EECS 3101 - Design and Analysis of Algorithms

Shahin Kamali

Topic 1 - Introductions
York University

Picture is from the cover of the textbook CLRS.

Introduction

- Algorithms are
- Practical
- Diverse
- Fun (really!)

In a Glance ...

- Algorithms are
- Practical
- Diverse
- Fun (really!)
- Let's 'learn \& play' algorithms and enjoy

Formalities

Formalities

Formalities

Textbook

- The main reference:
- Introduction to Algorithms, third edition, by Cormen, Leiserson, Rivest, and Stein, MIT Press, 2009.
- Optional textbooks:
- Algorithms and Data Structures, by Mehlhorn and Sanders, Springer, 2008.
- The Algorithm Design Manual, second edition, by Skiena, Springer, 2008.
- Advanced Data Structures, by Brass, Cambridge, 2008.

Grading

- There will be:
- Five assignments
- Two quizzes
- A midterm exam
- A final exam

Formalities

Grading

- There will be:
- Five assignments
- Two quizzes
- A midterm exam
- A final exam

Theorem

The focus of this course is on learning, practising, and discovering.

Formalities

Grading

- There will be:
- Five assignments
- Two quizzes
- A midterm exam
- A final exam

Theorem

The focus of this course is on learning, practising, and discovering.

Corollary

Having fun in the process is important.

Grading (cntd.)

- Five assignments:
- 5 to 10 percent extra for bonus questions.
- submit only pdf files (preferably use IATEX) on Crowdmark (https://www.crowdmark.com/).

Formalities

Grading (cntd.)

- Five assignments:
- 5 to 10 percent extra for bonus questions.
- submit only pdf files (preferably use IATEX) on Crowdmark (https://www.crowdmark.com/).
- Quizzes, Midterm \& Final exams:
- there will be extra for bonus questions in midterm and final.
- all are closed-book.
- sample exams will be provided for practice for midterm and final.

Prerequisites

- What I have learned from previous courses?
- Basic sorting algorithms, e.g., quick sort and merge sort

Prerequisites

- What I have learned from previous courses?
- Basic sorting algorithms, e.g., quick sort and merge sort
- Asymptotic notations, e.g., big O, Ω, etc.

Basic Concepts

Prerequisites

- What I have learned from previous courses?
- Basic sorting algorithms, e.g., quick sort and merge sort
- Asymptotic notations, e.g., big O, Ω, etc.
- Basic abstract data types (ADTs) and data structures
- Stacks, queues, dictionaries, binary search trees, hash tables, graphs.

Basic Concepts

Prerequisites

- What I have learned from previous courses?
- Basic sorting algorithms, e.g., quick sort and merge sort
- Asymptotic notations, e.g., big O, Ω, etc.
- Basic abstract data types (ADTs) and data structures
- Stacks, queues, dictionaries, binary search trees, hash tables, graphs.

Basic Concepts

Prerequisites

- What I have learned from previous courses?
- Basic sorting algorithms, e.g., quick sort and merge sort
- Asymptotic notations, e.g., big O, Ω, etc.
- Basic abstract data types (ADTs) and data structures
- Stacks, queues, dictionaries, binary search trees, hash tables, graphs.
- Basic algorithm families
- Greedy algorithms, divide \& conquer (d\&c)

Basic Concepts

Prerequisites

- What I have learned from previous courses?
- Basic sorting algorithms, e.g., quick sort and merge sort
- Asymptotic notations, e.g., big O, Ω, etc.
- Basic abstract data types (ADTs) and data structures
- Stacks, queues, dictionaries, binary search trees, hash tables, graphs.
- Basic algorithm families
- Greedy algorithms, divide \& conquer (d\&c)
- Analysis techniques
- E.g., how to analyse time complexity of a d\&c algorithm?

Basic Concepts

Prerequisites

- What I have learned from previous courses?
- Basic sorting algorithms, e.g., quick sort and merge sort
- Asymptotic notations, e.g., big O, Ω, etc.
- Basic abstract data types (ADTs) and data structures
- Stacks, queues, dictionaries, binary search trees, hash tables, graphs.
- Basic algorithm families
- Greedy algorithms, divide \& conquer (d\&c)
- Analysis techniques
- E.g., how to analyse time complexity of a d\&c algorithm?
- Solving recursions, Master theorem, etc.

Algorithms

- What is an algorithm?

Algorithms

- What is an algorithm?

Definition

An algorithm is a computational procedure formed by a sequence of instructions (steps) to solve a problem

Algorithms

- What is an algorithm?

Definition

An algorithm is a computational procedure formed by a sequence of instructions (steps) to solve a problem

- The problem has an input and often requires an output

Algorithms

- What is an algorithm?

Definition

An algorithm is a computational procedure formed by a sequence of instructions (steps) to solve a problem

- The problem has an input and often requires an output
- Transition from one step to another can be deterministic or randomized
- The algorithm is deterministic if it never uses randomization; otherwise, it is a randomized algorithm

Algorithms

- What is an algorithm?

Definition

An algorithm is a computational procedure formed by a sequence of instructions (steps) to solve a problem

- The problem has an input and often requires an output
- Transition from one step to another can be deterministic or randomized
- The algorithm is deterministic if it never uses randomization; otherwise, it is a randomized algorithm
- Solving the problem requires the algorithm to terminate.
- Time complexity concerns the number of steps that it takes for the algorithm to terminate (often on the worst-case input)

Abstract Data Type

- What is an Abstract Data Type (ADT)?

Definition

An abstract data type is formed by I) a set of values (data items) and II) a set of operations allowed on these items

Abstract Data Type

- What is an Abstract Data Type (ADT)?

Definition

An abstract data type is formed by I) a set of values (data items) and II) a set of operations allowed on these items

- Stack is an ADT. Data items can be anything and operations are push and pop
- An ADT is abstract way of looking at data (no implementation is prescribed)
- An ADT is the way data 'looks' from the view point of user

Data Structure

- What is a Data Structure?

Definition

A data structure is a concrete representation of data, including how data is organized, stored, and accessed on a computer

Data Structure

- What is a Data Structure?

Definition

A data structure is a concrete representation of data, including how data is organized, stored, and accessed on a computer

- A linked-list is a data structure
- Data structures are implementations of ADTs
- A data structure is the way data 'looks' from the view point of implementer

ADTs vs Data Structures

- ADTs: Stacks, queues, priority queues, dictionaries
- Data structures array, linked-list, binary-search-tree, binary-heap hash-table-using-probing, hash-table-using-chaining, adjacency list, adjacency matrix, etc.

Asymptotic Analysis

Algorithms (review)

- An algorithm is a step-by-step procedure carrying out a computation to solve an arbitrary instance of a problem.
- E.g., sorting is a problem; a set of numbers form an instance of that and 'solving' involves creating a sorted output.

Algorithms (review)

- An algorithm is a step-by-step procedure carrying out a computation to solve an arbitrary instance of a problem.
- E.g., sorting is a problem; a set of numbers form an instance of that and 'solving' involves creating a sorted output.
- A program is an implementation of an algorithm using a specific programming language

Algorithms (review)

- An algorithm is a step-by-step procedure carrying out a computation to solve an arbitrary instance of a problem.
- E.g., sorting is a problem; a set of numbers form an instance of that and 'solving' involves creating a sorted output.
- A program is an implementation of an algorithm using a specific programming language
- For a given problem (e.g., sorting) there can be several algorithms (e.g., Quicksort, Mergesort), and for a given algorithm (e.g., Quicksort) there can be several programs.
- Our focus in this course is on algorithms (not programs).
- How to implement a given algorithm relates to the art of performance engineering (writing a fast code)
- Given a problem P, we need to
- Design an algorithm A that solves P (Algorithm Design)

Algorithms Design \& Analysis

- Given a problem P, we need to
- Design an algorithm A that solves P (Algorithm Design)
- Verify correctness and efficiency of the algorithm (Algorithm Analysis)
- If the algorithm is correct and efficient, implement it
- If you implement something that is not necessarily correct or efficient in all cases, that would be a heuristic.

Algorithms \& models of computation

Algorithm Evaluation

- How should we evaluate different algorithms for solving a problem?
- In this course we are mainly concerned with amount of time it takes to solve a problem (this is called running time)
- We can think of other measures such as the amount of memory that is required by the algorithm
- Other measures include amount of data movement, network traffic generated, etc.

Algorithms \& models of computation

Algorithm Evaluation

- How should we evaluate different algorithms for solving a problem?
- In this course we are mainly concerned with amount of time it takes to solve a problem (this is called running time)
- We can think of other measures such as the amount of memory that is required by the algorithm
- Other measures include amount of data movement, network traffic generated, etc.
- The amount of time/memory/traffic required by an algorithm depend on the size of the problem
- Sorting a larger set of numbers takes more time!

Running Time of Algorithms

- How to assess the running time of an algorithm?
- Experimental analysis:
- Implement the algorithm in a program
- Run the program with inputs of different sizes
- Experimentally measure the actual running time (e.g., using clock() from time.h)

Running Time of Algorithms

- How to assess the running time of an algorithm?
- Experimental analysis:
- Implement the algorithm in a program
- Run the program with inputs of different sizes
- Experimentally measure the actual running time (e.g., using clock() from time.h)
- Shortcomings of experimental studies:

Running Time of Algorithms

- How to assess the running time of an algorithm?
- Experimental analysis:
- Implement the algorithm in a program
- Run the program with inputs of different sizes
- Experimentally measure the actual running time (e.g., using clock() from time.h)
- Shortcomings of experimental studies:
- We need to implement the program (what if we are lazy and those engineers are hard to employ?)
- We cannot test all input instances for the problem. What are the good samples? (remember the Morphy's law)
- Many factors have impact on experimental timing, e.g., hardware (processor, memory), software environment (operating system, compiler, programming language), and human factors (how good was the programmer?)
- We need to assess time/memory requirement of algorithms using models that
- Take into account all input instances
- Do not require implementation of the algorithms
- Are independent of hardware/software/programmer

Computational Models

- We need to assess time/memory requirement of algorithms using models that
- Take into account all input instances
- Do not require implementation of the algorithms
- Are independent of hardware/software/programmer
- In order to achieve this, we:
- Express algorithms using pseudo-codes (don't worry about implementation)
- Instead of measuring time in seconds, count the number of primitive operations
- This requires an abstract model of computation

Random Access Machine (RAM) Model

- The random access machine (RAM):
- Has a set of memory cells, each storing one 'word’ of data.
- Any access to a memory location takes constant time.
- Any primitive operation takes constant time.
- The running time of a program can be computed to be the number of memory accesses plus the number of primitive operations.
- Word-RAM is a RAM machine with the extra assumption that all values in our problem can 'fit' in a constant number of words (values are not too big).
- We often use Word-RAM model for analysis of algorithms

Random Access Machine Model

- The random access machine (RAM):
- Has a set of memory cells, each storing one 'word’ of data.
- Any access to a memory location takes constant time.
- Any primitive operation takes constant time.
- The running time of a program can be computed to be the number of memory accesses plus the number of primitive operations.
- Word-RAM is a RAM machine with the extra assumption that all values in our problem can 'fit' in a constant number of words (values are not too big).
- We often use Word-RAM model for analysis of algorithms

Observation

RAM is a simplified model which only provides an approximation of a 'real' computer

Analysis of Insertion Sort under RAM

	SERTION-Sort (A)	cost
1	for $j=2$ to A.length	$c_{1}=2$
2	$k e y=A[j]$	$c_{2}=3$
3	// Insert $A[j]$ into the sorted sequence $A[1 . . j-1]$.	0
4	$i=j-1$	$c_{4}=2$
5	while $i>0$ and $A[i]>k e y$	$c_{5}=6$
6	$A[i+1]=A[i]$	$c_{6}=4$
7	$i=i-1$	$c_{7}=2$
8	$A[i+1]=k e y$	$c_{8}=3$

- First, calculate the 'cost' (sum of memory accesses and primitive operations) for each line
- E.g., in line 5, there are 3 memory accesses and 3 primitive operations

Analysis of Insertion Sort under RAM

Insertion-Sort (A)	
1	for $j=2$ to A.length
2	$k e y=A[j]$
3	// Insert $A[j]$ into the sorted sequence $A[1 . . j-1]$.
4	$i=j-1$
5	while $i>0$ and $A[i]>k e y$
6	$A[i+1]=A[i]$
7	$i=i-1$
8	$A[i+1]=k e y$

cost	times
$c_{1}=2$	n
$c_{2}=3$	$n-1$
0	$n-1$
$c_{4}=2$	$n-1$
$c_{5}=6$	$\sum_{j=2}^{n} t_{j}$
$c_{6}=4$	$\sum_{j=2}^{n}\left(t_{j}-1\right)$
$c_{7}=2$	$\sum_{j=2}^{n}\left(t_{j}-1\right)$
$c_{8}=3$	$n-1$

- Next, find the number of times each line is executed
- This depends on the input, we may consider best or worst case input
- Let t_{j} be number of times the while loop is executed for inserting the j 'th item.
- In the best case, $t_{j}=1$ and in the worst case $t_{j}=j$.
- Summing up all costs, in the best case we have $T(n)=a n+b$ for constant a and b
- In the worst case, we have $T_{n}=\alpha n^{2}+\beta n+\gamma$ for constant α, β, γ

Algorithms \& models of computation

Primitive Operations

- RAM model implicitly assumes primitive operations have fairly similar running time
- Primitive operations:
- basic integer arithmetic (addition, subtraction, multiplication, division, and modulo)
- bitwise logic and bit shifts (logical AND, OR, exclusive-OR, negation, left shift, and right shift)
- Non-primitive operations:
- exponentiation, radicals (square roots), logarithms, trigonometric, functions (sine, cosine, tangent), etc.

Asymptotic Notations

Statement

So, we can express the cost (running time) of an algorithm A for a problem of size n as a function $T_{A}(n)$.

- How do we compare two different algorithms? say $T_{A}(n)=\frac{1}{1000} n^{3}$ and $T_{B}(n)=1000 n^{2}+500 n+200$.
- Summarize the time complexity using asymptotic notations!
- Idea: assume the size of input grows to infinity; identify which component of $T_{A}(n)$ contributes most to the grow of $T_{A}(n)$.
- As n grows:
- constants don't matter (e.g., $T_{A}(n) \approx n^{3}$)
- low-order terms don't matter (e.g., $T_{B}(n) \approx 1000 n^{2}$)

Asymptotic Notations

- Informally $T_{B}(n)=O\left(T_{A}(n)\right)$ means T_{B} is asymptotically smaller than or equal to T_{A}.
- Is it sufficient to define O so that we have $T_{B}(n)<T_{A}(n)$?
- No because the inequality might not hold for small values of n which we don't care about.
- The two function might have constants we would prefer to ignore.

Asymptotic Notations

- Informally $T_{B}(n)=O\left(T_{A}(n)\right)$ means T_{B} is asymptotically smaller than or equal to T_{A}.
- Is it sufficient to define O so that we have $T_{B}(n)<T_{A}(n)$?
- No because the inequality might not hold for small values of n which we don't care about.
- The two function might have constants we would prefer to ignore.

Definition

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n}) \in \mathrm{O}(\mathrm{~g}(\mathrm{n})) \Leftrightarrow \\
& \exists M>0, \exists n_{0}>0 \text { s.t. } \underbrace{\forall n>n_{0}}_{\text {ignore low-order terms }}, \underbrace{f(n) \leq M \cdot g(n)}_{\text {ignore constants }}
\end{aligned}
$$

Big Oh Illustration

https://apelbaum.wordpress.com/2011/05/05/big-o/

- Let $f(n)=1000 n^{2}+1000 n$ and $g(n)=n^{3}$. Prove $f(n) \in O(g(n))$

Review

- To analyze running time of an algorithm (under RAM model) we sum the number of primitive operations and memory accesses of the algorithm.
- The cost (running time) of algorithm A for a problem of size n would be a function $T_{A}(n)$.
- How do we compare two different algorithms? say $T_{A}(n)=\frac{1}{1000} n^{3}$ and $T_{B}(n)=1000 n^{2}+500 n+200$.
- Summarize the time complexity using asymptotic notations!
- Idea: assume the size of input grows to infinity; identify which component of $T_{A}(n)$ contributes most to the grow of $T_{A}(n)$.
- As n grows:
- constants don't matter.
- low-order terms don't matter.

Big O Notations

- Informally $f(n)=O(g(n))$ means f is asymptotically smaller than or equal to g.

Definition

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n}) \in \mathrm{O}(\mathrm{~g}(\mathrm{n})) \Leftrightarrow \\
& \exists M>0, \exists n_{0}>0 \text { s.t. } \underbrace{\forall n>n_{0}}_{\text {ignore low-order terms }}, \underbrace{f(n) \leq M \cdot g(n)}_{\text {ignore constants }}
\end{aligned}
$$

Big O Notations

- E.g., $f(n)=2 n, g(n)=n$. Is it that $f(n) \in O(g(n))$?

Big O Notations

- E.g., $f(n)=2 n, g(n)=n$. Is it that $f(n) \in O(g(n))$?

Big O Notations

- E.g., $f(n)=2 n, g(n)=n$. Is it that $f(n) \in O(g(n))$?
- Yes, $f(n)$ is asymptotically smaller than or equal (equal) to $g(n)$.
- To prove, we should show
$\exists M>0, \exists n_{0}>0$ s.t. $\forall n>n_{0}, f(n) \leq M \cdot g(n)$
- It suffices to define $n_{0}=1$ and $M=3$, we have $\forall n>1,2 n \leq 3 n$.
- M could be any number larger than or equal to 2 , and n_{0} could be any number.

Big O Notations

- E.g., $f(n)=2 n, g(n)=n$. Is it that $f(n) \in O(g(n))$?
- Yes, $f(n)$ is asymptotically smaller than or equal (equal) to $g(n)$.
- To prove, we should show

$$
\exists M>0, \exists n_{0}>0 \text { s.t. } \forall n>n_{0}, f(n) \leq M \cdot g(n)
$$

- It suffices to define $n_{0}=1$ and $M=3$, we have $\forall n>1,2 n \leq 3 n$.
- M could be any number larger than or equal to 2 , and n_{0} could be any number.
- We require specific values of M (not all choices for M work)

Big O Notations

- E.g., $f(n)=2 n+100 / n, g(n)=n$. Is it that $f(n) \in O(g(n))$?

Big O Notations

- E.g., $f(n)=2 n+100 / n, g(n)=n$. Is it that $f(n) \in O(g(n))$?

Big O Notations

- E.g., $f(n)=2 n+100 / n, g(n)=n$. Is it that $f(n) \in O(g(n))$?
- Yes, again, $f(n)$ is asymptotically smaller than or equal (equal) to $g(n)$.
- To prove, we should show
$\exists M>0, \exists n_{0}>0$ s.t. $\forall n>n_{0}, f(n) \leq M \cdot g(n)$
- It suffices to define $n_{0}=10$ and $M=3$, we have $\forall n>10,2 n+100 / n \leq 3 n$.

Big O Notations

- E.g., $f(n)=2 n+100 / n, g(n)=n$. Is it that $f(n) \in O(g(n))$?
- Yes, again, $f(n)$ is asymptotically smaller than or equal (equal) to $g(n)$.
- To prove, we should show

$$
\exists M>0, \exists n_{0}>0 \text { s.t. } \forall n>n_{0}, f(n) \leq M \cdot g(n)
$$

- It suffices to define $n_{0}=10$ and $M=3$, we have $\forall n>10,2 n+100 / n \leq 3 n$.
- We require specific values of M and n_{0} (not all choices work)

Big O Notation

- Let $f(n)=2023 n^{2}+1402 n$ and $g(n)=n^{3}$. Prove $f(n) \in O(g(n))$

Big O Notation

- Let $f(n)=2023 n^{2}+1402 n$ and $g(n)=n^{3}$. Prove $f(n) \in O(g(n))$
- We should define M and n_{0} s.t. $\forall n>n_{0}$ we have $2019 n^{2}+1397 n \leq M n^{3}$. This is equivalent to $2023 n+1402 \leq M n^{2}$.
- We have $2023 n+1402 \leq 2023 n+1402 n=3425 n$. So, to prove $2023 n+1402 \leq M n^{2}$, it suffices to prove $3425 n \leq M n^{2}$, i.e., $3425 \leq M n$. This is always true assuming $M=1$ and $n \geq 3425$ ($n_{0}=3425$).
- Setting $M=3426$ and $n_{0}=1$ also work!

Little o Notations

- Informally $f(n)=o(g(n))$ means f is asymptotically smaller than g.

Definition

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n}) \in \mathrm{o}(\mathrm{~g}(\mathrm{n})) \Leftrightarrow \\
& \forall M>0, \exists n_{0}>0 \text { s.t. } \underbrace{\forall n>n_{0}}_{\text {ignore low-order terms }}, f(n)<M \cdot g(n)
\end{aligned}
$$

- E.g., $f(n)=2 n, g(n)=n$. Is it that $f(n) \in o(g(n))$?

Little o Notations

- E.g., $f(n)=2 n, g(n)=n$. Is it that $f(n) \in o(g(n))$?
- No because for $M=1$, it is not true that $f(n)<M g(n)$ (i.e., $2 n<n$) for large values of n.

- Prove that $n^{2} \sin (n)+1984 n+2016 \in o\left(n^{3}\right)$.

Little o Notation

- Prove that $n^{2} \sin (n)+1984 n+2016 \in o\left(n^{3}\right)$.
- We have to prove that for all values of M there is an n_{0} so that for $n>n_{0}$ we have $n^{2} \sin (n)+1984 n+2016<M n^{3}$.
- We know $n^{2} \sin (n) \leq n^{2}, 1984 n \leq 1984 n^{2}$ and $2016 \leq 2016 n^{2}$. So, $n^{2} \sin (n)+1984 n+2016 \leq(1+1984+2016) n^{2}=4001 n^{2}$.
- So, to prove $n^{2} \sin (n)+1984 n+2016<M n^{3}$ it suffices to prove $4001 n^{2}<M n^{3}$, i.e., $4001 / M<n$, so, we can define n_{0} to be any value larger than $4001 / M$.

Little o Notation

- Prove that $n^{2} \sin (n)+1984 n+2016 \in o\left(n^{3}\right)$.
- We have to prove that for all values of M there is an n_{0} so that for $n>n_{0}$ we have $n^{2} \sin (n)+1984 n+2016<M n^{3}$.
- We know $n^{2} \sin (n) \leq n^{2}, 1984 n \leq 1984 n^{2}$ and $2016 \leq 2016 n^{2}$. So, $n^{2} \sin (n)+1984 n+2016 \leq(1+1984+2016) n^{2}=4001 n^{2}$.
- So, to prove $n^{2} \sin (n)+1984 n+2016<M n^{3}$ it suffices to prove $4001 n^{2}<M n^{3}$, i.e., $4001 / M<n$, so, we can define n_{0} to be any value larger than $4001 / M$.
- For little o, n_{0} is often defined as a function of M.

Big Ω Notation

- $f(n)=\Omega(g(n))$ means f is asymptotically larger than or equal to g.

Definition

$\mathrm{f}(\mathrm{n}) \in \Omega(g(n)) \Leftrightarrow \exists M>0, \exists n_{0}>0$ s.t. $\forall n>n_{0}, f(n) \geq M \cdot g(n)$

Big Ω Notation

- $f(n)=\Omega(g(n))$ means f is asymptotically larger than or equal to g.

Definition

$\mathrm{f}(\mathrm{n}) \in \Omega(g(n)) \Leftrightarrow \exists M>0, \exists n_{0}>0$ s.t. $\forall n>n_{0}, f(n) \geq M \cdot g(n)$

- Let $f(n)=n / 2020$ and $g(n)=\log (n)$. Prove $f(n) \in \Omega(g(n))$.

Big Ω Notation

- $f(n)=\Omega(g(n))$ means f is asymptotically larger than or equal to g.

Definition

$\mathrm{f}(\mathrm{n}) \in \Omega(g(n)) \Leftrightarrow \exists M>0, \exists n_{0}>0$ s.t. $\forall n>n_{0}, f(n) \geq M \cdot g(n)$

- Let $f(n)=n / 2020$ and $g(n)=\log (n)$. Prove $f(n) \in \Omega(g(n))$.
- We need to provide M and n_{0} so that for all $n \geq n_{0}$ we have $n / 2020 \geq M \log (n)$, i.e., $n \geq 2020 M \log (n)$.
- We know $\log (n)<n$ (assuming $n>1$). So, in order to show $2020 M \log (n) \leq n$, it suffices to have $2020 M \leq 1$, i.e., M can be any value smaller than $1 / 2020$ (and n_{0} can be 1 or any other positive integer).

Little ω Notation

- $f(n)=\omega(g(n))$ means f is asymptotically larger than g.

Definition

$$
\mathrm{f}(\mathrm{n}) \in \omega(\mathrm{g}(\mathrm{n})) \Leftrightarrow \forall M>0, \exists n_{0}>0 \text { s.t. } \forall n>n_{0}, f(n)>M \cdot g(n)
$$

- Let $f(n)=n / 2020$ and $g(n)=\log (n)$. Prove $f(n) \in \omega(g(n))$.
- For any constant M we need to provide n_{0} so that for all $n \geq n_{0}$ we have $n / 2020>M \log (n)$, i.e., $n>2020 M \log (n)$.
- We know $\log (n)<\sqrt{n}$ (assuming $n>16$). So, in order to show $2020 M \log (n)<n$, it suffices to have $2020 M \sqrt{n}<n$, i.e., $2020 M<\sqrt{n}$. For that, it suffices to have $(2020 M)^{2}<n$, i.e., n_{0} can be defined as $\max \left\{16,(2020 M)^{2}\right\}$.

Little ω Notation

- $f(n)=\omega(g(n))$ means f is asymptotically larger than g.

Definition

$$
\mathrm{f}(\mathrm{n}) \in \omega(\mathrm{g}(\mathrm{n})) \Leftrightarrow \forall M>0, \exists n_{0}>0 \text { s.t. } \forall n>n_{0}, f(n)>M \cdot g(n)
$$

- Let $f(n)=n / 2020$ and $g(n)=\log (n)$. Prove $f(n) \in \omega(g(n))$.
- For any constant M we need to provide n_{0} so that for all $n \geq n_{0}$ we have $n / 2020>M \log (n)$, i.e., $n>2020 M \log (n)$.
- We know $\log (n)<\sqrt{n}$ (assuming $n>16$). So, in order to show $2020 M \log (n)<n$, it suffices to have $2020 M \sqrt{n}<n$, i.e., $2020 M<\sqrt{n}$. For that, it suffices to have $(2020 M)^{2}<n$, i.e., n_{0} can be defined as $\max \left\{16,(2020 M)^{2}\right\}$.
- Similarly to little o, for ω, we often need to define n_{0} as a function of M.

Θ Notation

- Informally $f(n)=\Theta(g(n))$ means f is asymptotically equal to g.

Definition

$\mathrm{f}(\mathrm{n}) \in \Theta(g(n)) \Leftrightarrow$
$\exists M_{1}, M_{2}>0, \exists n_{0}>0$ s.t. $\forall n>n_{0}, M_{1} \cdot g(n) \leq f(n) \leq M_{2} \cdot g(n)$

Θ Notation

- Informally $f(n)=\Theta(g(n))$ means f is asymptotically equal to g.

Definition

$\mathrm{f}(\mathrm{n}) \in \Theta(g(n)) \Leftrightarrow$
$\exists M_{1}, M_{2}>0, \exists n_{0}>0$ s.t. $\forall n>n_{0}, M_{1} \cdot g(n) \leq f(n) \leq M_{2} \cdot g(n)$

- Let $f(n)=n$ and $g(n)=n / 2020$. Prove $f(n) \in \Theta(g(n))$.
- We need to provide M_{1}, M_{2}, n_{0} so that for all $n \geq n_{0}$ we have $M_{1} n / 2020 \leq n \leq M_{2} n / 2020$.
- For the first inequality, we can have $M_{1}=1$ and for all n we have $n / 2020 \leq n$.
- For the second inequality, we let M_{2} to be any constant larger than 2020 which gives $M_{2} / 2020 \geq 1$.
- n_{0} can be any value, e.g., $n_{0}=1$.

Asymptotic Notations in a Nutshell

Definition

$\mathrm{f}(\mathrm{n}) \in \mathrm{O}(\mathrm{g}(\mathrm{n})) \Leftrightarrow \exists M>0, \exists n_{0}>0$ s.t. $\forall n>n_{0}, f(n) \leq M \cdot g(n)$

Definition

$\mathrm{f}(\mathrm{n}) \in \mathrm{o}(\mathrm{g}(\mathrm{n})) \Leftrightarrow \forall M>0, \exists n_{0}>0$ s.t. $\forall n>n_{0}, f(n)<M \cdot g(n)$

Definition

$f(n) \in \Omega(g(n)) \Leftrightarrow \exists M>0, \exists n_{0}>0$ s.t. $\forall n>n_{0}, f(n) \geq M \cdot g(n)$
Definition
$\mathrm{f}(\mathrm{n}) \in \omega(\mathrm{g}(\mathrm{n})) \Leftrightarrow \forall M>0, \exists n_{0}>0$ s.t. $\forall n>n_{0}, f(n)>M \cdot g(n)$
Definition
$\mathrm{f}(\mathrm{n}) \in \Theta(g(n)) \Leftrightarrow \exists M_{1}, M_{2}>0, \exists n_{0}>0$ s.t.

$$
\forall n>n_{0}, M_{1} \cdot g(n) \leq f(n) \leq M_{2} \cdot g(n)
$$

- $\Theta(1) \rightarrow$ constant complexity

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
- e.g., an algorithms that only samples a constant number of inputs

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
- e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
- e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
- Binary search

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
- e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
- Binary search
- $\Theta(n) \rightarrow$ linear complexity

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
- e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
- Binary search
- $\Theta(n) \rightarrow$ linear complexity
- Most practical algorithms :)

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
- e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
- Binary search
- $\Theta(n) \rightarrow$ linear complexity
- Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
- e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
- Binary search
- $\Theta(n) \rightarrow$ linear complexity
- Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
- Optimal comparison based sorting algorithms, e.g., merge-sort

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
- e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
- Binary search
- $\Theta(n) \rightarrow$ linear complexity
- Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
- Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta\left(n^{2}\right) \rightarrow$ Quadratic complexity

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
- e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
- Binary search
- $\Theta(n) \rightarrow$ linear complexity
- Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
- Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta\left(n^{2}\right) \rightarrow$ Quadratic complexity
- naive sorting algorithms (bubble sort, insertion sort)

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
- e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
- Binary search
- $\Theta(n) \rightarrow$ linear complexity
- Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
- Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta\left(n^{2}\right) \rightarrow$ Quadratic complexity
- naive sorting algorithms (bubble sort, insertion sort)
- $\Theta\left(n^{3}\right) \rightarrow$ Cubic Complexity

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
- e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
- Binary search
- $\Theta(n) \rightarrow$ linear complexity
- Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
- Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta\left(n^{2}\right) \rightarrow$ Quadratic complexity
- naive sorting algorithms (bubble sort, insertion sort)
- $\Theta\left(n^{3}\right) \rightarrow$ Cubic Complexity
- naive matrix multiplication

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
- e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
- Binary search
- $\Theta(n) \rightarrow$ linear complexity
- Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
- Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta\left(n^{2}\right) \rightarrow$ Quadratic complexity
- naive sorting algorithms (bubble sort, insertion sort)
- $\Theta\left(n^{3}\right) \rightarrow$ Cubic Complexity
- naive matrix multiplication
- $\Theta\left(2^{n}\right) \rightarrow$ Exponential Complexity

Common Growth Rates

- $\Theta(1) \rightarrow$ constant complexity
- e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow$ logarithmic complexity
- Binary search
- $\Theta(n) \rightarrow$ linear complexity
- Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
- Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta\left(n^{2}\right) \rightarrow$ Quadratic complexity
- naive sorting algorithms (bubble sort, insertion sort)
- $\Theta\left(n^{3}\right) \rightarrow$ Cubic Complexity
- naive matrix multiplication
- $\Theta\left(2^{n}\right) \rightarrow$ Exponential Complexity
- The 'algorithm' terminates but the universe is likely to end much earlier even if $n \approx 1000$.

Techniques for Comparing Growth Rates

- Assume the running time of two algorithms are given by functions $f(n)$ and $g(n)$ and let

$$
L=\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}
$$

Then

$$
f(n) \in \begin{cases}o(g(n)) & \text { if } L=0 \\ \Theta(g(n)) & \text { if } 0<L<\infty \\ \omega(g(n)) & \text { if } L=\infty\end{cases}
$$

Techniques for Comparing Growth Rates

- Assume the running time of two algorithms are given by functions $f(n)$ and $g(n)$ and let

$$
L=\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}
$$

Then

$$
f(n) \in \begin{cases}o(g(n)) & \text { if } L=0 \\ \Theta(g(n)) & \text { if } 0<L<\infty \\ \omega(g(n)) & \text { if } L=\infty\end{cases}
$$

- If the limit is not defined, we need another method
- Note that we cannot compare two algorithms using big O and Ω notations
- E.g., algorithm A can have complexity $O\left(n^{2}\right)$ and algorithm B has complexity $O\left(n^{3}\right)$. We cannot state that A is faster than B (why?)

Fun with Asymptotic Notations

- Compare the grow-rate of $\log n$ and n^{r} where r is a positive real number.

Fun with Asymptotic Notations

- Prove that $n(\sin (n)+2)$ is $\Theta(n)$.

Fun with Asymptotic Notations

- Prove that $n(\sin (n)+2)$ is $\Theta(n)$.
- Use the definition since the limit does not exist
- Define n_{0}, M_{1}, M_{2} so that $\forall n>n_{0}$ we have $M_{1} n(\sin (n)+2) \leq n \leq q M_{2} n(\sin (n)+2)$.
- $M_{1}=1 / 3, M_{2}=1, n_{0}=1$ work!

Fun with Asymptotic Notations

- The same relationship that holds for relative values of numbers hold for asymptotic.
- E.g., if $f(n) \in O(g(n))[f(n)$ is asymptotically smaller than or equal to $g(n)]$, then we have $g(n) \in \Omega(f(n))[g(n)$ is asymptotically larger than or equal to $f(n)$].

Fun with Asymptotic Notations

- The same relationship that holds for relative values of numbers hold for asymptotic.
- E.g., if $f(n) \in O(g(n))[f(n)$ is asymptotically smaller than or equal to $g(n)]$, then we have $g(n) \in \Omega(f(n))[g(n)$ is asymptotically larger than or equal to $f(n)]$.
we know $\exists M^{\prime}, n_{0}$ s.t., $f(n) \leq M^{\prime} g(n)$ for $n \geq n_{0}$, i.e., $g(n) \geq 1 / M^{\prime} \times f(n)$ (select the same n_{0} and $M=1 / M^{\prime}$).

Fun with Asymptotic Notations

- The same relationship that holds for relative values of numbers hold for asymptotic.
- E.g., if $f(n) \in O(g(n))[f(n)$ is asymptotically smaller than or equal to $g(n)]$, then we have $g(n) \in \Omega(f(n))$ [$g(n)$ is asymptotically larger than or equal to $f(n)]$. we know $\exists M^{\prime}, n_{0}$ s.t., $f(n) \leq M^{\prime} g(n)$ for $n \geq n_{0}$, i.e., $g(n) \geq 1 / M^{\prime} \times f(n)$ (select the same n_{0} and $\left.M=1 / M^{\prime}\right)$.
- In order to prove $f(n) \in \Theta(g(n))$, we often show that $f(n) \in O(n)$ and $f(n) \in \Omega(g(n))$.

Fun with Asymptotic Notations

- The same relationship that holds for relative values of numbers hold for asymptotic.
- E.g., if $f(n) \in O(g(n))[f(n)$ is asymptotically smaller than or equal to $g(n)]$, then we have $g(n) \in \Omega(f(n))$ [$g(n)$ is asymptotically larger than or equal to $f(n)]$. we know $\exists M^{\prime}, n_{0}$ s.t., $f(n) \leq M^{\prime} g(n)$ for $n \geq n_{0}$, i.e., $g(n) \geq 1 / M^{\prime} \times f(n)$ (select the same n_{0} and $\left.M=1 / M^{\prime}\right)$.
- In order to prove $f(n) \in \Theta(g(n))$, we often show that $f(n) \in O(n)$ and $f(n) \in \Omega(g(n))$.
suppose $\exists M_{1}, n_{0}^{\prime}$ s.t., $f(n) \leq M_{1} g(n)$ for $n \geq n_{0}^{\prime}$. Also, $\exists M_{2}, n_{0}^{\prime \prime}$ s.t., $f(n) \geq M_{2} g(n)$ for $n \geq n_{0}^{\prime \prime}$. Select, $n_{0}=\max \left\{n_{0}^{\prime}, n_{0}^{\prime \prime}\right\}$ and we have $M_{2} g(n) \leq f(n) \leq M_{1} g(n)$.

Fun with Asymptotic Notations

- We have transitivity in asymptotic notations: if $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, we have $f(n) \in O(h(n))$.

Fun with Asymptotic Notations

- We have transitivity in asymptotic notations: if $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, we have $f(n) \in O(h(n))$. We know $\exists M_{1}, n_{0}^{\prime}$ s.t., $f(n) \leq M_{1} g(n)$ for $n \geq n_{0}^{\prime}$. Also, $\exists M_{2}, n_{0}^{\prime \prime}$ s.t., $g(n) \leq M_{2} h(n)$ for $n \geq n_{0}^{\prime \prime}$. For $n \geq n_{0}$ with $n_{0}=\max \left\{n_{0}^{\prime}, n_{0}^{\prime \prime}\right\}$, it holds that $f(n) \leq M_{1} M_{2} h(n)\left(\right.$ select $\left.M=M_{1} M_{2}\right)$.

Fun with Asymptotic Notations

- We have transitivity in asymptotic notations: if $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, we have $f(n) \in O(h(n))$.
We know $\exists M_{1}, n_{0}^{\prime}$ s.t., $f(n) \leq M_{1} g(n)$ for $n \geq n_{0}^{\prime}$. Also, $\exists M_{2}, n_{0}^{\prime \prime}$ s.t., $g(n) \leq M_{2} h(n)$ for $n \geq n_{0}^{\prime \prime}$. For $n \geq n_{0}$ with $n_{0}=\max \left\{n_{0}^{\prime}, n_{0}^{\prime \prime}\right\}$, it holds that $f(n) \leq M_{1} M_{2} h(n)\left(\right.$ select $\left.M=M_{1} M_{2}\right)$.
- Max rule: $f(n)+g(n) \in \Theta(\max \{f(n), g(n)\})$.
- E.g., $2 n^{3}+8 n^{2}+16 n \log n \in \Theta\left(\max \left\{2 n^{3}, 8 n^{2}, 16 n \log n\right\}\right)=\Theta\left(n^{3}\right)$.

Fun with Asymptotic Notations

- We have transitivity in asymptotic notations: if $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, we have $f(n) \in O(h(n))$.
We know $\exists M_{1}, n_{0}^{\prime}$ s.t., $f(n) \leq M_{1} g(n)$ for $n \geq n_{0}^{\prime}$. Also, $\exists M_{2}, n_{0}^{\prime \prime}$ s.t., $g(n) \leq M_{2} h(n)$ for $n \geq n_{0}^{\prime \prime}$. For $n \geq n_{0}$ with $n_{0}=\max \left\{n_{0}^{\prime}, n_{0}^{\prime \prime}\right\}$, it holds that $f(n) \leq M_{1} M_{2} h(n)\left(\right.$ select $\left.M=M_{1} M_{2}\right)$.
- Max rule: $f(n)+g(n) \in \Theta(\max \{f(n), g(n)\})$.
- E.g., $2 n^{3}+8 n^{2}+16 n \log n \in \Theta\left(\max \left\{2 n^{3}, 8 n^{2}, 16 n \log n\right\}\right)=\Theta\left(n^{3}\right)$. it holds that $\max \{f(n), g(n)\} \leq f(n)+g(n) \leq 2 \max \{f(n), g(n)\}$ for $n \geq 1$. (select $n_{0}=1, M_{1}=1$ and $M_{2}=2$).

Fun with Asymptotic Notations

- What is the time complexity of arithmetic sequences?

$$
\text { - } \sum_{i=0}^{n-1}(a+d i)
$$

Fun with Asymptotic Notations

- What is the time complexity of arithmetic sequences?

$$
\sum_{i=0}^{n-1}(a+d i)=n a+\frac{d n(n-1)}{2} \in \Theta\left(n^{2}\right)
$$

Fun with Asymptotic Notations

- What is the time complexity of arithmetic sequences?

$$
\sum_{i=0}^{n-1}(a+d i)=n a+\frac{d n(n-1)}{2} \in \Theta\left(n^{2}\right)
$$

- What about geometric sequence?

$$
\cdot \sum_{i=0}^{n-1} a r^{i}
$$

Fun with Asymptotic Notations

- What is the time complexity of arithmetic sequences?

$$
\cdot \sum_{i=0}^{n-1}(a+d i)=n a+\frac{d n(n-1)}{2} \in \Theta\left(n^{2}\right)
$$

- What about geometric sequence?

$$
\cdot \sum_{i=0}^{n-1} a r^{i}= \begin{cases}a \frac{1-r^{n}}{1-r} \in \Theta(1) & \text { if } 0<r<1 \\ n a \in \Theta(n) & \text { if } r=1 \\ a \frac{r^{n}-1}{r-1} \in \Theta\left(r^{n}\right) & \text { if } r>1\end{cases}
$$

- What about Harmonic sequence?

$$
H_{n}=\sum_{i=1}^{n} \frac{1}{i}
$$

Fun with Asymptotic Notations

- What is the time complexity of arithmetic sequences?

$$
\cdot \sum_{i=0}^{n-1}(a+d i)=n a+\frac{d n(n-1)}{2} \in \Theta\left(n^{2}\right)
$$

- What about geometric sequence?

$$
\cdot \sum_{i=0}^{n-1} a r^{i}= \begin{cases}a \frac{1-r^{n}}{1-r} \in \Theta(1) & \text { if } 0<r<1 \\ n a \in \Theta(n) & \text { if } r=1 \\ a \frac{r^{n}-1}{r-1} \in \Theta\left(r^{n}\right) & \text { if } r>1\end{cases}
$$

- What about Harmonic sequence?

$$
H_{n}=\sum_{i=1}^{n} \frac{1}{i} \approx \ln (n)+\gamma \in \Theta(\log n)(\gamma \text { is a constant } \approx 0.577)
$$

Loop Analysis

- Identify elementary operations that require constant time
- The complexity of a loop is expressed as the sum of the complexities of each iteration of the loop.
- Analyse independent loops separately, and then add the results (use "maximum rules" and simplify when possible).
- If loops are nested, start with the innermost loop and proceed outwards.

Example of Loop Analysis

```
Algo1 (n)
1. }A\leftarrow
2. for i}\leftarrow1\mathrm{ to }n\mathrm{ do
3. for }j\leftarrowi\mathrm{ to }n\mathrm{ do
4.
5.
                                A\leftarrowA/(i-j)}\mp@subsup{}{}{2
                        A}\leftarrow\mp@subsup{A}{}{100
6. return sum
```


Example of Loop Analysis

```
Algo1 (n)
1. }A\leftarrow
2. for i}\leftarrow1\mathrm{ to }n\mathrm{ do
3. for }j\leftarrowi\mathrm{ to }n\mathrm{ do
4.
5.
                                A\leftarrowA/(i-j)}\mp@subsup{}{}{2
                        A}\leftarrow\mp@subsup{A}{}{100
6. return sum
```


Example of Loop Analysis

```
Algo1 (n)
1. }A\leftarrow
2. for i}\leftarrow1\mathrm{ to }n\mathrm{ do
3. for }j\leftarrowi\mathrm{ to }n\mathrm{ do
4.
5.
                                A\leftarrowA/(i-j)}\mp@subsup{}{}{2
                        A}\leftarrow\mp@subsup{A}{}{100
6. return sum
```

$$
\sum_{j=i}^{n} c
$$

Example of Loop Analysis

```
Algo1 (n)
1. }A\leftarrow
2. for i}\leftarrow1\mathrm{ to }n\mathrm{ do
3. for }j\leftarrowi\mathrm{ to }n\mathrm{ do
4.
5.
                                A\leftarrowA/(i-j)}\mp@subsup{}{}{2
                        A}\leftarrow\mp@subsup{A}{}{100
6. return sum
```

$$
\sum_{i=1}^{n} \sum_{j=i}^{n} c
$$

Example of Loop Analysis

```
Algo1 (n)
1. }A\leftarrow
2. for i}\leftarrow1\mathrm{ to }n\mathrm{ do
3. for }j\leftarrowi\mathrm{ to }n\mathrm{ do
4.
5.
                                A\leftarrowA/(i-j)}\mp@subsup{}{}{2
                        A}\leftarrow\mp@subsup{A}{}{100
6. return sum
```

$O(1)+\sum_{i=1}^{n} \sum_{j=i}^{n} c$

Example of Loop Analysis

```
Algo1 (n)
1. }A\leftarrow
2. for i}\leftarrow1\mathrm{ to }n\mathrm{ do
3. for }j\leftarrowi\mathrm{ to }n\mathrm{ do
4.
5.
                                ~\leftarrowA/(i-j)
                        A}\leftarrow\mp@subsup{A}{}{100
6. return sum
```

$O(1)+\sum_{i=1}^{n} \sum_{j=i}^{n} c=O(1)+\sum_{i=1}^{n}(n-i+1) c$

Example of Loop Analysis

```
Algo1 (n)
1. }A\leftarrow
2. for i}\leftarrow1\mathrm{ to }n\mathrm{ do
3. for }j\leftarrowi\mathrm{ to }n\mathrm{ do
4.
5.
                A\leftarrowA/(i-j)
                        A}\leftarrow\mp@subsup{A}{}{100
6. return sum
```

$$
O(1)+\sum_{i=1}^{n} \sum_{j=i}^{n} c=O(1)+\sum_{i=1}^{n}(n-i+1) c=O(1)+\sum_{p=1}^{n} p c
$$

Example of Loop Analysis

```
Algo1 (n)
1. }A\leftarrow
2. for i}\leftarrow1\mathrm{ to }n\mathrm{ do
3. for }j\leftarrowi\mathrm{ to }n\mathrm{ do
4.
5.
                A\leftarrowA/(i-j)}\mp@subsup{}{}{2
                        A}\leftarrow\mp@subsup{A}{}{100
6. return sum
```

$O(1)+\sum_{i=1}^{n} \sum_{j=i}^{n} c=O(1)+\sum_{i=1}^{n}(n-i+1) c=O(1)+\sum_{p=1}^{n} p c=\Theta\left(n^{2}\right)$

Example of Loop Analysis

```
Algo2 (A,n)
1. }\operatorname{max}\leftarrow
2. for }i\leftarrow1\mathrm{ to }n\mathrm{ do
3. for }j\leftarrowi\mathrm{ to }n\mathrm{ do
4. }\quadX\leftarrow
5. for }k\leftarrowi\mathrm{ to }j\mathrm{ do
6.
7.
8.
                        max}\leftarrow
9. return max
```


Example of Loop Analysis

```
Algo2 (A,n)
1. }max\leftarrow
2. for }i\leftarrow1\mathrm{ to }n\mathrm{ do
3. for }j\leftarrowi\mathrm{ to }n\mathrm{ do
4. }X\leftarrow
5. for }k\leftarrowi\mathrm{ to }j\mathrm{ do
                X\leftarrowA[k]
                if }X>\operatorname{max}\mathrm{ then
                        max}\leftarrow
9. return max
```

$$
\sum_{i=1}^{n} \sum_{j=i}^{n}\left(O(1)+\sum_{k=i}^{j} c\right)=\Theta\left(n^{3}\right)
$$

Example of Loop Analysis

```
Algo3 (n)
1. }X\leftarrow
2. for i\leftarrow1 to n}\mp@subsup{n}{}{2}\mathrm{ do
3. }\quadj\leftarrow
4. while }j\geq1\mathrm{ do
5. }X\leftarrowX+i/
6. }j\leftarrow\lfloorj/2
7. return }
```


Example of Loop Analysis

```
Algo3 (n)
1. }X\leftarrow
2. for i\leftarrow1 to n}\mp@subsup{n}{}{2}\mathrm{ do
3. }j\leftarrow
4. while }j\geq1\mathrm{ do
5. }X\leftarrowX+i/
6. }j\leftarrow\lfloorj/2
7. return }
```

- The while loop takes $O(\log i) ;$ note that $\log (x!)=\Theta(x \log x)$

Example of Loop Analysis

```
Algo3 (n)
1. \(\quad X \leftarrow 0\)
2. for \(i \leftarrow 1\) to \(n^{2}\) do
3. \(\quad j \leftarrow i\)
4. while \(j \geq 1\) do
5. \(\quad X \leftarrow X+i / j\)
6. \(\quad j \leftarrow\lfloor j / 2\rfloor\)
7. return \(X\)
```

- The while loop takes $O(\log i) ;$ note that $\log (x!)=\Theta(x \log x)$
- The time complexity is asymptotically equal to

$$
\sum_{i=1}^{n^{2}} \log i=\log 1+\log 2+\ldots \log n^{2}=\log \left(1 \times 2 \times \ldots \times n^{2}\right)=\log \left(n^{2}!\right)
$$

Example of Loop Analysis

```
Algo3 (n)
1. \(\quad X \leftarrow 0\)
2. for \(i \leftarrow 1\) to \(n^{2}\) do
3. \(\quad j \leftarrow i\)
4. while \(j \geq 1\) do
5. \(\quad X \leftarrow X+i / j\)
6. \(\quad j \leftarrow\lfloor j / 2\rfloor\)
7. return \(X\)
```

- The while loop takes $O(\log i)$; note that $\log (x!)=\Theta(x \log x)$
- The time complexity is asymptotically equal to

$$
\begin{aligned}
\sum_{i=1}^{n^{2}} \log i= & \log 1+\log 2+\ldots \log n^{2}=\log \left(1 \times 2 \times \ldots \times n^{2}\right)=\log \left(n^{2}!\right) \\
& =\Theta\left(n^{2} \log \left(n^{2}\right)\right)=\Theta\left(2 n^{2} \log \left(n^{2}\right)\right)=\Theta\left(n^{2} \log n\right)
\end{aligned}
$$

MergeSort

Sorting an array A of n numbers

- Step 1: We split A into two subarrays: A_{L} consists of the first $\left\lceil\frac{n}{2}\right\rceil$ elements in A and A_{R} consists of the last $\left\lfloor\frac{n}{2}\right\rfloor$ elements in A.
- Step 2: Recursively run MergeSort on A_{L} and A_{R}.
- Step 3: After A_{L} and A_{R} have been sorted, use a function Merge to merge them into a single sorted array. This can be done in time $\Theta(n)$.

MergeSort

```
MergeSort \((A, n)\)
1. if \(n=1\) then
2. \(\quad S \leftarrow A\)
3. else
4. \(\quad n_{L} \leftarrow\left\lceil\frac{n}{2}\right\rceil\)
5. \(\quad n_{R} \leftarrow\left\lfloor\frac{n}{2}\right\rfloor\)
6. \(\quad A_{L} \leftarrow\left[A[1], \ldots, A\left[n_{L}\right]\right]\)
7. \(\quad A_{R} \leftarrow\left[A\left[n_{L}+1\right], \ldots, A[n]\right]\)
8. \(\quad S_{L} \leftarrow \operatorname{MergeSort}\left(A_{L}, n_{L}\right)\)
9. \(\quad S_{R} \leftarrow \operatorname{MergeSort}\left(A_{R}, n_{R}\right)\)
10. \(\quad S \leftarrow \operatorname{Merge}\left(S_{L}, n_{L}, S_{R}, n_{R}\right)\)
11. return \(S\)
```


Analysis of MergeSort

- The following is the corresponding sloppy recurrence (it has floors and ceilings removed):

$$
T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+c n & \text { if } n>1 \\ d & \text { if } n=1\end{cases}
$$

- The exact and sloppy recurrences are identical when n is a power of 2.
- The recurrence can easily be solved by various methods when $n=2^{j}$. The solution has growth rate $T(n) \in \Theta(n \log n)$.
- It is possible to show that $T(n) \in \Theta(n \log n)$ for all n by analyzing the exact recurrence.

Analysis of Recursions

- The sloppy recurrence for time complexity of merge sort:

$$
T(n)= \begin{cases}2 T\left(\frac{n}{2}\right)+c n & \text { if } n>1 \\ d & \text { if } n=1\end{cases}
$$

- We can find the solution using alternation method:

$$
\begin{aligned}
T(n) & =2 T(n / 2)+c n \\
& =2(2 T(n / 4)+c n / 2)+c n=4 T(n / 4)+2 c n \\
& =4(2 T(n / 8)+c n / 4)+2 c n=8 T(n / 8)+3 c n \\
& =\ldots \\
& =2^{k} T\left(n / 2^{k}\right)+k c n \\
& =2^{\log n} T(1)+\log n c n=\Theta(n \log n)
\end{aligned}
$$

Substitution method

- Guess the growth function and prove an upper bound for it using induction.
- For merge-sort, prove $T(n)<M n \log n$ for some value of M (that we choose).
- This holds for $n=2$ since we have $T(2)=2 d+2 c$, which is less than $2 M$ as long as $M \geq c+d$ (base of induction).
- Fix a value of n and assume the inequality holds for smaller values. we have $T(n)=2 T(n / 2)+c n \leq 2 M(n / 2(\log n / 2))+c n=$ $M n(\log n / 2)+c n=M n \log n-M n+c n \leq M n \log n$ as long as M is selected to be at least c (the inequality comes from the induction hypothesis)
- This shows $T(n) \in O(n \log n)$

Recursion Tree

- Suppose we want to solve the following recursion:

$$
T(n)= \begin{cases}3 T\left(\frac{n}{4}\right)+c n^{2} & \text { if } n>1 \\ d & \text { if } n=1\end{cases}
$$

- Let's form a recursion tree:

Recursion Tree

- Suppose we want to solve the following recursion:

$$
T(n)= \begin{cases}3 T\left(\frac{n}{4}\right)+c n^{2} & \text { if } n>1 \\ d & \text { if } n=1\end{cases}
$$

- Let's form a recursion tree:

Recursion Tree

- Suppose we want to solve the following recursion:

$$
T(n)= \begin{cases}3 T\left(\frac{n}{4}\right)+c n^{2} & \text { if } n>1 \\ d & \text { if } n=1\end{cases}
$$

- Let's form a recursion tree:

Recursion Tree

- Suppose we want to solve the following recursion:

$$
T(n)= \begin{cases}3 T\left(\frac{n}{4}\right)+c n^{2} & \text { if } n>1 \\ d & \text { if } n=1\end{cases}
$$

- Let's form a recursion tree:

Recursion Tree

- Suppose we want to solve the following recursion:

$$
T(n)= \begin{cases}3 T\left(\frac{n}{4}\right)+c n^{2} & \text { if } n>1 \\ d & \text { if } n=1\end{cases}
$$

- Let's form a recursion tree:

Recursion Tree

- Suppose we want to solve the following recursion:

$$
T(n)= \begin{cases}3 T\left(\frac{n}{4}\right)+c n^{2} & \text { if } n>1 \\ d & \text { if } n=1\end{cases}
$$

- Let's form a recursion tree:

- The total work in internal nodes is $c n^{2}(1+3 / 16+$ $\left.(3 / 16)^{2}+\ldots\right)=$ $\Theta\left(n^{2}\right)$.
- The total work in leaves is $n^{\log _{3} 4}$.
- The max rule indicates that $T(n)=\Theta\left(n^{2}\right)$.

Master theorem

$$
T(n)= \begin{cases}a T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1 \\ d & \text { if } n=1\end{cases}
$$

$(a \geq 1, b>1$, and $f(n)>0)$

- Compare $f(n)$ and $n^{\log _{b} a}$
- Case 1: if $f(n) \in O\left(n^{\log _{b} a-\epsilon}\right)$, then $T(n) \in \Theta\left(n^{\log _{b} a}\right)$
- Case 2: if $f(n) \in \Theta\left(n^{\log _{b} a}(\log n)^{k}\right)$ for some non-negative k then $T(n) \in \Theta(f(n) \log n)=\Theta\left(n^{\log _{b} a}(\log n)^{k+1}\right)$
- Case 3: if $f(n) \in \Omega\left(n^{\log _{b} a+\epsilon}\right)$ and if $a f(n / b) \leq c f(n)$ for some constant $c<1$ (regularity condition), then $T(n) \in \Theta(f(n))$
- $T(n)=2 T(n / 2)+\log n ?$

Master theorem examples

- $T(n)=2 T(n / 2)+\log n$? case $1: T(n) \in \Theta(n)$

Master theorem examples

- $T(n)=2 T(n / 2)+\log n$? case $1: T(n) \in \Theta(n)$
- $T(n)=4 T(n / 4)+100 n$?

Master theorem examples

- $T(n)=2 T(n / 2)+\log n$? case $1: T(n) \in \Theta(n)$
- $T(n)=4 T(n / 4)+100 n$? case $2: T(n) \in \Theta(n \log n)$

Master theorem examples

- $T(n)=2 T(n / 2)+\log n$? case $1: T(n) \in \Theta(n)$
- $T(n)=4 T(n / 4)+100 n$? case $2: T(n) \in \Theta(n \log n)$
- $T(n)=3 T(n / 2)+n^{2}$?

Master theorem examples

- $T(n)=2 T(n / 2)+\log n$? case $1: T(n) \in \Theta(n)$
- $T(n)=4 T(n / 4)+100 n$? case $2: T(n) \in \Theta(n \log n)$
- $T(n)=3 T(n / 2)+n^{2}$?
- Case 3 , check whether regularity condition holds, i.e., whether $a f(n / b) \leq c f(n)$ for some $c<1$. Since we have $3(n / 2)^{2}=3 / 4 n^{2}$ the regularity condition holds (c can be any value in the range $(3 / 4,1)$, i.e., $T(n) \in \Theta\left(n^{2}\right)$

Master theorem examples

- $T(n)=2 T(n / 2)+\log n$? case $1: T(n) \in \Theta(n)$
- $T(n)=4 T(n / 4)+100 n$? case $2: T(n) \in \Theta(n \log n)$
- $T(n)=3 T(n / 2)+n^{2}$?
- Case 3 , check whether regularity condition holds, i.e., whether $a f(n / b) \leq c f(n)$ for some $c<1$. Since we have $3(n / 2)^{2}=3 / 4 n^{2}$ the regularity condition holds (c can be any value in the range $(3 / 4,1)$, i.e., $T(n) \in \Theta\left(n^{2}\right)$
- $T(n)=T(n / 2)+n(2-\cos (n))$?

Master theorem examples

- $T(n)=2 T(n / 2)+\log n$? case $1: T(n) \in \Theta(n)$
- $T(n)=4 T(n / 4)+100 n$? case $2: T(n) \in \Theta(n \log n)$
- $T(n)=3 T(n / 2)+n^{2}$?
- Case 3 , check whether regularity condition holds, i.e., whether $a f(n / b) \leq c f(n)$ for some $c<1$. Since we have $3(n / 2)^{2}=3 / 4 n^{2}$ the regularity condition holds (c can be any value in the range $(3 / 4,1)$, i.e., $T(n) \in \Theta\left(n^{2}\right)$
- $T(n)=T(n / 2)+n(2-\cos (n))$?
- Case 3 , check whether regularity condition holds.

Master theorem examples

- $T(n)=2 T(n / 2)+\log n$? case $1: T(n) \in \Theta(n)$
- $T(n)=4 T(n / 4)+100 n$? case $2: T(n) \in \Theta(n \log n)$
- $T(n)=3 T(n / 2)+n^{2}$?
- Case 3 , check whether regularity condition holds, i.e., whether $a f(n / b) \leq c f(n)$ for some $c<1$. Since we have $3(n / 2)^{2}=3 / 4 n^{2}$ the regularity condition holds (c can be any value in the range $(3 / 4,1)$, i.e., $T(n) \in \Theta\left(n^{2}\right)$
- $T(n)=T(n / 2)+n(2-\cos (n))$?
- Case 3 , check whether regularity condition holds.
- For $n=2 k \pi$, we have $\cos (n / 2)=-1$ and $\cos (n)=1$; we have $a f(n / b)=n / 2(2-\cos (n / 2))=3 n / 2$, which is not within a factor $c<1$ of $f(n)=n(2-1)=n$ [i.e., we cannot say $3 n / 2 \leq c n$ for any $c<1]$. So we cannot get any conclusion from Master theorem.

Master theorem examples

- $T(n)=2 T(n / 2)+\log n$? case $1: T(n) \in \Theta(n)$
- $T(n)=4 T(n / 4)+100 n$? case $2: T(n) \in \Theta(n \log n)$
- $T(n)=3 T(n / 2)+n^{2}$?
- Case 3 , check whether regularity condition holds, i.e., whether $a f(n / b) \leq c f(n)$ for some $c<1$. Since we have $3(n / 2)^{2}=3 / 4 n^{2}$ the regularity condition holds (c can be any value in the range $(3 / 4,1)$, i.e., $T(n) \in \Theta\left(n^{2}\right)$
- $T(n)=T(n / 2)+n(2-\cos (n))$?
- Case 3 , check whether regularity condition holds.
- For $n=2 k \pi$, we have $\cos (n / 2)=-1$ and $\cos (n)=1$; we have $a f(n / b)=n / 2(2-\cos (n / 2))=3 n / 2$, which is not within a factor $c<1$ of $f(n)=n(2-1)=n$ [i.e., we cannot say $3 n / 2 \leq c n$ for any $c<1]$. So we cannot get any conclusion from Master theorem.
- $T(n)=2 T(n / 2)+n(\log n)^{3}$? Case 2 , we have

