
EECS 3101 - Design and Analysis of

Algorithms

Shahin Kamali

Topic 2 - Divide & Conquer Technique

and Recursion

1 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Overview

what is recursion?

recursion vs. iteration

analyzing the running time of recursive algorithms

2 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Recursion

The term recursion refers to a method that calls itself.

Recursion is a powerful programming technique that results in
e�cient algorithms with concise descriptions.

3 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Recursion example

Suppose we replace every line segment by eight shorter line
segments according to the following geometric rule:

By applying this rule recursively we obtain the following �fractal�:

4 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Recursion example

Suppose we replace every line segment by eight shorter line
segments according to the following geometric rule:

By applying this rule recursively we obtain the following �fractal�:

4 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Fractals

Fractals are beautiful �creatures� often built on the recursion
principle:

5 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Iteration versus Recursion

An iterative algorithm for solving a problem P makes use of a loop
to compute a sequence of analogous steps that solve P.

n! = n(n − 1)(n − 2) . . . 3 · 2 · 1

A recursive algorithm for solving a problem P computes one step
and calls itself to solve the remaining subproblem.

n! =

{
1 n ≤ 1

n(n − 1)! n > 1

6 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Iteration versus Recursion

An iterative algorithm for solving a problem P makes use of a loop
to compute a sequence of analogous steps that solve P.

n! = n(n − 1)(n − 2) . . . 3 · 2 · 1

A recursive algorithm for solving a problem P computes one step
and calls itself to solve the remaining subproblem.

n! =

{
1 n ≤ 1

n(n − 1)! n > 1

6 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Iteration versus Recursion

An iterative algorithm for solving a problem P makes use of a loop
to compute a sequence of analogous steps that solve P.

n! = n(n − 1)(n − 2) . . . 3 · 2 · 1

A recursive algorithm for solving a problem P computes one step
and calls itself to solve the remaining subproblem.

n! =

{
1 n ≤ 1

n(n − 1)! n > 1

6 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Iteration versus Recursion

An iterative algorithm for solving a problem P makes use of a loop
to compute a sequence of analogous steps that solve P.

n! = n(n − 1)(n − 2) . . . 3 · 2 · 1

A recursive algorithm for solving a problem P computes one step
and calls itself to solve the remaining subproblem.

n! =

{
1 n ≤ 1

n(n − 1)! n > 1

6 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Iteration versus Recursion

an iterative algorithm for computing n!:

FactorialIterative (n)
1. result ← 1
2. for i ← 1 to n do

3. result ← result ∗ i
4. return result

This clearly takes Θ(n) time.

7 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Iteration versus Recursion

a recursive algorithm for computing n!:

FactorialRecursive (n)
1. result ← 1
2. if n > 1
3. result ← n∗ FactorialRecursive(n − 1)
4. return result

For the time complexity, we can write

f (n) = c+ f (n−1) = 2c+ f (n−2) = . . . = c(n−1)+ f (1) = Θ(n)

For the factorial problem, both iterative and recursive functions run
in time linear to n.

8 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Fibonacci numbers

The Fibonacci numbers are the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

The �rst two numbers in the sequence are 0 and 1.

Each succeeding number (third, fourth, ...) is de�ne as the sum of
the two numbers that precede it in the sequence.

That is, Fibonacci numbers are de�ned recursively:

fib(n) =


0 n = 0

1 n = 1

fib(n) + fib(n − 1) n > 1

9 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Fibonacci numbers

The Fibonacci numbers are the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

The �rst two numbers in the sequence are 0 and 1.

Each succeeding number (third, fourth, ...) is de�ne as the sum of
the two numbers that precede it in the sequence.

That is, Fibonacci numbers are de�ned recursively:

fib(n) =


0 n = 0

1 n = 1

fib(n) + fib(n − 1) n > 1

9 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Fibonacci numbers

The Fibonacci numbers are the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

The �rst two numbers in the sequence are 0 and 1.

Each succeeding number (third, fourth, ...) is de�ne as the sum of
the two numbers that precede it in the sequence.

That is, Fibonacci numbers are de�ned recursively:

fib(n) =


0 n = 0

1 n = 1

fib(n) + fib(n − 1) n > 1

9 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



A Recursive Solution

�b (n)
1. result ← 0
2. if n ≤ 1
3. result ← 1
4. else

5. result ← fib(n − 1) + fib(n − 2)
6. return result

For the running time of this algorithm, we can write:

t(n) = t(n − 1) + t(n − 2) ≥ 2T (n − 2) ≥ 4T (n − 4) ≥ 8T (n − 6) ≥ . . .

≥ 2kT (n − 2k) = Ω(2n/2)

10 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



A Recursive Solution

�b (n)
1. result ← 0
2. if n ≤ 1
3. result ← 1
4. else

5. result ← fib(n − 1) + fib(n − 2)
6. return result

For the running time of this algorithm, we can write:

t(n) = t(n − 1) + t(n − 2) ≥ 2T (n − 2) ≥ 4T (n − 4) ≥ 8T (n − 6) ≥ . . .

≥ 2kT (n − 2k) = Ω(2n/2)

10 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Recursion Tree

This implementation of Fibonacci numbers is ine�cient because it
recomputes values that have already been found.

11 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



E�cient Fibonacci Computation

A more e�cient solution can be obtained by storing Fibonacci
numbers that have already been computed in an array.

�bo (n)
1. F ← an array of size n
2. F [1]← 1 F [2]← 1
3. for i = 3 to n
4. F [i ]← F [i − 1] + F [i − 2]
return F [n]

This runs in Θ(n)

12 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

given an array A of n numbers, �nd the a contiguous subarray
whose sum has the largest value!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13 -3 -25 20 -3 -16 -23 18 20 -7 12 -5 -22 15 -4 7

In this example, it is 18, 20,−7, 12 for a sum of 43.

We denote the best solution with a triplet (lo, hi , sum), indicating,
start index, end index, and sum of the numbers in the sub-array. In
this example, it would be (7, 10, 43)

Solution 1: try all possible sub-arrays! There are
(
n
2

)
= Θ(n2)

sub-arrays; thus the running time of this �Brute-Force" solution is
Ω(n2).

13 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

given an array A of n numbers, �nd the a contiguous subarray
whose sum has the largest value!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13 -3 -25 20 -3 -16 -23 18 20 -7 12 -5 -22 15 -4 7

In this example, it is 18, 20,−7, 12 for a sum of 43.
We denote the best solution with a triplet (lo, hi , sum), indicating,
start index, end index, and sum of the numbers in the sub-array. In
this example, it would be (7, 10, 43)

Solution 1: try all possible sub-arrays! There are
(
n
2

)
= Θ(n2)

sub-arrays; thus the running time of this �Brute-Force" solution is
Ω(n2).

13 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

given an array A of n numbers, �nd the a contiguous subarray
whose sum has the largest value!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13 -3 -25 20 -3 -16 -23 18 20 -7 12 -5 -22 15 -4 7

In this example, it is 18, 20,−7, 12 for a sum of 43.
We denote the best solution with a triplet (lo, hi , sum), indicating,
start index, end index, and sum of the numbers in the sub-array. In
this example, it would be (7, 10, 43)

Solution 1: try all possible sub-arrays! There are
(
n
2

)
= Θ(n2)

sub-arrays; thus the running time of this �Brute-Force" solution is
Ω(n2).

13 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

Solution 2: Use a divide and conquer approach!

Suppose we want to �nd the sub-array with maximum sum from the
input array from index low to index hi . There are three possibilities:

It is entirely in the left half of the range [low , hi ]
It is entirely in the right half of the range [low , hi ]
It straddles the midpoint mid = ⌊(low + high)/2 of the range.

We compute the optimal sub-array for all possible three cases and
take the maximum!

low highmid

entirely in [low , mid ] entirely in [mid + 1, high]

includes the mid point

14 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

The recursive Find-Max-SubArray(A, low , high) �nds the sub array
of A in the range [low , high] with maximum sum.

The output is (l , h, sum) and indicate the low-index, high-index, and
the sum of the sub-array.
In the base, we have low = high, and the output is
(low , high,A[low ]).

First, �nd the optimal solution that is entirely on the left:

recursively call Find-Max-SubArray(A, low ,mid)

Second, �nd the optimal solution that is entirely on the right:

recursively call Find-Max-SubArray(A,mid + 1, high)

low highmid

entirely in [low , mid ] entirely in [mid + 1, high]

includes the mid point

15 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

The recursive Find-Max-SubArray(A, low , high) �nds the sub array
of A in the range [low , high] with maximum sum.

The output is (l , h, sum) and indicate the low-index, high-index, and
the sum of the sub-array.

In the base, we have low = high, and the output is
(low , high,A[low ]).

First, �nd the optimal solution that is entirely on the left:

recursively call Find-Max-SubArray(A, low ,mid)

Second, �nd the optimal solution that is entirely on the right:

recursively call Find-Max-SubArray(A,mid + 1, high)

low highmid

entirely in [low , mid ] entirely in [mid + 1, high]

includes the mid point

15 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

The recursive Find-Max-SubArray(A, low , high) �nds the sub array
of A in the range [low , high] with maximum sum.

The output is (l , h, sum) and indicate the low-index, high-index, and
the sum of the sub-array.
In the base, we have low = high, and the output is
(low , high,A[low ]).

First, �nd the optimal solution that is entirely on the left:

recursively call Find-Max-SubArray(A, low ,mid)

Second, �nd the optimal solution that is entirely on the right:

recursively call Find-Max-SubArray(A,mid + 1, high)

low highmid

entirely in [low , mid ] entirely in [mid + 1, high]

includes the mid point

15 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

The recursive Find-Max-SubArray(A, low , high) �nds the sub array
of A in the range [low , high] with maximum sum.

The output is (l , h, sum) and indicate the low-index, high-index, and
the sum of the sub-array.
In the base, we have low = high, and the output is
(low , high,A[low ]).

First, �nd the optimal solution that is entirely on the left:

recursively call Find-Max-SubArray(A, low ,mid)

Second, �nd the optimal solution that is entirely on the right:

recursively call Find-Max-SubArray(A,mid + 1, high)

low highmid

entirely in [low , mid ] entirely in [mid + 1, high]

includes the mid point

15 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

Finally, �nd the sub-array with maximum sum, subject to it
containing mid .

The subarray is made up of A[i ,mid ] and A[mid + 1, j ] for some
i ∈ [low ,mid ] and j ∈ [mid + 1, high].
Use a linear scan to �nd the values of i and j that give the
sub-arrays with largest sums!

This can be done in linear time because one end (namely mid) of
the subarrays is �xed.

low highmid

A [i , mid ] A[mid + 1, j]

i j

16 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

Finding the sub-array with maximum sum, subject to it containing
mid .

low highmidi j

3 -6 8 -1 -2 2 5 1 -2 -2 3 -1

i :

sum : 0

leftSum : −∞
maxLeft :

17 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

Finding the sub-array with maximum sum, subject to it containing
mid .

low highmidi j

3 -6 8 -1 -2 2 5 1 -2 -2 3 -1

i : mid

sum : 2

leftSum : 2

maxLeft : mid

17 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

Finding the sub-array with maximum sum, subject to it containing
mid .

low highmidi j

3 -6 8 -1 -2 2 5 1 -2 -2 3 -1

i : mid − 1

sum : 0

leftSum : 2

maxLeft : mid

17 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

Finding the sub-array with maximum sum, subject to it containing
mid .

low highmidi j

3 -6 8 -1 -2 2 5 1 -2 -2 3 -1

i : mid − 2

sum : −1

leftSum : 2

maxLeft : mid

17 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

Finding the sub-array with maximum sum, subject to it containing
mid .

low highmidi j

3 -6 8 -1 -2 2 5 1 -2 -2 3 -1

i : mid − 3

sum : 7

leftSum : 7

maxLeft : mid−3

17 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

Finding the sub-array with maximum sum, subject to it containing
mid .

low highmidi j

3 -6 8 -1 -2 2 5 1 -2 -2 3 -1

i : mid − 4

sum : 1

leftSum : 7

maxLeft : mid − 3

17 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

Finding the sub-array with maximum sum, subject to it containing
mid .

low highmidi j

3 -6 8 -1 -2 2 5 1 -2 -2 3 -1

i : mid − 5

sum : 4

leftSum : 7

maxLeft : mid − 3

17 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

Finding the sub-array with maximum sum, subject to it containing
mid .

low highmidi j

3 -6 8 -1 -2 2 5 1 -2 -2 3 -1

i : mid − 5

sum : 4

leftSum : 7

maxLeft : mid − 3

j :

sum : 0

rightSum : −∞
maxRight :

17 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

Finding the sub-array with maximum sum, subject to it containing
mid .

low highmidi j

3 -6 8 -1 -2 2 5 1 -2 -2 3 -1

i : mid − 5

sum : 4

leftSum : 7

maxLeft : mid − 3

j : mid + 1

sum : 5

rightSum : 5

maxRight : mid +1

17 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

Finding the sub-array with maximum sum, subject to it containing
mid .

low highmidi j

3 -6 8 -1 -2 2 5 1 -2 -2 3 -1

i : mid − 5

sum : 4

leftSum : 7

maxLeft : mid − 3

j : mid + 2

sum : 6

rightSum : 6

maxRight : mid +2

17 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

Finding the sub-array with maximum sum, subject to it containing
mid .

low highmidi j

3 -6 8 -1 -2 2 5 1 -2 -2 3 -1

i : mid − 5

sum : 4

leftSum : 7

maxLeft : mid − 3

j : mid + 3

sum : 4

rightSum : 6

maxRight : mid +2

17 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

Finding the sub-array with maximum sum, subject to it containing
mid .

low highmidi j

3 -6 8 -1 -2 2 5 1 -2 -2 3 -1

i : mid − 5

sum : 4

leftSum : 7

maxLeft : mid − 3

j : mid + 4

sum : 2

rightSum : 6

maxRight : mid +2

17 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

Finding the sub-array with maximum sum, subject to it containing
mid .

low highmidi j

3 -6 8 -1 -2 2 5 1 -2 -2 3 -1

i : mid − 5

sum : 4

leftSum : 7

maxLeft : mid − 3

j : mid + 4

sum : 5

rightSum : 6

maxRight : mid +2

17 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

Finding the sub-array with maximum sum, subject to it containing
mid .

low highmidi j

3 -6 8 -1 -2 2 5 1 -2 -2 3 -1

i : mid − 5

sum : 4

leftSum : 7

maxLeft : mid − 3

j : mid + 5

sum : 4

rightSum : 6

maxRight : mid +2

17 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

Finding the sub-array with maximum sum, subject to it containing
mid .

low highmidi j

3 -6 8 -1 -2 2 5 1 -2 -2 3 -1

mid − 3 mid + 2

7+ 6 = 13

i : mid − 5

sum : 4

leftSum : 7

maxLeft : mid − 3

j : mid + 5

sum : 4

rightSum : 6

maxRight : mid +2

17 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

The recursive algorithm can be summarized as follows:

18 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

The recursive algorithm can be summarized as follows:

 T(n/2)

T(n/2)

 Θ(n)

 Θ(1)

 Θ(1)

18 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

For the running time of the recursive algorithm, we can run:

T (n) =

{
Θ(1) if n = 1

2T (n/2) + Θ(n) if n > 1

The recurrence has the same form as that for MergeSort, and thus
it has the same solution T (n) = Θ(n log n).

This algorithm is substantially faster than any of the brute-force
methods. It required some cleverness, and the programming is a
little more complicated � but the payo� is large.

19 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Maximum Subarray Problem

For the running time of the recursive algorithm, we can run:

T (n) =

{
Θ(1) if n = 1

2T (n/2) + Θ(n) if n > 1

The recurrence has the same form as that for MergeSort, and thus
it has the same solution T (n) = Θ(n log n).

This algorithm is substantially faster than any of the brute-force
methods. It required some cleverness, and the programming is a
little more complicated � but the payo� is large.

19 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Divide & Conquer Paradigm

The divide and conquer paradigm is important general technique
for designing algorithms. In general, it follows the steps:

Divide: divide the problem into subproblems and recursively solve
the subproblems

In merge sort, recursively sort two half-arrays on the left/right.
In maximum sub-array problem, recursively �nd the optimal
sub-arrays that are entirely in the left/right half-arrays.

Conquer: combine solutions to subproblems to get solution to
original problem

In merge sort, merge the two sorted half-arrays.
In maximum sub-array problem, �nd the optimal sub-array that
crosses mid and take the best sub-array among three candidates.

20 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Divide & Conquer Paradigm

The divide and conquer paradigm is important general technique
for designing algorithms. In general, it follows the steps:

Divide: divide the problem into subproblems and recursively solve
the subproblems

In merge sort, recursively sort two half-arrays on the left/right.

In maximum sub-array problem, recursively �nd the optimal
sub-arrays that are entirely in the left/right half-arrays.

Conquer: combine solutions to subproblems to get solution to
original problem

In merge sort, merge the two sorted half-arrays.

In maximum sub-array problem, �nd the optimal sub-array that
crosses mid and take the best sub-array among three candidates.

20 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Divide & Conquer Paradigm

The divide and conquer paradigm is important general technique
for designing algorithms. In general, it follows the steps:

Divide: divide the problem into subproblems and recursively solve
the subproblems

In merge sort, recursively sort two half-arrays on the left/right.
In maximum sub-array problem, recursively �nd the optimal
sub-arrays that are entirely in the left/right half-arrays.

Conquer: combine solutions to subproblems to get solution to
original problem

In merge sort, merge the two sorted half-arrays.
In maximum sub-array problem, �nd the optimal sub-array that
crosses mid and take the best sub-array among three candidates.

20 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Matrix Multiplication

Consider two n × n matrices A and B.

The matrix product C = A× B of two n × n matrices is de�ned as
the n × n matrix that has the coe�cient

ci,j =
n∑

k=1

ai,k · bk,j


a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4



b1,1 b1,2 b1,3 b1,4
b2,1 b2,2 b2,3 b2,4
b3,1 b3,2 b3,3 b3,4
b4,1 b4,2 b4,3 b4,4

×


c1,1 c1,2 c1,3 c1,4
c2,1 c2,2 c2,3 c2,4
c3,1 c3,2 c3,3 c3,4
c4,1 c4,2 c4,3 c4,4

=

A B C

21 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Matrix Multiplication

Consider two n × n matrices A and B.

The matrix product C = A× B of two n × n matrices is de�ned as
the n × n matrix that has the coe�cient

ci,j =
n∑

k=1

ai,k · bk,j


a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4



b1,1 b1,2 b1,3 b1,4
b2,1 b2,2 b2,3 b2,4
b3,1 b3,2 b3,3 b3,4
b4,1 b4,2 b4,3 b4,4

×


c1,1 c1,2 c1,3 c1,4
c2,1 c2,2 c2,3 c2,4
c3,1 c3,2 c3,3 c3,4
c4,1 c4,2 c4,3 c4,4

=

c1,1 = a1,1b1,1 + a1,2b2,1 + a1,3b3,1 + a1,4b4,1

21 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Matrix Multiplication

Consider two n × n matrices A and B.

The matrix product C = A× B of two n × n matrices is de�ned as
the n × n matrix that has the coe�cient

ci,j =
n∑

k=1

ai,k · bk,j


a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4



b1,1 b1,2 b1,3 b1,4
b2,1 b2,2 b2,3 b2,4
b3,1 b3,2 b3,3 b3,4
b4,1 b4,2 b4,3 b4,4

×


c1,1 c1,2 c1,3 c1,4
c2,1 c2,2 c2,3 c2,4
c3,1 c3,2 c3,3 c3,4
c4,1 c4,2 c4,3 c4,4

=

c4,3 = a4,1b1,3 + a4,2b2,3 + a4,3b3,3 + a4,4b4,3

21 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Matrix Multiplication

The straightforward algorithm takes Θ(n3) time.

Can we design an algorithm with time o(n3)?

22 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Matrix Multiplication

The straightforward algorithm takes Θ(n3) time.

Can we design an algorithm with time o(n3)?

22 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Matrix Multiplication

Partition each of A, B, and C into four n/2× n/2 matrices. We can
write the product A× B = C as follows:

[
A1 A2

A3 A4

] [
B1 B2

B3 B4

]
× =

[
A1 × B1 + A2 × B3 A1 × B2 + A2 × B4

A3 × B1 + A4 × B3 A3 × B2 + A4 × B4

]

How can we use this observation to design a D&Q algorithm?

23 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Matrix Multiplication

Partition each of A, B, and C into four n/2× n/2 matrices. We can
write the product A× B = C as follows:

[
A1 A2

A3 A4

] [
B1 B2

B3 B4

]
× =

[
A1 × B1 + A2 × B3 A1 × B2 + A2 × B4

A3 × B1 + A4 × B3 A3 × B2 + A4 × B4

]


a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4



b1,1 b1,2 b1,3 b1,4
b2,1 b2,2 b2,3 b2,4
b3,1 b3,2 b3,3 b3,4
b4,1 b4,2 b4,3 b4,4

×


c1,1 c1,2 c1,3 c1,4
c2,1 c2,2 c2,3 c2,4
c3,1 c3,2 c3,3 c3,4
c4,1 c4,2 c4,3 c4,4

=

A B C

How can we use this observation to design a D&Q algorithm?

23 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Matrix Multiplication

Partition each of A, B, and C into four n/2× n/2 matrices. We can
write the product A× B = C as follows:

[
A1 A2

A3 A4

] [
B1 B2

B3 B4

]
× =

[
A1 × B1 + A2 × B3 A1 × B2 + A2 × B4

A3 × B1 + A4 × B3 A3 × B2 + A4 × B4

]


a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4



b1,1 b1,2 b1,3 b1,4
b2,1 b2,2 b2,3 b2,4
b3,1 b3,2 b3,3 b3,4
b4,1 b4,2 b4,3 b4,4

×


c1,1 c1,2 c1,3 c1,4
c2,1 c2,2 c2,3 c2,4
c3,1 c3,2 c3,3 c3,4
c4,1 c4,2 c4,3 c4,4

=

A B C

How can we use this observation to design a D&Q algorithm?

23 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Matrix Multiplication

We have 8 smaller matrix multiplications and 4 additions.[
A1 A2

A3 A4

] [
B1 B2

B3 B4

]
× =

[
A1 × B1 + A2 × B3 A1 × B2 + A2 × B4

A3 × B1 + A4 × B3 A3 × B2 + A4 × B4

]

1 1

1

1

2

2

 2

4 4

4

4

3

3

2

3

3

What is the running time of this algorithm?

24 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Matrix Multiplication

We have 8 smaller matrix multiplications and 4 additions.[
A1 A2

A3 A4

] [
B1 B2

B3 B4

]
× =

[
A1 × B1 + A2 × B3 A1 × B2 + A2 × B4

A3 × B1 + A4 × B3 A3 × B2 + A4 × B4

]

1 1

1

1

2

2

 2

4 4

4

4

3

3

2

3

3

What is the running time of this algorithm?

24 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Matrix Multiplication

We have 8 smaller matrix multiplications and 4 additions.

[
A1 A2

A3 A4

] [
B1 B2

B3 B4

]
× =

[
A1 × B1 + A2 × B3 A1 × B2 + A2 × B4

A3 × B1 + A4 × B3 A3 × B2 + A4 × B4

]

For the time complexity T (n) we can write:

T (n) =

{
8T (n/2) + Θ(n2) if n ≥ 2

c if n = 1

This is Case 1 of Master theorem; the time complexity is
nlog2 8 = Θ(n3).

How can we improve this? Strassen's Algorithm

25 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Matrix Multiplication

We have 8 smaller matrix multiplications and 4 additions.

[
A1 A2

A3 A4

] [
B1 B2

B3 B4

]
× =

[
A1 × B1 + A2 × B3 A1 × B2 + A2 × B4

A3 × B1 + A4 × B3 A3 × B2 + A4 × B4

]

For the time complexity T (n) we can write:

T (n) =

{
8T (n/2) + Θ(n2) if n ≥ 2

c if n = 1

This is Case 1 of Master theorem; the time complexity is
nlog2 8 = Θ(n3).

How can we improve this? Strassen's Algorithm

25 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Matrix Multiplication

We have 8 smaller matrix multiplications and 4 additions.

[
A1 A2

A3 A4

] [
B1 B2

B3 B4

]
× =

[
A1 × B1 + A2 × B3 A1 × B2 + A2 × B4

A3 × B1 + A4 × B3 A3 × B2 + A4 × B4

]

For the time complexity T (n) we can write:

T (n) =

{
8T (n/2) + Θ(n2) if n ≥ 2

c if n = 1

This is Case 1 of Master theorem; the time complexity is
nlog2 8 = Θ(n3).

How can we improve this? Strassen's Algorithm

25 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Strassen's Algorithm

To get A× B, it su�ces to �nd C1,C2,C3, and C4

[
A1 A2

A3 A4

] [
B1 B2

B3 B4

]
× =

[
A1 × B1 + A2 × B3 A1 × B2 + A2 × B4

A3 × B1 + A4 × B3 A3 × B2 + A4 × B4

]C1 C2

C4C3

Divide: compute the following seven n/2× n/2 matrices by calling
the multiplication function recursively seven times.

26 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Strassen's Algorithm

To get A× B, it su�ces to �nd C1,C2,C3, and C4

[
A1 A2

A3 A4

] [
B1 B2

B3 B4

]
× =

[
A1 × B1 + A2 × B3 A1 × B2 + A2 × B4

A3 × B1 + A4 × B3 A3 × B2 + A4 × B4

]C1 C2

C4C3

Divide: compute the following seven n/2× n/2 matrices by calling
the multiplication function recursively seven times.

P1 = A1 × (B2 − B4)

P2 = (A1 + A2) × B4

P3 = (A3 + A4) × B1

P4 = A4 × (B3 − B1)

P5 = (A1 + A4)× (B1 + B4)

P6 = (A2 − A4)× (B3 + B4)

P7 = (A1 − A3)× (B1 + B2)

26 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Strassen's Algorithm

Conquer: Use matrices Pi to compute C1, C2, C3, and C4.

[
A1 A2

A3 A4

] [
B1 B2

B3 B4

]
× =

[
A1 × B1 + A2 × B3 A1 × B2 + A2 × B4

A3 × B1 + A4 × B3 A3 × B2 + A4 × B4

]C1 C2

C4C3

P1 = A1 × (B2 − B4)

P2 = (A1 + A2) × B4

P3 = (A3 + A4) × B1

P4 = A4 × (B3 − B1)

P5 = (A1 + A4)× (B1 + B4)

P6 = (A2 − A4)× (B3 + B4)

P7 = (A1 − A3)× (B1 + B2)

27 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Strassen's Algorithm

Conquer: Use matrices Pi to compute C1, C2, C3, and C4.

[
A1 A2

A3 A4

] [
B1 B2

B3 B4

]
× =

[
A1 × B1 + A2 × B3 A1 × B2 + A2 × B4

A3 × B1 + A4 × B3 A3 × B2 + A4 × B4

]C1 C2

C4C3

P1 = A1 × (B2 − B4)

P2 = (A1 + A2) × B4

P3 = (A3 + A4) × B1

P4 = A4 × (B3 − B1)

P5 = (A1 + A4)× (B1 + B4)

P6 = (A2 − A4)× (B3 + B4)

P7 = (A1 − A3)× (B1 + B2)

C1 =P5 + P4 − P2 + P6

=(A1B1 + A1B4 + A4B1 + A4B4)+

(A4B3 − A4B1) +

(−A1B4 − A2B4) +

(A2B3 + A2B4 − A4B3 − A4B4)

= A1B1 + A2B3

27 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Strassen's Algorithm

Conquer: Use matrices Pi to compute C1, C2, C3, and C4.

[
A1 A2

A3 A4

] [
B1 B2

B3 B4

]
× =

[
A1 × B1 + A2 × B3 A1 × B2 + A2 × B4

A3 × B1 + A4 × B3 A3 × B2 + A4 × B4

]C1 C2

C4C3

P1 = A1 × (B2 − B4)

P2 = (A1 + A2) × B4

P3 = (A3 + A4) × B1

P4 = A4 × (B3 − B1)

P5 = (A1 + A4)× (B1 + B4)

P6 = (A2 − A4)× (B3 + B4)

P7 = (A1 − A3)× (B1 + B2)

C1 =P5 + P4 − P2 + P6

=(A1B1 + A1B4 + A4B1 + A4B4)+

(A4B3 − A4B1) +

(−A1B4 − A2B4) +

(A2B3 + A2B4 − A4B3 − A4B4)

= A1B1 + A2B3

C2 = P1 + P2

= (A1B2 − A1B4) +

(A1B4 + A2B4)

= A1B2 + A2B4

27 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Strassen's Algorithm

Conquer: Use matrices Pi to compute C1, C2, C3, and C4.

[
A1 A2

A3 A4

] [
B1 B2

B3 B4

]
× =

[
A1 × B1 + A2 × B3 A1 × B2 + A2 × B4

A3 × B1 + A4 × B3 A3 × B2 + A4 × B4

]C1 C2

C4C3

P1 = A1 × (B2 − B4)

P2 = (A1 + A2) × B4

P3 = (A3 + A4) × B1

P4 = A4 × (B3 − B1)

P5 = (A1 + A4)× (B1 + B4)

P6 = (A2 − A4)× (B3 + B4)

P7 = (A1 − A3)× (B1 + B2)

C1 =P5 + P4 − P2 + P6

=(A1B1 + A1B4 + A4B1 + A4B4)+

(A4B3 − A4B1) +

(−A1B4 − A2B4) +

(A2B3 + A2B4 − A4B3 − A4B4)

= A1B1 + A2B3

C2 = P1 + P2

= (A1B2 − A1B4) +

(A1B4 + A2B4)

= A1B2 + A2B4

C3 = P3 + P4

= (A3B1 + A4B1) +

(A4B3 − A4B1)

= (A3B1 + A4B3)

27 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Strassen's Algorithm

Conquer: Use matrices Pi to compute C1, C2, C3, and C4.

[
A1 A2

A3 A4

] [
B1 B2

B3 B4

]
× =

[
A1 × B1 + A2 × B3 A1 × B2 + A2 × B4

A3 × B1 + A4 × B3 A3 × B2 + A4 × B4

]C1 C2

C4C3

P1 = A1 × (B2 − B4)

P2 = (A1 + A2) × B4

P3 = (A3 + A4) × B1

P4 = A4 × (B3 − B1)

P5 = (A1 + A4)× (B1 + B4)

P6 = (A2 − A4)× (B3 + B4)

P7 = (A1 − A3)× (B1 + B2)

C1 =P5 + P4 − P2 + P6

=(A1B1 + A1B4 + A4B1 + A4B4)+

(A4B3 − A4B1) +

(−A1B4 − A2B4) +

(A2B3 + A2B4 − A4B3 − A4B4)

= A1B1 + A2B3

C2 = P1 + P2

= (A1B2 − A1B4) +

(A1B4 + A2B4)

= A1B2 + A2B4

C3 = P3 + P4

= (A3B1 + A4B1) +

(A4B3 − A4B1)

= (A3B1 + A4B3)

C4 = P5 + P1 − P3 − P7

=(A1B1 + A1B4 + A4B1 + A4B4) +

(A1B2 − A1B4) +

(−A3B1 − A4B1) +

(−A1B1 − A1B2 + A3B1 + A3B2)

= A3B2 + A4B4

27 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Strassen's Algorithm Summary

We make 7 recursive calls to multiply matrices of size n/2× n/2.

The additional work involves adding/subtracting matrices of size
n/2× n/2 several times; this takes Θ(n2).

[
A1 A2

A3 A4

] [
B1 B2

B3 B4

]
× =

[
A1 × B1 + A2 × B3 A1 × B2 + A2 × B4

A3 × B1 + A4 × B3 A3 × B2 + A4 × B4

]C1 C2

C4C3

P1 = A1 × (B2 − B4)

P2 = (A1 + A2) × B4

P3 = (A3 + A4) × B1

P4 = A4 × (B3 − B1)

P5 = (A1 + A4)× (B1 + B4)

P6 = (A2 − A4)× (B3 + B4)

P7 = (A1 − A3)× (B1 + B2)

C1 = P5 + P4 − P2 + P6

C2 = P1 + P2

C3 = P3 + P4

C4 = P5 + P1 − P3 − P7

The time complexity of the Strassen's algorithm is: T (n) =

{
7T (n/2) + Θ(n2) if n ≥ 2

c if n = 2

This is case 1 of Master theorem, and T (n) = Θ(nlog2 7)

28 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Matrix Multiplication Summary

A naive iterative algorithm runs in Θ(n3).

A simple D&Q does not improve the running time (it stays Θ(n3)).

Strassen algorithm is a D&Q algorithm with improved running time
of Θ(nlog2 7).

The best existing algorithm has running time O(n2.373) [Alman
2020]

We know we cannot do better than Ω(n2) (why?)
Finding the best running time is still an open problem!

29 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Matrix Multiplication Summary

A naive iterative algorithm runs in Θ(n3).

A simple D&Q does not improve the running time (it stays Θ(n3)).

Strassen algorithm is a D&Q algorithm with improved running time
of Θ(nlog2 7).

The best existing algorithm has running time O(n2.373) [Alman
2020]

We know we cannot do better than Ω(n2) (why?)
Finding the best running time is still an open problem!

29 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Matrix Multiplication Summary

A naive iterative algorithm runs in Θ(n3).

A simple D&Q does not improve the running time (it stays Θ(n3)).

Strassen algorithm is a D&Q algorithm with improved running time
of Θ(nlog2 7).

The best existing algorithm has running time O(n2.373) [Alman
2020]

We know we cannot do better than Ω(n2) (why?)
Finding the best running time is still an open problem!

29 / 29
EECS 3101 - Design and Analysis of Algorithms

▲



Matrix Multiplication Summary

A naive iterative algorithm runs in Θ(n3).

A simple D&Q does not improve the running time (it stays Θ(n3)).

Strassen algorithm is a D&Q algorithm with improved running time
of Θ(nlog2 7).

The best existing algorithm has running time O(n2.373) [Alman
2020]

We know we cannot do better than Ω(n2) (why?)
Finding the best running time is still an open problem!

29 / 29
EECS 3101 - Design and Analysis of Algorithms

▲


