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Overview

The sorting problem and its signi�cance in practice

Insertion sort, merge sort and their drawbacks

Priority queues, heaps, and heapsort

Comparison based sorting lower bound

Linear-time sorting
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Sorting

Input:

a sequence of n objects: A[0], . . . ,A[n − 1]
(typically an array or a linked list)
a comparison predicate, ≤, that de�nes a total order on A

Output:

an ordered representation of the objects in A

Many sorting algorithms exist:
bubble sort, insertion sort, merge sort, heapsort,
radix sort, bucket sort, quicksort, etc.
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Signi�cance of Sorting

Data structures and database: we often preprocess data to answer
queries faster; many times, preprocessing involves sorting data for
faster query operations.

Sorting has applications in graphics and computational geometry

algorithms (e.g., �nding closest pair element uniqueness, etc.)

From a pedagogical point of view, many algorithms exist for sorting;
studying them provides great material for learning algorithm design.

A rough estimate suggest that over 25 percent of all computing
time is spent on sorting!
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Insertion Sort

Go through the items in the array (list) one by one

For each item x at index i :

We know the sub-array A[0] . . .A[i − 1] is sorted
Insert x in its correct position in the sub-array A[i ] . . .A[i ].
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Insertion Sort Summary

One Iteration of the Insertion Sort Algorithm:

After the ith iteration, A[0..i ] is sorted.
Insert item A[i + 1] in its proper place in A[0..i ].

In the worst case, i items are moved in the (i + 1)'th iteration!
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Insertion Sort Analysis

In the worst case the array is sorted backwards.

The total number of moved items:

1+ 2+ . . .+ n − 1 = n(n − 1)/2 ∈ Θ(n2)

.
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Insertion Sort Time Complexity

The worst-case running time of insertion sort is Θ(n2).

As it turns out, the average-case running time is also Θ(n2).

Faster sorting algorithms exist. These include:

The lower bound on the worst-case time complexity of any
comparison-based sorting algorithm is also Ω(n log n).
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Merge Sort

Merge sort is an example of a divide-and-conquer algorithm.

Divide the input into two or more disjoint subsets.
Recursively solve each sub-problem.
Combine solutions to the sub-problems to give the solution to the
original problem.
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Merge Sort Algorithm

Input: an array A[0..n − 1] of comparable elements.

Divide A into two subarrays A[0..⌊n/2⌋] and A[⌊n/2⌋+ 1, n − 1]
Recursively sort each sub-array
Combine the two subarray via merging them

The base of recursion is an array of size 1 which is sorted

In practice, when the length of sub-array is less than 100, selection
sort is applied.
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Merge Sort Scheme
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Merging Sorted Sub-arrays

Given two sorted arrays A and B of size n and m, merge them into
array C of size m + n.

i , j , and k are three indices moving on A,B, and C .
They are initially 0.

At each step, copy the smaller of A[i ] and B[j ] to C [k].

Increment k
If A[i ] is copied, increment i ; otherwise increment j .

If one array ends (i = n or j = m), copy the remaining items of the
other array to C .
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Merge Example
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Merge Sort Summary

Recursively sort the left half of the input array A

Recursively sort the left half of the input array B

Merge the two sub-arrays into a new one

note that merging requires a new array, that is, it cannot be done in

place.

14 / 78
EECS 3101 - Design and Analysis of Algorithms

▲



Time complexity of merge sort

What is the time complexity of merge-sort?

T (n) =

{
1, n ≤ 1

2T (n/2) + O(n) n ≥ 2

We solve this using replacement method to get T (n) ∈ O(n log n).
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Analysis of Merge Sort

T (n) =

{
1, n ≤ 1

2T (n/2) + O(n) n ≥ 2

As we saw earlier, we have T (n) = Θ(n log n) (case 2 of Master
theorem).
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Should we use merge sort?

Unlike insertion sort, merge sort does not work in place.

Merging two arrays requires temporary storage.

In practice, we prefer Heap Sort and Quick Sort over Merge

Sort.
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HeapSort Preliminaries:
Arrays vs. Dynamic Allocation

Typically, a tree is implemented using dynamic allocation of nodes.
This is both:

more e�cient with respect to memory usage, and
allows for faster operations.

It is, however, also possible to implement a tree using an array.
Practical only in restricted cases:

binary tree is complete
maximum size is known
only insert/delete rightmost leaf on bottom level
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Complete Binary Trees

De�nition

A complete binary tree is a binary tree in which every level is
full, except possibly the bottom level. In the bottom level the
nodes are in the leftmost positions.
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Array Implementation of Binary Trees

Simply write nodes level-by-level from left to right into an array.
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Array Implementation of Binary Trees

When using an array to implement a complete tree:

The root is stored at A[0].
The left child of the root is stored at A[1].
The right child of the root is stored at A[2].
The left child of A[1] is stored at A[3].
The right child of A[1] is stored at A[4].
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Array Implementation of Binary Trees

In general:

The left child of the node at index i is stored at A[2i + 1].
The right child of the node at index i is stored at A[2i + 2].
The parent of the node at index i is stored at A[⌈i/2⌉ − 1].
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Array Implementation of Binary Trees

An array implementation can work for storing any tree

But if the tree is not complete or nearly complete, the memory will
be wasted and the insert/delete take time as bad as O(n).

We often assume the array is complete and insert/delete take place
at the last index → takes O(1).
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Binary Heaps

A maximum binary heap is a complete binary tree such that the
key of each node is less than or equal to the key of its parent, i.e.,
for any node a in the tree, key(a) ≤ key(parent(a)).

The heap property is recursive: each node's left and right subtrees
are also maximum binary heaps.

If the opposite property holds then the data structure is a minimum
binary heap.
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Non-uniqueness of heaps

Consider the following two heaps:

Both trees are complete binary trees.
Both trees store the same keys.
Both trees satisfy the maximum binary heap property.
The positions of some keys di�er in the two trees.
This scenario is not possible for binary search trees.
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Heap's Application

Heaps are used to implement priority queues.

We want to maintain a collection of elements, each of which has a
key corresponding to its priority:

Insert(key): insert a new item to the queue
extractMax(): remove and return the item with max key (priority)
getMax(): return the item with max key (priority)
other operations include isEmpty() and size();

We will show how to use a heap to implement these operations.
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Insertion in Heaps

A new element is inserted as the next empty leaf in the complete
binary tree.

A reheapUp operation is performed on the new node:

compare the new item with its parent
if its key is larger than its parent's key, swap the two nodes
continue recursively upwards

E.g.: insert(E)
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Insertion into a Heap

insert is a public method that calls the private reheapUp

insert (key)
1. size ← no. elements in the heap
2. heap(size)← key
3. reheapUp(size)

reheapUp (index)
1. parent ← (index + 1)/2− 1
2. if index > 0 and heap[parent] < heap[key ]
3. swap(parent, index)
4. reheapUp(parent)
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ExtractMax

We want to remove the item of highest priority and return it.

An item of highest priority is always located at the root of the tree.

Copy the item at the root to return it later.
Take the rightmost element on the bottom level of the tree (the last
item currently in the array) and move it to the root. This preserves
the structure of the complete binary tree but the heap ordering
property is lost.
Perform a reheapDown operation on the root.

If necessary, swap the current node (initially the root) with its
largest child, and repeat!
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Extracting the max item from a Heap

extractMax ()
1. result ← null
2. if no. elements in the heap > 0
3. result ← heap[0]
4. swap (heap[0], heap[size])
5. size ← size − 1
6. reheapDown(0);
7. return result

reheapDown (top)
1. left ← 2× top + 1
2. right ← 2× top + 2
3. size ← no. elements in the heap
4. if (left < size)
5. if (right ≥ size or heap[left] > heap[right])
6. maxChild ← left
7. else maxChild ← right
8. if (heap[top] < heap[maxChild ])
9. swap(top,maxChild)
10. reheapDown(maxChild)
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Time Complexity

What is the time Complexity of ReheapUp and ReheapDow?

When performing either a reheapUp or reheapDown operation, the
number of steps depends on the height of the tree.

In the worst case a single path from root to leaf is traversed.

A complete binary tree of height h has between 2h and 2h+1 − 1
nodes.

Therefore, a complete binary tree with n nodes has height between
log(n + 1)− 1 and log n
Hence, the time complexity of reheapUp and reheapDown is

Θ(log n) in the worst case.
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Time Complexity

What is time Complexity of Insert and ExtractMax?

Inserting an item into the priority queue requires one call to
reheapUp which takes Θ(log n) time in the worst case.

Removing the maximum item from the priority queue requires one
call to reheapDown which takes Θ(log n) time in the worst case.

Insert and Extract-Max operations in a heap take O(log n)
time.
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Insert and Extract-Max operations in a heap take O(log n)
time.
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Builiding a Heap

Given an arbitrary array, how can we make it into a heap? Similarly,
given an arbitrary complete binary tree, how can we make it into a
heap?

Solution: Start at the bottom of the tree to restore the heap
property within each subtree and work upwards towards the root.

buildHeap ()
1. for i = size − 1 down to 0
2. reheapDown(i);
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BuildHeap (Heapify) Example

Convert the following array (complete binary tree) into a heap:

reheapDown(7)
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BuildHeap (Heapify) Example

Convert the following array (complete binary tree) into a heap:

reheapDown(3)
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BuildHeap (Heapify) Example

Convert the following array (complete binary tree) into a heap:

reheapDown(2)
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BuildHeap (Heapify) Example

Convert the following array (complete binary tree) into a heap:

reheapDown(1)
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BuildHeap (Heapify) Example

Convert the following array (complete binary tree) into a heap:

reheapDown(0)
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Reheap Time Complexity

A call to reheapDown takes time O(log n) in the worst case.

buildHeap makes n calls to reheapDown.

Therefore, the runtime of buildHeap is O(n log n) .

This is true, but we can give a better bound. In fact, the runtime of
buildHeap is O(n) .

Given an array of numbers, we can form a heap from them in

time O(n).
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Heap Summary

Heap is a simple data structure that implements priority queues.

extract-max can be implemented using reheapDown in O(log n).

insert can be implemented using reheapUp in O(log n).

Given an array of keys, it is possible to build a heap from them
(heapify) in O(n).

Note that heapify and extractMax take place in place (no extra
memory is used)
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Heap Sort

Given an array A of size n, apply Heapify procedure to form a heap
on A (this takes O(n)).

Apply ExtractMax n times; it takes a total of
n × O(log n) = O(n log n) time.
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Quick Sort

Like insertion sort and heap sort, quicksort works in place.

Like merge sort, quicksort employs a divide and conquer strategy.

Quicksort is usually implemented as a randomized algorithm.
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Quick Sort

Select an arbitrary element in the array as a pivot.

Partition the array such that elements less than or equal to the
pivot appear to its left and elements greater than or equal to the
pivot appear to its right.

Recursively sort each partition.

In the base case we have an array of size 1.
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Quick Sort

Any element in the array can be selected as the pivot.

Typically, the pivot is selected randomly.

Elements are partitioned into those less than or equal to the pivot
and those greater than the pivot.

In general, elements within a partition are not initially sorted.

Partitioning can be performed in place.
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Partition Algorithm

First, swap pivot with the �rst element.

Store elements ≤ the pivot at the front of the array and elements ≥
the pivot at the back of the array.

1. Scan the array starting from the front until an element is found that
is > the pivot.

2. Scan the array starting from the back until an element is found that
is < the pivot.

3. Swap these two items.
4. Continue until the entire array has been partitioned.

41 / 78
EECS 3101 - Design and Analysis of Algorithms

▲



Quicksort Example

Sort the following array using quicksort.

Step 1. Select a pivot element and swap it with the �rst element.

Note that you could select any element as the pivot.
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Quicksort Example

Sort the following array using quicksort.

Step 1. Select a pivot element and swap it with the �rst element.

Note that you could select any element as the pivot.
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Quicksort Example

We now partition the array such that elements to the left of the
pivot are ≤ than the pivot and element to the right of the pivot are
≥ the pivot.

Initialize left to the leftmost element after the pivot and right to the
rightmost element.

step 2: Increment left until we �nd an element that is greater than
the pivot.
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Quicksort Example

Step 3: Decrement right until we �nd an element that is less than
the pivot.

Step 4: Swap the elements at positions left and right.
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Quicksort Example

Step 5: Repeat until left ≥ right.

Step 6: If the element at position right is less than the pivot, then
swap it with the pivot. Otherwise, swap the element at position
right −1 with the pivot.
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Quicksort Example

The pivot element is now in the correct position in the array.

Elements to the left of the
pivot are ≤than it and elements to the right of the pivot are ≥ than it.

Quicksort is called recursively on the left and right partitions.

Once the left subarray is recursively sorted and the right subarray is
recursively sorted, the entire array is sorted. The base case is
reached when the array has size ≤ 1.
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QuickSort

QuickSort

quickSort1(A)
A: array of size n
1. if n ≤ 1 then return

2. p ← ChoosePivot1(A)
3. i ← Partition(A, p)
4. quickSort1(A[0, 1, . . . , i − 1])
5. quickSort1(A[i + 1, . . . , size(A)− 1])

Here pivot is chosen arbitrarily (e.g., it is the �rst item in the array)
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QuickSort

Analysis of Quick-sort

Worst case: T (worst)(n) = T (worst)(n − 1) + Θ(n)
The algorithm has a running time of Θ(n2) in the worst case.

Best case: T (best)(n) = T (best)(
⌊
n−1
2

⌋
) + T (best)(

⌈
n−1
2

⌉
) + Θ(n)

Similar to Merge-sort; T (best)(n) ∈ Θ(n log n)
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QuickSort

Average-case analysis of quick-sort

In a comparison-based sorting the running time is proportional to
the total number of comparisons performed during partitioning.

Let Xn be a random variable denoting the number of comparisons
made by Quicksort on an array of size n.
E [Xn] = expected no. of comparisons =∑
i,j∈0,...,n−1

prob(the i 'th and j 'th smallest elements are compared)

The average-case running time of QuickSort is indeed Θ(E [Xn]).
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QuickSort

Average-case analysis of quick-sort

To �nd E [Xn], we study the chance that the i 'th and the j 'th
smallest items are compared.

In a random (unsorted) permutation of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
what is the chance that 3 and 7 are compared? → the chance that
4, 5, 6 are Not selected as pivot before 3, 7 → 2/5
If 4 (or 5 or 6) are pivot at a recursive call that includes both 3 and
7, then 3 and 7 are placed in di�erent sides of 4 and will not be
compared.

Elements i and j are compared i� one of them is selected as a pivot
at some point before any other element in {i + 1, i + 2, . . . , j − 1}.
This occurs with probability 2

j−i+1
.

The expected time complexity will be
∑

i,j∈0,...,n−1,j>i

2

j−i+1
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QuickSort

Average-case analysis of quick-sort

For the expected time complexity of Quicksort, we have:

E [Xn] =
∑

i,j∈0,...,n−1,j>i

2

j − i + 1

=
n−2∑
i=0

n−1∑
j=i+1

2

j − i + 1

=
n−2∑
i=0

n−i∑
k=2

2

k
<

n−2∑
i=0

n∑
k=2

2

k

=
n−2∑
i=0

Θ(log n) = Θ(n log n)

So, E [Xn] belongs to Θ(n log n). Note that we used the fact that
the sum of Harmonic series belongs to Θ(log n).
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QuickSort

Selection Problem

Can we improve the worst-case running time Θ(n2) of Quick-sort to
Θ(n log n)?

This relates to the selection problem
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QuickSort

Selection & order statistics

The i 'th order statistic of a set of comparable elements is the i 'th
smallest value in the set.

The ⌈n/2⌉'th order statistic among n items is called median.
The ⌈n/4⌉'th order statistic among n items is called quartile.

How can we �nd the 0'th or (n − 1)'th order statistic in Θ(n).

Finding min/max → a linear scan is su�cient!

Selection problem: �nd the i 'th order statistics:

The input is a set of n comparable objects (e.g., integers) and an
integer i
The output is the element at index i of the sorted array (i + 1'th
smallest item)
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QuickSort

Selection algorithms

Attempt I: sort A and return the element at index i in the sorted
array.

E.g., use Merge-sort; sorting takes Θ(n log n) and accessing the
element in sorted array takes Θ(1).

Can we do better?

Attempt II: apply heapify on A and extract-min i + 1 times (we
assume indices start at 0).

Heapify takes Θ(n) and each extract-min operation takes Θ(log n)
Select takes Θ(n + i log n), which is Θ(n log n) when i ∈ Θ(n).

What is the minimum time required for selection?

We need to read the whole input, i.e., the running time of any
algorithm is Ω(n).
Can we select in Θ(n)?
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assume indices start at 0).

Heapify takes Θ(n) and each extract-min operation takes Θ(log n)
Select takes Θ(n + i log n), which is Θ(n log n) when i ∈ Θ(n).

What is the minimum time required for selection?

We need to read the whole input, i.e., the running time of any
algorithm is Ω(n).
Can we select in Θ(n)?
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QuickSort

Selection algorithms

Quick-select: similar to Quick-sort, but for selection

Select a pivot, partition around it, and recurs on the one side that
contains the i 'th element
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QuickSort

QuickSelect

quickSelect1(A, i)
A: array of size n, i : integer s.t. 0 ≤ i < n
1. p ← choosePivot1(A)
2. j ← Partition(A, p)
3. if j = i then
4. return A[j ]
5. else if j > i then
6. return quickSelect1(A[0, 1, . . . , j − 1], i)
7. else if j < i then
8. return quickSelect1(A[j + 1, j + 2, . . . , n − 1], i − j − 1)

If pivot is at position j , the cost of recursive call parameters will be:

None if j = i .
(j , i) if j > i (recursing on the left subarray).
(n − j − 1, i − j − 1) if j < i (recursing on the right subarray).
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QuickSort

Average-case analysis of quick-select1

Assume all n! permutations are equally likely.

De�ne T (n, i) as average cost for selecting ith item from size-n
array The cost for recursive calls (RC) is

RC =

 0 j = i
T (j , i), j > i
T (n − j − 1, i − j − 1) j < i

Shu�ed input → it is equally likely for the pivot to be at any
position:

T (n, i) = cn︸︷︷︸
partition

+
1

n

(
(RC if j=0) + (RC if j=1) + . . . + (RC if j=n-1)

)

= cn︸︷︷︸
partition

+
1

n

 i−1∑
j=0

T (n − j − 1, i − j − 1) +
n−1∑
j=i+1

T (j , i)


For simplicity, de�ne T (n) = max

0≤k<n
T (n, k).
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Average-case analysis of quick-select1

T (n) ≤ cn︸︷︷︸
partition

+
1

n

 i−1∑
j=0

T (n − j − 1) +
n−1∑
j=i+1

T (j)



We say that a pivot is good if the arrays on both sides have size at
least n/4

This happens when pivot index j is in [n/4, 3n/4).
Half of possible pivots are good and the rest are bad.

The recursive cost for a good pivot is at most T (3n/4).

The recursive cost for a bad pivot is at most T (n).

The average cost is then given by:

T (n) ≤


cn + 1

2

(
T (n)︸ ︷︷ ︸

bad pivot

+T
(
3n/4

)︸ ︷︷ ︸
good pivot

)
, n ≥ 2

d n = 1
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Average-case analysis of quick-select1

The average cost is then given by:

T (n) ≤

{
cn + 1

2

(
T (n) + T

(
3n/4

))
, n ≥ 2

d , n = 1

Rearranging gives:

T (n) ≤ T
(
3n/4

)
+ 2cn ≤ 2cn + 2c(3n/4) + 2c(9n/16) + · · ·+ d

≤ d + 2cn
∞∑
i=0

(
3

4

)i

∈ O(n)

Since T (n) must be Ω(n) (why?), T (n) ∈ Θ(n).
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QuickSort

Linear-time selection

Although Quick-select runs in O(n) on average, in the worst-case it
is still super-linear.

Recurrence given by T (n) =

{
T (n − 1) + cn, n ≥ 2
d , n = 1

Is there any selection algorithm that runs in O(n) in the worst-case?

The answer is Yes; Median of medians algorithms!
It is a twist to Quick-select in which the pivot is selected a bit
smarter!
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QuickSort

Median of �ve algorithm

A variant of Quick-select in which the pivot is selected more
carefully.

The input is an array A of n objects (assume n is divisible by 5).

Divide A into n/5 blocks of size 5.

Recursively �nd the median of the medians; denote it by x .

x will be the pivot for quick-select

Partition the whole array using x as the pivot

Recurs on the corresponding subarray as in Quick-select
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Median of �ve example
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QuickSort

Median of �ve algorithm

Pivot x is median of medians → half of blocks have median < x .

This implies half of blocks include at least 3 elements < x .
So, there will be at least n/5 · 1/2 · 3 = 3n/10 elements smaller
than x

Similarly, there will be at least 3n/10 elements larger than x .

We assume distinct items; when pivot is equal to multiple items,
you can update the partition algorithm so that the pivot is the
`best' among items with the same key

Hence, the size of recursive call is always in the range
(3n/10, 7n/10).

x is always a `good' pivot

In the worst case, the size of recursive call is always 7n/10.

T (n) ≤


T (n/5)︸ ︷︷ ︸
find x

+ cn︸︷︷︸
partition around x

+T (7n/10)︸ ︷︷ ︸
recursive call

, n ≥ 2

d , n = 1
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Median of �ve algorithm

T (n) ≤


T (n/5)︸ ︷︷ ︸
find x

+ cn︸︷︷︸
partition around x

+ T (7n/10)︸ ︷︷ ︸
recursive call

, n ≥ 2

d , n = 1

We guess that T (n) ∈ O(n) and use strong induction to prove it.

We prove there is a value M s.t. T (n) ≤ Mn for all n ≥ 1.

For the base we have T (1) = d ≤ M as long as M ≥ d .

For any value of n we can state:

T (n) ≤ T (n/5) + T (7n/10) + cn (de�nition)

≤ M · n/5+M · 7n/10+ cn (induction hypothesis)

= (9M/10+ c)n

≤ M · n as log as M ≥ 9M/10+ c , i .e.,M ≥ 10c

so, we showed for M = max{10c , d} we have T (n) ≤ M · n for
n ≥ 1. So, T (n) ∈ O(n).
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Quick-sort revisit

Theorem

It is possible to select the i 'th smallest item in a list of n numbers

in time Θ(n)

Quick-sort in O(n log n) time:

Using select algorithm to choose the pivot as the median of n items
in O(n) time
Partition around pivot in O(n) time (selecting pivot as n/c'th
smallest item for constant c gives the same result)
Sort the two sides of pivot recursively in time 2T (n/2).

The cost will be T (n) = 2T (n/2) + Θ(n), which gives
T (n) = Θ(n log n) [case II of Master theorem]

Theorem

A smart selection of pivot, using linear-time select, results in

quick-sort running in Θ(n log n)
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QuickSort

Lower Bound for Comparison-Based
Sorting

In comparison-based sorting, we have a set of objects (e.g., a bag
of potato) and an operator that can tell us whether an object is
smaller than the other (e.g., a scale for comparing weights of
potatoes)

No other assumption is made for the objects (e.g., they are not
necessarily numbers).
Algorithms like Bubble-sort, Quick-sort, Merge-sort, and Heap-sort
are all comparison-based.

Does a comparison-base sorting with time asymptotically less than
O(n log n) exist?

We show the answer is No!
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QuickSort

Lower Bound for Comparison-Based
Sorting

Consider a set of n distinct objects a1, . . . , an.

Any permutation of thee objects forms an ordering (a possible input
array).

How many ways they can be ordered?

n! ways, that is, there are n! possible inputs!

Sorting corresponds to identifying the permutation of a sequence of
elements. Once the permutation is known, the position of each item
can be restored.
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QuickSort

Decision Tree for Sorting an Array

Suppose an array of A of three elements [a, b, c] is to be sorted.

Any algorithm can be described with a decision tree for
determining the correct sorted order (i.e., the array's permutation).

The number of comparisons made by the algorithm equals to the
height of the tree!
The number of leaves is n!

Here is the decision tree for one algorithm:
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QuickSort

Lower Bound using Decision Tree

The minimum height of a binary tree with n nodes is at least log n.

Intuitively, whenever two elements are compared (is x < y?) this
eliminates a number of possible permutations. In the worst case, at
most half of the remaining possible permutations are eliminated.

If there are n! permutations and half are eliminated on each step, it
takes at least log

2
(n!) comparisons to identify the correct

permutation of the items.

So, any algorithm has to make at least log n! comparisons.
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QuickSort

Lower Bound for Comparison-Based
Sorting

Theorem

Any comparison-based sorting has time complexity of Ω(n log n)

We use Ω(n log n) to denote the time complexity that is
asymptotically at least n log n
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Non-comparison based algorithms

The lower bound of Ω(n log n) applies to algorithms that determine
a sorted ordering by comparing pairs of elements.

If the set of elements to be sorted has speci�c characteristics, then
faster sorting algorithms may be possible.

Such algorithms must use techniques other than comparison alone
to determine the sorted order.

Examples: counting sort, bucket sort, radix sort.
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QuickSort

Counting Sort

Let A be an array of n integers in the range {0, 1, . . . , k}.

For each value i in {0, 1, . . . , k}, count the number of occurrences
of i in {0, 1, . . . , k} and store it in C [i ].

Overwrite A[0..n − 1] with the number of occurrences of each value
{0, 1, . . . , k} in sorted order.
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Counting Sort Example

Consider the following array A of size n = 10 with items in the
range {1..k} where k = 7.
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QuickSort

Counting Sort Running Time

Counting Sort runs in O(n + k) times.

Initializing elements of C to 0 takes

O(k) times
Looping over A and setting values of C takes O(n) times
Looping over C and adding sorted elements back to array A takes
O(n + k) times.

The worst-case, average-case, or best-case times are the same

If k ∈ O(n log n), then counting sort is at least as e�cient as a
comparison-based sorting algorithm in the worst case.

If k k /∈ O(n log n), then counting sort is slower than an e�cient
comparison-based sorting algorithm in the worst case.
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QuickSort

Augmented Counting Sort

Suppose the value of k is initially unknown.

We can compute k via a linear scan in O(n) to �nd the largest
element in the array.

If k is too large, call another algorithm (e.g., quick-sort or
bucket-sort), otherwise continue with counting sort.

What if array A contains both positive and negative values?

Add a �xed value to all elements to make them non-negative; apply
counting sort, and after sorting deduce the added element.
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QuickSort

Bucket Sort

BucketSort is useful when the input is generated by a random
process that distributes elements uniformly, e.g., over [0, 1).

BucketSort steps:

Divide [0, 1) into k equal-sized buckets (we generally assume
k = Θ(n))
Distribute the n input values into the buckets
Sort each bucket (e.g., using quicksort)
Go through the buckets in order, listing elements in each one
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QuickSort

Bucket Sort
We start by distributing items into buckets; this takes Θ(n).

Sort within each of the k buckets

If the input is uniformly distributed, each bucket contains Θ(n/k)
numbers; and the sort in each bucket takes Θ(n/k log(n/k)), and
for all buckets, it takes Θ(n log(n/k). This is Θ(n), assuming
k = Θ(n).

Concatenate the buckets together, in order; this takes Θ(n).

0.127

0.216

0.945

0.724

0.263

0.392

0.171

0.780

0.689

0.238

A Buckets

0.3810

0.1811

[0.7,0.8)

[0.6,0.7)

[0.5,0.6)

[0.4,0.5)

[0.3,0.4)

[0.2,0.3)

[0.1,0.2)

[0,0.1)

[0.9,1]

[0.8,0.9)
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7

6

5

4

3

2

1

0

9

8

A Buckets

10

11

[0.7,0.8)

[0.6,0.7)

[0.5,0.6)

[0.4,0.5)
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[0.2,0.3)
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0.39

0.26

0.72
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0.21

0.12

0.23

0.68

0.38

0.18

0.12

0.17

0.18

0.21

0.23

0.26

0.38

0.39

0.68

0.72

0.78

0.94
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BucketSort

If the input is uniformly distributed, BucketSort is expected to run
in Θ(n).

If the input is Not uniformly distributed, it could be that all
numbers belong to one bucket, and the algorithm runs in Θ(n log n).

RadixSort is a variant of BucketSort for sorting integers with the
same number b of digits:

At the �rst level, items are put in 10 buckets based on their
most-signi�cant digits (e.g., 102, 141, 123 in one bucket,
218, 231, 250, 253 in one bucket, and so on). To sort items within
each bucket, the same procedure is used, except that this time
items are placed in buckets based on their second most signi�cant
digit. This continues for all b digits.

RadixSort runs in O(n · b), which is often useful for sorting integers.
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QuickSort

Sorting Summary

We have examined a few sorting algorithms.

When a comparison-based sorting algorithm is necessary, we often
use QuickSort or HeapSort; they run in optimal O(n log n) time and
are in-place.

When items are coming from a set of k possible values, for
k ∈ o(n log n), use CountingSort.

For sorting items which are uniformly distributed, apply BucketSort.

For sorting integers with small number of digits, use RadixSort.
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