
3 4 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E

monitoring, nuclear power plants, defense, mul-
timedia, and process control are but a few ap-
plication areas that employ computer software
that synchronizes and coordinates processes and
activities with timing constraints. Not only is
software with hard timing requirements becom-
ing increasingly important and pervasive, it is
also growing rapidly in size and complexity.

In contrast, effective methods and tools for
inspecting and verifying software’s timing
properties are conspicuously absent, despite
an increasingly pressing need for them. This is
due primarily to the difficulty of verification.
However, a preruntime scheduling approach

can help overcome this difficulty, making soft-
ware timing properties much easier to inspect
and verify.

The verification problem
What’s the main reason for this apparent

difficulty in developing effective methods and
tools for verifying software timing properties?
The problem is the complexity of software, es-
pecially nonterminating concurrent software,
and the complexity of such software’s possible
timing behaviors.

Fundamental theoretical limitations
Researchers have found that the ability to ex-

press even basic timing properties is a major fac-
tor that keeps the complexity of a logical theory
or model high. Many of the logics and models
that researchers have proposed for modeling
programs’ timing properties are undecidable.1

focus
Making Software Timing
Properties Easier to
Inspect and Verify

T
he world around us is depending more and more on computer
systems that have timing requirements. Whether we fly on an air-
plane, drive a car, make a phone call, undergo surgery at a hos-
pital, or simply turn the lights on at home, we depend on real-

time embedded software that must observe timing constraints either for our
safety or simply just to make things work. Avionics, air traffic control, au-
tomobiles, telecommunications, medical applications such as intensive-care

software inspection

Software with hard timing requirements should be designed using a
systematic approach to make its timing properties easier to inspect
and verify. Preruntime scheduling provides such an approach by
placing restrictions on software structures to reduce complexity.

Jia Xu, York University

This means that for a particular logic or model,
no automatic method or tool can ever exist that
always gives a definite answer to the question of
whether the program satisfies the timing prop-
erties. To make models and logics decidable, re-
searchers can impose fairly severe restrictions
such as limiting the system to a finite number of
states, requiring the time domain to be discrete,
and prohibiting quantification on time vari-
ables. However, many logics and models will
still have high complexity.

The models and logics that can express ba-
sic timing properties are generally subject to
the state space explosion problem. That is, the
state space size we must explore to verify those
properties grows exponentially with the pro-
gram description’s size. For example, to verify
a program with 200 components, the state
space size that we might need to explore might
be proportional to 2200! This exceeds the nor-
mally available time and memory resources.

To cope with state space explosion, all pro-
gram verification methods use some form of
approximation (for more information on cur-
rent verification methods, see the sidebar).
That is, the model only preserves selected
characteristics of the implementation while
abstracting away complex details. But then we
have the problem of deciding how to obtain
such a model and how to prove that the model
faithfully represents the original program, in
the sense that the model can answer correctly
all the correctness questions about the pro-
gram. This can be more difficult than proving
the original program’s correctness.

Complexity’s causes
If you take a hard look at what makes the

timing behaviors of existing real-time software
complex, you might observe the following cur-
rent practices in the design of real-time software:

� The software incorporates synchronization
mechanisms with complex timing behaviors.

� Real-time processes execute at random
times and preempt other processes at ran-
dom points in time.

� Schedulers and other operating system
processes such as interrupt-handling rou-
tines with complex behaviors affect appli-
cation processes subtly and unpredictably.

� Programmers use ad hoc methods to deal
with additional constraints on the applica-
tions such as precedence constraints, release

times that are not equal to the beginning of
their periods, and low-jitter requirements.

� Programmers use priorities to deal with
every kind of requirement.

� To handle concurrent resource contention,
programmers use task blocking, which
might cause deadlocks.

J u l y / A u g u s t 2 0 0 3 I E E E S O F T W A R E 3 5

Automatic methods or tools based on logics or models that are subject to
state space explosion (see the related section in the main article) can still be
useful where the program description is small. We can obtain small pro-
gram descriptions when either the system represented by the program has a
simple structure or the number of components is small. Hardware circuits
are often regular and hierarchical, and the number of components com-
pared to software is small, so model checking has achieved a fair amount
of success in checking the properties of hardware circuits.1

However, for the reasons I mentioned earlier, formal verification methods
have not been used on the timing properties of actual software code. In par-
ticular, large-scale, complex, nonterminating, and concurrent software has a
pressing need for this verification. But most research related to such verifica-
tion has studied only simplified high-level abstractions of software such as
specifications, models, algorithms, or protocols that are only approximations
of the actual software. These abstractions do not take into account all the im-
plementation details that might affect timing. Examples are theorem-proving
techniques that use PVS (Prototype Verification System) to analyze real-time
scheduling protocols2 and symbolic-model-checking techniques that check
high-level algorithms and protocols.3 Most of model checking’s success is not
so much in the formal verification of specifications but in the finding of bugs
that other informal methods such as testing and simulation don’t find, through
exploring only part of the state space.

Because of the state-space-explosion problem, even state-of-the-art meth-
ods and tools have difficulty verifying the timing properties of more than a
few real-time processes when the some processes exhibit nondeterministic
behavior. For example, the TAXYS tool uses the formal model of timed au-
tomata4 and the KRONOS model checker5 to verify timing properties of
real-time embedded systems. The tool’s developers recently reported experi-
mental results in which the tool had to abort when the number of symbolic
states that KRONOS explored increased exponentially with the degree of
nondeterminism.6 This increase occurred even though the system being veri-
fied contained only two strictly periodic, independent tasks and one aperi-
odic (asynchronous) task.

References
1. E.M. Clarke et al., “Progress on the State Explosion Problem in Model Checking.” Informat-

ics: 10 Years Back, 10 Years Ahead, R. Wilhelm, ed., LNCS 2000, Springer-Verlag, 2001,
pp. 176–194.

2. B. Dutertre, “Formal Analysis of the Priority Ceiling Protocol,” Proc. 21st Ann. IEEE Real-
Time Systems Symp. (RTSS 2000), IEEE CS Press, 2000, pp. 151–160.

3. S.V. Campos and E.M. Clarke, “The Verus Language: Representing Time Efficiently with
BDDs,” Theoretical Computer Science, vol. 253, no. 1, 17 Feb. 2001, pp. 95–118.

4. R. Alur and D.L. Dill, “A Theory of Timed Automata,” Theoretical Computer Science, vol.
126, no. 2, 25 Apr. 1994, pp. 183–235.

5. C. Daws et al., “The Tool KRONOS,” Hybrid Systems III: Verification and Control, LNCS
1066, Springer-Verlag, 1996, pp. 208–219.

6. E. Closse et al., “TAXYS: A Tool for the Development and Verification of Real-Time Embed-
ded Systems,” Proc. 13th Int’l Conf. Computer Aided Verification (CAV 2001), LNCS 2102,
Springer-Verlag, 2001, pp. 391–395.

State-of-the-Art Verification

When programmers combine these prac-
tices, the high complexity of the interactions
between the different entities, and the sheer
number of possible combinations of those in-
teractions, significantly increase the chances
that inspection and verification will overlook
important cases.

Reducing complexity
The limitations I’ve just discussed tell us

that, if the software and its timing behaviors
are overly complex, determining whether the
software satisfies the required timing proper-
ties might be practically impossible.

So how can we solve this problem? The
most apparent answer would be to find ways
to reduce software complexity.

Some of the most significant progress and
most enduring results in software engineering
were achieved through imposing restrictions on
software structures. Examples include informa-
tion hiding, abstract interfaces, hierarchical
structuring and modular decomposition,2–4

structured programming,5 and organizing con-
current software as a set of cooperating se-
quential processes.6

The same general principle—imposing re-
strictions on software structures to reduce
complexity—seems also to be the key to con-
structing software so that timing properties
are easier to inspect and verify. This is the ap-
proach that preruntime scheduling uses.

Preruntime scheduling
Without loss of generality, suppose that the

software we wish to inspect consists of a set of
sequential programs. Some programs are to
execute periodically, once in each time period.
Some programs are to execute in response to
asynchronous events.

Assume also that for each periodic program
p, we know the

� Release time, rp (the earliest time it can
start its computation)

� Deadline, dp (the time it must finish its
computation)

� Worst-case computation time, cp

� Period, prdp

For each asynchronous program a, we know the

� Worst-case computation time, ca

� Deadline, da

� Minimum time between two consecutive
requests, mina

Furthermore, suppose some sections of
some programs must precede a given set of
sections in other programs. Also, some pro-
gram sections might exclude a given set of sec-
tions of other programs. In addition, suppose
that we know the computation time and start
time of each program section relative to the
beginning of the program containing that sec-
tion. We assume that the worst-case computa-
tion time and each program’s logical correct-
ness have been independently verified.

The procedure
This approach comprises the following

steps. First, organize the sequential programs
as a set of cooperating sequential processes to
be scheduled before runtime.

Second, identify all critical sections—that is,
sections that access shared resources and sec-
tions that must execute before some sections of
other programs, such as when a producer-con-
sumer relation exists between sections. Divide
each process into segments such that appropri-
ate exclusion and precedence relations can be
defined on pairs of sequences of the process seg-
ments to prevent simultaneous access to shared
resources and to ensure proper execution order.

Third, convert each asynchronous process
a into a new periodic process p. Suppose that
P is the existing set of periods of periodic
processes. One possible way to convert an
asynchronous process a is to let the corre-
sponding new periodic process p satisfy these
conditions:

� rp = 0
� cp = ca

� prdp is equal to the largest member of P
such that 2 × prdp – 1 ≤ da and prdp ≤ mina

� dp is equal to the largest integer such that
dp + prdp – 1 ≤ da and dp ≤ prdp

� dp ≥ ca

Fourth, calculate each process segment’s re-
lease time and deadline. For each process p with
release time rp, deadline dp, and consisting of a
sequence of process segments p0, p1, …, pi, …,
pn, with computation times , , …, , …,

, respectively, we can calculate the release
time and deadline of each segment pi as
follows:

dpi
rpi

cpn

pi
cp1

cp0

Some of the
most significant

progress and
most enduring

results in
software

engineering
were achieved

through
imposing

restrictions on
software

structures.

3 6 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

.

Fifth, compute offline a preruntime sched-
ule for all instances of the entire set of periodic
segments occurring within a time period that
is equal to the least common multiple of all pe-
riodic segments. This schedule should include
new periodic segments converted from asyn-
chronous segments. It should also satisfy all
the release time, deadline, precedence, and ex-
clusion relations.7–10

Sixth, at runtime execute all the periodic
segments in accordance with the previously
computed schedule.

Applying the approach
Suppose that in a hard-real-time system the

software consists of six sequential programs
A, B, C, D, E, and F, which are organized as a
set of sequential processes that cooperate
through reading and writing data on a set of
shared variables a, b, c, d, and e (see Figure 1).
A, B, C, and D are to execute periodically,
with release times at 0, 20, 30, and 90 time
units; computation times of 60, 20, 20, and 20
time units; deadlines at 120, 120, 50, and 110
time units; and periods of 120, 240, 120, and

d d cp p p
j i

n

i j
= −

= +
∑

1

r r cp p p
j

i

i j
= +

=

−

∑
0

1

J u l y / A u g u s t 2 0 0 3 I E E E S O F T W A R E 3 7

Process A

Process B

0

19

A0

A1

A2

(read a):
temp0:= a;
...

(write b):

b:= f0(temp0);

20

39

(read c, d):

temp1:= c;

temp2:= d;

...

(write c, a):

c:= f1(temp1);

a:= f2(temp0);

40

59

...

(write d):

d:= f3(temp2);

0

19

Process C

Process D

Process F

Process E

0

19

(read b, c,

 such that

 b = f0(temp0)):

temp3:= b;

temp4:= c;

(write c):

c:= f4(temp3;

 temp4);

0

19

(read d, a, e):

temp5:= d;

temp6:= a;

temp7:= e;

(write d, a, e):

d:= f5(temp5);

a:= f6(temp6);

e:= f7(temp7);

0

19

(read e):

temp8:= e;

...

(write e):

e:= f8(temp8);

0

19

r[A] = 0 r[B] = 20 r[C] = 30 r[D] = 90

c[A] = 60 c[B] = 20 c[C] = 20 c[D] = 20 c[E] = 20 c[F] = 20

d[A] = 120 d[B] = 120 d[C] = 50 d[D] = 110 d[E] = 480 d[F] = 481

prd[A] = 120 prd[B] = 240 prd[C] = 120 prd[D] = 240 min[E] = 242 min[F] = 243

(read e, d, c, a):

temp9:= e;

temp10:= d;

temp11:= c;

temp12:= a;

(write e, d, c, a):

e:= f9(temp9);

d:= f10(temp10);

c:= f11(temp11);

a:= f12(temp12);

Figure 1. The
sequential programs
A, B, C, and D are to
execute periodically.
The sequential
programs E and F
are to execute in
response to
asynchronous
requests.

240 time units, respectively. E and F are to ex-
ecute in response to asynchronous requests,
with computation times of 20 and 20 time
units, deadlines at 480 and 481 time units,
and a minimum time between two consecutive
requests of 242 and 243 time units.

Process A, at the beginning of its computa-
tion, reads the current value of a and performs
a computation based on that value. At this
computation’s 20th time unit, Process A writes
a value into b that depends on the previously
read value of a. This new value is intended to
be read by Process C. At the 21st time unit,
Process A also reads the current values of c
and d. At the 40th time unit, Process A writes
new values into c and a that depend on the
previously read values of c and a. At the 60th
time unit—the computation’s last time unit—
Process A writes a new value into d that de-
pends on the previously read value of d.

To prevent processes from simultaneously
accessing shared resources, such as the shared
data in this example, we divide each process
into a sequence of segments. We then define
the critical sections, where each critical section
consists of a sequence of the segments. We
then define EXCLUDES (binary) relations be-
tween critical sections. For any satisfactory
schedule, EXCLUDES relations must satisfy
these conditions:

For any pair of critical sections x and y, if x
EXCLUDES y, then no computation of any
segment in y can occur between the time the
first segment in x starts its computation and
the time the last segment in x completes its
computation.

To enforce the proper ordering of segments
in a process, as well as producer-consumer re-
lationships between segments belonging to dif-
ferent processes, we can define a PRECEDES
relation on ordered pairs of segments. PRE-
CEDES relations must satisfy these conditions:

For any pair of segments i and j, if i PRE-
CEDES j, then j cannot start its computation
before i has completed its computation.

(We expect that PRECEDES relations will usu-
ally be defined only on segments of processes
in the same period.)

To prevent simultaneous access to a, b, c,
d, and e and enforce the required producer-
consumer relationship between A and C, while
maximizing the chances of finding a feasible
schedule, we can define the set of EXCLUDES
and PRECEDES shown in Figure 2.

Using the conditions in the third step men-
tioned in the previous section, we can convert
the asynchronous processes E and F into new
periodic processes as follows:

3 8 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

20 30 40 50 70 80 90 11
0

14
0

15
0

16
0

17
0

19
0

20
0

21
0

22
0

24
0

12
0

10
0

A0 A0B B E′ E′C CD F′A1 A2 A1 A2

r[A0] = 0 r[A1] = 20 r[A2] = 40 r[B] = 20 r[C] = 30 r[D] = 90

c[A0] = 20 c[A1] = 20 c[A2] = 20 c[B] = 20 c[C] = 20 c[D] = 20

d[A0] = 80 d[A1] = 100 d[A2] = 120 d[B] = 120 d[C] = 50 d[D] = 110

prd[A0] = 120 prd[A1] = 120 prd[A2] = 120 prd[B] = 240 prd[C] = 120 prd[D] = 240

(A0,A1) EXCLUDES (D) (A0,A1) EXCLUDES (F) (D) EXCLUDES (F)

(D) EXCLUDES (A0,A1) (F) EXCLUDES (A0,A1) (F) EXCLUDES (D)

(A1,A2) EXCLUDES (D) (A1,A2) EXCLUDES (F) (E) EXCLUDES (F)

(D) EXCLUDES (A1,A2) (F) EXCLUDES (A1,A2) (F) EXCLUDES (E)

(D) EXCLUDES (E) (A1) EXCLUDES (C) (C) EXCLUDES (F)

(E) EXCLUDES (D) (C) EXCLUDES (A1) (F) EXCLUDES (C)

A0 PRECEDES C A0 PRECEDES A1 A1 PRECEDES A2

r[E′] = 0 r[F′] = 0
c[E′] = 20 c[F′] = 20
d[E′] = 240 d[F′] = 240
prd[E’] = 240 prd[F′] = 240

0

r[A0]

r[E′]
r[F′]

r[A0]

d[B]

d[A2]

d[E′]
d[F′]
d[B]

d[A2]r[A1] d[A1]r[A2]

r[A1]

r[B] d[C]

r[D]

r[A2]

d[A0] d[A1]r[C]

d[D] r[C] d[C] d[A0]

Figure 2. A
preruntime schedule
for the four periodic
processes A, B, C,
and D and the two
asynchronous
processes E and F.

r[E′] = 0, c[E′] = 20,
d[E′] = 240, prd[E′] = 240.

r[F′] = 0, c[F′] = 20,
d[F′] = 240, prd[F′] = 240.

Using the formula in the fourth step, we can
calculate the release time and deadline of each
segment in A. This calculation’s results appear
in Figure 2.

Given the EXCLUDES relation defined on
overlapping critical sections and the PRE-
CEDES relation defined on the process seg-
ments, an algorithm that can schedule processes
with overlapping critical sections9 should be
able to find the feasible schedule shown in Fig-
ure 2. In this schedule, all instances of all the
process segments of A0, A1, A2, C, B, D, E′, and
F′ occurring within the preruntime schedule
length of 240 time units meet their deadlines.
Also, this schedule satisfies all the specified EX-
CLUDES and PRECEDES relations.

Why preruntime scheduling works
Here’s why this approach makes software

timing properties easier to inspect and verify.
First, instead of having to exhaustively an-

alyze and inspect a huge number of different
possible interleaving or concurrent task-
execution sequences, you need to inspect only
a single preruntime schedule each time.

Second, in each preruntime schedule, the
interleaving or concurrent task-execution se-
quence is statically and visually laid out in one
straight line of actual code (see Figure 3). So,
you can easily verify, by straightforward visual
inspection of the schedule, that the execution
sequence meets all the timing constraints such
as release times and deadlines, periods, and
low-jitter requirements.

Third, instead of using complex, unpre-
dictable runtime synchronization mechanisms
to prevent simultaneous access to shared data,
the preruntime scheduling approach simply con-
structs preruntime schedules in which critical
sections that exclude each other do not overlap.
This lets you easily verify visually that the exe-
cution sequence meets requirements such as ex-
clusion relations and precedence relations be-
tween actual code segments of real-time tasks.

Fourth, instead of having to assume that
context switches can happen at any time, you
can easily verify visually exactly when, where,
and how many context switches might happen.

Fifth, task deadlocks cannot occur.
Sixth, you can switch processor execution

from one process to another through simple
mechanisms such as procedure calls or simply
by catenating code, which reduces system
overhead and simplifies the timing analysis.

J u l y / A u g u s t 2 0 0 3 I E E E S O F T W A R E 3 9

30

49

First half of
preruntime schedule

0

19

(read a):
temp0:= a;
...

(write b):

b:= f0(temp0);

20

29
(read b, c,

 such that

 b= f0(temp0)):

temp3:= b;

temp4:= c;

(write c):

c:= f4(temp3,

 temp4);

50

69

(read c, d)

temp1:= c;

temp2:= d;

...

(write c,a):

c:= f1(temp1);

a:= f2(temp0);

70

89

...

(write d):

d:= f3(temp2);

90

109

(read d, a, e):

temp5:= d;

temp6:= a;

temp7:= e;

(write d, a, e):

d:= f5(temp5);

a:= f6(temp6);

e:= f7(temp7);

Second half of
preruntime schedule

150

169

120

139

(read a):
temp0:= a;
...

(write b):

b:= f0(temp0);

(read e):

temp8:= e;

...

140

149
(read b, c,

 such that

 b= f0(temp0)):

temp3:= b;

temp4:= c;

(write c):

c:= f4(temp3,

 temp4);

170

189

(read c, d)

temp1:= c;

temp2:= d;

...

(write c,a):

c:= f1(temp1);

a:= f2(temp0);

190

209

...

(write d):

d:= f3(temp2);

210

219
(write e):

e:= f8(temp8);

110

119

120

220

239

240

(read e, d, c, a):

temp9:= e;

temp10:= d;

temp11:= c;

temp12:= a;

(write e, d, c, a):

e:= f9(temp9);

d:= f10(temp10);

c:= f11(temp11);

a:= f12(temp12);

A0 A0

A1 A1

E′

C

F′

E′

A2A2

D

B

B

C

Figure 3. The detailed code layout in the preruntime schedule
for the periodic processes A, B, C, and D and the asynchronous
processes E and F makes inspecting the programs’ timing and
runtime behavior much easier.

Seventh, an automated preruntime sched-
uler can help automate and speed up impor-
tant parts of inspection. Whenever you need
to modify a program, a new preruntime sched-
ule can be automatically and quickly gener-
ated, letting you quickly learn whether the
modifications affect any timing requirements.

Finally, you can convert most asynchro-
nous processes to periodic processes. So, you
can use periodic processes instead of inter-
rupts to handle external and internal events.
This removes a significant source of nondeter-
ministic behavior from the system, which
greatly reduces the complexity of the software
and its timing behaviors. Terry Shepard and
Martin Gagne have applied this preruntime-
scheduling approach to the F-18 Aircraft Mis-
sion Computer on Flight Program.11

Misconceptions about preruntime
scheduling

Some people think that preruntime schedul-
ing is less flexible than the alternatives. I believe
these perceptions are mostly misconceptions.

First, some people think that once you have
scheduled process segments into a preruntime
schedule, modifying the system to meet new re-
quirements will be difficult. This perception
originated with the earlier, more primitive
form of preruntime schedules—cyclic execu-
tives. System designers had to construct them
completely by hand because suitable algo-
rithms to automate the task were not available.
Also, because of the difficulty of rescheduling
processes to obtain a new cyclic executive,
whenever system changes were required, the
designers would directly modify the existing
cyclic executive. After a few modifications, the
original processes’ logical structure would be
lost. This loss made the system difficult to un-
derstand and further modify, resulting in a sys-
tem that designers described as “fragile.”

Preruntime scheduling algorithms7–10 pro-
vide a different approach to building real-time
systems; they can completely automate con-
struction of preruntime schedules. This lets the
designer always maintain the system struc-
tures in two distinct but corresponding levels:

� The higher logical level consists of the origi-
nal cooperating sequential processes and the
various logical constraints, including timing
constraints defined on those processes.

� The lower implementation level consists

of the preruntime schedule—that is, the
execution ordering of those processes.

Whenever system changes are required, the
designer doesn’t directly alter the preruntime
schedule at the lower implementation level. In-
stead, he or she modifies the original cooper-
ating sequential processes at the higher logical
level, using the higher-level knowledge about
the logical structures of the processes and the
logical constraints on them. After the modifi-
cations are complete, the designer can use the
preruntime scheduling algorithms to automat-
ically reschedule the modified processes and
segments, to obtain a new preruntime sched-
ule. This lets designers keep intact any desired
logical properties in the original process struc-
tures that are useful for understanding, main-
taining, and reasoning about the programs’
properties and correctness. They can also use
those logical properties to make further modi-
fications or add new features or processes to
the system at the higher logical level.

Second, some people have claimed that pre-
runtime scheduling is not as flexible as fixed-
priority-based schedulers because it does not al-
low dynamic admission of tasks. Actually, no
runtime scheduler will ever be able to guarantee
that the timing constraints of an arbitrary set of
dynamically arriving tasks can be satisfied, with-
out knowing in advance information about such
tasks’ characteristics.12 However, if you know
this information in advance, there’s no reason
why you shouldn’t use it to the maximum extent
to determine before runtime whether those tim-
ing constraints can be satisfied, even if this re-
quires substantial offline computation.

But runtime fixed-priority-based synchro-
nization protocols and mechanisms, such as
rate-monotonic scheduling and the Priority
Ceiling Protocol, can’t take into account
much of the information that is known be-
fore runtime. They can’t handle complex ap-
plication constraints, such as release times,
precedence constraints, and low-jitter re-
quirements. They generally result in lower
processor utilization, have much greater sys-
tem overhead, and make the system’s runtime
behavior significantly more difficult to ana-
lyze and predict. Detailed discussions of
these issues appear elsewhere.13,14

Also, a preruntime schedule dispatcher such
as the one I’ve described in a previous paper14

can use the time that is unused by time-critical

Some people
think that

preruntime
scheduling is
less flexible

than the
alternatives.

I believe these
perceptions
are mostly

misconceptions.

4 0 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

tasks to execute non-time-critical dynamically
arriving tasks.

T o guarantee that a large-scale, com-
plex, safety-critical real-time system
will not fail unexpectedly, we must be

able to predict all the possible cases of the actual
time-critical software code’s timing behaviors
through rigorous inspection and verification.

However, in most cases, researchers verify
the timing properties of only specifications,
models, algorithms, and protocols, not of the
actual code. In most cases, they give no proof
that the specifications, models, algorithms,
and protocols have the same timing properties
as the actual code. When researchers attempt
to “verify” timing properties of actual code in
existing real-time systems where processes are
scheduled at runtime, typically they

� Can’t handle more than a small number of
processes

� Can’t simultaneously handle common
real-time application constraints and in-
terdependencies such as release times,
precedence, and exclusion relations be-
tween the processes

� Can’t take into account all the implementa-
tion details of the system that affect timing

But even with these severe limitations, they
still can’t cover more than an extremely small
subset of the possible cases of the actual code’s
timing behaviors.

The overwhelmingly large number of possi-
ble cases of existing real-time software’s tim-
ing behaviors is due largely to overly complex
interactions between system components. The
preruntime scheduling approach effectively re-
duces the number of the possible cases of the
actual code’s timing behaviors by structuring
real-time software as a set of cooperating se-
quential processes and imposing strong re-
strictions on the interactions between the
processes. This makes it easier to inspect and
verify all the timing behaviors of the software.

I still need to ensure that each sequential
process’s worst-case execution time can be in-
dependently inspected and verified. I believe
that a key to ensuring this is to also impose
strong restrictions on the sequential program
structures. I plan to discuss these issues in a fu-
ture paper.

Acknowledgments
A Natural Sciences and Engineering Council of

Canada grant partially supported this work. I presented
a preliminary version of this article at the First Work-
shop on Inspection in Software Engineering (WISE 01).
I thank the reviewers for numerous thoughtful com-
ments and helpful suggestions on how to improve this
article. I am also indebted to Dave Parnas for helpful
discussions and advice related to this work.

References
1. R. Alur and T.A. Henzinger, “Logics and Models of

Real Time: A Survey,” Real Time: Theory in Practice,
J.W. de Bakker et al., eds., LNCS 600, Springer-Verlag,
1992, pp. 74–106.

2. D.L. Parnas, “On the Criteria Used in Decomposing
Systems into Modules,” Comm. ACM, vol. 15, no. 12,
Dec. 1972, pp. 1053–1058.

3. D.L. Parnas, “On a ‘Buzzword’: Hierarchical Struc-
ture,” Proc. IFIP Congress 74, North Holland Publish-
ing, 1974, pp. 336–339.

4. D.M. Hoffman and D.M. Weiss, eds., Software Funda-
mentals: Collected Papers by David L. Parnas, Addi-
son-Wesley, 2001.

5. E.W. Dijkstra, “Structured Programming,” Software
Engineering Techniques, J.N. Buxton and B. Randell,
eds., NATO Scientific Affairs Div., 1970, pp. 84–87.

6. E.W. Dijkstra, “Cooperating Sequential Processes,” Pro-
gramming Languages, F. Genuys, ed., Academic Press,
1968, pp. 43–112.

7. J. Xu and D.L. Parnas, “On Satisfying Timing Constraints
in Hard-Real-Time Systems,” IEEE Trans. Software Eng.,
vol. 19, no. 1, Jan. 1993, pp. 70–84. Reprinted in A Prac-
tical Approach to Real-Time Systems: Selected Readings,
Philip Laplant, ed., IEEE Press, 2000, pp. 15–31.

8. J. Xu, “Multiprocessor Scheduling of Processes with
Release Times, Deadlines, Precedence, and Exclusion
Relations,” IEEE Trans. Software Eng., vol. 19, no. 2,
Feb. 1993, pp. 139–154.

9. J. Xu and D.L. Parnas, “Pre-Run-Time Scheduling of
Processes with Exclusion Relations on Nested or Over-
lapping Critical Sections,” Proc. 11th Ann. IEEE Int’l
Phoenix Conf. Computers and Communications
(IPCCC 92), IEEE Press, 1992, pp. 774–782.

10. J. Xu and D.L. Parnas, “Scheduling Processes with Re-
lease Times, Deadlines, Precedence, and Exclusion Rela-
tions,” IEEE Trans. Software Eng., vol. 16, no. 3, Mar.
1990, pp. 360–369. Reprinted in Advances in Real-
Time Systems, J.A. Stankovic and K. Ramamrithan,
eds., IEEE CS Press, 1993, pp. 140–149.

11. T. Shepard and M. Gagne, “A Model of the F-18 Mis-
sion Computer Software for Pre-Run-Time Scheduling,”
Proc. 10th Int. Conf. Distributed Computing Systems
(ICDCS 90), IEEE CS Press, 1990, pp. 62–69.

12. A.K. Mok, “The Design of Real-Time Programming Sys-
tems Based on Process Models,” Proc. 1984 IEEE Real-
Time Systems Symp., IEEE CS Press, 1984, pp. 5–17.

13. J. Xu and D.L. Parnas, “Priority Scheduling versus Pre-
Run-Time Scheduling,” Real-Time Systems, vol. 18, no.
1, Jan. 2000, pp. 7–23.

14. J. Xu, “On Inspection and Verification of Software with
Timing Requirements,” to be published in IEEE Trans.
Software Eng., vol. 29, no. 8, Aug. 2003.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

J u l y / A u g u s t 2 0 0 3 I E E E S O F T W A R E 4 1

About the Author

Jia Xu is an associate professor of computer science at York University in Toronto. His cur-
rent research interest is real-time and embedded-systems engineering. He received his Docteur
en Sciences Appliquées in computer science from the Université Catholique de Louvain. Contact
him at the Dept. of Computer Science, York Univ., 4700 Keele St., North York, ON M3J 1P3,
Canada.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

