
EECS 3101 - Design and Analysis of

Algorithms

Shahin Kamali

Topic 1 - Introductions

York University

Picture is from the cover of the textbook CLRS.

1 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Introduction

Introduction

1 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Introduction

In a Glance . . .

Algorithms are

Practical
Diverse
Fun (really!)

Let's `learn & play' algorithms and enjoy

2 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Introduction

In a Glance . . .

Algorithms are

Practical
Diverse
Fun (really!)

Let's `learn & play' algorithms and enjoy

2 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Formalities

Formalities

2 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Formalities

Textbook

The main reference:

Introduction to Algorithms, third edition, by Cormen, Leiserson,
Rivest, and Stein, MIT Press, 2009.

Optional textbooks:

Algorithms and Data Structures, by Mehlhorn and Sanders,
Springer, 2008.
The Algorithm Design Manual, second edition, by Skiena, Springer,
2008.
Advanced Data Structures, by Brass, Cambridge, 2008.

3 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Formalities

Grading

There will be:

Five assignments
Two quizzes
A midterm exam
A �nal exam

Theorem

The focus of this course is on learning, practising, and discovering.

Corollary

Having fun in the process is important.

4 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Formalities

Grading

There will be:

Five assignments
Two quizzes
A midterm exam
A �nal exam

Theorem

The focus of this course is on learning, practising, and discovering.

Corollary

Having fun in the process is important.

4 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Formalities

Grading

There will be:

Five assignments
Two quizzes
A midterm exam
A �nal exam

Theorem

The focus of this course is on learning, practising, and discovering.

Corollary

Having fun in the process is important.

4 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Formalities

Grading (cntd.)

Five assignments:

5 to 10 percent extra for bonus questions.
submit only pdf �les (preferably use LATEX) on Crowdmark
(https://www.crowdmark.com/).

Quizzes, Midterm & Final exams:

there will be extra for bonus questions in midterm and �nal.
all are closed-book.
sample exams will be provided for practice for midterm and �nal.

5 / 53
EECS 3101 - Design and Analysis of Algorithms

▲

https://www.crowdmark.com/


Formalities

Grading (cntd.)

Five assignments:

5 to 10 percent extra for bonus questions.
submit only pdf �les (preferably use LATEX) on Crowdmark
(https://www.crowdmark.com/).

Quizzes, Midterm & Final exams:

there will be extra for bonus questions in midterm and �nal.
all are closed-book.
sample exams will be provided for practice for midterm and �nal.

5 / 53
EECS 3101 - Design and Analysis of Algorithms

▲

https://www.crowdmark.com/


Basic Concepts

Prerequisites

What I have learned from previous courses?

Basic sorting algorithms, e.g., quick sort and merge sort

Asymptotic notations, e.g., big O, Ω, etc.

Basic abstract data types (ADTs) and data structures

Stacks, queues, dictionaries, binary search trees, hash tables, graphs.

Basic algorithm families

Greedy algorithms, divide & conquer (d&c)

Analysis techniques

E.g., how to analyse time complexity of a d&c algorithm?
Solving recursions, Master theorem, etc.

6 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Basic Concepts

Prerequisites

What I have learned from previous courses?

Basic sorting algorithms, e.g., quick sort and merge sort

Asymptotic notations, e.g., big O, Ω, etc.

Basic abstract data types (ADTs) and data structures

Stacks, queues, dictionaries, binary search trees, hash tables, graphs.

Basic algorithm families

Greedy algorithms, divide & conquer (d&c)

Analysis techniques

E.g., how to analyse time complexity of a d&c algorithm?
Solving recursions, Master theorem, etc.

6 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Basic Concepts

Prerequisites

What I have learned from previous courses?

Basic sorting algorithms, e.g., quick sort and merge sort

Asymptotic notations, e.g., big O, Ω, etc.

Basic abstract data types (ADTs) and data structures

Stacks, queues, dictionaries, binary search trees, hash tables, graphs.

Basic algorithm families

Greedy algorithms, divide & conquer (d&c)

Analysis techniques

E.g., how to analyse time complexity of a d&c algorithm?
Solving recursions, Master theorem, etc.

6 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Basic Concepts

Prerequisites

What I have learned from previous courses?

Basic sorting algorithms, e.g., quick sort and merge sort

Asymptotic notations, e.g., big O, Ω, etc.

Basic abstract data types (ADTs) and data structures

Stacks, queues, dictionaries, binary search trees, hash tables, graphs.

Basic algorithm families

Greedy algorithms, divide & conquer (d&c)

Analysis techniques

E.g., how to analyse time complexity of a d&c algorithm?
Solving recursions, Master theorem, etc.

6 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Basic Concepts

Prerequisites

What I have learned from previous courses?

Basic sorting algorithms, e.g., quick sort and merge sort

Asymptotic notations, e.g., big O, Ω, etc.

Basic abstract data types (ADTs) and data structures

Stacks, queues, dictionaries, binary search trees, hash tables, graphs.

Basic algorithm families

Greedy algorithms, divide & conquer (d&c)

Analysis techniques

E.g., how to analyse time complexity of a d&c algorithm?
Solving recursions, Master theorem, etc.

6 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Basic Concepts

Prerequisites

What I have learned from previous courses?

Basic sorting algorithms, e.g., quick sort and merge sort

Asymptotic notations, e.g., big O, Ω, etc.

Basic abstract data types (ADTs) and data structures

Stacks, queues, dictionaries, binary search trees, hash tables, graphs.

Basic algorithm families

Greedy algorithms, divide & conquer (d&c)

Analysis techniques

E.g., how to analyse time complexity of a d&c algorithm?

Solving recursions, Master theorem, etc.

6 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Basic Concepts

Prerequisites

What I have learned from previous courses?

Basic sorting algorithms, e.g., quick sort and merge sort

Asymptotic notations, e.g., big O, Ω, etc.

Basic abstract data types (ADTs) and data structures

Stacks, queues, dictionaries, binary search trees, hash tables, graphs.

Basic algorithm families

Greedy algorithms, divide & conquer (d&c)

Analysis techniques

E.g., how to analyse time complexity of a d&c algorithm?
Solving recursions, Master theorem, etc.

6 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Basic Concepts

Algorithms

6 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Basic Concepts

Algorithms

What is an algorithm?

De�nition

An algorithm is a computational procedure formed by a sequence of
instructions (steps) to solve a problem

The problem has an input and often requires an output
Transition from one step to another can be deterministic or
randomized

The algorithm is deterministic if it never uses randomization;
otherwise, it is a randomized algorithm

Solving the problem requires the algorithm to terminate.

Time complexity concerns the number of steps that it takes for the
algorithm to terminate (often on the worst-case input)

7 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Basic Concepts

Algorithms

What is an algorithm?

De�nition

An algorithm is a computational procedure formed by a sequence of
instructions (steps) to solve a problem

The problem has an input and often requires an output
Transition from one step to another can be deterministic or
randomized

The algorithm is deterministic if it never uses randomization;
otherwise, it is a randomized algorithm

Solving the problem requires the algorithm to terminate.

Time complexity concerns the number of steps that it takes for the
algorithm to terminate (often on the worst-case input)

7 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Basic Concepts

Algorithms

What is an algorithm?

De�nition

An algorithm is a computational procedure formed by a sequence of
instructions (steps) to solve a problem

The problem has an input and often requires an output

Transition from one step to another can be deterministic or
randomized

The algorithm is deterministic if it never uses randomization;
otherwise, it is a randomized algorithm

Solving the problem requires the algorithm to terminate.

Time complexity concerns the number of steps that it takes for the
algorithm to terminate (often on the worst-case input)

7 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Basic Concepts

Algorithms

What is an algorithm?

De�nition

An algorithm is a computational procedure formed by a sequence of
instructions (steps) to solve a problem

The problem has an input and often requires an output
Transition from one step to another can be deterministic or
randomized

The algorithm is deterministic if it never uses randomization;
otherwise, it is a randomized algorithm

Solving the problem requires the algorithm to terminate.

Time complexity concerns the number of steps that it takes for the
algorithm to terminate (often on the worst-case input)

7 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Basic Concepts

Algorithms

What is an algorithm?

De�nition

An algorithm is a computational procedure formed by a sequence of
instructions (steps) to solve a problem

The problem has an input and often requires an output
Transition from one step to another can be deterministic or
randomized

The algorithm is deterministic if it never uses randomization;
otherwise, it is a randomized algorithm

Solving the problem requires the algorithm to terminate.

Time complexity concerns the number of steps that it takes for the
algorithm to terminate (often on the worst-case input)

7 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Basic Concepts

Abstract Data Type

What is an Abstract Data Type (ADT)?

De�nition

An abstract data type is formed by I) a set of values (data items)

and II) a set of operations allowed on these items

Stack is an ADT. Data items can be anything and operations are
push and pop

An ADT is abstract way of looking at data (no implementation is
prescribed)

An ADT is the way data `looks' from the view point of user

8 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Basic Concepts

Abstract Data Type

What is an Abstract Data Type (ADT)?

De�nition

An abstract data type is formed by I) a set of values (data items)

and II) a set of operations allowed on these items

Stack is an ADT. Data items can be anything and operations are
push and pop

An ADT is abstract way of looking at data (no implementation is
prescribed)

An ADT is the way data `looks' from the view point of user

8 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Basic Concepts

Data Structure

What is a Data Structure?

De�nition

A data structure is a concrete representation of data, including

how data is organized, stored, and accessed on a computer

A linked-list is a data structure

Data structures are implementations of ADTs

A data structure is the way data `looks' from the view point of
implementer

9 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Basic Concepts

Data Structure

What is a Data Structure?

De�nition

A data structure is a concrete representation of data, including

how data is organized, stored, and accessed on a computer

A linked-list is a data structure

Data structures are implementations of ADTs

A data structure is the way data `looks' from the view point of
implementer

9 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Basic Concepts

ADTs vs Data Structures

ADTs: Stacks, queues, priority queues, dictionaries

Data structures array, linked-list, binary-search-tree, binary-heap
hash-table-using-probing, hash-table-using-chaining, adjacency list,
adjacency matrix, etc.

10 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Introduction

Asymptotic Analysis

10 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Algorithms (review)

An algorithm is a step-by-step procedure carrying out a
computation to solve an arbitrary instance of a problem.

E.g., sorting is a problem; a set of numbers form an instance of that
and `solving' involves creating a sorted output.

A program is an implementation of an algorithm using a speci�c
programming language

For a given problem (e.g., sorting) there can be several algorithms
(e.g., Quicksort, Mergesort), and for a given algorithm (e.g.,
Quicksort) there can be several programs.

Our focus in this course is on algorithms (not programs).
How to implement a given algorithm relates to the art of
performance engineering (writing a fast code)

11 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Algorithms (review)

An algorithm is a step-by-step procedure carrying out a
computation to solve an arbitrary instance of a problem.

E.g., sorting is a problem; a set of numbers form an instance of that
and `solving' involves creating a sorted output.

A program is an implementation of an algorithm using a speci�c
programming language

For a given problem (e.g., sorting) there can be several algorithms
(e.g., Quicksort, Mergesort), and for a given algorithm (e.g.,
Quicksort) there can be several programs.

Our focus in this course is on algorithms (not programs).
How to implement a given algorithm relates to the art of
performance engineering (writing a fast code)

11 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Algorithms (review)

An algorithm is a step-by-step procedure carrying out a
computation to solve an arbitrary instance of a problem.

E.g., sorting is a problem; a set of numbers form an instance of that
and `solving' involves creating a sorted output.

A program is an implementation of an algorithm using a speci�c
programming language

For a given problem (e.g., sorting) there can be several algorithms
(e.g., Quicksort, Mergesort), and for a given algorithm (e.g.,
Quicksort) there can be several programs.

Our focus in this course is on algorithms (not programs).
How to implement a given algorithm relates to the art of
performance engineering (writing a fast code)

11 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Algorithms Design & Analysis

Given a problem P, we need to

Design an algorithm A that solves P (Algorithm Design)

Verify correctness and e�ciency of the algorithm (Algorithm
Analysis)
If the algorithm is correct and e�cient, implement it

If you implement something that is not necessarily correct or
e�cient in all cases, that would be a heuristic.

12 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Algorithms Design & Analysis

Given a problem P, we need to

Design an algorithm A that solves P (Algorithm Design)
Verify correctness and e�ciency of the algorithm (Algorithm
Analysis)
If the algorithm is correct and e�cient, implement it

If you implement something that is not necessarily correct or
e�cient in all cases, that would be a heuristic.

12 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Algorithm Evaluation

How should we evaluate di�erent algorithms for solving a problem?

In this course we are mainly concerned with amount of time it takes
to solve a problem (this is called running time)
We can think of other measures such as the amount of memory
that is required by the algorithm
Other measures include amount of data movement, network tra�c
generated, etc.

The amount of time/memory/tra�c required by an algorithm
depend on the size of the problem

Sorting a larger set of numbers takes more time!

13 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Algorithm Evaluation

How should we evaluate di�erent algorithms for solving a problem?

In this course we are mainly concerned with amount of time it takes
to solve a problem (this is called running time)
We can think of other measures such as the amount of memory
that is required by the algorithm
Other measures include amount of data movement, network tra�c
generated, etc.

The amount of time/memory/tra�c required by an algorithm
depend on the size of the problem

Sorting a larger set of numbers takes more time!

13 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Running Time of Algorithms

How to assess the running time of an algorithm?

Experimental analysis:

Implement the algorithm in a program
Run the program with inputs of di�erent sizes
Experimentally measure the actual running time (e.g., using clock()
from time.h)

Shortcomings of experimental studies:

We need to implement the program (what if we are lazy and those
engineers are hard to employ?)
We cannot test all input instances for the problem. What are the
good samples? (remember the Morphy's law)
Many factors have impact on experimental timing, e.g., hardware
(processor, memory), software environment (operating system,
compiler, programming language), and human factors (how good
was the programmer?)

14 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Running Time of Algorithms

How to assess the running time of an algorithm?

Experimental analysis:

Implement the algorithm in a program
Run the program with inputs of di�erent sizes
Experimentally measure the actual running time (e.g., using clock()
from time.h)

Shortcomings of experimental studies:

We need to implement the program (what if we are lazy and those
engineers are hard to employ?)
We cannot test all input instances for the problem. What are the
good samples? (remember the Morphy's law)
Many factors have impact on experimental timing, e.g., hardware
(processor, memory), software environment (operating system,
compiler, programming language), and human factors (how good
was the programmer?)

14 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Running Time of Algorithms

How to assess the running time of an algorithm?

Experimental analysis:

Implement the algorithm in a program
Run the program with inputs of di�erent sizes
Experimentally measure the actual running time (e.g., using clock()
from time.h)

Shortcomings of experimental studies:

We need to implement the program (what if we are lazy and those
engineers are hard to employ?)
We cannot test all input instances for the problem. What are the
good samples? (remember the Morphy's law)
Many factors have impact on experimental timing, e.g., hardware
(processor, memory), software environment (operating system,
compiler, programming language), and human factors (how good
was the programmer?)

14 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Computational Models

We need to assess time/memory requirement of algorithms using
models that

Take into account all input instances
Do not require implementation of the algorithms
Are independent of hardware/software/programmer

In order to achieve this, we:

Express algorithms using pseudo-codes (don't worry about
implementation)
Instead of measuring time in seconds, count the number of
primitive operations

This requires an abstract model of computation

15 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Computational Models

We need to assess time/memory requirement of algorithms using
models that

Take into account all input instances
Do not require implementation of the algorithms
Are independent of hardware/software/programmer

In order to achieve this, we:

Express algorithms using pseudo-codes (don't worry about
implementation)
Instead of measuring time in seconds, count the number of
primitive operations

This requires an abstract model of computation

15 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Random Access Machine (RAM)
Model

The random access machine (RAM):

Has a set of memory cells, each storing one `word' of data.
Any access to a memory location takes constant time.
Any primitive operation takes constant time.
The running time of a program can be computed to be the number
of memory accesses plus the number of primitive operations.

Word-RAM is a RAM machine with the extra assumption that all
values in our problem can `�t' in a constant number of words
(values are not too big).

We often use Word-RAM model for analysis of algorithms

Observation

RAM is a simpli�ed model which only provides an approximation

of a `real' computer

16 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Random Access Machine (RAM)
Model

The random access machine (RAM):

Has a set of memory cells, each storing one `word' of data.
Any access to a memory location takes constant time.
Any primitive operation takes constant time.
The running time of a program can be computed to be the number
of memory accesses plus the number of primitive operations.

Word-RAM is a RAM machine with the extra assumption that all
values in our problem can `�t' in a constant number of words
(values are not too big).

We often use Word-RAM model for analysis of algorithms

Observation

RAM is a simpli�ed model which only provides an approximation

of a `real' computer
16 / 53

EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Analysis of Insertion Sort under RAM

First, calculate the `cost' (sum of memory accesses and primitive
operations) for each line

E.g., in line 5, there are 3 memory accesses and 3 primitive
operations

17 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Analysis of Insertion Sort under RAM

Next, �nd the number of times each line is executed

This depends on the input, we may consider best or worst case input
Let tj be number of times the while loop is executed for inserting
the j 'th item.

In the best case, tj = 1 and in the worst case tj = j .

Summing up all costs, in the best case we have T (n) = an + b for
constant a and b
In the worst case, we have Tn = αn2 + βn + γ for constant α, β, γ

18 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Primitive Operations

RAM model implicitly assumes primitive operations have fairly
similar running time

Primitive operations:

basic integer arithmetic (addition, subtraction, multiplication,
division, and modulo)
bitwise logic and bit shifts (logical AND, OR, exclusive-OR,
negation, left shift, and right shift)

Non-primitive operations:

exponentiation, radicals (square roots), logarithms, trigonometric,
functions (sine, cosine, tangent), etc.

19 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Asymptotic Notations

Statement

So, we can express the cost (running time) of an algorithm A for

a problem of size n as a function TA(n).

How do we compare two di�erent algorithms? say TA(n) =
1

1000
n3

and TB(n) = 1000n2 + 500n + 200.

Summarize the time complexity using asymptotic notations!

Idea: assume the size of input grows to in�nity; identify which
component of TA(n) contributes most to the grow of TA(n).

As n grows:

constants don't matter (e.g., TA(n) ≈ n3)
low-order terms don't matter (e.g., TB(n) ≈ 1000n2)

20 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Asymptotic Notations

Informally TB(n) = O(TA(n)) means TB is asymptotically smaller

than or equal to TA.

Is it su�cient to de�ne O so that we have TB(n) < TA(n) ?

No because the inequality might not hold for small values of n
which we don't care about.
The two function might have constants we would prefer to ignore.

De�nition

f(n) ∈ O(g(n))⇔
∃M > 0,∃n0 > 0 s.t. ∀n > n0︸ ︷︷ ︸

ignore low-order terms

, f (n) ≤ M · g(n)︸ ︷︷ ︸
ignore constants

21 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Asymptotic Notations

Informally TB(n) = O(TA(n)) means TB is asymptotically smaller

than or equal to TA.

Is it su�cient to de�ne O so that we have TB(n) < TA(n) ?

No because the inequality might not hold for small values of n
which we don't care about.
The two function might have constants we would prefer to ignore.

De�nition

f(n) ∈ O(g(n))⇔
∃M > 0,∃n0 > 0 s.t. ∀n > n0︸ ︷︷ ︸

ignore low-order terms

, f (n) ≤ M · g(n)︸ ︷︷ ︸
ignore constants

21 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Algorithms & models of computation

Big Oh Illustration

Let f (n) = 1000n2 + 1000n and g(n) = n3. Prove f (n) ∈ O(g(n))

22 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Review

To analyze running time of an algorithm (under RAM model) we
sum the number of primitive operations and memory accesses of the
algorithm.

The cost (running time) of algorithm A for a problem of size n
would be a function TA(n).

How do we compare two di�erent algorithms? say TA(n) =
1

1000
n3

and TB(n) = 1000n2 + 500n + 200.

Summarize the time complexity using asymptotic notations!

Idea: assume the size of input grows to in�nity; identify which
component of TA(n) contributes most to the grow of TA(n).

As n grows:

constants don't matter.
low-order terms don't matter.

23 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Big O Notations

Informally f (n) = O(g(n)) means f is asymptotically smaller

than or equal to g .

De�nition

f(n) ∈ O(g(n))⇔
∃M > 0,∃n0 > 0 s.t. ∀n > n0︸ ︷︷ ︸

ignore low-order terms

, f (n) ≤ M · g(n)︸ ︷︷ ︸
ignore constants

24 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Big O Notations

E.g., f (n) = 2n, g(n) = n. Is it that f (n) ∈ O(g(n))?

Yes, f (n) is asymptotically smaller than or equal (equal) to g(n).
To prove, we should show
∃M > 0, ∃n0 > 0 s.t.∀n > n0, f (n) ≤ M · g(n)
It su�ces to de�ne n0 = 1 and M = 3, we have ∀n > 1, 2n ≤ 3n.
M could be any number larger than or equal to 2, and n0 could be
any number.

We require speci�c values of M (not all choices for M work)

25 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Big O Notations

E.g., f (n) = 2n, g(n) = n. Is it that f (n) ∈ O(g(n))?

Yes, f (n) is asymptotically smaller than or equal (equal) to g(n).
To prove, we should show
∃M > 0, ∃n0 > 0 s.t.∀n > n0, f (n) ≤ M · g(n)
It su�ces to de�ne n0 = 1 and M = 3, we have ∀n > 1, 2n ≤ 3n.
M could be any number larger than or equal to 2, and n0 could be
any number.

We require speci�c values of M (not all choices for M work)

25 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Big O Notations

E.g., f (n) = 2n, g(n) = n. Is it that f (n) ∈ O(g(n))?

Yes, f (n) is asymptotically smaller than or equal (equal) to g(n).
To prove, we should show
∃M > 0, ∃n0 > 0 s.t.∀n > n0, f (n) ≤ M · g(n)
It su�ces to de�ne n0 = 1 and M = 3, we have ∀n > 1, 2n ≤ 3n.
M could be any number larger than or equal to 2, and n0 could be
any number.

We require speci�c values of M (not all choices for M work)

25 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Big O Notations

E.g., f (n) = 2n, g(n) = n. Is it that f (n) ∈ O(g(n))?

Yes, f (n) is asymptotically smaller than or equal (equal) to g(n).
To prove, we should show
∃M > 0, ∃n0 > 0 s.t.∀n > n0, f (n) ≤ M · g(n)
It su�ces to de�ne n0 = 1 and M = 3, we have ∀n > 1, 2n ≤ 3n.
M could be any number larger than or equal to 2, and n0 could be
any number.

We require speci�c values of M (not all choices for M work)

25 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Big O Notations

E.g., f (n) = 2n + 100/n, g(n) = n. Is it that f (n) ∈ O(g(n))?

Yes, again, f (n) is asymptotically smaller than or equal (equal) to
g(n).
To prove, we should show
∃M > 0, ∃n0 > 0 s.t.∀n > n0, f (n) ≤ M · g(n)
It su�ces to de�ne n0 = 10 and M = 3, we have
∀n > 10, 2n + 100/n ≤ 3n.

We require speci�c values of M and n0 (not all choices work)

26 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Big O Notations

E.g., f (n) = 2n + 100/n, g(n) = n. Is it that f (n) ∈ O(g(n))?

Yes, again, f (n) is asymptotically smaller than or equal (equal) to
g(n).
To prove, we should show
∃M > 0, ∃n0 > 0 s.t.∀n > n0, f (n) ≤ M · g(n)
It su�ces to de�ne n0 = 10 and M = 3, we have
∀n > 10, 2n + 100/n ≤ 3n.

We require speci�c values of M and n0 (not all choices work)

26 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Big O Notations

E.g., f (n) = 2n + 100/n, g(n) = n. Is it that f (n) ∈ O(g(n))?

Yes, again, f (n) is asymptotically smaller than or equal (equal) to
g(n).
To prove, we should show
∃M > 0, ∃n0 > 0 s.t.∀n > n0, f (n) ≤ M · g(n)
It su�ces to de�ne n0 = 10 and M = 3, we have
∀n > 10, 2n + 100/n ≤ 3n.

We require speci�c values of M and n0 (not all choices work)

26 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Big O Notations

E.g., f (n) = 2n + 100/n, g(n) = n. Is it that f (n) ∈ O(g(n))?

Yes, again, f (n) is asymptotically smaller than or equal (equal) to
g(n).
To prove, we should show
∃M > 0, ∃n0 > 0 s.t.∀n > n0, f (n) ≤ M · g(n)
It su�ces to de�ne n0 = 10 and M = 3, we have
∀n > 10, 2n + 100/n ≤ 3n.

We require speci�c values of M and n0 (not all choices work)

26 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Big O Notation

Let f (n) = 2023n2 + 1402n and g(n) = n3. Prove f (n) ∈ O(g(n))

We should de�ne M and n0 s.t. ∀n > n0 we have
2019n2 + 1397n ≤ Mn3. This is equivalent to 2023n+ 1402 ≤ Mn2.

We have 2023n + 1402 ≤ 2023n + 1402n = 3425n. So, to prove
2023n + 1402 ≤ Mn2, it su�ces to prove 3425n ≤ Mn2, i.e.,
3425 ≤ Mn. This is always true assuming M = 1 and n ≥ 3425
(n0 = 3425).

Setting M = 3426 and n0 = 1 also work!

27 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Big O Notation

Let f (n) = 2023n2 + 1402n and g(n) = n3. Prove f (n) ∈ O(g(n))

We should de�ne M and n0 s.t. ∀n > n0 we have
2019n2 + 1397n ≤ Mn3. This is equivalent to 2023n+ 1402 ≤ Mn2.

We have 2023n + 1402 ≤ 2023n + 1402n = 3425n. So, to prove
2023n + 1402 ≤ Mn2, it su�ces to prove 3425n ≤ Mn2, i.e.,
3425 ≤ Mn. This is always true assuming M = 1 and n ≥ 3425
(n0 = 3425).

Setting M = 3426 and n0 = 1 also work!

27 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Little o Notations

Informally f (n) = o(g(n)) means f is asymptotically smaller than

g .

De�nition

f(n) ∈ o(g(n))⇔
∀M > 0,∃n0 > 0 s.t. ∀n > n0︸ ︷︷ ︸

ignore low-order terms

, f (n) < M · g(n)

28 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Little o Notations

E.g., f (n) = 2n, g(n) = n. Is it that f (n) ∈ o(g(n))?

No because for M = 1, it is not true that f (n) < Mg(n) (i.e.,
2n < n) for large values of n.

29 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Little o Notations

E.g., f (n) = 2n, g(n) = n. Is it that f (n) ∈ o(g(n))?

No because for M = 1, it is not true that f (n) < Mg(n) (i.e.,
2n < n) for large values of n.

29 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Little o Notation

Prove that n2 sin(n) + 1984n + 2016 ∈ o(n3).

We have to prove that for all values of M there is an n0 so that for
n > n0 we have n2 sin(n) + 1984n + 2016 < Mn3.
We know n2 sin(n) ≤ n2, 1984n ≤ 1984n2 and 2016 ≤ 2016n2. So,
n2 sin(n) + 1984n + 2016 ≤ (1+ 1984+ 2016)n2 = 4001n2.
So, to prove n2 sin(n) + 1984n + 2016 < Mn3 it su�ces to prove
4001n2 < Mn3, i.e., 4001/M < n, so, we can de�ne n0 to be any
value larger than 4001/M.

For little o, n0 is often de�ned as a function of M.

30 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Little o Notation

Prove that n2 sin(n) + 1984n + 2016 ∈ o(n3).

We have to prove that for all values of M there is an n0 so that for
n > n0 we have n2 sin(n) + 1984n + 2016 < Mn3.
We know n2 sin(n) ≤ n2, 1984n ≤ 1984n2 and 2016 ≤ 2016n2. So,
n2 sin(n) + 1984n + 2016 ≤ (1+ 1984+ 2016)n2 = 4001n2.
So, to prove n2 sin(n) + 1984n + 2016 < Mn3 it su�ces to prove
4001n2 < Mn3, i.e., 4001/M < n, so, we can de�ne n0 to be any
value larger than 4001/M.

For little o, n0 is often de�ned as a function of M.

30 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Little o Notation

Prove that n2 sin(n) + 1984n + 2016 ∈ o(n3).

We have to prove that for all values of M there is an n0 so that for
n > n0 we have n2 sin(n) + 1984n + 2016 < Mn3.
We know n2 sin(n) ≤ n2, 1984n ≤ 1984n2 and 2016 ≤ 2016n2. So,
n2 sin(n) + 1984n + 2016 ≤ (1+ 1984+ 2016)n2 = 4001n2.
So, to prove n2 sin(n) + 1984n + 2016 < Mn3 it su�ces to prove
4001n2 < Mn3, i.e., 4001/M < n, so, we can de�ne n0 to be any
value larger than 4001/M.

For little o, n0 is often de�ned as a function of M.

30 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Big Ω Notation

f (n) = Ω(g(n)) means f is asymptotically larger than or equal

to g .

De�nition

f(n) ∈ Ω(g(n))⇔ ∃M > 0,∃n0 > 0 s.t.∀n > n0, f (n) ≥ M · g(n)

Let f (n) = n/2020 and g(n) = log(n). Prove f (n) ∈ Ω(g(n)).

We need to provide M and n0 so that for all n ≥ n0 we have
n/2020 ≥ M log(n), i.e., n ≥ 2020M log(n).
We know log(n) < n (assuming n > 1). So, in order to show
2020M log(n) ≤ n, it su�ces to have 2020M ≤ 1, i.e., M can be
any value smaller than 1/2020 (and n0 can be 1 or any other
positive integer).

31 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Big Ω Notation

f (n) = Ω(g(n)) means f is asymptotically larger than or equal

to g .

De�nition

f(n) ∈ Ω(g(n))⇔ ∃M > 0,∃n0 > 0 s.t.∀n > n0, f (n) ≥ M · g(n)

Let f (n) = n/2020 and g(n) = log(n). Prove f (n) ∈ Ω(g(n)).

We need to provide M and n0 so that for all n ≥ n0 we have
n/2020 ≥ M log(n), i.e., n ≥ 2020M log(n).
We know log(n) < n (assuming n > 1). So, in order to show
2020M log(n) ≤ n, it su�ces to have 2020M ≤ 1, i.e., M can be
any value smaller than 1/2020 (and n0 can be 1 or any other
positive integer).

31 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Big Ω Notation

f (n) = Ω(g(n)) means f is asymptotically larger than or equal

to g .

De�nition

f(n) ∈ Ω(g(n))⇔ ∃M > 0,∃n0 > 0 s.t.∀n > n0, f (n) ≥ M · g(n)

Let f (n) = n/2020 and g(n) = log(n). Prove f (n) ∈ Ω(g(n)).

We need to provide M and n0 so that for all n ≥ n0 we have
n/2020 ≥ M log(n), i.e., n ≥ 2020M log(n).
We know log(n) < n (assuming n > 1). So, in order to show
2020M log(n) ≤ n, it su�ces to have 2020M ≤ 1, i.e., M can be
any value smaller than 1/2020 (and n0 can be 1 or any other
positive integer).

31 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Little ω Notation

f (n) = ω(g(n)) means f is asymptotically larger than g .

De�nition

f(n) ∈ ω(g(n))⇔ ∀M > 0, ∃n0 > 0 s.t.∀n > n0, f (n) > M · g(n)

Let f (n) = n/2020 and g(n) = log(n). Prove f (n) ∈ ω(g(n)).

For any constant M we need to provide n0 so that for all n ≥ n0 we
have n/2020 > M log(n), i.e., n > 2020M log(n).
We know log(n) <

√
n (assuming n > 16). So, in order to show

2020M log(n) < n, it su�ces to have 2020M
√
n < n, i.e.,

2020M <
√
n. For that, it su�ces to have (2020M)2 < n, i.e., n0

can be de�ned as max{16, (2020M)2}.

Similarly to little o, for ω, we often need to de�ne n0 as a function
of M.

32 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Little ω Notation

f (n) = ω(g(n)) means f is asymptotically larger than g .

De�nition

f(n) ∈ ω(g(n))⇔ ∀M > 0, ∃n0 > 0 s.t.∀n > n0, f (n) > M · g(n)

Let f (n) = n/2020 and g(n) = log(n). Prove f (n) ∈ ω(g(n)).

For any constant M we need to provide n0 so that for all n ≥ n0 we
have n/2020 > M log(n), i.e., n > 2020M log(n).
We know log(n) <

√
n (assuming n > 16). So, in order to show

2020M log(n) < n, it su�ces to have 2020M
√
n < n, i.e.,

2020M <
√
n. For that, it su�ces to have (2020M)2 < n, i.e., n0

can be de�ned as max{16, (2020M)2}.

Similarly to little o, for ω, we often need to de�ne n0 as a function
of M.

32 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Θ Notation

Informally f (n) = Θ(g(n)) means f is asymptotically equal to g .

De�nition

f(n) ∈ Θ(g(n))⇔
∃M1,M2 > 0, ∃n0 > 0 s.t.∀n > n0,M1 · g(n) ≤ f (n) ≤ M2 · g(n)

Let f (n) = n and g(n) = n/2020. Prove f (n) ∈ Θ(g(n)).

We need to provide M1,M2, n0 so that for all n ≥ n0 we have
M1 n/2020 ≤ n ≤ M2 n/2020.
For the �rst inequality, we can have M1 = 1 and for all n we have
n/2020 ≤ n.
For the second inequality, we let M2 to be any constant larger than
2020 which gives M2/2020 ≥ 1.
n0 can be any value, e.g., n0 = 1.

33 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Θ Notation

Informally f (n) = Θ(g(n)) means f is asymptotically equal to g .

De�nition

f(n) ∈ Θ(g(n))⇔
∃M1,M2 > 0, ∃n0 > 0 s.t.∀n > n0,M1 · g(n) ≤ f (n) ≤ M2 · g(n)

Let f (n) = n and g(n) = n/2020. Prove f (n) ∈ Θ(g(n)).

We need to provide M1,M2, n0 so that for all n ≥ n0 we have
M1 n/2020 ≤ n ≤ M2 n/2020.
For the �rst inequality, we can have M1 = 1 and for all n we have
n/2020 ≤ n.
For the second inequality, we let M2 to be any constant larger than
2020 which gives M2/2020 ≥ 1.
n0 can be any value, e.g., n0 = 1.

33 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Asymptotic Notations in a Nutshell
De�nition

f(n) ∈ O(g(n))⇔ ∃M > 0, ∃n0 > 0 s.t.∀n > n0, f (n) ≤ M · g(n)

De�nition

f(n) ∈ o(g(n))⇔ ∀M > 0,∃n0 > 0 s.t.∀n > n0, f (n) < M · g(n)

De�nition

f(n) ∈ Ω(g(n))⇔ ∃M > 0,∃n0 > 0 s.t.∀n > n0, f (n) ≥ M · g(n)

De�nition

f(n) ∈ ω(g(n))⇔ ∀M > 0, ∃n0 > 0 s.t.∀n > n0, f (n) > M · g(n)

De�nition

f(n) ∈Θ(g(n))⇔ ∃M1,M2 > 0,∃n0 > 0 s.t.

∀n > n0,M1 · g(n) ≤ f (n) ≤ M2 · g(n)
34 / 53

EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Common Growth Rates

Θ(1) → constant complexity

e.g., an algorithms that only samples a constant number of inputs

Θ(log n) → logarithmic complexity

Binary search

Θ(n) → linear complexity

Most practical algorithms :)

Θ(n log n) → pseudo-linear complexity

Optimal comparison based sorting algorithms, e.g., merge-sort

Θ(n2) → Quadratic complexity

naive sorting algorithms (bubble sort, insertion sort)

Θ(n3) → Cubic Complexity

naive matrix multiplication

Θ(2n) → Exponential Complexity

The `algorithm' terminates but the universe is likely to end much
earlier even if n ≈ 1000.

35 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Common Growth Rates

Θ(1) → constant complexity

e.g., an algorithms that only samples a constant number of inputs

Θ(log n) → logarithmic complexity

Binary search

Θ(n) → linear complexity

Most practical algorithms :)

Θ(n log n) → pseudo-linear complexity

Optimal comparison based sorting algorithms, e.g., merge-sort

Θ(n2) → Quadratic complexity

naive sorting algorithms (bubble sort, insertion sort)

Θ(n3) → Cubic Complexity

naive matrix multiplication

Θ(2n) → Exponential Complexity

The `algorithm' terminates but the universe is likely to end much
earlier even if n ≈ 1000.

35 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Common Growth Rates

Θ(1) → constant complexity

e.g., an algorithms that only samples a constant number of inputs

Θ(log n) → logarithmic complexity

Binary search

Θ(n) → linear complexity

Most practical algorithms :)

Θ(n log n) → pseudo-linear complexity

Optimal comparison based sorting algorithms, e.g., merge-sort

Θ(n2) → Quadratic complexity

naive sorting algorithms (bubble sort, insertion sort)

Θ(n3) → Cubic Complexity

naive matrix multiplication

Θ(2n) → Exponential Complexity

The `algorithm' terminates but the universe is likely to end much
earlier even if n ≈ 1000.

35 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Common Growth Rates

Θ(1) → constant complexity

e.g., an algorithms that only samples a constant number of inputs

Θ(log n) → logarithmic complexity

Binary search

Θ(n) → linear complexity

Most practical algorithms :)

Θ(n log n) → pseudo-linear complexity

Optimal comparison based sorting algorithms, e.g., merge-sort

Θ(n2) → Quadratic complexity

naive sorting algorithms (bubble sort, insertion sort)

Θ(n3) → Cubic Complexity

naive matrix multiplication

Θ(2n) → Exponential Complexity

The `algorithm' terminates but the universe is likely to end much
earlier even if n ≈ 1000.

35 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Common Growth Rates

Θ(1) → constant complexity

e.g., an algorithms that only samples a constant number of inputs

Θ(log n) → logarithmic complexity

Binary search

Θ(n) → linear complexity

Most practical algorithms :)

Θ(n log n) → pseudo-linear complexity

Optimal comparison based sorting algorithms, e.g., merge-sort

Θ(n2) → Quadratic complexity

naive sorting algorithms (bubble sort, insertion sort)

Θ(n3) → Cubic Complexity

naive matrix multiplication

Θ(2n) → Exponential Complexity

The `algorithm' terminates but the universe is likely to end much
earlier even if n ≈ 1000.

35 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Common Growth Rates

Θ(1) → constant complexity

e.g., an algorithms that only samples a constant number of inputs

Θ(log n) → logarithmic complexity

Binary search

Θ(n) → linear complexity

Most practical algorithms :)

Θ(n log n) → pseudo-linear complexity

Optimal comparison based sorting algorithms, e.g., merge-sort

Θ(n2) → Quadratic complexity

naive sorting algorithms (bubble sort, insertion sort)

Θ(n3) → Cubic Complexity

naive matrix multiplication

Θ(2n) → Exponential Complexity

The `algorithm' terminates but the universe is likely to end much
earlier even if n ≈ 1000.

35 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Common Growth Rates

Θ(1) → constant complexity

e.g., an algorithms that only samples a constant number of inputs

Θ(log n) → logarithmic complexity

Binary search

Θ(n) → linear complexity

Most practical algorithms :)

Θ(n log n) → pseudo-linear complexity

Optimal comparison based sorting algorithms, e.g., merge-sort

Θ(n2) → Quadratic complexity

naive sorting algorithms (bubble sort, insertion sort)

Θ(n3) → Cubic Complexity

naive matrix multiplication

Θ(2n) → Exponential Complexity

The `algorithm' terminates but the universe is likely to end much
earlier even if n ≈ 1000.

35 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Common Growth Rates

Θ(1) → constant complexity

e.g., an algorithms that only samples a constant number of inputs

Θ(log n) → logarithmic complexity

Binary search

Θ(n) → linear complexity

Most practical algorithms :)

Θ(n log n) → pseudo-linear complexity

Optimal comparison based sorting algorithms, e.g., merge-sort

Θ(n2) → Quadratic complexity

naive sorting algorithms (bubble sort, insertion sort)

Θ(n3) → Cubic Complexity

naive matrix multiplication

Θ(2n) → Exponential Complexity

The `algorithm' terminates but the universe is likely to end much
earlier even if n ≈ 1000.

35 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Common Growth Rates

Θ(1) → constant complexity

e.g., an algorithms that only samples a constant number of inputs

Θ(log n) → logarithmic complexity

Binary search

Θ(n) → linear complexity

Most practical algorithms :)

Θ(n log n) → pseudo-linear complexity

Optimal comparison based sorting algorithms, e.g., merge-sort

Θ(n2) → Quadratic complexity

naive sorting algorithms (bubble sort, insertion sort)

Θ(n3) → Cubic Complexity

naive matrix multiplication

Θ(2n) → Exponential Complexity

The `algorithm' terminates but the universe is likely to end much
earlier even if n ≈ 1000.

35 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Common Growth Rates

Θ(1) → constant complexity

e.g., an algorithms that only samples a constant number of inputs

Θ(log n) → logarithmic complexity

Binary search

Θ(n) → linear complexity

Most practical algorithms :)

Θ(n log n) → pseudo-linear complexity

Optimal comparison based sorting algorithms, e.g., merge-sort

Θ(n2) → Quadratic complexity

naive sorting algorithms (bubble sort, insertion sort)

Θ(n3) → Cubic Complexity

naive matrix multiplication

Θ(2n) → Exponential Complexity

The `algorithm' terminates but the universe is likely to end much
earlier even if n ≈ 1000.

35 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Common Growth Rates

Θ(1) → constant complexity

e.g., an algorithms that only samples a constant number of inputs

Θ(log n) → logarithmic complexity

Binary search

Θ(n) → linear complexity

Most practical algorithms :)

Θ(n log n) → pseudo-linear complexity

Optimal comparison based sorting algorithms, e.g., merge-sort

Θ(n2) → Quadratic complexity

naive sorting algorithms (bubble sort, insertion sort)

Θ(n3) → Cubic Complexity

naive matrix multiplication

Θ(2n) → Exponential Complexity

The `algorithm' terminates but the universe is likely to end much
earlier even if n ≈ 1000.

35 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Common Growth Rates

Θ(1) → constant complexity

e.g., an algorithms that only samples a constant number of inputs

Θ(log n) → logarithmic complexity

Binary search

Θ(n) → linear complexity

Most practical algorithms :)

Θ(n log n) → pseudo-linear complexity

Optimal comparison based sorting algorithms, e.g., merge-sort

Θ(n2) → Quadratic complexity

naive sorting algorithms (bubble sort, insertion sort)

Θ(n3) → Cubic Complexity

naive matrix multiplication

Θ(2n) → Exponential Complexity

The `algorithm' terminates but the universe is likely to end much
earlier even if n ≈ 1000.

35 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Common Growth Rates

Θ(1) → constant complexity

e.g., an algorithms that only samples a constant number of inputs

Θ(log n) → logarithmic complexity

Binary search

Θ(n) → linear complexity

Most practical algorithms :)

Θ(n log n) → pseudo-linear complexity

Optimal comparison based sorting algorithms, e.g., merge-sort

Θ(n2) → Quadratic complexity

naive sorting algorithms (bubble sort, insertion sort)

Θ(n3) → Cubic Complexity

naive matrix multiplication

Θ(2n) → Exponential Complexity

The `algorithm' terminates but the universe is likely to end much
earlier even if n ≈ 1000.

35 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Common Growth Rates

Θ(1) → constant complexity

e.g., an algorithms that only samples a constant number of inputs

Θ(log n) → logarithmic complexity

Binary search

Θ(n) → linear complexity

Most practical algorithms :)

Θ(n log n) → pseudo-linear complexity

Optimal comparison based sorting algorithms, e.g., merge-sort

Θ(n2) → Quadratic complexity

naive sorting algorithms (bubble sort, insertion sort)

Θ(n3) → Cubic Complexity

naive matrix multiplication

Θ(2n) → Exponential Complexity

The `algorithm' terminates but the universe is likely to end much
earlier even if n ≈ 1000.

35 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Techniques for Comparing Growth
Rates

Assume the running time of two algorithms are given by functions
f (n) and g(n) and let

L = lim
n→∞

f (n)

g(n)

Then

f (n) ∈


o(g(n)) if L = 0

Θ(g(n)) if 0 < L <∞
ω(g(n)) if L =∞

.

If the limit is not de�ned, we need another method

Note that we cannot compare two algorithms using big O and Ω
notations

E.g., algorithm A can have complexity O(n2) and algorithm B has
complexity O(n3). We cannot state that A is faster than B (why?)

36 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Techniques for Comparing Growth
Rates

Assume the running time of two algorithms are given by functions
f (n) and g(n) and let

L = lim
n→∞

f (n)

g(n)

Then

f (n) ∈


o(g(n)) if L = 0

Θ(g(n)) if 0 < L <∞
ω(g(n)) if L =∞

.

If the limit is not de�ned, we need another method

Note that we cannot compare two algorithms using big O and Ω
notations

E.g., algorithm A can have complexity O(n2) and algorithm B has
complexity O(n3). We cannot state that A is faster than B (why?)

36 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Fun with Asymptotic Notations

Compare the grow-rate of log n and nr where r is a positive real
number.

37 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Fun with Asymptotic Notations

Prove that n(sin(n) + 2) is Θ(n).

Use the de�nition since the limit does not exist

De�ne n0,M1,M2 so that ∀n > n0 we have
M1n(sin(n) + 2) ≤ n ≤ qM2n(sin(n) + 2).
M1 = 1/3,M2 = 1, n0 = 1 work!

38 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Fun with Asymptotic Notations

Prove that n(sin(n) + 2) is Θ(n).

Use the de�nition since the limit does not exist

De�ne n0,M1,M2 so that ∀n > n0 we have
M1n(sin(n) + 2) ≤ n ≤ qM2n(sin(n) + 2).
M1 = 1/3,M2 = 1, n0 = 1 work!

38 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Fun with Asymptotic Notations

The same relationship that holds for relative values of numbers hold
for asymptotic.

E.g., if f (n) ∈ O(g(n)) [f (n) is asymptotically smaller than or equal
to g(n)], then we have g(n) ∈ Ω(f (n)) [g(n) is asymptotically
larger than or equal to f (n)].

we know ∃M′, n0 s.t., f (n) ≤ M′g(n) for n ≥ n0, i.e.,

g(n) ≥ 1/M′ × f (n) (select the same n0 and M = 1/M′).

In order to prove f (n) ∈ Θ(g(n)), we often show that f (n) ∈ O(n)
and f (n) ∈ Ω(g(n)).
suppose ∃M1, n′0 s.t., f (n) ≤ M1g(n) for n ≥ n′0. Also, ∃M2, n′′0 s.t.,

f (n) ≥ M2g(n) for n ≥ n′′0 . Select, n0 = max{n′0, n′′0 } and we have

M2g(n) ≤ f (n) ≤ M1g(n).

39 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Fun with Asymptotic Notations

The same relationship that holds for relative values of numbers hold
for asymptotic.

E.g., if f (n) ∈ O(g(n)) [f (n) is asymptotically smaller than or equal
to g(n)], then we have g(n) ∈ Ω(f (n)) [g(n) is asymptotically
larger than or equal to f (n)].
we know ∃M′, n0 s.t., f (n) ≤ M′g(n) for n ≥ n0, i.e.,

g(n) ≥ 1/M′ × f (n) (select the same n0 and M = 1/M′).

In order to prove f (n) ∈ Θ(g(n)), we often show that f (n) ∈ O(n)
and f (n) ∈ Ω(g(n)).
suppose ∃M1, n′0 s.t., f (n) ≤ M1g(n) for n ≥ n′0. Also, ∃M2, n′′0 s.t.,

f (n) ≥ M2g(n) for n ≥ n′′0 . Select, n0 = max{n′0, n′′0 } and we have

M2g(n) ≤ f (n) ≤ M1g(n).

39 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Fun with Asymptotic Notations

The same relationship that holds for relative values of numbers hold
for asymptotic.

E.g., if f (n) ∈ O(g(n)) [f (n) is asymptotically smaller than or equal
to g(n)], then we have g(n) ∈ Ω(f (n)) [g(n) is asymptotically
larger than or equal to f (n)].
we know ∃M′, n0 s.t., f (n) ≤ M′g(n) for n ≥ n0, i.e.,

g(n) ≥ 1/M′ × f (n) (select the same n0 and M = 1/M′).

In order to prove f (n) ∈ Θ(g(n)), we often show that f (n) ∈ O(n)
and f (n) ∈ Ω(g(n)).

suppose ∃M1, n′0 s.t., f (n) ≤ M1g(n) for n ≥ n′0. Also, ∃M2, n′′0 s.t.,

f (n) ≥ M2g(n) for n ≥ n′′0 . Select, n0 = max{n′0, n′′0 } and we have

M2g(n) ≤ f (n) ≤ M1g(n).

39 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Fun with Asymptotic Notations

The same relationship that holds for relative values of numbers hold
for asymptotic.

E.g., if f (n) ∈ O(g(n)) [f (n) is asymptotically smaller than or equal
to g(n)], then we have g(n) ∈ Ω(f (n)) [g(n) is asymptotically
larger than or equal to f (n)].
we know ∃M′, n0 s.t., f (n) ≤ M′g(n) for n ≥ n0, i.e.,

g(n) ≥ 1/M′ × f (n) (select the same n0 and M = 1/M′).

In order to prove f (n) ∈ Θ(g(n)), we often show that f (n) ∈ O(n)
and f (n) ∈ Ω(g(n)).
suppose ∃M1, n′0 s.t., f (n) ≤ M1g(n) for n ≥ n′0. Also, ∃M2, n′′0 s.t.,

f (n) ≥ M2g(n) for n ≥ n′′0 . Select, n0 = max{n′0, n′′0 } and we have

M2g(n) ≤ f (n) ≤ M1g(n).

39 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Fun with Asymptotic Notations

We have transitivity in asymptotic notations: if f (n) ∈ O(g(n))
and g(n) ∈ O(h(n)), we have f (n) ∈ O(h(n)).

We know ∃M1, n′0 s.t., f (n) ≤ M1g(n) for n ≥ n′0. Also, ∃M2, n′′0 s.t.,

g(n) ≤ M2h(n) for n ≥ n′′0 . For n ≥ n0 with n0 = max{n′0, n′′0 }, it holds that
f (n) ≤ M1M2h(n) (select M = M1M2).

Max rule: f (n) + g(n) ∈ Θ(max{f (n), g(n)}).
E.g., 2n3 + 8n2 + 16n log n ∈ Θ(max{2n3, 8n2, 16n log n}) = Θ(n3).

it holds that max{f (n), g(n)} ≤ f (n) + g(n) ≤ 2max{f (n), g(n)} for n ≥ 1.

(select n0 = 1, M1 = 1 and M2 = 2).

40 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Fun with Asymptotic Notations

We have transitivity in asymptotic notations: if f (n) ∈ O(g(n))
and g(n) ∈ O(h(n)), we have f (n) ∈ O(h(n)).
We know ∃M1, n′0 s.t., f (n) ≤ M1g(n) for n ≥ n′0. Also, ∃M2, n′′0 s.t.,

g(n) ≤ M2h(n) for n ≥ n′′0 . For n ≥ n0 with n0 = max{n′0, n′′0 }, it holds that
f (n) ≤ M1M2h(n) (select M = M1M2).

Max rule: f (n) + g(n) ∈ Θ(max{f (n), g(n)}).
E.g., 2n3 + 8n2 + 16n log n ∈ Θ(max{2n3, 8n2, 16n log n}) = Θ(n3).

it holds that max{f (n), g(n)} ≤ f (n) + g(n) ≤ 2max{f (n), g(n)} for n ≥ 1.

(select n0 = 1, M1 = 1 and M2 = 2).

40 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Fun with Asymptotic Notations

We have transitivity in asymptotic notations: if f (n) ∈ O(g(n))
and g(n) ∈ O(h(n)), we have f (n) ∈ O(h(n)).
We know ∃M1, n′0 s.t., f (n) ≤ M1g(n) for n ≥ n′0. Also, ∃M2, n′′0 s.t.,

g(n) ≤ M2h(n) for n ≥ n′′0 . For n ≥ n0 with n0 = max{n′0, n′′0 }, it holds that
f (n) ≤ M1M2h(n) (select M = M1M2).

Max rule: f (n) + g(n) ∈ Θ(max{f (n), g(n)}).
E.g., 2n3 + 8n2 + 16n log n ∈ Θ(max{2n3, 8n2, 16n log n}) = Θ(n3).

it holds that max{f (n), g(n)} ≤ f (n) + g(n) ≤ 2max{f (n), g(n)} for n ≥ 1.

(select n0 = 1, M1 = 1 and M2 = 2).

40 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Fun with Asymptotic Notations

We have transitivity in asymptotic notations: if f (n) ∈ O(g(n))
and g(n) ∈ O(h(n)), we have f (n) ∈ O(h(n)).
We know ∃M1, n′0 s.t., f (n) ≤ M1g(n) for n ≥ n′0. Also, ∃M2, n′′0 s.t.,

g(n) ≤ M2h(n) for n ≥ n′′0 . For n ≥ n0 with n0 = max{n′0, n′′0 }, it holds that
f (n) ≤ M1M2h(n) (select M = M1M2).

Max rule: f (n) + g(n) ∈ Θ(max{f (n), g(n)}).
E.g., 2n3 + 8n2 + 16n log n ∈ Θ(max{2n3, 8n2, 16n log n}) = Θ(n3).

it holds that max{f (n), g(n)} ≤ f (n) + g(n) ≤ 2max{f (n), g(n)} for n ≥ 1.

(select n0 = 1, M1 = 1 and M2 = 2).

40 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Fun with Asymptotic Notations

What is the time complexity of arithmetic sequences?

n−1∑
i=0

(a+ di)

What about geometric sequence?

n−1∑
i=0

ar i

What about Harmonic sequence?

Hn =
n∑

i=1

1
i

41 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Fun with Asymptotic Notations

What is the time complexity of arithmetic sequences?

n−1∑
i=0

(a+ di)= na+ dn(n−1)
2

∈ Θ(n2)

What about geometric sequence?

n−1∑
i=0

ar i

What about Harmonic sequence?

Hn =
n∑

i=1

1
i

41 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Fun with Asymptotic Notations

What is the time complexity of arithmetic sequences?

n−1∑
i=0

(a+ di)= na+ dn(n−1)
2

∈ Θ(n2)

What about geometric sequence?

n−1∑
i=0

ar i

What about Harmonic sequence?

Hn =
n∑

i=1

1
i

41 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Fun with Asymptotic Notations

What is the time complexity of arithmetic sequences?

n−1∑
i=0

(a+ di)= na+ dn(n−1)
2

∈ Θ(n2)

What about geometric sequence?

n−1∑
i=0

ar i =


a 1−rn

1−r
∈ Θ(1) if 0 < r < 1

na ∈ Θ(n) if r = 1

a rn−1
r−1

∈ Θ(rn) if r > 1

What about Harmonic sequence?

Hn =
n∑

i=1

1
i

41 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Fun with Asymptotic Notations

What is the time complexity of arithmetic sequences?

n−1∑
i=0

(a+ di)= na+ dn(n−1)
2

∈ Θ(n2)

What about geometric sequence?

n−1∑
i=0

ar i =


a 1−rn

1−r
∈ Θ(1) if 0 < r < 1

na ∈ Θ(n) if r = 1

a rn−1
r−1

∈ Θ(rn) if r > 1

What about Harmonic sequence?

Hn =
n∑

i=1

1
i
≈ ln(n) + γ ∈ Θ(log n) (γ is a constant≈ 0.577)

41 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Loop Analysis

Identify elementary operations that require constant time

The complexity of a loop is expressed as the sum of the
complexities of each iteration of the loop.

Analyse independent loops separately, and then add the results
(use �maximum rules� and simplify when possible).

If loops are nested, start with the innermost loop and proceed
outwards.

42 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Example of Loop Analysis

Algo1 (n)
1. A← 0
2. for i ← 1 to n do

3. for j ← i to n do

4. A← A/(i − j)2

5. A← A100

6. return sum

O(1)+Σn
i=1Σ

n
j=ic = O(1)+Σn

i=1(n−i+1)c = O(1)+Σn
p=1pc = Θ(n2)

43 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Example of Loop Analysis

Algo1 (n)
1. A← 0
2. for i ← 1 to n do

3. for j ← i to n do

4. A← A/(i − j)2

5. A← A100

6. return sum

O(1)+Σn
i=1Σ

n
j=i

c

= O(1)+Σn
i=1(n−i+1)c = O(1)+Σn

p=1pc = Θ(n2)

43 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Example of Loop Analysis

Algo1 (n)
1. A← 0
2. for i ← 1 to n do

3. for j ← i to n do

4. A← A/(i − j)2

5. A← A100

6. return sum

O(1)+Σn
i=1

Σn
j=ic

= O(1)+Σn
i=1(n−i+1)c = O(1)+Σn

p=1pc = Θ(n2)

43 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Example of Loop Analysis

Algo1 (n)
1. A← 0
2. for i ← 1 to n do

3. for j ← i to n do

4. A← A/(i − j)2

5. A← A100

6. return sum

O(1)+

Σn
i=1Σ

n
j=ic

= O(1)+Σn
i=1(n−i+1)c = O(1)+Σn

p=1pc = Θ(n2)

43 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Example of Loop Analysis

Algo1 (n)
1. A← 0
2. for i ← 1 to n do

3. for j ← i to n do

4. A← A/(i − j)2

5. A← A100

6. return sum

O(1)+Σn
i=1Σ

n
j=ic

= O(1)+Σn
i=1(n−i+1)c = O(1)+Σn

p=1pc = Θ(n2)

43 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Example of Loop Analysis

Algo1 (n)
1. A← 0
2. for i ← 1 to n do

3. for j ← i to n do

4. A← A/(i − j)2

5. A← A100

6. return sum

O(1)+Σn
i=1Σ

n
j=ic = O(1)+Σn

i=1(n−i+1)c

= O(1)+Σn
p=1pc = Θ(n2)

43 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Example of Loop Analysis

Algo1 (n)
1. A← 0
2. for i ← 1 to n do

3. for j ← i to n do

4. A← A/(i − j)2

5. A← A100

6. return sum

O(1)+Σn
i=1Σ

n
j=ic = O(1)+Σn

i=1(n−i+1)c = O(1)+Σn
p=1pc

= Θ(n2)

43 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Example of Loop Analysis

Algo1 (n)
1. A← 0
2. for i ← 1 to n do

3. for j ← i to n do

4. A← A/(i − j)2

5. A← A100

6. return sum

O(1)+Σn
i=1Σ

n
j=ic = O(1)+Σn

i=1(n−i+1)c = O(1)+Σn
p=1pc = Θ(n2)

43 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Example of Loop Analysis

Algo2 (A, n)
1. max ← 0
2. for i ← 1 to n do

3. for j ← i to n do

4. X ← 0
5. for k ← i to j do
6. X ← A[k]
7. if X > max then

8. max ← X
9. return max

n∑
i=1

n∑
j=i

(O(1) +

j∑
k=i

c) = Θ(n3)

44 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Example of Loop Analysis

Algo2 (A, n)
1. max ← 0
2. for i ← 1 to n do

3. for j ← i to n do

4. X ← 0
5. for k ← i to j do
6. X ← A[k]
7. if X > max then

8. max ← X
9. return max

n∑
i=1

n∑
j=i

(O(1) +

j∑
k=i

c) = Θ(n3)

44 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Example of Loop Analysis

Algo3 (n)
1. X ← 0
2. for i ← 1 to n2 do
3. j ← i
4. while j ≥ 1 do

5. X ← X + i/j
6. j ← ⌊j/2⌋
7. return X

The while loop takes O(log i); note that log(x!) = Θ(x log x)

The time complexity is asymptotically equal to

n2∑
i=1

log i = log 1+log 2+ . . . log n2 = log(1×2× . . .×n2) = log(n2!)

= Θ(n2 log(n2)) = Θ(2n2 log(n2)) = Θ(n2 log n)

45 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Example of Loop Analysis

Algo3 (n)
1. X ← 0
2. for i ← 1 to n2 do
3. j ← i
4. while j ≥ 1 do

5. X ← X + i/j
6. j ← ⌊j/2⌋
7. return X

The while loop takes O(log i); note that log(x!) = Θ(x log x)

The time complexity is asymptotically equal to

n2∑
i=1

log i = log 1+log 2+ . . . log n2 = log(1×2× . . .×n2) = log(n2!)

= Θ(n2 log(n2)) = Θ(2n2 log(n2)) = Θ(n2 log n)

45 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Example of Loop Analysis

Algo3 (n)
1. X ← 0
2. for i ← 1 to n2 do
3. j ← i
4. while j ≥ 1 do

5. X ← X + i/j
6. j ← ⌊j/2⌋
7. return X

The while loop takes O(log i); note that log(x!) = Θ(x log x)

The time complexity is asymptotically equal to

n2∑
i=1

log i = log 1+log 2+ . . . log n2 = log(1×2× . . .×n2) = log(n2!)

= Θ(n2 log(n2)) = Θ(2n2 log(n2)) = Θ(n2 log n)

45 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Example of Loop Analysis

Algo3 (n)
1. X ← 0
2. for i ← 1 to n2 do
3. j ← i
4. while j ≥ 1 do

5. X ← X + i/j
6. j ← ⌊j/2⌋
7. return X

The while loop takes O(log i); note that log(x!) = Θ(x log x)

The time complexity is asymptotically equal to

n2∑
i=1

log i = log 1+log 2+ . . . log n2 = log(1×2× . . .×n2) = log(n2!)

= Θ(n2 log(n2)) = Θ(2n2 log(n2)) = Θ(n2 log n)

45 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

MergeSort

Sorting an array A of n numbers

Step 1: We split A into two subarrays: AL consists of the �rst ⌈ n
2
⌉

elements in A and AR consists of the last ⌊ n
2
⌋ elements in A.

Step 2: Recursively run MergeSort on AL and AR .

Step 3: After AL and AR have been sorted, use a function Merge
to merge them into a single sorted array. This can be done in time
Θ(n).

46 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

MergeSort

MergeSort(A, n)
1. if n = 1 then

2. S ← A
3. else

4. nL ← ⌈ n2⌉
5. nR ← ⌊ n2⌋
6. AL ← [A[1], . . . ,A[nL]]
7. AR ← [A[nL + 1], . . . ,A[n]]
8. SL ← MergeSort(AL, nL)
9. SR ← MergeSort(AR , nR)
10. S ← Merge(SL, nL,SR , nR)
11. return S

47 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Analysis of MergeSort

The following is the corresponding sloppy recurrence

(it has �oors and ceilings removed):

T (n) =

{
2T

(
n
2

)
+ cn if n > 1

d if n = 1.

The exact and sloppy recurrences are identical when n is a power of
2.

The recurrence can easily be solved by various methods when
n = 2j . The solution has growth rate T (n) ∈ Θ(n log n).

It is possible to show that T (n) ∈ Θ(n log n) for all n
by analyzing the exact recurrence.

48 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Analysis of Recursions

The sloppy recurrence for time complexity of merge sort:

T (n) =

{
2T

(
n
2

)
+ cn if n > 1

d if n = 1.

We can �nd the solution using alternation method:

T (n) = 2T (n/2) + cn

= 2(2T (n/4) + cn/2) + cn = 4T (n/4) + 2cn

= 4(2T (n/8) + cn/4) + 2cn = 8T (n/8) + 3cn

= . . .

= 2kT (n/2k) + kcn

= 2log nT (1) + log ncn = Θ(n log n)

49 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Substitution method

Guess the growth function and prove an upper bound for it using
induction.

For merge-sort, prove T (n) < Mn log n for some value of M (that
we choose).
This holds for n = 2 since we have T (2) = 2d + 2c, which is less
than 2M as long as M ≥ c + d (base of induction).
Fix a value of n and assume the inequality holds for smaller values.
we have T (n) = 2T (n/2) + cn ≤ 2M(n/2(log n/2)) + cn =
Mn(log n/2) + cn = Mn log n−Mn+ cn ≤ Mn log n as long as M is
selected to be at least c (the inequality comes from the induction
hypothesis)

This shows T (n) ∈ O(n log n)

50 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Recursion Tree

Suppose we want to solve the following recursion:

T (n) =

{
3T

(
n
4

)
+ cn2 if n > 1

d if n = 1.

Let's form a recursion tree:

The total work in
internal nodes is
cn2(1+ 3/16+
(3/16)2 + . . .) =
Θ(n2).

The total work in
leaves is nlog3 4.

The max rule
indicates that
T (n) = Θ(n2).

51 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Recursion Tree

Suppose we want to solve the following recursion:

T (n) =

{
3T

(
n
4

)
+ cn2 if n > 1

d if n = 1.

Let's form a recursion tree:

The total work in
internal nodes is
cn2(1+ 3/16+
(3/16)2 + . . .) =
Θ(n2).

The total work in
leaves is nlog3 4.

The max rule
indicates that
T (n) = Θ(n2).

51 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Recursion Tree

Suppose we want to solve the following recursion:

T (n) =

{
3T

(
n
4

)
+ cn2 if n > 1

d if n = 1.

Let's form a recursion tree:

The total work in
internal nodes is
cn2(1+ 3/16+
(3/16)2 + . . .) =
Θ(n2).

The total work in
leaves is nlog3 4.

The max rule
indicates that
T (n) = Θ(n2).

51 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Recursion Tree

Suppose we want to solve the following recursion:

T (n) =

{
3T

(
n
4

)
+ cn2 if n > 1

d if n = 1.

Let's form a recursion tree:

The total work in
internal nodes is
cn2(1+ 3/16+
(3/16)2 + . . .) =
Θ(n2).

The total work in
leaves is nlog3 4.

The max rule
indicates that
T (n) = Θ(n2).

51 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Recursion Tree

Suppose we want to solve the following recursion:

T (n) =

{
3T

(
n
4

)
+ cn2 if n > 1

d if n = 1.

Let's form a recursion tree:

The total work in
internal nodes is
cn2(1+ 3/16+
(3/16)2 + . . .) =
Θ(n2).

The total work in
leaves is nlog3 4.

The max rule
indicates that
T (n) = Θ(n2).

51 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Recursion Tree

Suppose we want to solve the following recursion:

T (n) =

{
3T

(
n
4

)
+ cn2 if n > 1

d if n = 1.

Let's form a recursion tree:

The total work in
internal nodes is
cn2(1+ 3/16+
(3/16)2 + . . .) =
Θ(n2).

The total work in
leaves is nlog3 4.

The max rule
indicates that
T (n) = Θ(n2).

51 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Master theorem

T (n) =

{
a T

(
n
b

)
+ f (n) if n > 1

d if n = 1.

(a ≥ 1, b > 1, and f (n) > 0)

Compare f (n) and nlogb a

Case 1: if f (n) ∈ O(nlogb a−ϵ), then T (n) ∈ Θ(nlogb a)

Case 2: if f (n) ∈ Θ(nlogb a(log n)k) for some non-negative k then
T (n) ∈ Θ(f (n) log n) = Θ(nlogb a(log n)k+1)

Case 3: if f (n) ∈ Ω(nlogb a+ϵ) and if af (n/b) ≤ cf (n) for some

constant c < 1 (regularity condition), then T (n) ∈ Θ(f (n))

52 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Master theorem examples

T (n) = 2T (n/2) + log n?

case 1: T (n) ∈ Θ(n)

T (n) = 4T (n/4) + 100n? case 2: T (n) ∈ Θ(n log n)

T (n) = 3T (n/2) + n2?

Case 3, check whether regularity condition holds, i.e., whether
af (n/b) ≤ cf (n) for some c < 1. Since we have 3(n/2)2 = 3/4n2

the regularity condition holds (c can be any value in the range
(3/4, 1), i.e., T (n) ∈ Θ(n2)

T (n) = T (n/2) + n(2− cos(n))?

Case 3, check whether regularity condition holds.
For n = 2kπ, we have cos(n/2) = −1 and cos(n) = 1; we have
af (n/b) = n/2(2− cos(n/2)) = 3n/2, which is not within a factor
c < 1 of f (n) = n(2− 1) = n [i.e., we cannot say 3n/2 ≤ cn for any
c < 1]. So we cannot get any conclusion from Master theorem.

T (n) = 2T (n/2) + n(log n)3 ? Case 2, we have
f (n) = Θ(nlogb a(log n)k) for k = 3. We have T (n) = Θ(n(log n)4).

53 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Master theorem examples

T (n) = 2T (n/2) + log n? case 1: T (n) ∈ Θ(n)

T (n) = 4T (n/4) + 100n? case 2: T (n) ∈ Θ(n log n)

T (n) = 3T (n/2) + n2?

Case 3, check whether regularity condition holds, i.e., whether
af (n/b) ≤ cf (n) for some c < 1. Since we have 3(n/2)2 = 3/4n2

the regularity condition holds (c can be any value in the range
(3/4, 1), i.e., T (n) ∈ Θ(n2)

T (n) = T (n/2) + n(2− cos(n))?

Case 3, check whether regularity condition holds.
For n = 2kπ, we have cos(n/2) = −1 and cos(n) = 1; we have
af (n/b) = n/2(2− cos(n/2)) = 3n/2, which is not within a factor
c < 1 of f (n) = n(2− 1) = n [i.e., we cannot say 3n/2 ≤ cn for any
c < 1]. So we cannot get any conclusion from Master theorem.

T (n) = 2T (n/2) + n(log n)3 ? Case 2, we have
f (n) = Θ(nlogb a(log n)k) for k = 3. We have T (n) = Θ(n(log n)4).

53 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Master theorem examples

T (n) = 2T (n/2) + log n? case 1: T (n) ∈ Θ(n)

T (n) = 4T (n/4) + 100n?

case 2: T (n) ∈ Θ(n log n)

T (n) = 3T (n/2) + n2?

Case 3, check whether regularity condition holds, i.e., whether
af (n/b) ≤ cf (n) for some c < 1. Since we have 3(n/2)2 = 3/4n2

the regularity condition holds (c can be any value in the range
(3/4, 1), i.e., T (n) ∈ Θ(n2)

T (n) = T (n/2) + n(2− cos(n))?

Case 3, check whether regularity condition holds.
For n = 2kπ, we have cos(n/2) = −1 and cos(n) = 1; we have
af (n/b) = n/2(2− cos(n/2)) = 3n/2, which is not within a factor
c < 1 of f (n) = n(2− 1) = n [i.e., we cannot say 3n/2 ≤ cn for any
c < 1]. So we cannot get any conclusion from Master theorem.

T (n) = 2T (n/2) + n(log n)3 ? Case 2, we have
f (n) = Θ(nlogb a(log n)k) for k = 3. We have T (n) = Θ(n(log n)4).

53 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Master theorem examples

T (n) = 2T (n/2) + log n? case 1: T (n) ∈ Θ(n)

T (n) = 4T (n/4) + 100n? case 2: T (n) ∈ Θ(n log n)

T (n) = 3T (n/2) + n2?

Case 3, check whether regularity condition holds, i.e., whether
af (n/b) ≤ cf (n) for some c < 1. Since we have 3(n/2)2 = 3/4n2

the regularity condition holds (c can be any value in the range
(3/4, 1), i.e., T (n) ∈ Θ(n2)

T (n) = T (n/2) + n(2− cos(n))?

Case 3, check whether regularity condition holds.
For n = 2kπ, we have cos(n/2) = −1 and cos(n) = 1; we have
af (n/b) = n/2(2− cos(n/2)) = 3n/2, which is not within a factor
c < 1 of f (n) = n(2− 1) = n [i.e., we cannot say 3n/2 ≤ cn for any
c < 1]. So we cannot get any conclusion from Master theorem.

T (n) = 2T (n/2) + n(log n)3 ? Case 2, we have
f (n) = Θ(nlogb a(log n)k) for k = 3. We have T (n) = Θ(n(log n)4).

53 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Master theorem examples

T (n) = 2T (n/2) + log n? case 1: T (n) ∈ Θ(n)

T (n) = 4T (n/4) + 100n? case 2: T (n) ∈ Θ(n log n)

T (n) = 3T (n/2) + n2?

Case 3, check whether regularity condition holds, i.e., whether
af (n/b) ≤ cf (n) for some c < 1. Since we have 3(n/2)2 = 3/4n2

the regularity condition holds (c can be any value in the range
(3/4, 1), i.e., T (n) ∈ Θ(n2)

T (n) = T (n/2) + n(2− cos(n))?

Case 3, check whether regularity condition holds.
For n = 2kπ, we have cos(n/2) = −1 and cos(n) = 1; we have
af (n/b) = n/2(2− cos(n/2)) = 3n/2, which is not within a factor
c < 1 of f (n) = n(2− 1) = n [i.e., we cannot say 3n/2 ≤ cn for any
c < 1]. So we cannot get any conclusion from Master theorem.

T (n) = 2T (n/2) + n(log n)3 ? Case 2, we have
f (n) = Θ(nlogb a(log n)k) for k = 3. We have T (n) = Θ(n(log n)4).

53 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Master theorem examples

T (n) = 2T (n/2) + log n? case 1: T (n) ∈ Θ(n)

T (n) = 4T (n/4) + 100n? case 2: T (n) ∈ Θ(n log n)

T (n) = 3T (n/2) + n2?

Case 3, check whether regularity condition holds, i.e., whether
af (n/b) ≤ cf (n) for some c < 1. Since we have 3(n/2)2 = 3/4n2

the regularity condition holds (c can be any value in the range
(3/4, 1), i.e., T (n) ∈ Θ(n2)

T (n) = T (n/2) + n(2− cos(n))?

Case 3, check whether regularity condition holds.
For n = 2kπ, we have cos(n/2) = −1 and cos(n) = 1; we have
af (n/b) = n/2(2− cos(n/2)) = 3n/2, which is not within a factor
c < 1 of f (n) = n(2− 1) = n [i.e., we cannot say 3n/2 ≤ cn for any
c < 1]. So we cannot get any conclusion from Master theorem.

T (n) = 2T (n/2) + n(log n)3 ? Case 2, we have
f (n) = Θ(nlogb a(log n)k) for k = 3. We have T (n) = Θ(n(log n)4).

53 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Master theorem examples

T (n) = 2T (n/2) + log n? case 1: T (n) ∈ Θ(n)

T (n) = 4T (n/4) + 100n? case 2: T (n) ∈ Θ(n log n)

T (n) = 3T (n/2) + n2?

Case 3, check whether regularity condition holds, i.e., whether
af (n/b) ≤ cf (n) for some c < 1. Since we have 3(n/2)2 = 3/4n2

the regularity condition holds (c can be any value in the range
(3/4, 1), i.e., T (n) ∈ Θ(n2)

T (n) = T (n/2) + n(2− cos(n))?

Case 3, check whether regularity condition holds.
For n = 2kπ, we have cos(n/2) = −1 and cos(n) = 1; we have
af (n/b) = n/2(2− cos(n/2)) = 3n/2, which is not within a factor
c < 1 of f (n) = n(2− 1) = n [i.e., we cannot say 3n/2 ≤ cn for any
c < 1]. So we cannot get any conclusion from Master theorem.

T (n) = 2T (n/2) + n(log n)3 ? Case 2, we have
f (n) = Θ(nlogb a(log n)k) for k = 3. We have T (n) = Θ(n(log n)4).

53 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Master theorem examples

T (n) = 2T (n/2) + log n? case 1: T (n) ∈ Θ(n)

T (n) = 4T (n/4) + 100n? case 2: T (n) ∈ Θ(n log n)

T (n) = 3T (n/2) + n2?

Case 3, check whether regularity condition holds, i.e., whether
af (n/b) ≤ cf (n) for some c < 1. Since we have 3(n/2)2 = 3/4n2

the regularity condition holds (c can be any value in the range
(3/4, 1), i.e., T (n) ∈ Θ(n2)

T (n) = T (n/2) + n(2− cos(n))?

Case 3, check whether regularity condition holds.

For n = 2kπ, we have cos(n/2) = −1 and cos(n) = 1; we have
af (n/b) = n/2(2− cos(n/2)) = 3n/2, which is not within a factor
c < 1 of f (n) = n(2− 1) = n [i.e., we cannot say 3n/2 ≤ cn for any
c < 1]. So we cannot get any conclusion from Master theorem.

T (n) = 2T (n/2) + n(log n)3 ? Case 2, we have
f (n) = Θ(nlogb a(log n)k) for k = 3. We have T (n) = Θ(n(log n)4).

53 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Master theorem examples

T (n) = 2T (n/2) + log n? case 1: T (n) ∈ Θ(n)

T (n) = 4T (n/4) + 100n? case 2: T (n) ∈ Θ(n log n)

T (n) = 3T (n/2) + n2?

Case 3, check whether regularity condition holds, i.e., whether
af (n/b) ≤ cf (n) for some c < 1. Since we have 3(n/2)2 = 3/4n2

the regularity condition holds (c can be any value in the range
(3/4, 1), i.e., T (n) ∈ Θ(n2)

T (n) = T (n/2) + n(2− cos(n))?

Case 3, check whether regularity condition holds.
For n = 2kπ, we have cos(n/2) = −1 and cos(n) = 1; we have
af (n/b) = n/2(2− cos(n/2)) = 3n/2, which is not within a factor
c < 1 of f (n) = n(2− 1) = n [i.e., we cannot say 3n/2 ≤ cn for any
c < 1]. So we cannot get any conclusion from Master theorem.

T (n) = 2T (n/2) + n(log n)3 ? Case 2, we have
f (n) = Θ(nlogb a(log n)k) for k = 3. We have T (n) = Θ(n(log n)4).

53 / 53
EECS 3101 - Design and Analysis of Algorithms

▲



Asymptotic Notations

Master theorem examples

T (n) = 2T (n/2) + log n? case 1: T (n) ∈ Θ(n)

T (n) = 4T (n/4) + 100n? case 2: T (n) ∈ Θ(n log n)

T (n) = 3T (n/2) + n2?

Case 3, check whether regularity condition holds, i.e., whether
af (n/b) ≤ cf (n) for some c < 1. Since we have 3(n/2)2 = 3/4n2

the regularity condition holds (c can be any value in the range
(3/4, 1), i.e., T (n) ∈ Θ(n2)

T (n) = T (n/2) + n(2− cos(n))?

Case 3, check whether regularity condition holds.
For n = 2kπ, we have cos(n/2) = −1 and cos(n) = 1; we have
af (n/b) = n/2(2− cos(n/2)) = 3n/2, which is not within a factor
c < 1 of f (n) = n(2− 1) = n [i.e., we cannot say 3n/2 ≤ cn for any
c < 1]. So we cannot get any conclusion from Master theorem.

T (n) = 2T (n/2) + n(log n)3 ? Case 2, we have
f (n) = Θ(nlogb a(log n)k) for k = 3. We have T (n) = Θ(n(log n)4).

53 / 53
EECS 3101 - Design and Analysis of Algorithms

▲


	Introduction
	Formalities
	Basic Concepts
	Introduction
	Algorithms & models of computation
	Asymptotic Notations

