftarrow 1$	${ }^{\star}{ }_{1}$
1	B	0	${ }_{1}{ }_{1}$	$\leftarrow 1$	$\leftarrow 1$	个	\nwarrow_{2}	$\leftarrow 2$
2	C	0	$\begin{aligned} & \uparrow \\ & 1 \\ & \hline \end{aligned}$	\uparrow 1 1	\nwarrow_{2}	$\leftarrow 2$	个 2	$\begin{array}{r}\uparrow \\ 2 \\ \hline\end{array}$
3	B	0	\upharpoonright_{1}	个	\uparrow_{2}	${ }^{\uparrow}{ }_{2}$	${ }^{+}{ }_{3}$	3
4	D	0	$\begin{gathered} \hat{+} \\ 1 \\ \hline \end{gathered}$	K_{2}	\uparrow_{2}	\uparrow_{2}	个	个 3
5	A	0	¢ 1 1	\uparrow_{2}	\uparrow_{2}	K_{3}	\uparrow_{3}	
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	3	$\begin{array}{r} 4 \\ -\quad A \end{array}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个	个	${ }^{\text {N }}$	$\leftarrow 1$	${ }^{1}$
1	B	0	${ }^{\text {K }} 1$	$\leftarrow 1$	$\leftarrow 1$	个	K_{2}	$\leftarrow 2$
2	C	0	¢ 1	\uparrow 1	\nwarrow_{2}	$\leftarrow 2$	个 2	$\begin{array}{r}\uparrow \\ 2 \\ \hline\end{array}$
3	B	0	${ }^{\nwarrow_{1}}$	¢ 1 1	${ }_{\text {¢ }}{ }_{2}$	\uparrow_{2}	${ }^{1}$	\leftarrow
4	D	0	$\begin{aligned} & \hline \uparrow \\ & 1 \\ & \hline \end{aligned}$	T_{2}	\uparrow_{2}	\uparrow_{2}	个	\uparrow 3
5	A	0	¢ 1	${ }^{+}{ }_{2}$	${ }^{\text {¢ }}$	K_{3}	\uparrow_{3}	${ }^{1} 4$
6	B	0						

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	3	$\begin{array}{r} 4 \\ -\quad A \end{array}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个	个	${ }^{\text {N }}$	$\leftarrow 1$	${ }^{1} 1$
1	B	0	${ }^{\text {K }} 1$	$\leftarrow 1$	$\leftarrow 1$	个	K_{2}	$\leftarrow 2$
2	C	0	个	\uparrow 1	\nwarrow_{2}	$\leftarrow 2$	个 2	$\begin{array}{r}\uparrow \\ 2 \\ \hline\end{array}$
3	B	0	\nwarrow_{1}	¢ 1 1	${ }_{\text {¢ }}{ }_{2}$	\uparrow_{2}	N_{3}	3
4	D	0	个 1	T_{2}	\uparrow_{2}	\uparrow_{2}	个 3	\uparrow 3
5	A	0	介	${ }^{\uparrow}$	\uparrow_{2}	K_{3}	${ }_{\text {个 }}{ }_{3}$	${ }^{1}$
6	B	0	${ }^{\wedge} 1$					

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	3	$\begin{aligned} & 4 \\ & A \end{aligned}$		$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个 0	个 0	${ }^{1}$	$\leftarrow 1$	${ }_{1}$
1	B	0	${ }_{1}{ }_{1}$	$\leftarrow 1$	$\leftarrow 1$	个	K_{2}	$\leftarrow 2$
2	C	0	$\begin{aligned} & \uparrow \\ & 1 \\ & \hline \end{aligned}$	\uparrow	\nwarrow_{2}	$\leftarrow 2$	个 2	\uparrow 2
3	B	0	\nwarrow_{1}	$\begin{aligned} & \hline \uparrow \\ & 1 \\ & \hline \end{aligned}$	\uparrow_{2}	\uparrow_{2}	N_{3}	\leftarrow_{3}
4	D	0	个 1	K_{2}	\uparrow_{2}	\uparrow_{2}	个	\uparrow 3
5	A	0	\uparrow	\uparrow_{2}	${ }^{\uparrow}{ }_{2}$	K_{3}	${ }^{+}$	${ }^{\wedge}$
6	B	0	\gtrless_{1}	\uparrow_{2}				

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	3	$\begin{aligned} & 4 \\ & A \end{aligned}$		$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个 0	个 0	${ }^{1}$	$\leftarrow 1$	${ }_{1}$
1	B	0	${ }_{1}{ }_{1}$	$\leftarrow 1$	$\leftarrow 1$	个	K_{2}	$\leftarrow 2$
2	C	0	$\begin{aligned} & \uparrow \\ & 1 \\ & \hline \end{aligned}$	\uparrow	\nwarrow_{2}	$\leftarrow 2$	个 2	\uparrow 2
3	B	0	\nwarrow_{1}	$\begin{aligned} & \hline \uparrow \\ & 1 \\ & \hline \end{aligned}$	\uparrow_{2}	${ }^{+}{ }_{2}$	N_{3}	\leftarrow_{3}
4	D	0	$\begin{aligned} & \hline \uparrow \\ & 1 \\ & \hline \end{aligned}$	K_{2}	${ }^{+}$	\uparrow_{2}	个	\uparrow 3
5	A	0	\uparrow	\uparrow_{2}	${ }^{\uparrow}{ }_{2}$	K_{3}	${ }^{+}$	${ }^{\wedge}$
6	B	0	\star_{1}	\uparrow_{2}	\uparrow^{+}			

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j			$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{gathered} 4 \\ A \end{gathered}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	\uparrow 0	个 0	${ }^{*} 1$	$\leftarrow 1$	${ }^{\text {K }}$
1	B	0	${ }_{1}$	$\leftarrow 1$	$\leftarrow 1$	个	K_{2}	$\leftarrow 2$
2	C	0	个	\uparrow	π_{2}	$\leftarrow 2$	个 2	$\begin{array}{r}\uparrow \\ 2 \\ \hline\end{array}$
3	B	0	${ }^{*} 1$	$\begin{aligned} & \hline \uparrow \\ & 1 \\ & \hline \end{aligned}$	\uparrow_{2}	\uparrow_{2}	N_{3}	3
4	D	0	¢ 1	π_{2}	${ }^{+}{ }_{2}$	${ }^{+}{ }_{2}$	¢ 3	$\begin{array}{r}\uparrow \\ 3 \\ \hline\end{array}$
5	A	0	¢ 1	\uparrow_{2}	\uparrow_{2}	K_{3}	${ }_{4}{ }_{3}$	${ }^{1} 4$
6	B	0	${ }^{1}$	\uparrow_{2}	${ }^{\uparrow}{ }_{2}$	\uparrow^{+}		

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j		$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{gathered} 4 \\ A \end{gathered}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个	个	个 0	${ }^{*} 1$	$\leftarrow 1$	${ }^{\text {K }}$
1	B	0	${ }^{\text {N }}$	$\leftarrow 1$	$\leftarrow 1$	个	K_{2}	$\leftarrow 2$
2	C	0	个	\uparrow 1 1	π_{2}	$\leftarrow 2$	个 2	$\begin{array}{r}\uparrow \\ 2 \\ \hline\end{array}$
3	B	0	${ }^{*} 1$	$\begin{aligned} & \hline \uparrow \\ & 1 \\ & \hline \end{aligned}$	\uparrow_{2}	\uparrow_{2}	N_{3}	3
4	D	0	¢ 1	N_{2}	${ }^{+}{ }_{2}$	${ }^{+}{ }_{2}$	¢ 3	$\begin{array}{r}\uparrow \\ 3 \\ \hline\end{array}$
5	A	0	1 1 1	\uparrow_{2}	\uparrow_{2}	π_{3}	${ }_{\text {个 }}^{3}$	${ }^{1}{ }_{4}$
6	B	0	\nwarrow_{1}	\uparrow_{2}	${ }^{\uparrow}{ }_{2}$	\uparrow_{3}	${ }^{\text {R }} 4$	

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－We first fill the first column and row（at index 0 ）．
－The remaining indices are filled row by row．

	j		$\begin{aligned} & 1 \\ & B \end{aligned}$		$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{gathered} 4 \\ A \end{gathered}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个	个 0	${ }^{\text {T }}$	$\leftarrow 1$	${ }^{-}$
1	B	0	${ }^{-}$	$\leftarrow 1$	$\leftarrow 1$	个	K_{2}	$\leftarrow 2$
2	C	0	个	个	T_{2}	$\leftarrow 2$	个 2	$\begin{array}{r}\uparrow \\ 2 \\ \hline\end{array}$
3	B	0	${ }^{*} 1$	1 1 1	\uparrow_{2}	${ }^{+}{ }_{2}$	N_{3}	3
4	D	0	个	K_{2}	\uparrow_{2}	\uparrow_{2}	个	\uparrow 3
5	A	0	¢	${ }^{+}{ }_{2}$	\uparrow_{2}	π_{3}	\uparrow_{3}	${ }^{1} 4$
6	B	0	\nwarrow_{1}	${ }^{\uparrow}{ }_{2}$	${ }^{\uparrow}{ }_{2}$	${ }^{+}{ }_{3}$	${ }^{+}$	\uparrow 4

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－After filling the table，we use arrows to detect the LCS（formed by indices at which the arrow points to Top and Left）

	j	0 y_{j}	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	3	4 A	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个 0	¢ 0	${ }^{\text {® }}$	$\leftarrow 1$	${ }^{\text {K }}$
1	B	0	${ }^{\text {T }}$	$\leftarrow 1$	$\leftarrow 1$	\uparrow	${ }^{\text {® }}$	$\leftarrow 2$
2	C	0	个 1	\uparrow 1	${ }^{\wedge}$	$\leftarrow 2$	个 2	\uparrow 2
3	B	0	\gtrless_{1}	1 1	\uparrow_{2}	\uparrow_{2}	${ }_{\text {r }}$	\leftarrow
4	D	0	个 1	2	\uparrow_{2}	\uparrow_{2}	$\begin{aligned} & \uparrow \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & \uparrow \uparrow \\ & 3 \\ & \hline \end{aligned}$
5	A	0	\uparrow	\uparrow_{2}	\uparrow_{2}	K_{3}	\uparrow_{3}	${ }^{\text {「 }} 4$
6	B	0	${ }^{\text {R }}$	\uparrow_{2}	\uparrow_{2}	\uparrow_{3}	\star_{4}	\uparrow 4

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－After filling the table，we use arrows to detect the LCS（formed by indices at which the arrow points to Top and Left）

	j	0 y_{j}	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	3	4 A	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个 0	¢ 0	${ }^{\text {® }}$	$\leftarrow 1$	${ }^{\text {K }}$
1	B	0	${ }^{\text {T }}$	$\leftarrow 1$	$\leftarrow 1$	\uparrow	${ }^{\text {® }}$	$\leftarrow 2$
2	C	0	个 1	\uparrow 1	${ }^{\wedge}$	$\leftarrow 2$	个 2	\uparrow 2
3	B	0	\gtrless_{1}	1 1	\uparrow_{2}	\uparrow_{2}	${ }_{\text {r }}$	\leftarrow
4	D	0	个 1	2	\uparrow_{2}	\uparrow_{2}	$\begin{aligned} & \uparrow \\ & 3 \\ & \hline \end{aligned}$	\uparrow 3
5	A	0	\uparrow	\uparrow_{2}	\uparrow_{2}	K_{3}	\uparrow_{3}	${ }^{\text {「 }} 4$
6	B	0	${ }^{\text {R }}$	\uparrow_{2}	\uparrow_{2}	\uparrow_{3}	k_{4}	\uparrow 4

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－After filling the table，we use arrows to detect the LCS（formed by indices at which the arrow points to Top and Left）

	j		$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	3	4 A	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	\uparrow 0	个 0	\uparrow 0	${ }^{\pi} 1$	$\leftarrow 1$	${ }^{\text {「 }} 1$
1	B	0	${ }^{\text {T }}$	$\leftarrow 1$	$\leftarrow 1$	\uparrow	${ }^{\text {® }}$	$\leftarrow 2$
2	C	0	个 1	\uparrow 1	${ }^{\wedge}$	$\leftarrow 2$	个 2	\uparrow 2
3	B	0	\gtrless_{1}	1 1	\uparrow_{2}	\uparrow_{2}	${ }_{\text {r }}$	\leftarrow
4	D	0	个 1	2	\uparrow_{2}	\uparrow_{2}	$\begin{aligned} & \uparrow \\ & 3 \\ & \hline \end{aligned}$	\uparrow 3
5	A	0	\uparrow	\uparrow_{2}	\uparrow_{2}	K_{3}	\uparrow_{3}	${ }^{\text {® }}$
6	B	0	${ }^{\text {R }}$	\uparrow_{2}	\uparrow_{2}	\uparrow_{3}	k_{4}	\uparrow 4

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－After filling the table，we use arrows to detect the LCS（formed by indices at which the arrow points to Top and Left）

	j		$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	3	4 A	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	\uparrow 0	个 0	\uparrow 0	${ }^{\pi} 1$	$\leftarrow 1$	${ }^{\text {T }}$
1	B	0	${ }^{\text {T }}$	$\leftarrow 1$	$\leftarrow 1$	\uparrow	${ }^{\text {® }}$	$\leftarrow 2$
2	C	0	个 1	\uparrow 1	${ }^{\wedge}$	$\leftarrow 2$	个 2	\uparrow 2
3	B	0	\gtrless_{1}	1 1	\uparrow_{2}	\uparrow_{2}	${ }_{\text {r }}$	\leftarrow
4	D	0	个 1	2	\uparrow_{2}	\uparrow_{2}	$\begin{aligned} & \uparrow \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{r}\uparrow \\ 3 \\ \hline\end{array}$
5	A	0	\uparrow	\uparrow_{2}	\uparrow_{2}	K_{3}	\uparrow_{3}	${ }^{\text {「 }} 4$
6	B	0	${ }^{\text {R }}$	\uparrow_{2}	\uparrow_{2}	\uparrow_{3}	k_{4}	\uparrow 4

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－After filling the table，we use arrows to detect the LCS（formed by indices at which the arrow points to Top and Left）

	j		$\begin{aligned} & 1 \\ & B \end{aligned}$		$\begin{aligned} & 3 \\ & C \end{aligned}$	${ }^{4}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个 0	\uparrow 0	${ }^{\top}$	$\leftarrow 1$	${ }^{\text {K }} 1$
1	B	0	${ }^{\text {K }}$	$\leftarrow 1$	$\leftarrow 1$	个 1	${ }^{\text {下 }}$	$\leftarrow 2$
2	C	0	\uparrow 1	\uparrow 1	\nwarrow_{2}	$\leftarrow 2$	个 2	\uparrow 2
3	B	0	\gtrless_{1}	个 1	\uparrow_{2}	\uparrow_{2}	${ }^{\text {「 }}$	\leftarrow
4	D	0	\uparrow 1	${ }_{1}$	\uparrow_{2}	\uparrow_{2}	个 3	\uparrow 3
5	A	0	¢ 1 1	\uparrow_{2}	\uparrow_{2}	3	${ }^{\text {个 }} 3$	${ }^{\text {「 }}$
6	B	0	${ }^{\wedge}$	\uparrow_{2}	\uparrow_{2}	\uparrow_{3}	4	\uparrow 4

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－After filling the table，we use arrows to detect the LCS（formed by indices at which the arrow points to Top and Left）

	j		$\begin{aligned} & 1 \\ & B \end{aligned}$		$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{gathered} 4 \\ A \end{gathered}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个 0	\uparrow 0	${ }^{\top}$	$\leftarrow 1$	${ }^{\top}$
1	B	0	${ }^{\text {K }}$	$\leftarrow 1$	$\leftarrow 1$	个 1	${ }^{\text {下 }}$	$\leftarrow 2$
2	C	0	\uparrow 1	\uparrow 1	\nwarrow_{2}	$\leftarrow 2$	个 2	个 2
3	B	0	\gtrless_{1}	个 1	\uparrow_{2}	\uparrow_{2}	${ }^{\text {r }}$	$\leftarrow 3$
4	D	0	\uparrow 1	${ }_{1}$	\uparrow_{2}	${ }^{+}$	个 3	$\begin{array}{r}\uparrow \\ 3 \\ \hline\end{array}$
5	A	0	¢ 1	\uparrow_{2}	\uparrow_{2}	π_{3}	${ }^{\text {个 }} 3$	${ }^{\uparrow}$
6	B	0	${ }_{1}$	\uparrow_{2}	\uparrow_{2}	\uparrow_{3}	${ }_{4}$	\uparrow 4

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－After filling the table，we use arrows to detect the LCS（formed by indices at which the arrow points to Top and Left）

	j		$\begin{aligned} & 1 \\ & B \end{aligned}$		$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{gathered} 4 \\ A \end{gathered}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个 0	\uparrow 0	${ }^{\top}$	$\leftarrow 1$	${ }^{\top}$
1	B	0	${ }^{\text {K }}$	$\leftarrow 1$	$\leftarrow 1$	个 1	${ }^{\text {下 }}$	$\leftarrow 2$
2	C	0	\uparrow 1	\uparrow 1	\nwarrow_{2}	$\leftarrow 2$	个 2	个 2
3	B	0	\gtrless_{1}	个 1	\uparrow_{2}	\uparrow_{2}	${ }^{\text {r }}$	$\leftarrow 3$
4	D	0	\uparrow 1	${ }_{1}$	\uparrow_{2}	${ }^{+}$	个 3	$\begin{array}{r}\uparrow \\ 3 \\ \hline\end{array}$
5	A	0	¢ 1	\uparrow_{2}	\uparrow_{2}	π_{3}	${ }^{\text {个 }} 3$	${ }^{\uparrow}$
6	B	0	${ }_{1}$	\uparrow_{2}	\uparrow_{2}	\uparrow_{3}	${ }_{4}$	\uparrow 4

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－After filling the table，we use arrows to detect the LCS（formed by indices at which the arrow points to Top and Left）

	j		$\begin{aligned} & 1 \\ & B \end{aligned}$		$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{gathered} 4 \\ A \end{gathered}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个 0	\uparrow 0	${ }^{\top}$	$\leftarrow 1$	${ }^{\top}$
1	B	0	${ }^{\text {T }}$	$\leftarrow 1$	$\leftarrow 1$	个 1	${ }^{\text {下 }}$	$\leftarrow 2$
2	C	0	\uparrow 1	\uparrow 1	\nwarrow_{2}	$\leftarrow 2$	个 2	个 2
3	B	0	\gtrless_{1}	个 1	\uparrow_{2}	\uparrow_{2}	${ }^{\text {r }}$	$\leftarrow 3$
4	D	0	\uparrow 1	${ }_{1}$	\uparrow_{2}	${ }^{+}$	个 3	$\begin{array}{r}\uparrow \\ 3 \\ \hline\end{array}$
5	A	0	¢ 1	\uparrow_{2}	\uparrow_{2}	π_{3}	${ }^{\text {个 }} 3$	${ }^{\uparrow}$
6	B	0	${ }_{1}$	\uparrow_{2}	\uparrow_{2}	\uparrow_{3}	${ }_{4}$	\uparrow 4

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－After filling the table，we use arrows to detect the LCS（formed by indices at which the arrow points to Top and Left）

	j	$\begin{aligned} & 0 \\ & y_{j} \end{aligned}$	$\begin{aligned} & 1 \\ & B \end{aligned}$	$\begin{aligned} & 2 \\ & D \end{aligned}$	3	4 A	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	\uparrow 0	\uparrow 0	${ }^{\text {R }} 1$	$\leftarrow 1$	${ }^{\text {下 }}$
1	B	0	$\overbrace{1}$	$\leftarrow 1$	$\leftarrow 1$	个 1	${ }^{1}$	$\leftarrow 2$
2	C	0	\uparrow 1	\uparrow 1	K_{2}	$\leftarrow 2$	2	\uparrow 2
3	B	0	\gtrless_{1}	¢ 1	\uparrow_{2}	\uparrow_{2}	${ }^{1}$	\leftarrow
4	D	0	个 1	${ }^{\text {K }}$	\uparrow_{2}	${ }^{\uparrow}{ }_{2}$	个 3	$\begin{array}{r}\text { 个 } \\ 3 \\ \hline\end{array}$
5	A	0	¢ 1 1	$\begin{array}{r} \uparrow_{2} \\ \hline \end{array}$	${ }^{\text {¢ }}$	K_{3}	$\uparrow^{\text {¢ }}$	${ }^{\uparrow}$
6	B	0	$\overbrace{1}$	\uparrow_{2}	\uparrow_{2}	\uparrow_{3}	${ }^{\star}$	\uparrow 4

LCS Dynamic Programming Example

－Let＇s see how LCS algorithm works when $X=A B C B D A B$ and $Y=B D C A B A$
－After filling the table，we use arrows to detect the LCS（formed by indices at which the arrow points to Top and Left）

	j		$\begin{aligned} & 1 \\ & B \end{aligned}$		$\begin{aligned} & 3 \\ & C \end{aligned}$	$\begin{gathered} 4 \\ A \end{gathered}$	$\begin{aligned} & 5 \\ & B \end{aligned}$	$\begin{aligned} & 6 \\ & A \end{aligned}$
i	x_{i}	0	0	0	0	0	0	0
0	A	0	个 0	个 0	\uparrow 0	${ }^{\top}$	$\leftarrow 1$	${ }^{\text {K }} 1$
1	B	0	\nwarrow_{1}	$\leftarrow 1$	$\leftarrow 1$	个 1	${ }^{\text {下 }}$	$\leftarrow 2$
2	C	0	\uparrow 1	\uparrow 1	\nwarrow_{2}	$\leftarrow 2$	个 2	\uparrow 2
3	B	0	\gtrless_{1}	个 1	\uparrow_{2}	\uparrow_{2}	${ }^{\text {「 }}$	\leftarrow
4	D	0	\uparrow 1	${ }_{1}$	\uparrow_{2}	\uparrow_{2}	个 3	\uparrow 3
5	A	0	¢ 1 1	\uparrow_{2}	\uparrow_{2}	3	${ }^{\text {个 }} 3$	${ }^{\text {「 }}$
6	B	0	${ }^{\wedge}$	\uparrow_{2}	\uparrow_{2}	\uparrow_{3}	4	\uparrow 4

Knapsack Problem

- In the 0-1 knapsack problem, we are given a set of n items a_{1}, \ldots, a_{n}.
- Each item a_{i} has a size s_{i} and a value v_{i}.
- We are also given a size bound S (the capacity of our knapsack).
- The goal is to find the subset of items of maximum total value such that sum of their sizes is at most S (they all fit into the knapsack).
- In the example below, where $S=15$, the optimal strategy is to do parts A, B, F, and G for a total of 34 points.

	A	B	C	D	E	F	G
value	7	9	5	12	14	6	12
Size	3	4	2	6	7	3	5

Greedy Strategy

- Option 1: process items in order $1,2, \ldots, n$, and accepts an item as long as it fits (first A, then B, etc.)
- This selects A, B, C and D for a profit of 33 (which is not optimal because $\{A, B, F, G\}$ has profit 34)

	A	B	C	D	E	F	G
value	7	9	5	12	14	6	12
Size	3	4	2	6	7	3	5

Greedy Strategy

- Option 2: Sort items by their value-to-size ratio, process items in the sorted order, and accepts an item as long as it fits (first A, then B, etc.)
- This selects $C(2.5), G(2.4), A(2.33)$, and $B(2.25)$ for a profit of 33 (which is not optimal because $\{A, B, F, G\}$ has profit 34 .

	A	B	C	D	E	F	G
value	7	9	5	12	14	6	12
Size	3	4	2	6	7	3	5
	$7 / 3$	$9 / 4$	$\mathbf{5 / 2}$	$\mathbf{1 2 / 6}$	$\mathbf{1 4 / 7}$	$6 / 3$	$\mathbf{1 2 / 5}$

Dynamic Programming for Knapsack

- Step 1: Describe the optimal solution using the optimal solution for the subproblems.

Dynamic Programming for Knapsack

- Step 1: Describe the optimal solution using the optimal solution for the subproblems.
- Subproblem: finding the optimal profit (value) when items are $a_{1}, a_{2}, \ldots, a_{k}$ (for $k \leq n$), and the space is B (for $B \leq S$).
- Should I accept or reject a_{k} ?
- If I accept a_{k}, the optimal profit will be v_{k} plus the profit of placing a_{1}, \ldots, a_{k-1} in a space of $B-s_{k}$.
- If I reject a_{k}, the optimal profit will be the profit of placing a_{1}, \ldots, a_{k-1} in a space of B.
- If I have the solution for the two sub-problems, I can take the max between the two!

Dynamic Programming for Knapsack

- Step 2: Describe the value of the optimal solution recursively
- Let $V(k, B)$ denote the value of the highest value solution that uses items from among the set $1,2, \ldots, k$ and uses space at most B.
- We want to find the value of $V(n, S)$
- Here is the recursive value for $V(k, B)$.

$$
V(k, B)= \begin{cases}0 & \text { if } k=0 \\ V(k-1, B) & \text { if } s_{k}>B \\ \max \left\{v_{k}+V\left(k-1, B-s_{k}\right), V(k-1, B)\right\} & \text { otherwise }\end{cases}
$$

Dynamic Programming for Knapsack

- Step 3: Fill the Dynamic Programming table (in a bottom-up way) to find $V(n, S)$.

$$
V(k, B)= \begin{cases}0 & \text { if } k=0 \\ V(k-1, B) & \text { if } s_{k}>B \\ \max \left\{v_{k}+V\left(k-1, B-s_{k}\right), V(k-1, B)\right\} & \text { otherwise }\end{cases}
$$

- We fill the table row by row; the value of each row depends on the previous rows; The first row is all $0, V(0, B)=0$.

```
Knapsack ( \(s[], v[], n, S\) )
1. for \(k=0\) to \(n\)
        for \(B=0\) to \(S\)
            if \(i=0\)
                \(V(k, B) \leftarrow 0\)
            else
            if \(s_{k}>B\)
                \(V(k, B) \leftarrow V(k-1, B)\)
            else
                \(V(k, B) \leftarrow \max \left\{v_{k}+V\left(k-1, B-s_{k}\right) V(k-1, B)\right\}\)
    return \(V\)
```


Dynamic Programming for Knapsack

- Step 3: Fill the Dynamic Programming table (in a bottom-up way) to find $V(n, S)$.

$$
V(k, B)= \begin{cases}0 & \text { if } k=0 \\ V(k-1, B) & \text { if } s_{k}>B \\ \max \left\{v_{k}+V\left(k-1, B-s_{k}\right), V(k-1, B)\right\} & \text { otherwise }\end{cases}
$$

- We fill the table row by row; the value of each row depends on the previous rows; The first row is all $0, V(0, B)=0$.
- Here, $S=10$; item sizes are $(5,4,6,3)$ and values are $(10,40,30,50)$, that is, the first item has size 10 and value 5 .

$\mathrm{V}(\mathrm{i}, \mathrm{B})$	$\mathrm{B}=0$	$\mathrm{~B}=1$	$\mathrm{~B}=2$	$\mathrm{~B}=3$	$\mathrm{~B}=4$	$\mathrm{~B}=5$	$\mathrm{~B}=6$	$\mathrm{~B}=7$	$\mathrm{~B}=8$	$\mathrm{~B}=9$	$\mathrm{~B}=10$
$\mathrm{k}=0$	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{k}=1$											
$\mathrm{k}=2$											
$\mathrm{k}=3$											
$\mathrm{k}=4$											

Dynamic Programming for Knapsack

- Step 3: Fill the Dynamic Programming table (in a bottom-up way) to find $V(n, S)$.

$$
V(k, B)= \begin{cases}0 & \text { if } k=0 \\ V(k-1, B) & \text { if } s_{k}>B \\ \max \left\{v_{k}+V\left(k-1, B-s_{k}\right), V(k-1, B)\right\} & \text { otherwise }\end{cases}
$$

- We fill the table row by row; the value of each row depends on the previous rows; The first row is all $0, V(0, B)=0$.
- Here, $S=10$; item sizes are $(5,4,6,3)$ and values are $(10,40,30,50)$, that is, the first item has size 10 and value 5 .

$\mathrm{V}(\mathrm{i}, \mathrm{B})$	$\mathrm{B}=0$	$\mathrm{~B}=1$	$\mathrm{~B}=\mathbf{2}$	$\mathrm{B}=3$	$\mathrm{~B}=4$	$\mathrm{~B}=5$	$\mathrm{~B}=6$	$\mathrm{~B}=7$	$\mathrm{~B}=8$	$\mathrm{~B}=9$	$\mathrm{~B}=10$
$\mathrm{k}=0$	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{k}=1$	0	0	0	0	0	10	10	10	10	10	10
$\mathrm{k}=2$											
$\mathrm{k}=3$											
$\mathrm{k}=4$											

Dynamic Programming for Knapsack

- Step 3: Fill the Dynamic Programming table (in a bottom-up way) to find $V(n, S)$.

$$
V(k, B)= \begin{cases}0 & \text { if } k=0 \\ V(k-1, B) & \text { if } s_{k}>B \\ \max \left\{v_{k}+V\left(k-1, B-s_{k}\right), V(k-1, B)\right\} & \text { otherwise }\end{cases}
$$

- We fill the table row by row; the value of each row depends on the previous rows; The first row is all $0, V(0, B)=0$.
- Here, $S=10$; item sizes are $(5,4,6,3)$ and values are $(10,40,30,50)$, that is, the first item has size 10 and value 5 .

$\mathrm{V}(\mathrm{i}, \mathrm{B})$	$\mathrm{B}=0$	$\mathrm{~B}=1$	$\mathrm{~B}=\mathbf{2}$	$\mathrm{B}=3$	$\mathrm{~B}=4$	$\mathrm{~B}=5$	$\mathrm{~B}=6$	$\mathrm{~B}=7$	$\mathrm{~B}=8$	$\mathrm{~B}=9$	$\mathrm{~B}=10$
$\mathrm{k}=0$	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{k}=1$	0	0	0	0	0	10	10	10	10	10	10
$\mathrm{k}=2$	0	0	0	0	40	40	40	40	40		
$\mathrm{k}=3$											
$\mathrm{k}=4$											

Dynamic Programming for Knapsack

- Step 3: Fill the Dynamic Programming table (in a bottom-up way) to find $V(n, S)$.

$$
V(k, B)= \begin{cases}0 & \text { if } k=0 \\ V(k-1, B) & \text { if } s_{k}>B \\ \max \left\{v_{k}+V\left(k-1, B-s_{k}\right), V(k-1, B)\right\} & \text { otherwise }\end{cases}
$$

- We fill the table row by row; the value of each row depends on the previous rows; The first row is all $0, V(0, B)=0$.
- Here, $S=10$; item sizes are $(5,4,6,3)$ and values are $(10,40,30,50)$, that is, the first item has size 10 and value 5.
- $V(2,9)=\max \left\{v_{2}+V\left(1,9-s_{2}\right)=40+10, V(1,9)=10\right\}=50$

$\mathrm{V}(\mathrm{i}, \mathrm{B})$	$\mathrm{B}=0$	$\mathrm{~B}=1$	$\mathrm{~B}=2$	$\mathrm{~B}=3$	$\mathrm{~B}=4$	$\mathrm{~B}=5$	$\mathrm{~B}=6$	$\mathrm{~B}=7$	$\mathrm{~B}=8$	$\mathrm{~B}=9$	$\mathrm{~B}=10$
$\mathrm{k}=0$	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{k}=1$	0	0	0	0	0	10	10	10	10	10	10
$\mathrm{k}=2$	0	0	0	0	40	40	40	40	40	50	50
$\mathrm{k}=3$											
$\mathrm{k}=4$											

Dynamic Programming for Knapsack

- Step 3: Fill the Dynamic Programming table (in a bottom-up way) to find $V(n, S)$.

$$
V(k, B)= \begin{cases}0 & \text { if } k=0 \\ V(k-1, B) & \text { if } s_{k}>B \\ \max \left\{v_{k}+V\left(k-1, B-s_{k}\right), V(k-1, B)\right\} & \text { otherwise }\end{cases}
$$

- We fill the table row by row; the value of each row depends on the previous rows; The first row is all $0, V(0, B)=0$.
- Here, $S=10$; item sizes are $(5,4,6,3)$ and values are $(10,40,30,50)$, that is, the first item has size 10 and value 5.
- $V(2,9)=\max \left\{v_{2}+V\left(1,9-s_{2}\right)=40+10, V(1,9)=10\right\}=50$

$\mathrm{V}(\mathrm{i}, \mathrm{B})$	$\mathrm{B}=0$	$\mathrm{~B}=1$	$\mathrm{~B}=\mathbf{2}$	$\mathrm{B}=3$	$\mathrm{~B}=4$	$\mathrm{~B}=5$	$\mathrm{~B}=6$	$\mathrm{~B}=7$	$\mathrm{~B}=8$	$\mathrm{~B}=9$	$\mathrm{~B}=10$
$\mathrm{k}=0$	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{k}=1$	0	0	0	0	0	10	10	10	10	10	10
$\mathrm{k}=2$	0	0	0	0	40	40	40	40	40	50	50
$\mathrm{k}=3$	0	0	0	0	40	40	40	40	40	50	70
$\mathrm{k}=4$											

Dynamic Programming for Knapsack

- Step 3: Fill the Dynamic Programming table (in a bottom-up way) to find $V(n, S)$.

$$
V(k, B)= \begin{cases}0 & \text { if } k=0 \\ V(k-1, B) & \text { if } s_{k}>B \\ \max \left\{v_{k}+V\left(k-1, B-s_{k}\right), V(k-1, B)\right\} & \text { otherwise }\end{cases}
$$

- We fill the table row by row; the value of each row depends on the previous rows; The first row is all $0, V(0, B)=0$.
- Here, $S=10$; item sizes are $(5,4,6,3)$ and values are $(10,40,30,50)$, that is, the first item has size 10 and value 5.
- $V(2,9)=\max \left\{v_{2}+V\left(1,9-s_{2}\right)=40+10, V(1,9)=10\right\}=50$

$\mathrm{V}(\mathrm{i}, \mathrm{B})$	$\mathrm{B}=0$	$\mathrm{~B}=1$	$\mathrm{~B}=\mathbf{2}$	$\mathrm{B}=3$	$\mathrm{~B}=4$	$\mathrm{~B}=5$	$\mathrm{~B}=6$	$\mathrm{~B}=\mathbf{7}$	$\mathrm{B}=8$	$\mathrm{~B}=9$	$\mathrm{~B}=10$
$\mathrm{k}=0$	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{k}=1$	0	0	0	0	0	10	10	10	10	10	10
$\mathrm{k}=2$	0	0	0	0	40	40	40	40	40	50	50
$\mathrm{k}=3$	0	0	0	0	40	40	40	40	40	50	70
$\mathrm{k}=4$	0	0	0	50	50	50	50				

Dynamic Programming for Knapsack

- Step 3: Fill the Dynamic Programming table (in a bottom-up way) to find $V(n, S)$.

$$
V(k, B)= \begin{cases}0 & \text { if } k=0 \\ V(k-1, B) & \text { if } s_{k}>B \\ \max \left\{v_{k}+V\left(k-1, B-s_{k}\right), V(k-1, B)\right\} & \text { otherwise }\end{cases}
$$

- We fill the table row by row; the value of each row depends on the previous rows; The first row is all $0, V(0, B)=0$.
- Here, $S=10$; item sizes are $(5,4,6,3)$ and values are $(10,40,30,50)$, that is, the first item has size 10 and value 5 .
- $V(2,9)=\max \left\{v_{2}+V\left(1,9-s_{2}\right)=40+10, V(1,9)=10\right\}=50$
- $V(4,7)=\max \left\{v_{4}+V\left(3,7-s_{4}\right)=50+40, V(3,7)=40\right\}=90$

$\mathrm{V}(\mathrm{i}, \mathrm{B})$	$\mathrm{B}=0$	$\mathrm{~B}=1$	$\mathrm{~B}=\mathbf{2}$	$\mathrm{B}=3$	$\mathrm{~B}=4$	$\mathrm{~B}=5$	$\mathrm{~B}=6$	$\mathrm{~B}=\mathbf{7}$	$\mathrm{B}=8$	$\mathrm{~B}=9$	$\mathrm{~B}=10$
$\mathrm{k}=0$	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{k}=1$	0	0	0	0	0	10	10	10	10	10	10
$\mathrm{k}=2$	0	0	0	0	40	40	40	40	40	50	50
$\mathrm{k}=3$	0	0	0	0	40	40	40	40	40	50	70
$\mathrm{k}=4$	0	0	0	50	50	50	50				

Dynamic Programming for Knapsack

- Step 3: Fill the Dynamic Programming table (in a bottom-up way) to find $V(n, S)$.

$$
V(k, B)= \begin{cases}0 & \text { if } k=0 \\ V(k-1, B) & \text { if } s_{k}>B \\ \max \left\{v_{k}+V\left(k-1, B-s_{k}\right), V(k-1, B)\right\} & \text { otherwise }\end{cases}
$$

- We fill the table row by row; the value of each row depends on the previous rows; The first row is all $0, V(0, B)=0$.
- Here, $S=10$; item sizes are $(5,4,6,3)$ and values are $(10,40,30,50)$, that is, the first item has size 10 and value 5 .
- $V(2,9)=\max \left\{v_{2}+V\left(1,9-s_{2}\right)=40+10, V(1,9)=10\right\}=50$
- $V(4,7)=\max \left\{v_{4}+V\left(3,7-s_{4}\right)=50+40, V(3,7)=40\right\}=90$

$\mathrm{V}(\mathrm{i}, \mathrm{B})$	$\mathrm{B}=0$	$\mathrm{~B}=1$	$\mathrm{~B}=2$	$\mathrm{~B}=3$	$\mathrm{~B}=4$	$\mathrm{~B}=5$	$\mathrm{~B}=6$	$\mathrm{~B}=\mathbf{7}$	$\mathrm{B}=8$	$\mathrm{~B}=9$	$\mathrm{~B}=10$
$\mathrm{k}=0$	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{k}=1$	0	0	0	0	0	10	10	10	10	10	10
$\mathrm{k}=2$	0	0	0	0	40	40	40	40	40	50	50
$\mathrm{k}=3$	0	0	0	0	40	40	40	40	40	50	70
$\mathrm{k}=4$	0	0	0	50	50	50	50	90			

Dynamic Programming for Knapsack

- Step 4: Go backwards in the table to retrieve the accepted items.

```
KnapsackRetrieve (s[],V,n,S)
1. }B\leftarrow
    k\leftarrown
    for }k>
        if V(k,B)=V(k-1,B)
            report item k as rejected
            k\leftarrowk-1
            else 8. report item k as accepted
                    k\leftarrowk-1
                        B\leftarrowB-S[k]
```

- Here, $S=10$; sizes are $(5,4,6,3)$ and values are $(10,40,30,50)$.
- First, $V[4,10]=90$ and $V[3,10]=70$; we can conclude a_{4} is accepted. The remaining space would be $10-s_{4}=7$. We should check $V[3,7]$ and repeat; Accepted items are a_{2} and a_{4}.

$\mathrm{V}(\mathrm{i}, \mathrm{B})$	$\mathrm{B}=0$	$\mathrm{~B}=1$	$\mathrm{~B}=\mathbf{2}$	$\mathrm{B}=3$	$\mathrm{~B}=4$	$\mathrm{~B}=5$	$\mathrm{~B}=6$	$\mathrm{~B}=7$	$\mathrm{~B}=8$	$\mathrm{~B}=9$	$\mathrm{~B}=10$
$\mathrm{k}=0$	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{k}=1$	0	0	0	0	0	10	10	10	10	10	10
$\mathrm{k}=2$	0	0	0	0	40	40	40	40	40	50	50
$\mathrm{k}=3$	0	0	0	0	40	40	40	40	40	50	70
$\mathrm{k}=4$	0	0	0	50	50	50	50	90	90	90	$\mathbf{9 0}$

Dynamic Programming for Knapsack

- Step 4: Go backwards in the table to retrieve the accepted items.

```
KnapsackRetrieve (s[],V,n,S)
1. }B\leftarrow
    k\leftarrown
    for }k>
        if V(k,B)=V(k-1,B)
            report item k as rejected
            k\leftarrowk-1
            else 8. report item k as accepted
                    k\leftarrowk-1
                        B\leftarrowB-S[k]
```

- Here, $S=10$; sizes are $(5,4,6,3)$ and values are $(10,40,30,50)$.
- First, $V[4,10]=90$ and $V[3,10]=70$; we can conclude a_{4} is accepted. The remaining space would be $10-s_{4}=7$. We should check $V[3,7]$ and repeat; Accepted items are a_{2} and a_{4}.

$\mathrm{V}(\mathrm{i}, \mathrm{B})$	$\mathrm{B}=0$	$\mathrm{~B}=1$	$\mathrm{~B}=\mathbf{2}$	$\mathrm{B}=3$	$\mathrm{~B}=4$	$\mathrm{~B}=5$	$\mathrm{~B}=6$	$\mathrm{~B}=7$	$\mathrm{~B}=8$	$\mathrm{~B}=9$	$\mathrm{~B}=10$
$\mathrm{k}=0$	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{k}=1$	0	0	0	0	0	10	10	10	10	10	10
$\mathrm{k}=2$	0	0	0	0	40	40	40	40	40	50	50
$\mathrm{k}=3$	0	0	0	0	40	40	40	40	40	50	70
$\mathrm{k}=4$	0	0	0	50	50	50	50	90	90	90	$\mathbf{9 0}$

Dynamic Programming for Knapsack

- Step 4: Go backwards in the table to retrieve the accepted items.

```
KnapsackRetrieve (s[],V,n,S)
1. }B\leftarrow
    k\leftarrown
    for }k>
        if V(k,B)=V(k-1,B)
            report item k as rejected
            k\leftarrowk-1
            else 8. report item k as accepted
                    k\leftarrowk-1
                        B\leftarrowB-S[k]
```

- Here, $S=10$; sizes are $(5,4,6,3)$ and values are $(10,40,30,50)$.
- First, $V[4,10]=90$ and $V[3,10]=70$; we can conclude a_{4} is accepted. The remaining space would be $10-s_{4}=7$. We should check $V[3,7]$ and repeat; Accepted items are a_{2} and a_{4}.

$\mathrm{V}(\mathrm{i}, \mathrm{B})$	$\mathrm{B}=0$	$\mathrm{~B}=1$	$\mathrm{~B}=\mathbf{2}$	$\mathrm{B}=3$	$\mathrm{~B}=4$	$\mathrm{~B}=5$	$\mathrm{~B}=6$	$\mathrm{~B}=7$	$\mathrm{~B}=8$	$\mathrm{~B}=9$	$\mathrm{~B}=10$
$\mathrm{k}=0$	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{k}=1$	0	0	0	0	0	10	10	10	10	10	10
$\mathrm{k}=2$	0	0	0	0	40	40	40	40	40	50	50
$\mathrm{k}=3$	0	0	0	0	40	40	40	40	40	50	70
$\mathrm{k}=4$	0	0	0	50	50	50	50	90	90	90	$\mathbf{9 0}$

Dynamic Programming for Knapsack

- Step 4: Go backwards in the table to retrieve the accepted items.

```
KnapsackRetrieve (s[],V,n,S)
1. }B\leftarrow
    k\leftarrown
    for }k>
        if V(k,B)=V(k-1,B)
            report item k as rejected
            k\leftarrowk-1
            else 8. report item k as accepted
                    k\leftarrowk-1
                        B\leftarrowB-S[k]
```

- Here, $S=10$; sizes are $(5,4,6,3)$ and values are $(10,40,30,50)$.
- First, $V[4,10]=90$ and $V[3,10]=70$; we can conclude a_{4} is accepted. The remaining space would be $10-s_{4}=7$. We should check $V[3,7]$ and repeat; Accepted items are a_{2} and a_{4}.

$\mathrm{V}(\mathrm{i}, \mathrm{B})$	$\mathrm{B}=0$	$\mathrm{~B}=1$	$\mathrm{~B}=\mathbf{2}$	$\mathrm{B}=3$	$\mathrm{~B}=4$	$\mathrm{~B}=5$	$\mathrm{~B}=6$	$\mathrm{~B}=7$	$\mathrm{~B}=8$	$\mathrm{~B}=9$	$\mathrm{~B}=10$
$\mathrm{k}=0$	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{k}=1$	0	0	0	0	0	10	10	10	10	10	10
$\mathrm{k}=2$	0	0	0	0	40	40	40	40	40	50	50
$\mathrm{k}=3$	0	0	0	0	40	40	40	40	40	50	70
$\mathrm{k}=4$	0	0	0	50	50	50	50	90	90	90	$\mathbf{9 0}$

Dynamic Programming for Knapsack

- Step 4: Go backwards in the table to retrieve the accepted items.

```
KnapsackRetrieve (s[],V,n,S)
1. }B\leftarrow
    k\leftarrown
    for }k>
        if V(k,B)=V(k-1,B)
            report item k as rejected
            k\leftarrowk-1
            else 8. report item k as accepted
                    k\leftarrowk-1
                        B\leftarrowB-S[k]
```

- Here, $S=10$; sizes are $(5,4,6,3)$ and values are $(10,40,30,50)$.
- First, $V[4,10]=90$ and $V[3,10]=70$; we can conclude a_{4} is accepted. The remaining space would be $10-s_{4}=7$. We should check $V[3,7]$ and repeat; Accepted items are a_{2} and a_{4}.

$\mathrm{V}(\mathrm{i}, \mathrm{B})$	$\mathrm{B}=0$	$\mathrm{~B}=1$	$\mathrm{~B}=\mathbf{2}$	$\mathrm{B}=3$	$\mathrm{~B}=4$	$\mathrm{~B}=5$	$\mathrm{~B}=6$	$\mathrm{~B}=7$	$\mathrm{~B}=8$	$\mathrm{~B}=9$	$\mathrm{~B}=10$
$\mathrm{k}=0$	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{k}=1$	0	0	0	0	0	10	10	10	10	10	10
$\mathrm{k}=2$	0	0	0	0	40	40	40	40	40	50	50
$\mathrm{k}=3$	0	0	0	0	40	40	40	40	40	50	70
$\mathrm{k}=4$	0	0	0	50	50	50	50	90	90	90	$\mathbf{9 0}$

Dynamic Programming for Knapsack

- Step 4: Go backwards in the table to retrieve the accepted items.

```
KnapsackRetrieve (s[],V,n,S)
1. }B\leftarrow
    k\leftarrown
    for }k>
        if V(k,B)=V(k-1,B)
            report item k as rejected
            k\leftarrowk-1
            else 8. report item k as accepted
                    k\leftarrowk-1
                        B\leftarrowB-S[k]
```

- Here, $S=10$; sizes are $(5,4,6,3)$ and values are $(10,40,30,50)$.
- First, $V[4,10]=90$ and $V[3,10]=70$; we can conclude a_{4} is accepted. The remaining space would be $10-s_{4}=7$. We should check $V[3,7]$ and repeat; Accepted items are a_{2} and a_{4}.

$\mathrm{V}(\mathrm{i}, \mathrm{B})$	$\mathrm{B}=0$	$\mathrm{~B}=1$	$\mathrm{~B}=\mathbf{2}$	$\mathrm{B}=3$	$\mathrm{~B}=4$	$\mathrm{~B}=5$	$\mathrm{~B}=6$	$\mathrm{~B}=7$	$\mathrm{~B}=8$	$\mathrm{~B}=9$	$\mathrm{~B}=10$
$\mathrm{k}=0$	0	0	0	0	0	0	0	0	0	0	0
$\mathrm{k}=1$	0	0	0	0	0	10	10	10	10	10	10
$\mathrm{k}=2$	0	0	0	0	40	40	40	40	40	50	50
$\mathrm{k}=3$	0	0	0	0	40	40	40	40	40	50	70
$\mathrm{k}=4$	0	0	0	50	50	50	50	90	90	90	$\mathbf{9 0}$

Matrix Chain Multiplication

- Given a sequence of matrices $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$, find the best way (using the minimal number of multiplications) to compute their product.
- Isn't there only one way? $\left(\left(\ldots\left(\left(A_{1} \cdot A_{2}\right) \cdot A_{3}\right) \ldots\right) \cdot A_{n}\right)$

Matrix Chain Multiplication

- Given a sequence of matrices $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$, find the best way (using the minimal number of multiplications) to compute their product.
- Isn't there only one way? $\left(\left(\ldots\left(\left(A_{1} \cdot A_{2}\right) \cdot A_{3}\right) \ldots\right) \cdot A_{n}\right)$
- No, matrix multiplication is associative. e.g. $A_{1} .\left(A_{2} .\left(A 3 .\left(\ldots\left(A_{n-1} \cdot A_{n}\right) \ldots\right)\right)\right)$ yields the same matrix.
- Different multiplication orders do not cost the same:
- Multiplying $p \times q$ matrix A and $q \times r$ matrix B takes $p . q . r$ multiplications; result is a $p \times r$ matrix.

Matrix Chain Multiplication

- Given a sequence of matrices $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$, find the best way (using the minimal number of multiplications) to compute their product.
- Isn't there only one way? $\left(\left(\ldots\left(\left(A_{1} \cdot A_{2}\right) \cdot A_{3}\right) \ldots\right) \cdot A_{n}\right)$
- No, matrix multiplication is associative. e.g. $A_{1} \cdot\left(A_{2} \cdot\left(A 3 .\left(\ldots\left(A_{n-1} \cdot A_{n}\right) \ldots\right)\right)\right)$ yields the same matrix.
- Different multiplication orders do not cost the same:
- Multiplying $p \times q$ matrix A and $q \times r$ matrix B takes $p . q . r$ multiplications; result is a $p \times r$ matrix.
- Consider multiplying 10×100 matrix A_{1} with 100×5 matrix A_{2} and 5×50 matrix A_{3}.
- $\left(A_{1} \cdot A_{2}\right) \cdot A_{3}$ takes $10 \cdot 100 \cdot 5+10 \cdot 5 \cdot 50=7500$ multiplications.
- $A_{1} \cdot\left(A_{2} \cdot A_{3}\right)$ takes $100 \cdot 5 \cdot 50+10 \cdot 50 \cdot 100=75000$ multiplications.

Subproblem Formulation

- Step 1: Define sub-problems to state the optimal solution for each sub-problem in terms of optimal solutions for smaller sub-problems
- In general, let A_{i} be $p_{i-1} \times p_{i}$ matrix.

Subproblem Formulation

- Step 1: Define sub-problems to state the optimal solution for each sub-problem in terms of optimal solutions for smaller sub-problems
- In general, let A_{i} be $p_{i-1} \times p_{i}$ matrix.
- Sub-problem (i, j) : product of $A_{i}, A_{i+1}, \ldots, A_{j}$.
- Let $m(i, j)$ be minimal number of multiplications needed to compute $A_{i} \cdot A_{i+1} \cdot \ldots A_{j}$; we want to compute $m(1, n)$.

Subproblem Formulation

- Step 1: Define sub-problems to state the optimal solution for each sub-problem in terms of optimal solutions for smaller sub-problems
- In general, let A_{i} be $p_{i-1} \times p_{i}$ matrix.
- Sub-problem (i, j) : product of $A_{i}, A_{i+1}, \ldots, A_{j}$.
- Let $m(i, j)$ be minimal number of multiplications needed to compute $A_{i} \cdot A_{i+1} \cdot \ldots A_{j}$; we want to compute $m(1, n)$.
- Observation: If $(A(B((C D)(E F))))$ is optimal Then $(B((C D)(E F)))$ is optimal as well

Recursive Formulation

- Step 2: Denote the value of the optimal solutions for subproblems recursively.

Recursive Formulation

- Step 2: Denote the value of the optimal solutions for subproblems recursively.
- Assume the position of the last product is k, that is, our final multiplication is of the form $\left(A_{i+1} \cdot A_{i+2} \cdot \ldots A_{k}\right) \cdot\left(A_{k+1} \cdot A_{k+2} \cdot \ldots A_{j}\right)$.

Recursive Formulation

- Step 2: Denote the value of the optimal solutions for subproblems recursively.
- Assume the position of the last product is k, that is, our final multiplication is of the form
$\left(A_{i+1} \cdot A_{i+2} \cdot \ldots A_{k}\right) \cdot\left(A_{k+1} \cdot A_{k+2} \cdot \ldots A_{j}\right)$.
- Consider the case multiplying these 4 matrices: $A: 2 \times 4 B: 4 \times 2$ $C: 2 \times 3 D: 3 \times 1$

Recursive Formulation

- Step 2: Denote the value of the optimal solutions for subproblems recursively.
- Assume the position of the last product is k, that is, our final multiplication is of the form
$\left(A_{i+1} \cdot A_{i+2} \cdot \ldots A_{k}\right) \cdot\left(A_{k+1} \cdot A_{k+2} \cdot \ldots A_{j}\right)$.
- Consider the case multiplying these 4 matrices: $A: 2 \times 4 B: 4 \times 2$ $C: 2 \times 3 D: 3 \times 1$
- (A)(BCD): This is a 2×4 multiplied by a 4×1, so $2 \times 4 \times 1=8$ multiplications, plus whatever work it will take to multiply ($B C D$).

Recursive Formulation

- Step 2: Denote the value of the optimal solutions for subproblems recursively.
- Assume the position of the last product is k, that is, our final multiplication is of the form

$$
\left(A_{i+1} \cdot A_{i+2} \cdot \ldots A_{k}\right) \cdot\left(A_{k+1} \cdot A_{k+2} \cdot \ldots A_{j}\right)
$$

- Consider the case multiplying these 4 matrices: $A: 2 \times 4 B: 4 \times 2$ $C: 2 \times 3 D: 3 \times 1$
- (A)(BCD): This is a 2×4 multiplied by a 4×1, so $2 \times 4 \times 1=8$ multiplications, plus whatever work it will take to multiply ($B C D$).
- $(A B)(C D):$ This is a 2×2 multiplied by a 2×1, so $2 \times 2 \times 1=4$ multiplications, plus whatever work it will take to multiply (AB) and (CD).

Recursive Formulation

- Step 2: Denote the value of the optimal solutions for subproblems recursively.
- Assume the position of the last product is k, that is, our final multiplication is of the form

$$
\left(A_{i+1} \cdot A_{i+2} \cdot \ldots A_{k}\right) \cdot\left(A_{k+1} \cdot A_{k+2} \cdot \ldots A_{j}\right)
$$

- Consider the case multiplying these 4 matrices: $A: 2 \times 4 B: 4 \times 2$ $C: 2 \times 3 D: 3 \times 1$
- (A)(BCD): This is a 2×4 multiplied by a 4×1, so $2 \times 4 \times 1=8$ multiplications, plus whatever work it will take to multiply ($B C D$).
- $(A B)(C D)$: This is a 2×2 multiplied by a 2×1, so $2 \times 2 \times 1=4$ multiplications, plus whatever work it will take to multiply (AB) and (CD).
- $(A B C)(D)$: This is a 2×3 multiplied by a 3×1, so $2 \times 3 \times 1=6$ multiplications, plus whatever work it will take to multiply (ABC).

Recursive Formulation

- Step 2: Denote the value of the optimal solutions for subproblems recursively.
- We can compute recursively the best way to multiply the chain from i to k, and from $k+1$ to j, and add the cost of the final product.
- This means that $m(i, j)=m(i, k)+m(k+1, j)+p_{i-1} \cdot p_{k} \cdot p_{j}$
- Therefore we can write:

$$
m(i, j)= \begin{cases}0 & \text { If } i=j \\ \min _{i \leq k<j}\left\{m(i, k)+m(k+1, j)+p_{i-1} \cdot p_{k} \cdot p_{j}\right\} & \text { If } i<j\end{cases}
$$

Recursive Formulation

- Step 3: Fill a dynamic programming table in a bottom-up fashion
- To set $m[i, j]$, we need to look at the values of the same row on the right ($m[i, k]$), or the same column but below ($m[k+1, j]$).

$$
m(i, j)= \begin{cases}0 & \text { If } i=j \\ \min _{i \leq k<j}\left\{m(i, k)+m(k+1, j)+p_{i-1} \cdot p_{k} \cdot p_{j}\right\} & \text { If } i<j\end{cases}
$$

```
MATRIX-CHAIN-ORDER ( }p\mathrm{ )
    n=p.length - }
    let m[1\ldotsn,1..n] and s[1\ldotsn-1,2\ldotsn] be new tables
    for i=1 to n
        m[i,i]=0
    for l=2 to n // l is the chain length
    for }i=1\mathrm{ to }n-l+
        j=i+l-1
        m[i,j]=\infty
        for }k=i\mathrm{ to }j-
            q=m[i,k]+m[k+1,j]+ pi-1 p
            if }q<m[i,j
                m[i,j]=q
                s[i,j]=k
return m}\mathrm{ and }
```


Recursive Formulation

- Step 3: Fill a dynamic programming table in a bottom-up fashion
- To set $m[i, j]$, we need to look at the values of the same row on the right ($m[i, k]$), or the same column but below ($m[k+1, j]$).

$$
m(i, j)= \begin{cases}0 & \text { If } i=j \\ \min _{i \leq k<j}\left\{m(i, k)+m(k+1, j)+p_{i-1} \cdot p_{k} \cdot p_{j}\right\} & \text { If } i<j\end{cases}
$$

Recursive Formulation

- Step 3: Fill a dynamic programming table in a bottom-up fashion

matrix	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}	A_{6}
dimension	30×35	35×15	15×5	5×10	10×20	20×25

$$
m[2,5]=\min \left\{\begin{array}{l}
m[2,2]+m[3,5]+p_{1} p_{2} p_{5}=0+2500+35 \cdot 15 \cdot 20=13,000, \\
m[2,3]+m[4,5]+p_{1} p_{3} p_{5}=2625+1000+35 \cdot 5 \cdot 20=7125, \\
m[2,4]+m[5,5]+p_{1} p_{4} p_{5}=4375+0+35 \cdot 10 \cdot 20=11,375
\end{array}\right.
$$

$$
=7125 .
$$

Recursive Formulation

- Step 4: Retrieve the actual solution using the flag matrix s
- You will work on the details on Assignment 4.

Dynamic Programming Review

1 Step 1: define subproblems, and devise the value of the optimal solution for each subproblem using the value of the optimal solutions for smaller subproblems.
2 Step 2: write down a recursive formula for the value of optimal solutions.

3 Step 3: fill up the dynamic programming table in a bottom-up fashion.

4 Step 4: retrieve the actual solution by moving backwards in the table.

