EECS 3101 - Design and Analysis of
v Algorithms

o‘ o
3 \‘ Shahin Kamali

o, | Topic 2 - Divide & Conquer Technique

and Recursion

EECS 3101 - Design and Analysis of Algorithms

v
PN

. VW”A"" . .
WYY Overview

o what is recursion?
@ recursion vs. iteration

o analyzing the running time of recursive algorithms

EECS 3101 - Design and Analysis of Algorithms

v

PN
N\
.

o ; ‘ -
Y Recursion

o The term recursion refers to a method that calls itself.

o Recursion is a powerful programming technique that results in
efficient algorithms with concise descriptions.

EE(101 - Design and Analysi Igorithm

v
PN
1

.
\sa

. _
™) Recursion example

o Suppose we replace every line segment by eight shorter line
segments according to the following geometric rule:

=3 [

EECS 3101 - Design and Analysis of Algorithms

v
PN
~

. R ‘ .
™) Recursion example

o Suppose we replace every line segment by eight shorter line
segments according to the following geometric rule:

=3 [

o By applying this rule recursively we obtain the following “fractal™:

|

N

v
-a
~

X
'« Fractals

o Fractals are beautiful “creatures’ often built on the recursion
principle:

v
PN
1

.
\sa

. ‘ L] L]
N lteration versus Recursion

o An iterative algorithm for solving a problem P makes use of a loop
to compute a sequence of analogous steps that solve P.

EECS 3101 - Design and Analysis of Algorithms

v
PN
1

.
\sa

. ‘ L] L]
N lteration versus Recursion

o An iterative algorithm for solving a problem P makes use of a loop
to compute a sequence of analogous steps that solve P.

n=nn-1)(n-2)...3-2-1

EE 101 - Design and Analysi Igorithm

v
PN
~

! ‘ L] L]
N lteration versus Recursion

o An iterative algorithm for solving a problem P makes use of a loop
to compute a sequence of analogous steps that solve P.

n=nn-1)(n-2)...3-2-1

o A recursive algorithm for solving a problem P computes one step
and calls itself to solve the remaining subproblem.

v
PN
~

\

A . .
N lteration versus Recursion

o An iterative algorithm for solving a problem P makes use of a loop
to compute a sequence of analogous steps that solve P.

n=nn-1)(n-2)...3-2-1

o A recursive algorithm for solving a problem P computes one step
and calls itself to solve the remaining subproblem.

| 1 n<l1
nl =
n(n—1)! n>1

v
PN
N\

o ‘ L] L]
=Y lteration versus Recursion

\y ;
A\

o an iterative algorithm for computing n!:

Factoriallterative (n)

1. result + 1

2 for i < 1 to ndo

3. result < result x i
4 return result

o This clearly takes ©(n) time.

v
PN
~

A . .
‘™) lteration versus Recursion

W

o a recursive algorithm for computing n!:

FactorialRecursive (n)

1 result <1

2 if n>1

3. result < nx FactorialRecursive(n — 1)
4 return result

o For the time complexity, we can write
f(ny=c+f(n=1)=2c+f(n—-2)=...=c(n—1)+1(1) = O(n)

o For the factorial problem, both iterative and recursive functions run
in time linear to n.

_

PN
~

. "’A""‘ . .
') Fibonacci numbers

o The Fibonacci numbers are the sequence

0,1,1,2,3,5,8,13,21, 34,55, . ..

EECS 3101 - Design and Analysis of Algorithms

v
-
~

.) - . .
‘) Fibonacci numbers

o The Fibonacci numbers are the sequence

0,1,1,2,3,5,8,13,21, 34,55, . ..

o The first two numbers in the sequence are 0 and 1.

o Each succeeding number (third, fourth, ...) is define as the sum of
the two numbers that precede it in the sequence.

v
-
~

‘ " "
‘o™ Fibonacci numbers

o The Fibonacci numbers are the sequence

0,1,1,2,3,5,8,13,21, 34,55, . ..

o The first two numbers in the sequence are 0 and 1.

o Each succeeding number (third, fourth, ...) is define as the sum of
the two numbers that precede it in the sequence.

o That is, Fibonacci numbers are defined recursively:
0 n—

fib(n) = { 1 n=1
fib(n) + fib(n —1) n>1

v
PN

.‘"A""‘ . .
‘™Y A Recursive Solution

fib (n)

1. result < 0

2 ifn<1

3. result + 1

4. else

5 result < fib(n — 1) + fib(n — 2)
6 return result

EECS 3101 - Design and Analysis of Algorithms
: 10 / 29

v
PN
~

. | .
‘™Y A Recursive Solution

fib (n)

1. result < 0

2 ifn<1

3. result + 1

4. else

5 result < fib(n — 1) + fib(n — 2)
6 return result

o For the running time of this algorithm, we can write:

t(n)=t(n—1)4+t(n—2)>2T(n—2)>4T(n—4)>8T(n—6) > ...
> 2KT(n — 2k) = Q(2"/?)

v
PN
N\

.
\sa

. .
) Recursion Tree

o This implementation of Fibonacci numbers is inefficient because it
recomputes values that have already been found.

fib(5)
fib(4) fib(3)
fib(3) fib(2) fib(2) fib(1)
fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)

fib(1) fib(0)

EECS 3101 - Design and Analysis of Algorithms

v
PN
~

! V ‘ - L] - - -
™Y Efficient Fibonacci Computation

o A more efficient solution can be obtained by storing Fibonacci
numbers that have already been computed in an array.

fibo (n)

1. F < an array of size n

2. F[1]+1 F[2«1

3. fori=3ton

4, Flil < F[i—=1]+ F[i — 2]
return F[n|

o This runs in ©(n)

v
-
~

\ i

. :
WY Maximum Subarray Problem

o given an array A of n numbers, find the a contiguous subarray

whose sum has the largest value!
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13|-3]-25|20|-3|-16|-23 |18 |20 |-7|12|-5|-22|15|-4 |7

o In this example, it is 18,20, —7,12 for a sum of 43.

v

PN
L

. { ‘ .
WY Maximum Subarray Problem

Y

o given an array A of n numbers, find the a contiguous subarray

whose sum has the largest value!
4 5 6 7 8 9 10 11

23 (18 (20 |-7|12|-5|-22 |15

12 13 14 15

0 1 2 3

13 |-3]-25|20|-3|-16

In this example, it is 18,20, —7,12 for a sum of 43.
o We denote the best solution with a triplet (/o, hi, sum), indicating,
start index, end index, and sum of the numbers in the sub-array. In

this example, it would be (7,10, 43)

v

PN
L

[{ ‘ .
WY Maximum Subarray Problem

Y

o given an array A of n numbers, find the a contiguous subarray

whose sum has the largest value!
2 3 4 5 6 7 8 9

-3-16|-23 18|20 |-7 |12 -5

15

10 11 12 13 14

22 (15 | -4 | 7

0 1

13 -3]-25|20

In this example, it is 18,20, —7,12 for a sum of 43.
o We denote the best solution with a triplet (/o, hi, sum), indicating,
start index, end index, and sum of the numbers in the sub-array. In

this example, it would be (7,10, 43)

o Solution 1: try all possible sub-arrays! There are (J) = ©(n?)
sub-arrays; thus the running time of this “Brute-Force" solution is

Q(n?).

v

PN
~

‘ L]
Y Maximum Subarray Problem

o Solution 2: Use a divide and conquer approach!

o Suppose we want to find the sub-array with maximum sum from the
input array from index low to index hi. There are three possibilities:

o It is entirely in the left half of the range [low, hi]
o It is entirely in the right half of the range [low, hi]
o It straddles the midpoint mid = |(low + high)/2 of the range.

o We compute the optimal sub-array for all possible three cases and
take the maximum!

includes the mid point

entirely in [low, mid] entirely in'[mid + 1, high]

v
PN
~

. S ‘ .
‘™ Maximum Subarray Problem

o The recursive Find-Max-SubArray(A, low, high) finds the sub array
of A in the range [low, high] with maximum sum.

EECS 3101 - Design and Analysis of Algorithms

v
PN
~

— . :
WY Maximum Subarray Problem
o The recursive Find-Max-SubArray(A, low, high) finds the sub array
of A in the range [low, high] with maximum sum.

o The output is (/, h, sum) and indicate the low-index, high-index, and
the sum of the sub-array.

v

PN
~

‘ L]
Y Maximum Subarray Problem

o The recursive Find-Max-SubArray(A, low, high) finds the sub array
of A in the range [low, high] with maximum sum.

o The output is (/, h, sum) and indicate the low-index, high-index, and
the sum of the sub-array.
o In the base, we have low = high, and the output is
(low, high, Allow]).
o First, find the optimal solution that is entirely on the left:
o recursively call Find-Max-SubArray(A, low, mid)

v

PN
~

‘ L]
Y Maximum Subarray Problem

o The recursive Find-Max-SubArray(A, low, high) finds the sub array
of A in the range [low, high] with maximum sum.

o The output is (/, h, sum) and indicate the low-index, high-index, and
the sum of the sub-array.
o In the base, we have low = high, and the output is
(low, high, Allow]).
o First, find the optimal solution that is entirely on the left:
o recursively call Find-Max-SubArray(A, low, mid)
o Second, find the optimal solution that is entirely on the right:
o recursively call Find-Max-SubArray(A, mid + 1, high)

includes the mid point

entirely in [low, mid] entirely in [mid + 1, high]

v

PN
~

A)
Y
Y

Maximum Subarray Problem

o Finally, find the sub-array with maximum sum, subject to it
containing mid.

o The subarray is made up of A[i, mid] and A[mid + 1, j] for some
i € [low, mid] and j € [mid + 1, high].

o Use a linear scan to find the values of i and j that give the
sub-arrays with largest sumsl!

o This can be done in linear time because one end (namely mid) of
the subarrays is fixed.

low i mid j high

A [i, mid] Almid + 1,]

v
-
~

\ [

L) :
WY Maximum Subarray Problem

o Finding the sub-array with maximum sum, subject to it containing

mid.
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
1 left-sum = —oo
2 sum =0
3 fori = mid downto low
4 sum = sum + Ali]
5 if sum > left-sum
6 left-sum = sum
7 max-left = i
8 right-sum = —oo
9 sum =0
10 for j = mid + 1 to high
11 sum = sum + A[]]
12 if sum > right-sum
13 right-sum = sum
14 max-right = j
15 return (max-left, max-right, left-sum + right-sum)
i
low i mid_ J high
3|6|8|-1(2]|2[5[1|2]2|3]1 sum : 0
Gl fhRElR] wmo
maxLeft :

v
-
~

\ [

L) :
WY Maximum Subarray Problem

o Finding the sub-array with maximum sum, subject to it containing

mid.
FIND-MAX-CROSSING-SUBARRAY (A4, low, mid, high)
1 left-sum = —oo
2 sum =0
3 fori = mid downto low
4 sum = sum + Ali]
5 if sum > left-sum
6 left-sum = sum
7 max-left = i
8 right-sum = —oo
9 sum =0
10 for j = mid + 1 to high
11 sum = sum + A[j]
12 if sum > right-sum
13 right-sum = sum
14 max-right = j
15 return (max-left, max-right, left-sum + right-sum)
. i mid
low i mid J high
3|6|8|-1(2]|2[5[1|2]2|3]1 sum : 2
CllbflhREll] e
maxLeft : mid

v
-
~

\ [

L) :
WY Maximum Subarray Problem

o Finding the sub-array with maximum sum, subject to it containing

mid.
FIND-MAX-CROSSING-SUBARRAY (A4, low, mid, high)
1 left-sum = —oo
2 sum =0
3 fori = mid downto low
4 sum = sum + Ali]
5 if sum > left-sum
6 left-sum = sum
7 max-left = i
8 right-sum = —oo
9 sum =0
10 for j = mid + 1 to high
11 sum = sum + A[j]
12 if sum > right-sum
13 right-sum = sum
14 max-right = j
15 return (max-left, max-right, left-sum + right-sum)
) i mid — 1
low i mid J high
3|6|8|-1(2]|2[5[1|2]2|3]1 sum : 0
Cllebll LRl o
maxLeft : mid

v
-
~

\ [

L) :
WY Maximum Subarray Problem

o Finding the sub-array with maximum sum, subject to it containing

mid.
FIND-MAX-CROSSING-SUBARRAY (A4, low, mid, high)
1 left-sum = —oo
2 sum =0
3 fori = mid downto low
4 sum = sum + Ali]
5 if sum > left-sum
6 left-sum = sum
7 max-left = i
8 right-sum = —oo
9 sum =0
10 for j = mid + 1 to high
11 sum = sum + A[j]
12 if sum > right-sum
13 right-sum = sum
14 max-right = j
15 return (max-left, max-right, left-sum + right-sum)
) i mid — 2
low i mid J high
3|6|8|-1(2]|2[5[1|2]2|3]1 sum : —1
CllebllhREl] o
maxLeft : mid

v
PN
~

L) :
WY Maximum Subarray Problem

W

o Finding the sub-array with maximum sum, subject to it containing
mid.
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
1 left-sum = —oo
2 sum =0
3 fori = mid downto low
4 sum = sum + Ali]
5 if sum > left-sum
6 left-sum = sum
7 max-left = i
8 right-sum = —oo
9 sum =0
10 for j = mid + 1 to high
11 sum = sum + A[j]
12 if sum > right-sum
13 right-sum = sum
14 max-right = j
15 return (max-left, max-right, left-sum + right-sum)
it mid — 3
Jow i midl J high
3(6[8|1|2|2f5[1]2]2]3]|1 sum : 7
Llefslafz]2]s]1]2]2]3]1] A
maxLeft : mid — 3

v
PN
~

L) :
WY Maximum Subarray Problem

W

o Finding the sub-array with maximum sum, subject to it containing
mid.
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
1 left-sum = —oo
2 sum =0
3 fori = mid downto low
4 sum = sum + Ali]
5 if sum > left-sum
6 left-sum = sum
7 max-left = i
8 right-sum = —oo
9 sum =0
10 for j = mid + 1 to high
11 sum = sum + A[j]
12 if sum > right-sum
13 right-sum = sum
14 max-right = j
15 return (max-left, max-right, left-sum + right-sum)
i mid — 4
Jow i midl J high
3(6[8|1|2|2f5[1]2]2]3]|1 sum : 1
Llefslafz]2]s]1]2]2]3]1] it
maxLeft : mid — 3

v
PN
~

L) :
WY Maximum Subarray Problem

W

o Finding the sub-array with maximum sum, subject to it containing
mid.
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)
1 left-sum = —oo
2 sum =0
3 fori = mid downto low
4 sum = sum + Ali]
5 if sum > left-sum
6 left-sum = sum
7 max-left = i
8 right-sum = —oo
9 sum =0
10 for j = mid + 1 to high
11 sum = sum + A[j]
12 if sum > right-sum
13 right-sum = sum
14 max-right = j
15 return (max-left, max-right, left-sum + right-sum)
i:mid —5
Jow i midl J high
3(6[8|1|2|2f5[1]2]2]3]|1 sum : 4
Llefslafz]2]s]1]2]2]3]1] i
maxLeft : mid — 3

v
-
~

L) :
WY Maximum Subarray Problem

W

o Finding the sub-array with maximum sum, subject to it containing

mid.

FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

1 left-sum = —oo
2 sum =0

3 fori = mid downto low
4 sum = sum + Ali]
5 if sum > left-sum
6 left-sum = sum
7 max-left = i
8 right-sum = —oo
9 sum =0

10 for j = mid + 1 to high

11 sum = sum + A[j]

12 if sum > right-sum

13 right-sum = sum

14 max-right = j

15 return (max-left, max-right, left-sum + right-sum)

i:mid —5 Jj:
low i mid_ J high
Llefslafz]2]s]s]2]2]3]4] sum & sum 0
T leftSum : 7 rightSum : —oo

maxLeft : mid — 3 maxRight :

v
-
~

At

‘ L]
WY Maximum Subarray Problem

o Finding the sub-array with maximum sum, subject to it containing

mid.

FIND-MAX-CROSSING-SUBARRAY (A4, low, mid, high)

1 left-sum = —oo
2 sum =0

3 fori = mid downto low
4 sum = sum + Ali]
5 if sum > left-sum
6 left-sum = sum
7 max-left = i
8 right-sum = —oo

9 sum =0

10 for j = mid + 1 to high

11 sum = sum + A[]]

12 if sum > right-sum

13 right-sum = sum

14 max-right = j

15 return (max-left, max-right, left-sum + right-sum)

i:mid—5 j:mid+1
low i mid_ J high
Llefslafz]z]s]s]2]2]3]4] sum & sum 5
T leftSum : 7 rightSum : 5

maxLeft : mid — 3 maxRight : mid +1

v
-
~

At

‘ L]
WY Maximum Subarray Problem

o Finding the sub-array with maximum sum, subject to it containing

mid.

FIND-MAX-CROSSING-SUBARRAY (A4, low, mid, high)

1 left-sum = —oo
2 sum =0

3 fori = mid downto low
4 sum = sum + Ali]
5 if sum > left-sum
6 left-sum = sum
7 max-left = i
8 right-sum = —oo

9 sum =0

10 for j = mid + 1 to high

11 sum = sum + A[]]

12 if sum > right-sum

13 right-sum = sum

14 max-right = j

15 return (max-left, max-right, left-sum + right-sum)

i:mid—5 Jj:mid + 2
low i mid_ J high
Llefslafz]z]s]s]2]2]3]4] sum & sum 6
T leftSum : 7 rightSum : 6

maxLeft : mid — 3 maxRight : mid +2

v
-
~

At

‘ L]
WY Maximum Subarray Problem

o Finding the sub-array with maximum sum, subject to it containing

mid.

FIND-MAX-CROSSING-SUBARRAY (A4, low, mid, high)

1 left-sum = —oo
2 sum =0

3 fori = mid downto low
4 sum = sum + Ali]
5 if sum > left-sum
6 left-sum = sum
7 max-left = i
8 right-sum = —oo

9 sum =0

10 for j = mid + 1 to high

11 sum = sum + A[]]

12 if sum > right-sum

13 right-sum = sum

14 max-right = j

15 return (max-left, max-right, left-sum + right-sum)

i:mid—5 Jj:mid+3
low i mid_ J high
Llefslafz]z]s]s]2]2]3]4] sum & sum -4
T leftSum : 7 rightSum : 6

maxLeft : mid — 3 maxRight : mid +2

v
-
~

At

‘ L]
WY Maximum Subarray Problem

o Finding the sub-array with maximum sum, subject to it containing

mid.

FIND-MAX-CROSSING-SUBARRAY (A4, low, mid, high)

1 left-sum = —oo
2 sum =0

3 fori = mid downto low
4 sum = sum + Ali]
5 if sum > left-sum
6 left-sum = sum
7 max-left = i
8 right-sum = —oo

9 sum =0

10 for j = mid + 1 to high

11 sum = sum + A[]]

12 if sum > right-sum

13 right-sum = sum

14 max-right = j

15 return (max-left, max-right, left-sum + right-sum)

i:mid—5 Jj:mid + 4
low i mid_ J high
Llefslafz]z]s]s]2]2]3]4] sum & sum 2
T leftSum : 7 rightSum : 6

maxLeft : mid — 3 maxRight : mid +2

v
-
~

At

‘ L]
WY Maximum Subarray Problem

o Finding the sub-array with maximum sum, subject to it containing

mid.

FIND-MAX-CROSSING-SUBARRAY (A4, low, mid, high)

1 left-sum = —oo
2 sum =0

3 fori = mid downto low
4 sum = sum + Ali]
5 if sum > left-sum
6 left-sum = sum
7 max-left = i
8 right-sum = —oo

9 sum =0

10 for j = mid + 1 to high

11 sum = sum + A[]]

12 if sum > right-sum

13 right-sum = sum

14 max-right = j

15 return (max-left, max-right, left-sum + right-sum)

i:mid—5 Jj:mid + 4
low i mid_ J high
Llefslafz]z]s]s]2]2]3]4] sum & sum 5
T leftSum : 7 rightSum : 6

maxLeft : mid — 3 maxRight : mid +2

v
-
~

At

‘ L]
WY Maximum Subarray Problem

o Finding the sub-array with maximum sum, subject to it containing

mid.

FIND-MAX-CROSSING-SUBARRAY (A4, low, mid, high)

1 left-sum = —oo
2 sum =0

3 fori = mid downto low
4 sum = sum + Ali]
5 if sum > left-sum
6 left-sum = sum
7 max-left = i
8 right-sum = —oo

9 sum =0

10 for j = mid + 1 to high

11 sum = sum + A[]]

12 if sum > right-sum

13 right-sum = sum

14 max-right = j

15 return (max-left, max-right, left-sum + right-sum)

i:mid—5 j:mid +5
low i mid_ J high
Llefslafz]z]s]s]2]2]3]4] sum & sum -4
T leftSum : 7 rightSum : 6

maxLeft : mid — 3 maxRight : mid +2

v
PN
~

\ge

‘ L]
WY Maximum Subarray Problem

o Finding the sub-array with maximum sum, subject to it containing
mid.
FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high)

1 left-sum = —oo

2 sum =0
3 fori = mid downto low
4 sum = sum + Ali]
5 if sum > left-sum
6 left-sum = sum
7 max-left = i
8 right-sum = —oo
9 sum =0
10 for j = mid + 1 to high
11 sum = sum + A[j]
12 if sum > right-sum
13 right-sum = sum
14 max-right = j
15 return (max-left, max-right, left-sum + right-sum)

low i midl J high
Llefefa]e]2|s]af2]2]5]4]
mid — 3 mid + 2 sum : 4 sum : 4
leftSum : 7 rightSum : 6
7+6=13 maxLeft : mid — 3 maxRight : mid +2

i:mid —5 j:mid+5

v
=~
-
.
AN

RS

Maximum Subarray Problem

o The recursive algorithm can be summarized as follows:

FIND-MAXIMUM-SUBARRAY (4, low, high)

1

2
3
4

=)

—_—
— O O 0

if high == low

return (low, high, A[low]) // base case: only one element

else mid = |(low + high)/2]

(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (4, low, mid)

(right-low, right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (A, mid + 1, high)

(cross-low, cross-high, cross-sum) =
FIND-MAX-CROSSING-SUBARRAY (A4, low, mid, high)

if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high, left-sum)

elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum)

else return (cross-low, cross-high, cross-sum)

v
-
~
.

s
o)

RS

Maximum Subarray Problem

o The recursive algorithm can be summarized as follows:

FIND-MAXIMUM-SUBARRAY (4, low, high)

1

2
3
4

=)

—_—
— O O 0

if high == low

return (low, high, A[low]) ©(1) // base case: only one element

else mid = |(low + high)/2]

(left-low, left-high, left-sum) =
FIND-MAXIMUM-SUBARRAY (4, low, mid) T(n/2)
(right-low, right-high, right-sum) =
FIND-MAXIMUM-SUBARRAY (A4, mid + 1, high) T(n/2)
(cross-low, cross-high, cross-sum) =
FIND-MAX-CROSSING-SUBARRAY (A4, low, mid, high) o)
if left-sum > right-sum and left-sum > cross-sum
return (left-low, left-high, left-sum)
elseif right-sum > left-sum and right-sum > cross-sum
return (right-low, right-high, right-sum) o(1)
else return (cross-low, cross-high, cross-sum)

v
-
~

. ’“""‘ .
‘™ Maximum Subarray Problem

o For the running time of the recursive algorithm, we can run:

_Jeq) ifn=1
Tn) = {2T(n/2) 1O ifn>1

EECS 3101 - Design and Analysis of Algorithms

19 / 29

v

PN
~

‘ L]
Y Maximum Subarray Problem

o For the running time of the recursive algorithm, we can run:

_Jeq) ifn=1
Tn) = {2T(n/2) 1O ifn>1

o The recurrence has the same form as that for MergeSort, and thus
it has the same solution T(n) = ©(nlog n).

o This algorithm is substantially faster than any of the brute-force
methods. It required some cleverness, and the programming is a
little more complicated — but the payoff is large.

v
-
~

" Divide & Conquer Paradigm

o The divide and conquer paradigm is important general technique
for designing algorithms. In general, it follows the steps:

o Divide: divide the problem into subproblems and recursively solve
the subproblems

o Conquer: combine solutions to subproblems to get solution to
original problem

v

PN
~

)" Divide & Conquer Paradigm

o The divide and conquer paradigm is important general technique
for designing algorithms. In general, it follows the steps:
o Divide: divide the problem into subproblems and recursively solve
the subproblems
o In merge sort, recursively sort two half-arrays on the left/right.

o Conquer: combine solutions to subproblems to get solution to
original problem

o In merge sort, merge the two sorted half-arrays.

v

PN
~

" Divide & Conquer Paradigm

o The divide and conquer paradigm is important general technique
for designing algorithms. In general, it follows the steps:

o Divide: divide the problem into subproblems and recursively solve
the subproblems
o In merge sort, recursively sort two half-arrays on the left/right.
o In maximum sub-array problem, recursively find the optimal
sub-arrays that are entirely in the left/right half-arrays.
o Conquer: combine solutions to subproblems to get solution to
original problem
o In merge sort, merge the two sorted half-arrays.
o In maximum sub-array problem, find the optimal sub-array that
crosses mid and take the best sub-array among three candidates.

v
PN
~

V ‘ - L] L] L]
W™ Matrix Multiplication

o Consider two n x n matrices A and B.

o The matrix product C = A x B of two n x n matrices is defined as
the n x n matrix that has the coefficient

n
Gj= E ai k- b
k=1

1 12 a3 a4 by bz bz big a1l a2 a3 Ca4
a1 A a3 a4 o by1 b22 b2z baa| _ |@1 @2 @3 Q4
431 432 a33 34 bs1 b3p b3z b3a @1 G2 G3 Gg

241 42 a3 44 by baz baz bag Ca1 G2 a3 Cag

v
PN
~

. ‘ - L] L] L]
W™ Matrix Multiplication

o Consider two n x n matrices A and B.

o The matrix product C = A x B of two n x n matrices is defined as
the n x n matrix that has the coefficient

n
Gj= E ai k- brj
k=1

11 d12 13 14 b1 bip b1z big 1 a2 a3 Ci4
21 &22 D3 D4 bo1 bz baz baa| _ |21 @2 @3 @4
a1 a2 a3 asa| X by, bsp b3z bsa| |1 G2 @3 Caa
41 Aa2 43 A4 b1 bap baz bag Ca1 Ca2 Ca3 Cas

1= aibiy +aiob1 +ai3bz1 +aiabg;

v
-
~

. ‘ - L] L] L]
W™ Matrix Multiplication

o Consider two n x n matrices A and B.

o The matrix product C = A x B of two n x n matrices is defined as
the n x n matrix that has the coefficient

n
Gj= E ai k- brj
k=1

a1 a12 a3 dia b1’1 blyg b3 b1,4 a1 a2 s Ca
a1 d22 a23 a4 b1 bap baz baa| _ |21 @2 @3 Cu4
a1 a2 a3 asal| X bs1 bsp bsz bsa| |1 G2 3z G4
ds1 a2 43 a44 by1 bap baz bag C41 Ca2 a3 Cag

3= asibiz +asobys +asabzs +asabys

v
PN
1

; ‘ - L] L] L]
W™ Matrix Multiplication

o The straightforward algorithm takes ©(n3) time.

SQUARE-MATRIX-MULTIPLY (4, B)

1 n = A.rows

2 let C be anew n X n matrix

3 fori = 1ton

4 for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = cij + aix - by
8 return C

EECS 3101 - Design and Analysis of Algorithms

v
PN
N\

\

: ‘ - L] L] -
W™ Matrix Multiplication

o The straightforward algorithm takes ©(n3) time.

SQUARE-MATRIX-MULTIPLY (4, B)

1 n = A.rows

2 let C be anew n X n matrix

3 fori = 1ton

4 for j = 1ton

5 Cij = 0

6 fork = 1ton

7 cij = cij + aix - by
8 return C

o Can we design an algorithm with time o(n%)?

v

PN
N\
.

; ‘ - L] L] L]
W™ Matrix Multiplication

o Partition each of A, B, and C into four n/2 x n/2 matrices. We can
write the product A x B = C as follows:

AL A B B _ Ay X B+ Ay X Bz Al X By + Ay x By
A Ay

B3 By As X By + Ay X B3 As X By + A4 X By

EECS 3101 - Design and Analysis of Algorithms

v
-
~

‘ L] L] L] L]
W™ Matrix Multiplication

o Partition each of A, B, and C into four n/2 x n/2 matrices. We can
write the product A x B = C as follows:

Al A o B B _ A x By + A, x Bs A1l X By + Ay x By
A3 Ay By By A3 x B+ A, x Bs A3 X By + Ag X By

a1 d12 a13 aia bii bia bis bia €11 €12 €13 Cia

a1 Ao a3 A4 b1 baa bas baa €21 Ca2 €23 C2a

31 832 a3 d3a| X b31 bsa b3z bsa| = €31 €32 €33 C34

41 A4 A43 aAga bsy bap baz baa C41 Can C43 Cag
A B c

EECS 3101 - Design and Analysis of Algorithms

v
-
~

< ‘ L] L] L] L]
oY Matrix Multiplication
o Partition each of A, B, and C into four n/2 x n/2 matrices. We can
write the product A x B = C as follows:

A A B B _ Al X B+ A, x B3 A1 X By + Ay x By
As A

By B, A X Bi+As x By As x B+ Ay x By

a1 a2 a3 A bii bia bis bia €11 €12 €13 Cia

a1 a2 a3 a4 b1 baa bas baa €21 Ca2 €23 C2a

31 832 a3 d3a| X b31 bsa b3z bsa| = €31 €32 €33 C34

as1 a2 43 Aaa by1 bap baz baa €41 Ca2 C43 Cag
A B c

o How can we use this observation to design a D&Q algorithm?

v
PN
~

‘ L] L] L] L]
W™ Matrix Multiplication

o We have 8 smaller matrix multiplications and 4 additions.

Al A % B B _ Al X B+ Ay xXBs Al X By + Ay x By
Az Ag B3 By As X By + Ay X B3 As X By + Ay X By

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)

1 n = A.rows

2 let C be anew n X n matrix

3 ifn==1

4 ¢ = an by

5 else partition A, B, and C as in equations (4.9)

6 Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, , B1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A; , B3)

7 Ci; = SQUARE-MATRIX-MULTIPLY-RECURSIVE(A, , B 3)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5 , By)

8 C>; = SQUARE-MATRIX-MULTIPLY-RECURSIVE(A3 , By)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4 , B3)

9 C, = SQUARE-MATRIX-MULTIPLY-RECURSIVE(A3, B2)

+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A 4, By)
10 return C

v
-
~

‘ L] L] L] L]
W™ Matrix Multiplication

o We have 8 smaller matrix multiplications and 4 additions.

AL A % B B _ Ay X B+ Ay X B3 Al X By + Ay x By
As Ay Bs B, A3 X By + Ay X Bs A3 X By + Ay X By

SQUARE-MATRIX-MULTIPLY-RECURSIVE (4, B)
n = A.rows
let C be anew n x n matrix
ifn==1
¢ = an by
else partition A, B, and C as in equations (4.9)
Cy; = SQUARE-MATRIX-MULTIPLY-RECURSIVE (A, , B1)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A; , B3)
7 Ci; = SQUARE-MATRIX-MULTIPLY-RECURSIVE(A, , B 3)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A5 , By)
8 C>; = SQUARE-MATRIX-MULTIPLY-RECURSIVE(A3 , By)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE (A4 , B3)
9 C, = SQUARE-MATRIX-MULTIPLY-RECURSIVE(A3, B2)
+ SQUARE-MATRIX-MULTIPLY-RECURSIVE(A 4, By)
10 return C

AU B LN —

o What is the running time of this algorithm?

v
PN
1

.
\sz

: ‘ - L] L] L]
WY Matrix Multiplication
o We have 8 smaller matrix multiplications and 4 additions.

AL Az o B B _ Ay X By + Ay x B3 A1 X By + Ax x By
Az A B; Ba Az X By +A; x Bz A3 X By + Ay x By

o For the time complexity T(n) we can write:

T("):{iT(i:/z,z:?(n) if n>2

v
PN
~

1 V ‘ - L] L] L]
W™ Matrix Multiplication
o We have 8 smaller matrix multiplications and 4 additions.

AL Az o B B _ Ay X By + Ay x B3 A1 X By + Ax x By
Az A B; Ba Az X By +A; x Bz A3 X By + Ay x By

o For the time complexity T(n) we can write:
c if n=1

() {8T(n/2) +O(m?) if n>2

o This is Case 1 of Master theorem; the time complexity is
n'e28 = 9(n?).

v
PN
~

‘ L] L] L] L]
WY Matrix Multiplication

o We have 8 smaller matrix multiplications and 4 additions.

AL Az o B B _ Ay X By + Ay x B3 A1 X By + Ax x By
Az A B; Ba Az X By +A; x Bz A3 X By + Ay x By

o For the time complexity T(n) we can write:

T(n):{ir(i:/zgi?(n) if n>2

o This is Case 1 of Master theorem; the time complexity is
n'e28 = 9(n?).

o How can we improve this? Strassen’s Algorithm

v
PN

. ”A""‘ .
WYY Strassen’s Algorithm

o To get A x B, it suffices to find C;, G, G3, and G

G G
A A B B _ Al X B+ Ay x B3 Al X By +Ay; x By
Az Ag By By As X Bi+ Ay x Bs Az X By + Aq x By
G G

EECS 3101 - Design and Analysis of Algorithms

v

PN
~
.

V A y .
‘™) Strassen’s Algorithm

o To get A x B, it suffices to find C;, G, G3, and G

G G
A A B B _ A X B+ A xBs A1 X By+ A x By
A; Ag B; Bs A3 X By +As X B3 A; X By +As X By
G G

o Divide: compute the following seven n/2 x n/2 matrices by calling
the multiplication function recursively seven times.

P] = A1 X (32 — B4)

Py = (A1 +A2) x By

P; = (A3 +A) x B

P4 = A4 X (B3 == Bl)

Ps = (A1 + A4) X (B1+ Bs)
P = (A2 = A4) X (B3 + B4)
Py = (A1 — As) x (B1 + Ba)

v
PN
~

- .
‘™) Strassen’s Algorithm

o Conquer: Use matrices P; to compute C;, G, G3, and Cy.

G
|:A1 Az] [Bl 32] — [AL xBi+A xB;s
Az A B3 B A3 x By + Ay x B3
G

Py = AL x (Bs — By)

P, = (A1+A2) X By

P; =(A3+As) x B

Py = As x (B3 — BY)

Ps = (A1 + As) x (B1 + Bs)
Ps = (A — As) (Bs + Bs)
Pr= (A1 — A3) x (Bi + Ba)

EECS 3101 - Design and Analysis of Alg

G

A1 X By + Ay X By
A3 X By + Ay x By
G

rithms

v

PN
~

- .
‘™) Strassen’s Algorithm

o Conquer: Use matrices P; to compute C;, G, G3, and Cy.

Cl C2
|:A1 Az] [Bl 52] _ [AL xBi+Ay xBys A xBy+Ayx By
Az Ag By Bs A3 X B+ A4 x Bs A3z X By + Ag x By
C3 C4

Py = AL x (Bs — By)

P, = (A1+A2) X By

P; =(A3+As) x B

Py = As x (B3 — BY)

Ps = (A1 + As) x (B1 + Bs)
Ps = (A — As) (Bs + Bs)
Pr = (A1 — As) x (Bi + Ba)

L =Ps + Py — Py + Ps
=(A1B1 + A1By + AyB1 + A4By)+

(A4Bs — A4By) +

(—=A1Bs — A2Ba) +

(A2B3 + A2By — AyB3 — Ay4By)
= AiB1 + AxBs3

v
PN
~

\gl=

- .
) Strassen’s Algorithm

o Conquer: Use matrices P; to compute C;, G, G3, and Cy.

A A By
Az Ag Bs

G
32] — |A1 xBi+A xBs
By A3 X B+ A4 x Bs
G

Pr= Ay x (Bs — By)

Py= (AL +A) x By

P; =(A3+As) x B

Py = Aq x (Bs — By)

Ps = (A1 + A4) x (B1 + Bs)
Ps = (A — As) (Bs + Bs)
P71 =(A1—As) x (B + B)

G =Ps + Ps — P2+ Pg
=(A1B1 + A1By + AyB1 + AyBy)+
(AsB3 — AsBr) +
(—=A1Bs — A2Ba) +
(A2B3 + A2By — AyB3 — Ay4By)
= A1B1 + ABs

G
A1 X By + Ay X By
A3 X By + Ay x By
G

G =P + P
= (AlBQ — AlB4) +
(A1Bs + A2Ba)
=A1B + AxBy

v
PN
~

= A y .
‘™) Strassen’s Algorithm

o Conquer: Use matrices P; to compute C;, G, G3, and Cy.

Al Ay
Az Ay

B
Bs

G
B, _ [AL xBi+A xBs
By A3 X B+ A4 x B3
G

G =Ps+Py— P2+ Pg

Py =A% (By — By)

P, = (A1 4+ Ay) X Ba

Py =(A3+As) x B

Py = Ay % (Bs — By)

Ps = (A1 + A4) x (B1+ Ba)
Ps = (A — As) (B + Ba)
P = (A1 — A3) x (B1 + B)

=(A1B1 + A1By + Ay By + A4By)+
(AsB3 — AsBr) +
(=A1Bs — A2Ba) +
(A2Bs + AxBy — A4Bs — AqBs)
= A1B1 + AB3

G =P + Py
= (A3B1 + A4B1) +

(A4B3 — A4By)
= (A3By + A4Bs)

G

A1 X By + Ay X By
A3 X By + Ay x By

(@}
G =P+ P
= (A1By — A1By) +
(A1By + ArBy)
=A1B + ABy

v
PN
~

. A y .
‘™) Strassen’s Algorithm

o Conquer: Use matrices P; to compute C;, G, 3, and Cy.

G G
[Al Az] [Bl 52] _ [Al x By + Ay x B3 Al X By+ Ax x By
Az A B3 By A3 X By + A4 x B3 A3 X By+ Ay x By
G Cy
G =Ps+Py— P+ Ps
=(A1By + A1By + Ay B1 + A4Ba)+ G =P+ P
(A4Bs — AyBy) + = (AiBy — AiBs) +
Py = A; x (32 _ 54) (7/4134 — A254) + (A134 + AzB4)
Py= (A1 +A) x By (A2B3 + AxBs — AsBs — AsBs) = A1By + AxB4

Py = (As+Ad) x B = AiB1 + AB3
Py = A % (Bs — By)

Ps = (A1 + As) x (B + Bs)
Ps=(A—A)x(Bs + Bi) |c; =p; + P,
Pr = (A1 —A3) x (B1 + By)

CG =Ps + P —P3 — P
=(A1B1 + A1Bs + AsBy + AsBs) +

= (AsB1 + ABy) + (ALBs— ALBy) +
(A4B3 — A4By) (—A3B1 — AuBr) +
= (A3B1 + AyB3) (=A1B1 — A1By + A3B1 + A3B)

= A3By + AuBy

v

PN
N\

‘ .
) Strassen’s Algorithm Summary

N
NN
o We make 7 recursive calls to multiply matrices of size n/2 x n/2.

o The additional work involves adding/subtracting matrices of size
n/2 x n/2 several times; this takes ©(n?).

Cl CQ
A A B B _ Al X B+ Ay x B3 Al X By+Axx By
Az Ay B; Bs A3 X B+ A4 x B3 A3 X By + Ay x By
G Cy

Py = A % (By — By)
P, = (A1 4+ Ay) X Ba

Py = (As+Ad) x By G=Ps+Ps—Pr+Ps

Py = Ay x (Bs — By) G=P + P
Ps = (A1 + A4) x (B1+ Ba) G= P+ P
Ps = (A2 — Aq) X (B3 + Ba) C=Ps + P — P3 — Py

P7 = (A1 — A3) x (B1 + By)

7T(n/2)+0O(n?) if n>2

The time complexity of the Strassen's algorithm is: T(n) = -)
c if n=

This is case 1 of Master theorem, and T(n) = ©(n'827)

_

PN
~

1 (hh‘
WY Matrix Multiplication Summary

o A naive iterative algorithm runs in ©(n®).

EECS 3101 - Design and Analysis of Algorithms

29 / 29

v
PN
N\

1 ; ‘ Ll L] L] -
WY Matrix Multiplication Summary

o A naive iterative algorithm runs in ©(n®).

o A simple D&Q does not improve the running time (it stays ©(n?%)).

EECS 3101 - Design and Analysis of Algorithms

v
-
~

1 V ‘ Ll L] L] -
WY Matrix Multiplication Summary

o A naive iterative algorithm runs in ©(n®).
o A simple D&Q does not improve the running time (it stays ©(n?%)).

o Strassen algorithm is a D&Q algorithm with improved running time
of O(n'°e27).

v

PN
~

‘ - L] L] -
Y Matrix Multiplication Summary

A naive iterative algorithm runs in ©(n?).

A simple D&Q does not improve the running time (it stays ©(n?)).

o Strassen algorithm is a D&Q algorithm with improved running time
of O(n'°e27).

o The best existing algorithm has running time O(n?37%) [Alman
2020

o We know we cannot do better than Q(n?) (why?)
o Finding the best running time is still an open problem!

