

EECS 3101 - Design and Analysis of Algorithms

Shahin Kamali

Topic 1 - Introductions

York University

Picture is from the cover of the textbook CLRS.

Introduction

Introduction

EECS 3101 - Design and Analysis of Algorithms

1 / 53

- Algorithms are
 - Practical
 - Diverse
 - Fun (really!)

- Algorithms are
 - Practical
 - Diverse
 - Fun (really!)
- Let's 'learn & play' algorithms and enjoy

EECS 3101 - Design and Analysis of Algorithms

2 / 53

Textbook

Formalities

- The main reference:
 - Introduction to Algorithms, third edition, by Cormen, Leiserson, Rivest, and Stein, MIT Press, 2009.
- Optional textbooks:
 - Algorithms and Data Structures, by Mehlhorn and Sanders, Springer, 2008.
 - The Algorithm Design Manual, second edition, by Skiena, Springer, 2008.
 - Advanced Data Structures, by Brass, Cambridge, 2008.

Grading

- There will be:
 - Five assignments
 - Two quizzes
 - A midterm exam
 - A final exam

Grading

- There will be:
 - Five assignments
 - Two quizzes
 - A midterm exam
 - A final exam

Theorem

The focus of this course is on learning, practising, and discovering.

Grading

- There will be:
 - Five assignments
 - Two quizzes
 - A midterm exam
 - A final exam

Theorem

The focus of this course is on learning, practising, and discovering.

Corollary

Having fun in the process is important.

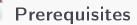
- Five assignments:
 - 5 to 10 percent extra for bonus questions.
 - submit only pdf files (preferably use \PTEX) on Crowdmark (https://www.crowdmark.com/).



- Five assignments:
 - 5 to 10 percent extra for bonus questions.
 - submit only pdf files (preferably use LATEX) on Crowdmark (https://www.crowdmark.com/).
- Quizzes, Midterm & Final exams:
 - there will be extra for bonus questions in midterm and final.
 - all are closed-book.
 - sample exams will be provided for practice for midterm and final.

- What I have learned from previous courses?
- Basic sorting algorithms, e.g., quick sort and merge sort

3



- What I have learned from previous courses?
- Basic sorting algorithms, e.g., quick sort and merge sort
- Asymptotic notations, e.g., big O, Ω , etc.

- What I have learned from previous courses?
- Basic sorting algorithms, e.g., quick sort and merge sort
- Asymptotic notations, e.g., big O, Ω , etc.
- Basic abstract data types (ADTs) and data structures
 - Stacks, queues, dictionaries, binary search trees, hash tables, graphs.

- What I have learned from previous courses?
- Basic sorting algorithms, e.g., quick sort and merge sort
- Asymptotic notations, e.g., big O, Ω , etc.
- Basic abstract data types (ADTs) and data structures
 - Stacks, queues, dictionaries, binary search trees, hash tables, graphs.

- What I have learned from previous courses?
- Basic sorting algorithms, e.g., quick sort and merge sort
- Asymptotic notations, e.g., big O, Ω , etc.
- Basic abstract data types (ADTs) and data structures
 - Stacks, queues, dictionaries, binary search trees, hash tables, graphs.
- Basic algorithm families
 - Greedy algorithms, divide & conquer (d&c)

- What I have learned from previous courses?
- Basic sorting algorithms, e.g., quick sort and merge sort
- Asymptotic notations, e.g., big O, Ω , etc.
- Basic abstract data types (ADTs) and data structures
 - Stacks, queues, dictionaries, binary search trees, hash tables, graphs.
- Basic algorithm families
 - Greedy algorithms, divide & conquer (d&c)
- Analysis techniques
 - E.g., how to analyse time complexity of a d&c algorithm?

- What I have learned from previous courses?
- Basic sorting algorithms, e.g., quick sort and merge sort
- Asymptotic notations, e.g., big O, Ω , etc.
- Basic abstract data types (ADTs) and data structures
 - Stacks, queues, dictionaries, binary search trees, hash tables, graphs.
- Basic algorithm families
 - Greedy algorithms, divide & conquer (d&c)
- Analysis techniques
 - E.g., how to analyse time complexity of a d&c algorithm?
 - Solving recursions, Master theorem, etc.

Algorithms

• What is an algorithm?

• What is an algorithm?

Definition

An algorithm is a computational procedure formed by a sequence of instructions (steps) to solve a problem

• What is an algorithm?

Definition

An algorithm is a computational procedure formed by a sequence of instructions (steps) to solve a problem

• The problem has an input and often requires an output

• What is an algorithm?

Definition

An algorithm is a computational procedure formed by a sequence of instructions (steps) to solve a problem

- The problem has an **input** and often requires an **output**
- Transition from one step to another can be **deterministic** or **randomized**
 - The algorithm is deterministic if it never uses randomization; otherwise, it is a randomized algorithm

• What is an algorithm?

Definition

An algorithm is a computational procedure formed by a sequence of instructions (steps) to solve a problem

- The problem has an **input** and often requires an **output**
- Transition from one step to another can be **deterministic** or **randomized**
 - The algorithm is deterministic if it never uses randomization; otherwise, it is a randomized algorithm
- Solving the problem requires the algorithm to terminate.
 - **Time complexity** concerns the number of steps that it takes for the algorithm to terminate (often on the worst-case input)

Abstract Data Type

• What is an Abstract Data Type (ADT)?

Definition

An abstract data type is formed by I) a set of values (data items) and II) a set of operations allowed on these items

Abstract Data Type

• What is an Abstract Data Type (ADT)?

Definition

An abstract data type is formed by I) a set of values (data items) and II) a set of operations allowed on these items

- Stack is an ADT. Data items can be anything and operations are *push* and *pop*
- An ADT is abstract way of looking at data (no implementation is prescribed)
- An ADT is the way data 'looks' from the view point of user

Data Structure

What is a Data Structure?

Definition

A data structure is a concrete representation of data, including how data is organized, stored, and accessed on a computer

Data Structure

• What is a Data Structure?

Definition

A data structure is a concrete representation of data, including how data is organized, stored, and accessed on a computer

- A linked-list is a data structure
- Data structures are implementations of ADTs
- A data structure is the way data 'looks' from the view point of implementer

ADTs vs Data Structures

- ADTs: Stacks, queues, priority queues, dictionaries
- Data structures array, linked-list, binary-search-tree, binary-heap hash-table-using-probing, hash-table-using-chaining, adjacency list, adjacency matrix, etc.

Introduction

Asymptotic Analysis

EECS 3101 - Design and Analysis of Algorithms

10 / 53

Algorithms (review)

- An algorithm is a step-by-step procedure carrying out a computation to solve an arbitrary instance of a problem.
 - E.g., sorting is a problem; a set of numbers form an instance of that and 'solving' involves creating a sorted output.

Algorithms (review)

- An algorithm is a step-by-step procedure carrying out a computation to solve an arbitrary instance of a problem.
 - E.g., sorting is a problem; a set of numbers form an instance of that and 'solving' involves creating a sorted output.
- A **program** is an implementation of an algorithm using a specific programming language

Algorithms (review)

- An algorithm is a step-by-step procedure carrying out a computation to solve an arbitrary instance of a problem.
 - E.g., sorting is a problem; a set of numbers form an instance of that and 'solving' involves creating a sorted output.
- A program is an implementation of an algorithm using a specific programming language
- For a given problem (e.g., sorting) there can be several algorithms (e.g., Quicksort, Mergesort), and for a given algorithm (e.g., Quicksort) there can be several programs.
 - Our focus in this course is on algorithms (not programs).
 - How to implement a given algorithm relates to the art of performance engineering (writing a fast code)

Algorithms Design & Analysis

- Given a problem *P*, we need to
 - Design an algorithm A that solves P (Algorithm Design)

Algorithms Design & Analysis

- Given a problem *P*, we need to
 - Design an algorithm A that solves P (Algorithm Design)
 - Verify correctness and efficiency of the algorithm (Algorithm Analysis)
 - If the algorithm is correct and efficient, implement it
 - If you implement something that is not necessarily correct or efficient in all cases, that would be a heuristic.

Algorithm Evaluation

- How should we evaluate different algorithms for solving a problem?
 - In this course we are mainly concerned with amount of time it takes to solve a problem (this is called running time)
 - We can think of other measures such as the amount of memory that is required by the algorithm
 - Other measures include amount of data movement, network traffic generated, etc.

Algorithm Evaluation

- How should we evaluate different algorithms for solving a problem?
 - In this course we are mainly concerned with amount of time it takes to solve a problem (this is called running time)
 - We can think of other measures such as the amount of memory that is required by the algorithm
 - Other measures include amount of data movement, network traffic generated, etc.
- The amount of time/memory/traffic required by an algorithm depend on the size of the problem
 - Sorting a larger set of numbers takes more time!

Running Time of Algorithms

- How to assess the running time of an algorithm?
- Experimental analysis:
 - Implement the algorithm in a program
 - Run the program with inputs of different sizes
 - Experimentally measure the actual running time (e.g., using *clock()* from time.h)

Running Time of Algorithms

- How to assess the running time of an algorithm?
- Experimental analysis:
 - Implement the algorithm in a program
 - Run the program with inputs of different sizes
 - Experimentally measure the actual running time (e.g., using *clock()* from time.h)
- Shortcomings of experimental studies:

Running Time of Algorithms

- How to assess the running time of an algorithm?
- Experimental analysis:
 - Implement the algorithm in a program
 - Run the program with inputs of different sizes
 - Experimentally measure the actual running time (e.g., using *clock()* from time.h)
- Shortcomings of experimental studies:
 - We need to implement the program (what if we are lazy and those engineers are hard to employ?)
 - We cannot test all input instances for the problem. What are the good samples? (remember the Morphy's law)
 - Many factors have impact on experimental timing, e.g., hardware (processor, memory), software environment (operating system, compiler, programming language), and human factors (how good was the programmer?)

Computational Models

- We need to assess time/memory requirement of algorithms using models that
 - Take into account all input instances
 - Do not require implementation of the algorithms
 - Are independent of hardware/software/programmer

Computational Models

- We need to assess time/memory requirement of algorithms using models that
 - Take into account all input instances
 - Do not require implementation of the algorithms
 - Are independent of hardware/software/programmer
- In order to achieve this, we:
 - Express algorithms using pseudo-codes (don't worry about implementation)
 - Instead of measuring time in seconds, count the number of primitive operations
 - This requires an abstract model of computation

Random Access Machine (RAM) Model

- The random access machine (RAM):
 - Has a set of memory cells, each storing one 'word' of data.
 - Any access to a memory location takes constant time.
 - Any primitive operation takes constant time.
 - The running time of a program can be computed to be the number of memory accesses plus the number of primitive operations.
- Word-RAM is a RAM machine with the extra assumption that all values in our problem can 'fit' in a constant number of words (values are not too big).
- We often use Word-RAM model for analysis of algorithms

Random Access Machine (RAM) Model

- The random access machine (RAM):
 - Has a set of memory cells, each storing one 'word' of data.
 - Any access to a memory location takes constant time.
 - Any primitive operation takes constant time.
 - The running time of a program can be computed to be the number of memory accesses plus the number of primitive operations.
- Word-RAM is a RAM machine with the extra assumption that all values in our problem can 'fit' in a constant number of words (values are not too big).
- We often use Word-RAM model for analysis of algorithms

Observation

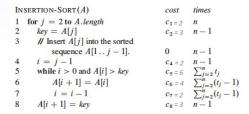
RAM is a simplified model which only provides an approximation of a 'real' computer

Analysis of Insertion Sort under RAM

IN	SERTION-SORT (A)	cost
1	for $j = 2$ to A.length	$C_1 = 2$
2	key = A[j]	C ₂ = 3
3	// Insert $A[j]$ into the sorted	
	sequence $A[1 \dots j - 1]$.	0
4	i = j - 1	$C_4 = 2$
5	while $i > 0$ and $A[i] > key$	$C_{5} = 6$
6	A[i+1] = A[i]	$C_{6} = 4$
7	i = i - 1	C7 = 2
8	A[i+1] = key	C8 = 3

- First, calculate the 'cost' (sum of memory accesses and primitive operations) for each line
 - E.g., in line 5, there are 3 memory accesses and 3 primitive operations

Analysis of Insertion Sort under RAM



- Next, find the number of times each line is executed
 - This depends on the input, we may consider best or worst case input
 - Let t_j be number of times the *while* loop is executed for inserting the *j*'th item.
 - In the best case, $t_j = 1$ and in the worst case $t_j = j$.
 - Summing up all costs, in the best case we have T(n) = an + b for constant a and b
 - In the worst case, we have $T_n = lpha n^2 + eta n + \gamma$ for constant $lpha, eta, \gamma$

Primitive Operations

- RAM model implicitly assumes primitive operations have fairly similar running time
- Primitive operations:
 - basic integer arithmetic (addition, subtraction, multiplication, division, and modulo)
 - bitwise logic and bit shifts (logical AND, OR, exclusive-OR, negation, left shift, and right shift)
- Non-primitive operations:
 - exponentiation, radicals (square roots), logarithms, trigonometric, functions (sine, cosine, tangent), etc.

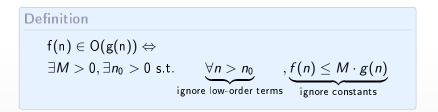
Statement

So, we can express the cost (running time) of an algorithm A for a problem of size n as a function $T_A(n)$.

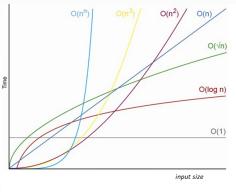
- How do we compare two different algorithms? say $T_A(n) = \frac{1}{1000}n^3$ and $T_B(n) = 1000n^2 + 500n + 200$.
- Summarize the time complexity using asymptotic notations!
- Idea: assume the size of input grows to infinity; identify which component of $T_A(n)$ contributes most to the grow of $T_A(n)$.
- As *n* grows:
 - constants don't matter (e.g., $T_A(n)pprox n^3)$
 - low-order terms don't matter (e.g., $T_B(n)pprox 1000\,n^2)$

- Informally $T_B(n) = O(T_A(n))$ means T_B is asymptotically smaller than or equal to T_A .
- Is it sufficient to define O so that we have $T_B(n) < T_A(n)$?
 - No because the inequality might not hold for small values of *n* which we don't care about.
 - The two function might have constants we would prefer to ignore.

- Informally $T_B(n) = O(T_A(n))$ means T_B is asymptotically smaller than or equal to T_A .
- Is it sufficient to define O so that we have $T_B(n) < T_A(n)$?
 - No because the inequality might not hold for small values of *n* which we don't care about.
 - The two function might have constants we would prefer to ignore.

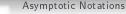


Big Oh Illustration



https://apelbaum.wordpress.com/2011/05/05/big-o/

• Let $f(n) = 1000n^2 + 1000n$ and $g(n) = n^3$. Prove $f(n) \in O(g(n))$



Review

- To analyze running time of an algorithm (under RAM model) we sum the number of primitive operations and memory accesses of the algorithm.
- The cost (running time) of algorithm A for a problem of size n would be a function $T_A(n)$.
- How do we compare two different algorithms? say $T_A(n) = \frac{1}{1000}n^3$ and $T_B(n) = 1000n^2 + 500n + 200$.
- Summarize the time complexity using asymptotic notations!
- Idea: assume the size of input grows to infinity; identify which component of $T_A(n)$ contributes most to the grow of $T_A(n)$.
- As *n* grows:
 - constants don't matter.
 - low-order terms don't matter.

Big O Notations

 Informally f(n) = O(g(n)) means f is asymptotically smaller than or equal to g.

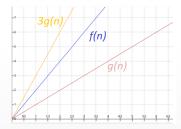
$\begin{array}{l} \hline \textbf{Definition} \\ f(n) \in \mathsf{O}(g(n)) \Leftrightarrow \\ \exists M > 0, \exists n_0 > 0 \text{ s.t.} \underbrace{\forall n > n_0}_{\text{ignore low-order terms}}, \underbrace{f(n) \leq M \cdot g(n)}_{\text{ignore constants}} \end{array}$

• E.g.,
$$f(n) = 2n$$
, $g(n) = n$. Is it that $f(n) \in O(g(n))$?

• E.g.,
$$f(n) = 2n$$
, $g(n) = n$. Is it that $f(n) \in O(g(n))$?

- E.g., f(n) = 2n, g(n) = n. Is it that $f(n) \in O(g(n))$?
 - Yes, f(n) is asymptotically smaller than or equal (equal) to g(n).
 - To prove, we should show $\exists M > 0, \exists n_0 > 0 \text{ s.t.} \forall n > n_0, f(n) \le M \cdot g(n)$
 - It suffices to define $n_0 = 1$ and M = 3, we have $\forall n > 1, 2n \leq 3n$.
 - M could be any number larger than or equal to 2, and n_0 could be any number.

- E.g., f(n) = 2n, g(n) = n. Is it that $f(n) \in O(g(n))$?
 - Yes, f(n) is asymptotically smaller than or equal (equal) to g(n).
 - To prove, we should show $\exists M > 0, \exists n_0 > 0 \text{ s.t.} \forall n > n_0, f(n) \le M \cdot g(n)$
 - It suffices to define $n_0 = 1$ and M = 3, we have $\forall n > 1, 2n \le 3n$.
 - M could be any number larger than or equal to 2, and n_0 could be any number.
- We require specific values of *M* (not all choices for *M* work)



Big O Notations

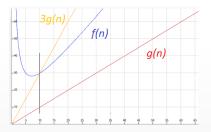
• E.g., f(n) = 2n + 100/n, g(n) = n. Is it that $f(n) \in O(g(n))$?

Big O Notations

• E.g., f(n) = 2n + 100/n, g(n) = n. Is it that $f(n) \in O(g(n))$?

- E.g., f(n) = 2n + 100/n, g(n) = n. Is it that $f(n) \in O(g(n))$?
 - Yes, again, f(n) is asymptotically smaller than or equal (equal) to g(n).
 - To prove, we should show $\exists M > 0, \exists n_0 > 0 \text{ s.t.} \forall n > n_0, f(n) \le M \cdot g(n)$
 - It suffices to define $n_0 = 10$ and M = 3, we have $\forall n > 10, 2n + 100/n \le 3n$.

- E.g., f(n) = 2n + 100/n, g(n) = n. Is it that $f(n) \in O(g(n))$?
 - Yes, again, f(n) is asymptotically smaller than or equal (equal) to g(n).
 - To prove, we should show $\exists M > 0, \exists n_0 > 0 \text{ s.t.} \forall n > n_0, f(n) \le M \cdot g(n)$
 - It suffices to define $n_0 = 10$ and M = 3, we have $\forall n > 10, 2n + 100/n \le 3n$.
- We require specific values of M and n_0 (not all choices work)



Big O Notation

• Let $f(n) = 2023n^2 + 1402n$ and $g(n) = n^3$. Prove $f(n) \in O(g(n))$

- Let $f(n) = 2023n^2 + 1402n$ and $g(n) = n^3$. Prove $f(n) \in O(g(n))$
- We should define M and n_0 s.t. $\forall n > n_0$ we have $2019n^2 + 1397n \le Mn^3$. This is equivalent to $2023n + 1402 \le Mn^2$.
- We have $2023n + 1402 \le 2023n + 1402n = 3425n$. So, to prove $2023n + 1402 \le Mn^2$, it suffices to prove $3425n \le Mn^2$, i.e., $3425 \le Mn$. This is always true assuming M = 1 and $n \ge 3425$ $(n_0 = 3425)$.
- Setting M = 3426 and $n_0 = 1$ also work!

Little o Notations

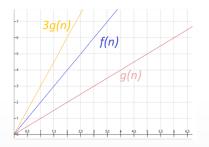
• Informally f(n) = o(g(n)) means f is asymptotically smaller than g.

Little o Notations

• E.g.,
$$f(n) = 2n$$
, $g(n) = n$. Is it that $f(n) \in o(g(n))$?

Little o Notations

- E.g., f(n) = 2n, g(n) = n. Is it that $f(n) \in o(g(n))$?
 - No because for M = 1, it is not true that f(n) < Mg(n) (i.e., 2n < n) for large values of n.



Little o Notation

• Prove that $n^2 \sin(n) + 1984n + 2016 \in o(n^3)$.

Little o Notation

- Prove that $n^2 \sin(n) + 1984n + 2016 \in o(n^3)$.
 - We have to prove that for all values of M there is an n_0 so that for $n > n_0$ we have $n^2 \sin(n) + 1984n + 2016 < Mn^3$.
 - We know $n^2 \sin(n) \le n^2$, $1984n \le 1984n^2$ and $2016 \le 2016n^2$. So, $n^2 \sin(n) + 1984n + 2016 \le (1 + 1984 + 2016)n^2 = 4001n^2$.
 - So, to prove $n^2 \sin(n) + 1984n + 2016 < Mn^3$ it suffices to prove $4001n^2 < Mn^3$, i.e., 4001/M < n, so, we can define n_0 to be any value larger than 4001/M.

Little o Notation

- Prove that $n^2 \sin(n) + 1984n + 2016 \in o(n^3)$.
 - We have to prove that for all values of M there is an n_0 so that for $n > n_0$ we have $n^2 \sin(n) + 1984n + 2016 < Mn^3$.
 - We know $n^2 \sin(n) \le n^2$, $1984n \le 1984n^2$ and $2016 \le 2016n^2$. So, $n^2 \sin(n) + 1984n + 2016 \le (1 + 1984 + 2016)n^2 = 4001n^2$.
 - So, to prove $n^2 \sin(n) + 1984n + 2016 < Mn^3$ it suffices to prove $4001n^2 < Mn^3$, i.e., 4001/M < n, so, we can define n_0 to be any value larger than 4001/M.
- For little o, n_0 is often defined as a function of M.

Big Ω Notation

f(n) = Ω(g(n)) means f is asymptotically larger than or equal to g.

Definition

 $\mathsf{f}(\mathsf{n}) \in \Omega(g(n)) \Leftrightarrow \exists M > 0, \exists n_0 > 0 \text{ s.t.} \forall n > n_0, f(n) \geq M \cdot g(n)$

Big Ω Notation

f(n) = Ω(g(n)) means f is asymptotically larger than or equal to g.

Definition

 $\mathsf{f}(\mathsf{n}) \in \Omega(g(n)) \Leftrightarrow \exists M > 0, \exists n_0 > 0 \text{ s.t.} \forall n > n_0, f(n) \geq M \cdot g(n)$

• Let f(n) = n/2020 and g(n) = log(n). Prove $f(n) \in \Omega(g(n))$.

Big Ω Notation

f(n) = Ω(g(n)) means f is asymptotically larger than or equal to g.

Definition

 $\mathsf{f}(\mathsf{n}) \in \Omega(g(n)) \Leftrightarrow \exists M > 0, \exists n_0 > 0 \text{ s.t.} \forall n > n_0, f(n) \geq M \cdot g(n)$

- Let f(n) = n/2020 and g(n) = log(n). Prove $f(n) \in \Omega(g(n))$.
 - We need to provide M and n_0 so that for all $n \ge n_0$ we have $n/2020 \ge M \log(n)$, i.e., $n \ge 2020 M \log(n)$.
 - We know $\log(n) < n$ (assuming n > 1). So, in order to show $2020M \log(n) \le n$, it suffices to have $2020M \le 1$, i.e., M can be any value smaller than 1/2020 (and n_0 can be 1 or any other positive integer).

Little ω Notation

• $f(n) = \omega(g(n))$ means f is asymptotically larger than g.

Definition

 $\mathsf{f}(\mathsf{n}) \in \omega(\mathsf{g}(\mathsf{n})) \Leftrightarrow \forall M > 0, \exists n_0 > 0 \text{ s.t.} \forall n > n_0, f(n) > M \cdot g(n)$

- Let f(n) = n/2020 and g(n) = log(n). Prove $f(n) \in \omega(g(n))$.
 - For any constant M we need to provide n_0 so that for all $n \ge n_0$ we have $n/2020 > M \log(n)$, i.e., $n > 2020 M \log(n)$.
 - We know $log(n) < \sqrt{n}$ (assuming n > 16). So, in order to show $2020 M \log(n) < n$, it suffices to have $2020 M \sqrt{n} < n$, i.e., $2020 M < \sqrt{n}$. For that, it suffices to have $(2020 M)^2 < n$, i.e., n_0 can be defined as max $\{16, (2020 M)^2\}$.

Little ω Notation

• $f(n) = \omega(g(n))$ means f is asymptotically larger than g.

Definition

 $\mathsf{f}(\mathsf{n}) \in \omega(\mathsf{g}(\mathsf{n})) \Leftrightarrow \forall M > 0, \exists n_0 > 0 \text{ s.t.} \forall n > n_0, f(n) > M \cdot g(n)$

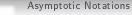
- Let f(n) = n/2020 and g(n) = log(n). Prove $f(n) \in \omega(g(n))$.
 - For any constant M we need to provide n_0 so that for all $n \ge n_0$ we have $n/2020 > M \log(n)$, i.e., $n > 2020 M \log(n)$.
 - We know $log(n) < \sqrt{n}$ (assuming n > 16). So, in order to show $2020 M \log(n) < n$, it suffices to have $2020 M \sqrt{n} < n$, i.e., $2020 M < \sqrt{n}$. For that, it suffices to have $(2020 M)^2 < n$, i.e., n_0 can be defined as max $\{16, (2020 M)^2\}$.
- Similarly to little o, for ω , we often need to define n_0 as a function of M.

Θ Notation

• Informally $f(n) = \Theta(g(n))$ means f is asymptotically equal to g.

Definition

 $f(n) \in \Theta(g(n)) \Leftrightarrow$ $\exists M_1, M_2 > 0, \exists n_0 > 0 \text{ s.t.} \forall n > n_0, M_1 \cdot g(n) \leq f(n) \leq M_2 \cdot g(n)$



Θ Notation

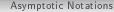
• Informally $f(n) = \Theta(g(n))$ means f is asymptotically equal to g.

Definition

 $\mathsf{f}(\mathsf{n})\in \Theta(g(n))\Leftrightarrow$

 $\exists M_1, M_2 > 0, \exists n_0 > 0 \text{ s.t.} \forall n > n_0, M_1 \cdot g(n) \leq f(n) \leq M_2 \cdot g(n)$

- Let f(n) = n and g(n) = n/2020. Prove $f(n) \in \Theta(g(n))$.
 - We need to provide M_1, M_2, n_0 so that for all $n \ge n_0$ we have $M_1 n/2020 \le n \le M_2 n/2020$.
 - For the first inequality, we can have $M_1 = 1$ and for all n we have $n/2020 \leq n$.
 - For the second inequality, we let M_2 to be any constant larger than 2020 which gives $M_2/2020 \geq 1$.
 - n_0 can be any value, e.g., $n_0 = 1$.



Asymptotic Notations in a Nutshell

Definition

 $\mathsf{f}(\mathsf{n}) \in \mathsf{O}(\mathsf{g}(\mathsf{n})) \Leftrightarrow \exists M > 0, \exists n_0 > 0 \text{ s.t.} \forall n > n_0, f(n) \leq M \cdot g(n)$

Definition

 $\mathsf{f}(\mathsf{n}) \in \mathsf{o}(\mathsf{g}(\mathsf{n})) \Leftrightarrow \forall M > 0, \exists n_0 > 0 \text{ s.t.} \forall n > n_0, f(n) < M \cdot g(n)$

Definition

 $f(n) \in \Omega(g(n)) \Leftrightarrow \exists M > 0, \exists n_0 > 0 \text{ s.t.} \forall n > n_0, f(n) \ge M \cdot g(n)$

Definition

 $\mathsf{f}(\mathsf{n}) \in \omega(\mathsf{g}(\mathsf{n})) \Leftrightarrow \forall M > 0, \exists n_0 > 0 \text{ s.t.} \forall n > n_0, f(n) > M \cdot g(n)$

Definition

Common Growth Rates

• $\Theta(1)
ightarrow ext{constant complexity}$

- $\Theta(1)
 ightarrow {
 m constant \ complexity}$
 - e.g., an algorithms that only samples a constant number of inputs

- $\Theta(1)
 ightarrow {
 m constant \ complexity}$
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow \text{logarithmic complexity}$

- $\Theta(1)
 ightarrow {
 m constant \ complexity}$
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow \text{logarithmic complexity}$
 - Binary search

- $\Theta(1)
 ightarrow ext{constant complexity}$
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow \text{logarithmic complexity}$
 - Binary search
- $\Theta(n)
 ightarrow$ linear complexity

- $\Theta(1)
 ightarrow ext{constant complexity}$
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow \text{logarithmic complexity}$
 - Binary search
- $\Theta(n)
 ightarrow {\sf linear complexity}$
 - Most practical algorithms :)

- $\Theta(1)
 ightarrow ext{constant complexity}$
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow \text{logarithmic complexity}$
 - Binary search
- $\Theta(n)
 ightarrow$ linear complexity
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow \text{pseudo-linear complexity}$

- $\Theta(1)
 ightarrow ext{constant complexity}$
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow \text{logarithmic complexity}$
 - Binary search
- $\Theta(n)
 ightarrow$ linear complexity
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow$ pseudo-linear complexity
 - Optimal comparison based sorting algorithms, e.g., merge-sort

- $\Theta(1)
 ightarrow ext{constant complexity}$
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow \text{logarithmic complexity}$
 - Binary search
- $\Theta(n)
 ightarrow$ linear complexity
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow \text{pseudo-linear complexity}$
 - Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta(n^2)
 ightarrow extsf{Q}$ uadratic complexity

- $\Theta(1)
 ightarrow ext{constant complexity}$
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow \text{logarithmic complexity}$
 - Binary search
- $\Theta(n)
 ightarrow$ linear complexity
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow \text{pseudo-linear complexity}$
 - Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta(n^2)
 ightarrow extsf{Quadratic complexity}$
 - naive sorting algorithms (bubble sort, insertion sort)

- $\Theta(1)
 ightarrow ext{constant complexity}$
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow \text{logarithmic complexity}$
 - Binary search
- $\Theta(n)
 ightarrow$ linear complexity
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow \text{pseudo-linear complexity}$
 - Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta(n^2)
 ightarrow extsf{Q}$ uadratic complexity
 - naive sorting algorithms (bubble sort, insertion sort)
- $\Theta(n^3)
 ightarrow {\sf Cubic Complexity}$

- $\Theta(1)
 ightarrow ext{constant complexity}$
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow \text{logarithmic complexity}$
 - Binary search
- $\Theta(n)
 ightarrow$ linear complexity
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow \text{pseudo-linear complexity}$
 - Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta(n^2)
 ightarrow extsf{Quadratic complexity}$
 - naive sorting algorithms (bubble sort, insertion sort)
- $\Theta(n^3)
 ightarrow {\sf Cubic Complexity}$
 - naive matrix multiplication

- $\Theta(1)
 ightarrow ext{constant complexity}$
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow \text{logarithmic complexity}$
 - Binary search
- $\Theta(n)
 ightarrow$ linear complexity
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow pseudo-linear complexity$
 - Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta(n^2)
 ightarrow extsf{Q}$ uadratic complexity
 - naive sorting algorithms (bubble sort, insertion sort)
- $\Theta(n^3)
 ightarrow {\sf Cubic Complexity}$
 - naive matrix multiplication
- $\Theta(2^n)
 ightarrow {\sf Exponential Complexity}$

- $\Theta(1)
 ightarrow ext{constant complexity}$
 - e.g., an algorithms that only samples a constant number of inputs
- $\Theta(\log n) \rightarrow \text{logarithmic complexity}$
 - Binary search
- $\Theta(n)
 ightarrow$ linear complexity
 - Most practical algorithms :)
- $\Theta(n \log n) \rightarrow \text{pseudo-linear complexity}$
 - Optimal comparison based sorting algorithms, e.g., merge-sort
- $\Theta(n^2)
 ightarrow extsf{Q}$ uadratic complexity
 - naive sorting algorithms (bubble sort, insertion sort)
- $\Theta(n^3)
 ightarrow {\sf Cubic Complexity}$
 - naive matrix multiplication
- $\Theta(2^n)
 ightarrow {\sf Exponential Complexity}$
 - The 'algorithm' terminates but the universe is likely to end much earlier even if $n \approx 1000$. EECS 3101 - Design and Analysis of Algorithms

Techniques for Comparing Growth Rates

• Assume the running time of two algorithms are given by functions f(n) and g(n) and let

$$L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

Then

$$f(n) \in \begin{cases} o(g(n)) & \text{if } L = 0\\ \Theta(g(n)) & \text{if } 0 < L < \infty\\ \omega(g(n)) & \text{if } L = \infty \end{cases}$$

Techniques for Comparing Growth Rates

• Assume the running time of two algorithms are given by functions f(n) and g(n) and let

$$L = \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

Then

$$f(n) \in egin{cases} o(g(n)) & ext{if } L = 0 \ \Theta(g(n)) & ext{if } 0 < L < \infty \ \omega(g(n)) & ext{if } L = \infty \end{cases}$$

If the limit is not defined, we need another method

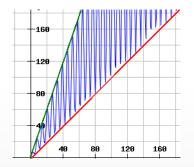
- Note that we cannot compare two algorithms using big O and Ω notations
 - E.g., algorithm A can have complexity $O(n^2)$ and algorithm B has complexity $O(n^3)$. We cannot state that A is faster than B (why?)

• Compare the grow-rate of log *n* and *n^r* where *r* is a positive real number.

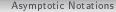
Fun with Asymptotic Notations

• Prove that n(sin(n) + 2) is $\Theta(n)$.

- Prove that n(sin(n) + 2) is $\Theta(n)$.
- Use the definition since the limit does not exist
 - Define n_0 , M_1 , M_2 so that $\forall n > n_0$ we have $M_1n(sin(n) + 2) \le n \le qM_2n(sin(n) + 2)$.
 - $M_1 = 1/3, M_2 = 1, n_0 = 1$ work!



- The same relationship that holds for relative values of numbers hold for asymptotic.
 - E.g., if $f(n) \in O(g(n))$ [f(n) is asymptotically smaller than or equal to g(n)], then we have $g(n) \in \Omega(f(n))$ [g(n) is asymptotically larger than or equal to f(n)].



- The same relationship that holds for relative values of numbers hold for asymptotic.
 - E.g., if $f(n) \in O(g(n))$ [f(n) is asymptotically smaller than or equal to g(n)], then we have $g(n) \in \Omega(f(n))$ [g(n) is asymptotically larger than or equal to f(n)]. we know $\exists M', n_0$ s.t., $f(n) \leq M'g(n)$ for $n \geq n_0$, i.e., $g(n) \geq 1/M' \times f(n)$ (select the same n_0 and M = 1/M').

- The same relationship that holds for relative values of numbers hold for asymptotic.
 - E.g., if $f(n) \in O(g(n))$ [f(n) is asymptotically smaller than or equal to g(n)], then we have $g(n) \in \Omega(f(n))$ [g(n) is asymptotically larger than or equal to f(n)]. we know $\exists M', n_0 \text{ s.t.}, f(n) \leq M'g(n)$ for $n \geq n_0$, i.e., $g(n) \geq 1/M' \times f(n)$ (select the same n_0 and M = 1/M').
- In order to prove $f(n) \in \Theta(g(n))$, we often show that $f(n) \in O(n)$ and $f(n) \in \Omega(g(n))$.

- The same relationship that holds for relative values of numbers hold for asymptotic.
 - E.g., if $f(n) \in O(g(n))$ [f(n) is asymptotically smaller than or equal to g(n)], then we have $g(n) \in \Omega(f(n))$ [g(n) is asymptotically larger than or equal to f(n)]. we know $\exists M', n_0 \text{ s.t.}, f(n) \leq M'g(n)$ for $n \geq n_0$, i.e., $g(n) \geq 1/M' \times f(n)$ (select the same n_0 and M = 1/M').
- In order to prove $f(n) \in \Theta(g(n))$, we often show that $f(n) \in O(n)$ and $f(n) \in \Omega(g(n))$. suppose $\exists M_1, n'_0 \text{ s.t., } f(n) \leq M_1g(n) \text{ for } n \geq n'_0$. Also, $\exists M_2, n''_0 \text{ s.t.,}$ $f(n) \geq M_2g(n) \text{ for } n \geq n''_0$. Select, $n_0 = \max\{n'_0, n''_0\}$ and we have $M_2g(n) \leq f(n) \leq M_1g(n)$.

• We have transitivity in asymptotic notations: if $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, we have $f(n) \in O(h(n))$.

• We have transitivity in asymptotic notations: if $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, we have $f(n) \in O(h(n))$. We know $\exists M_1, n'_0 \text{ s.t.}, f(n) \leq M_1g(n) \text{ for } n \geq n'_0$. Also, $\exists M_2, n''_0 \text{ s.t.}, g(n) \leq M_2h(n)$ for $n \geq n''_0$. For $n \geq n_0$ with $n_0 = \max\{n'_0, n''_0\}$, it holds that $f(n) \leq M_1M_2h(n)$ (select $M = M_1M_2$).

- We have transitivity in asymptotic notations: if $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, we have $f(n) \in O(h(n))$. We know $\exists M_1, n'_0 \text{ s.t.}, f(n) \leq M_1g(n) \text{ for } n \geq n'_0$. Also, $\exists M_2, n''_0 \text{ s.t.}, g(n) \leq M_2h(n)$ for $n \geq n''_0$. For $n \geq n_0$ with $n_0 = \max\{n'_0, n''_0\}$, it holds that $f(n) \leq M_1M_2h(n)$ (select $M = M_1M_2$).
- Max rule: $f(n) + g(n) \in \Theta(\max\{f(n), g(n)\})$.
 - E.g., $2n^3 + 8n^2 + 16n \log n \in \Theta(\max\{2n^3, 8n^2, 16n \log n\}) = \Theta(n^3)$.

• We have transitivity in asymptotic notations: if $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, we have $f(n) \in O(h(n))$. We know $\exists M_1, n'_0$ s.t., $f(n) \leq M_1g(n)$ for $n \geq n'_0$. Also, $\exists M_2, n''_0$ s.t., $g(n) \leq M_2h(n)$ for $n \geq n''_0$. For $n \geq n_0$ with $n_0 = \max\{n'_0, n''_0\}$, it holds that $f(n) \leq M_1M_2h(n)$ (select $M = M_1M_2$).

• Max rule:
$$f(n) + g(n) \in \Theta(\max\{f(n), g(n)\})$$
.

• E.g., $2n^3 + 8n^2 + 16n \log n \in \Theta(\max\{2n^3, 8n^2, 16n \log n\}) = \Theta(n^3)$.

it holds that $\max\{f(n), g(n)\} \le f(n) + g(n) \le 2 \max\{f(n), g(n)\}$ for $n \ge 1$. (select $n_0 = 1$, $M_1 = 1$ and $M_2 = 2$).

• What is the time complexity of arithmetic sequences?

•
$$\sum_{i=0}^{n-1} (a+di)$$

• What is the time complexity of arithmetic sequences?

•
$$\sum_{i=0}^{n-1} (a+di) = na + \frac{dn(n-1)}{2} \in \Theta(n^2)$$

• What is the time complexity of arithmetic sequences?

•
$$\sum_{i=0}^{n-1} (a+di) = na + \frac{dn(n-1)}{2} \in \Theta(n^2)$$

• What about geometric sequence?

•
$$\sum_{i=0}^{n-1} ar^i$$

Fun with Asymptotic Notations

• What is the time complexity of arithmetic sequences?

•
$$\sum_{i=0}^{n-1} (a+di) = na + \frac{dn(n-1)}{2} \in \Theta(n^2)$$

• What about geometric sequence?

•
$$\sum_{i=0}^{n-1} ar^i = \begin{cases} a\frac{1-r^n}{1-r} \in \Theta(1) & \text{if } 0 < r < 1\\ na \in \Theta(n) & \text{if } r = 1\\ a\frac{r^n - 1}{r-1} \in \Theta(r^n) & \text{if } r > 1 \end{cases}$$

• What about Harmonic sequence?

•
$$H_n = \sum_{i=1}^n \frac{1}{i}$$

Fun with Asymptotic Notations

• What is the time complexity of arithmetic sequences?

•
$$\sum_{i=0}^{n-1} (a+di) = na + \frac{dn(n-1)}{2} \in \Theta(n^2)$$

• What about geometric sequence?

•
$$\sum_{i=0}^{n-1} ar^i = \begin{cases} a\frac{1-r^n}{1-r} \in \Theta(1) & \text{if } 0 < r < 1\\ na \in \Theta(n) & \text{if } r = 1\\ a\frac{r^n-1}{r-1} \in \Theta(r^n) & \text{if } r > 1 \end{cases}$$

• What about Harmonic sequence?

•
$$H_n = \sum_{i=1}^n \frac{1}{i} \approx \ln(n) + \gamma \in \Theta(\log n) \ (\gamma \text{ is a constant} \approx 0.577)$$

Loop Analysis

- Identify elementary operations that require constant time
- The complexity of a loop is expressed as the **sum** of the complexities of each iteration of the loop.
- Analyse independent loops separately, and then **add** the results (use "maximum rules" and simplify when possible).
- If loops are nested, start with the innermost loop and proceed outwards.

Example of Loop Analysis

Example of Loop Analysis

Algo1 (n)1. $A \leftarrow 0$ 2. for $i \leftarrow 1$ to n do3. for $j \leftarrow i$ to n do4. $A \leftarrow A/(i-j)^2$ 5. $A \leftarrow A^{100}$ 6. return sum

С

Example of Loop Analysis

Algo1 (n)1. $A \leftarrow 0$ 2. for $i \leftarrow 1$ to n do3. for $j \leftarrow i$ to n do4. $A \leftarrow A/(i-j)^2$ 5. $A \leftarrow A^{100}$ 6. return sum

$$\sum_{j=i}^{n} c$$

EECS 3101 - Design and Analysis of Algorithms

Example of Loop Analysis

$$\sum_{i=1}^{n} \sum_{j=i}^{n} c$$

Example of Loop Analysis

$$O(1) + \sum_{i=1}^{n} \sum_{j=i}^{n} c$$

Example of Loop Analysis

$$O(1) + \sum_{i=1}^{n} \sum_{j=i}^{n} c = O(1) + \sum_{i=1}^{n} (n-i+1)c$$

Example of Loop Analysis

Algo1 (n)1. $A \leftarrow 0$ 2. for $i \leftarrow 1$ to n do3. for $j \leftarrow i$ to n do4. $A \leftarrow A/(i-j)^2$ 5. $A \leftarrow A^{100}$ 6. return sum

$$O(1) + \sum_{i=1}^{n} \sum_{j=i}^{n} c = O(1) + \sum_{i=1}^{n} (n-i+1)c = O(1) + \sum_{p=1}^{n} pc$$

EECS 3101 - Design and Analysis of Algorithms

Example of Loop Analysis

$$O(1) + \sum_{i=1}^{n} \sum_{j=i}^{n} c = O(1) + \sum_{i=1}^{n} (n-i+1)c = O(1) + \sum_{p=1}^{n} pc = \Theta(n^{2})$$

Example of Loop Analysis

Algo2 (A, n)1. $max \leftarrow 0$ 2. for $i \leftarrow 1$ to n do for $j \leftarrow i$ to n do 3. $X \leftarrow 0$ 4. for $k \leftarrow i$ to j do 5. $X \leftarrow A[k]$ 6. if X > max then 7. $max \leftarrow X$ 8. 9. return max

EECS 3101 - Design and Analysis of Algorithms

Example of Loop Analysis

Algo2 (A, n)1. $max \leftarrow 0$ 2 for $i \leftarrow 1$ to n do for $j \leftarrow i$ to n do 3. $X \leftarrow 0$ 4. for $k \leftarrow i$ to j do 5. $X \leftarrow A[k]$ 6. if X > max then 7. $max \leftarrow X$ 8. 9. return max

$$\sum_{i=1}^{n} \sum_{j=i}^{n} (O(1) + \sum_{k=i}^{j} c) = \Theta(n^{3})$$

Example of Loop Analysis

Algo3 (n)1. $X \leftarrow 0$ 2. for $i \leftarrow 1$ to n^2 do3. $j \leftarrow i$ 4. while $j \ge 1$ do5. $X \leftarrow X + i/j$ 6. $j \leftarrow \lfloor j/2 \rfloor$ 7. return X

Example of Loop Analysis

Algo3 (n)1. $X \leftarrow 0$ 2. for $i \leftarrow 1$ to n^2 do3. $j \leftarrow i$ 4. while $j \ge 1$ do5. $X \leftarrow X + i/j$ 6. $j \leftarrow \lfloor j/2 \rfloor$ 7. return X

• The while loop takes $O(\log i)$; note that $\log(x!) = \Theta(x \log x)$

Example of Loop Analysis

Algo3 (n)1. $X \leftarrow 0$ 2. for $i \leftarrow 1$ to n^2 do3. $j \leftarrow i$ 4. while $j \ge 1$ do5. $X \leftarrow X + i/j$ 6. $j \leftarrow \lfloor j/2 \rfloor$ 7. return X

- The while loop takes $O(\log i)$; note that $\log(x!) = \Theta(x \log x)$
- The time complexity is asymptotically equal to

$$\sum_{i=1}^{n^2} \log i = \log 1 + \log 2 + \ldots \log n^2 = \log(1 \times 2 \times \ldots \times n^2) = \log(n^2!)$$

Example of Loop Analysis

Algo3 (n) 1. $X \leftarrow 0$ 2. for $i \leftarrow 1$ to n^2 do 3. $j \leftarrow i$ 4. while $j \ge 1$ do 5. $X \leftarrow X + i/j$ 6. $j \leftarrow \lfloor j/2 \rfloor$ 7. return X

- The while loop takes $O(\log i)$; note that $\log(x!) = \Theta(x \log x)$
- The time complexity is asymptotically equal to

$$\sum_{i=1}^{n^2} \log i = \log 1 + \log 2 + \dots \log n^2 = \log(1 \times 2 \times \dots \times n^2) = \log(n^2!)$$
$$= \Theta(n^2 \log(n^2)) = \Theta(2n^2 \log(n^2)) = \Theta(n^2 \log n)$$

45 / 53

MergeSort

Sorting an array A of n numbers

- Step 1: We split A into two subarrays: A_L consists of the first $\lceil \frac{n}{2} \rceil$ elements in A and A_R consists of the last $\lfloor \frac{n}{2} \rfloor$ elements in A.
- Step 2: Recursively run *MergeSort* on A_L and A_R.
- Step 3: After A_L and A_R have been sorted, use a function Merge to merge them into a single sorted array. This can be done in time $\Theta(n)$.

MergeSort

MergeSort(A, n)	
1.	if $n=1$ then
2.	$S \leftarrow A$
3.	else
4.	$n_L \leftarrow \lceil \frac{n}{2} \rceil$
5.	$n_R \leftarrow \lfloor \frac{n}{2} \rfloor$
6.	$A_L \leftarrow [\bar{A}[1], \ldots, A[n_L]]$
7.	$A_R \leftarrow [A[n_L+1], \ldots, A[n]]$
8.	$S_L \leftarrow MergeSort(A_L, n_L)$
9.	$S_R \leftarrow MergeSort(A_R, n_R)$
10.	$S \leftarrow Merge(S_L, n_L, S_R, n_R)$
11.	return S

Analysis of MergeSort

• The following is the corresponding **sloppy recurrence** (it has floors and ceilings removed):

$$T(n) = \begin{cases} 2 T\left(\frac{n}{2}\right) + cn & \text{if } n > 1 \\ d & \text{if } n = 1. \end{cases}$$

- The exact and sloppy recurrences are identical when *n* is a power of 2.
- The recurrence can easily be solved by various methods when $n = 2^{j}$. The solution has growth rate $T(n) \in \Theta(n \log n)$.
- It is possible to show that $T(n) \in \Theta(n \log n)$ for all n by analyzing the exact recurrence.

Analysis of Recursions

• The sloppy recurrence for time complexity of merge sort:

$$T(n) = \begin{cases} 2 T\left(\frac{n}{2}\right) + cn & \text{if } n > 1 \\ d & \text{if } n = 1. \end{cases}$$

• We can find the solution using alternation method:

$$T(n) = 2T(n/2) + cn$$

= 2(2T(n/4) + cn/2) + cn = 4T(n/4) + 2cn
= 4(2T(n/8) + cn/4) + 2cn = 8T(n/8) + 3cn
= ...
= 2^kT(n/2^k) + kcn
= 2^{log n}T(1) + log ncn = $\Theta(n \log n)$

Substitution method

- **Guess** the growth function and prove an upper bound for it using induction.
 - For merge-sort, prove $T(n) < Mn \log n$ for some value of M (that we choose).
 - This holds for n = 2 since we have T(2) = 2d + 2c, which is less than 2M as long as $M \ge c + d$ (base of induction).
 - Fix a value of n and assume the inequality holds for smaller values. we have $T(n) = 2T(n/2) + cn \le 2M(n/2(\log n/2)) + cn =$ $Mn(\log n/2) + cn = Mn\log n - Mn + cn \le Mn\log n$ as long as M is selected to be at least c (the inequality comes from the induction hypothesis)
- This shows $T(n) \in O(n \log n)$

Recursion Tree

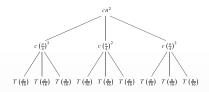
• Suppose we want to solve the following recursion:

$$T(n) = \begin{cases} 3 T\left(\frac{n}{4}\right) + cn^2 & \text{if } n > 1 \\ d & \text{if } n = 1. \end{cases}$$

Recursion Tree

• Suppose we want to solve the following recursion:

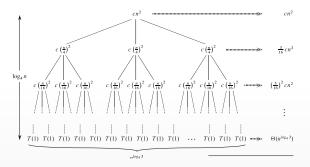
$$T(n) = \begin{cases} 3 T\left(\frac{n}{4}\right) + cn^2 & \text{if } n > 1 \\ d & \text{if } n = 1. \end{cases}$$



Recursion Tree

• Suppose we want to solve the following recursion:

$$T(n) = \begin{cases} 3 T\left(\frac{n}{4}\right) + cn^2 & \text{if } n > 1 \\ d & \text{if } n = 1. \end{cases}$$

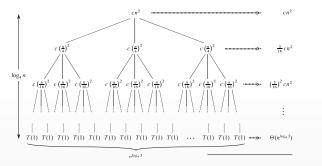


Recursion Tree

• Suppose we want to solve the following recursion:

$$T(n) = \begin{cases} 3 T\left(\frac{n}{4}\right) + cn^2 & \text{if } n > 1\\ d & \text{if } n = 1. \end{cases}$$

• Let's form a recursion tree:



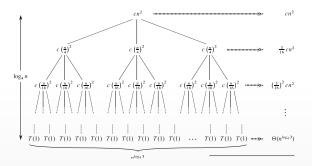
• The total work in internal nodes is $cn^2(1+3/16+(3/16)^2+\ldots) = \Theta(n^2).$

EECS 3101 - Design and Analysis of Algorithms

Recursion Tree

• Suppose we want to solve the following recursion:

$$T(n) = \begin{cases} 3 T\left(\frac{n}{4}\right) + cn^2 & \text{if } n > 1 \\ d & \text{if } n = 1. \end{cases}$$

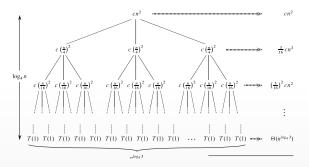


- The total work in internal nodes is $cn^2(1+3/16+(3/16)^2+\ldots) = \Theta(n^2).$
- The total work in leaves is n^{log3 4}.

Recursion Tree

• Suppose we want to solve the following recursion:

$$T(n) = \begin{cases} 3 T\left(\frac{n}{4}\right) + cn^2 & \text{if } n > 1 \\ d & \text{if } n = 1. \end{cases}$$



- The total work in internal nodes is $cn^2(1+3/16+(3/16)^2+...) = \Theta(n^2).$
- The total work in leaves is n^{log₃ 4}
- The max rule indicates that $T(n) = \Theta(n^2)$.

Master theorem

$$T(n) = \begin{cases} a T\left(\frac{n}{b}\right) + f(n) & \text{if } n > 1 \\ d & \text{if } n = 1. \end{cases}$$

 $(a \geq 1, \ b > 1, \ and \ f(n) > 0)$

- Compare f(n) and n^{log_b a}
- Case 1: if $f(n) \in O(n^{\log_b a \epsilon})$, then $T(n) \in \Theta(n^{\log_b a})$
- Case 2: if $f(n) \in \Theta(n^{\log_b a}(\log n)^k)$ for some non-negative k then $T(n) \in \Theta(f(n) \log n) = \Theta(n^{\log_b a}(\log n)^{k+1})$
- Case 3: if f(n) ∈ Ω(n^{log_b a+ε}) and if af(n/b) ≤ cf(n) for some constant c < 1 (regularity condition), then T(n) ∈ Θ(f(n))

•
$$T(n) = 2T(n/2) + \log n?$$

•
$$T(n) = 2T(n/2) + \log n$$
? case 1: $T(n) \in \Theta(n)$

•
$$T(n) = 2T(n/2) + \log n$$
? case 1: $T(n) \in \Theta(n)$

•
$$T(n) = 4T(n/4) + 100n?$$

- $T(n) = 2T(n/2) + \log n$? case 1: $T(n) \in \Theta(n)$
- T(n) = 4T(n/4) + 100n? case 2: $T(n) \in \Theta(n \log n)$

- $T(n) = 2T(n/2) + \log n$? case 1: $T(n) \in \Theta(n)$
- T(n) = 4T(n/4) + 100n? case 2: $T(n) \in \Theta(n \log n)$
- $T(n) = 3T(n/2) + n^2$?

- $T(n) = 2T(n/2) + \log n$? case 1: $T(n) \in \Theta(n)$
- T(n) = 4T(n/4) + 100n? case 2: $T(n) \in \Theta(n \log n)$
- $T(n) = 3T(n/2) + n^2$?
 - Case 3, check whether regularity condition holds, i.e., whether $af(n/b) \leq cf(n)$ for some c < 1. Since we have $3(n/2)^2 = 3/4n^2$ the regularity condition holds (c can be any value in the range (3/4, 1), i.e., $T(n) \in \Theta(n^2)$

- $T(n) = 2T(n/2) + \log n$? case 1: $T(n) \in \Theta(n)$
- T(n) = 4T(n/4) + 100n? case 2: $T(n) \in \Theta(n \log n)$
- $T(n) = 3T(n/2) + n^2?$
 - Case 3, check whether regularity condition holds, i.e., whether $af(n/b) \leq cf(n)$ for some c < 1. Since we have $3(n/2)^2 = 3/4n^2$ the regularity condition holds (c can be any value in the range (3/4, 1), i.e., $T(n) \in \Theta(n^2)$

•
$$T(n) = T(n/2) + n(2 - \cos(n))?$$

Master theorem examples

- $T(n) = 2T(n/2) + \log n$? case 1: $T(n) \in \Theta(n)$
- T(n) = 4T(n/4) + 100n? case 2: $T(n) \in \Theta(n \log n)$
- $T(n) = 3T(n/2) + n^2?$
 - Case 3, check whether regularity condition holds, i.e., whether $af(n/b) \leq cf(n)$ for some c < 1. Since we have $3(n/2)^2 = 3/4n^2$ the regularity condition holds (c can be any value in the range (3/4, 1), i.e., $T(n) \in \Theta(n^2)$

•
$$T(n) = T(n/2) + n(2 - cos(n))?$$

• Case 3, check whether regularity condition holds.

- $T(n) = 2T(n/2) + \log n$? case 1: $T(n) \in \Theta(n)$
- T(n) = 4T(n/4) + 100n? case 2: $T(n) \in \Theta(n \log n)$
- $T(n) = 3T(n/2) + n^2?$
 - Case 3, check whether regularity condition holds, i.e., whether $af(n/b) \leq cf(n)$ for some c < 1. Since we have $3(n/2)^2 = 3/4n^2$ the regularity condition holds (c can be any value in the range (3/4, 1), i.e., $T(n) \in \Theta(n^2)$

•
$$T(n) = T(n/2) + n(2 - cos(n))?$$

- Case 3, check whether regularity condition holds.
- For $n = 2k\pi$, we have cos(n/2) = -1 and cos(n) = 1; we have af(n/b) = n/2(2 cos(n/2)) = 3n/2, which is not within a factor c < 1 of f(n) = n(2-1) = n [i.e., we cannot say $3n/2 \le cn$ for any c < 1]. So we cannot get any conclusion from Master theorem.

- $T(n) = 2T(n/2) + \log n$? case 1: $T(n) \in \Theta(n)$
- T(n) = 4T(n/4) + 100n? case 2: $T(n) \in \Theta(n \log n)$
- $T(n) = 3T(n/2) + n^2?$
 - Case 3, check whether regularity condition holds, i.e., whether $af(n/b) \leq cf(n)$ for some c < 1. Since we have $3(n/2)^2 = 3/4n^2$ the regularity condition holds (c can be any value in the range (3/4, 1), i.e., $T(n) \in \Theta(n^2)$

•
$$T(n) = T(n/2) + n(2 - cos(n))?$$

- Case 3, check whether regularity condition holds.
- For $n = 2k\pi$, we have cos(n/2) = -1 and cos(n) = 1; we have af(n/b) = n/2(2 cos(n/2)) = 3n/2, which is not within a factor c < 1 of f(n) = n(2 1) = n [i.e., we cannot say $3n/2 \le cn$ for any c < 1]. So we cannot get any conclusion from Master theorem.
- $T(n) = 2T(n/2) + n(\log n)^3$? Case 2, we have $f(n) = \Theta(n^{\log_b a}(\log n)^k)$ for k = 3. We have $T(n) = \Theta(n(\log n)^4)$.