
Acta Informatica 29, 121-160 (1992)

Infermatica
�9 Springer-Verlag 1992

On-line multiversion database concurrency control

J. Xu*

Department of Computer Science, York University, 4700 Keele Street, North York, Ontario,
Canada M3J 1P3

Received July 10, 1990 / September 10, 1991

Abstract. This paper presents a new model for studying the concurrency vs.
computat ion time tradeoffs involved in on-line multiversion database concur-
rency control. The basic problem that is studied in our model is the following:

Given: a current database system state which includes information such as
which transaction previously read a version from which other transaction; which
transaction has written which versions into the database; and the ordering of
versions previously written; and a set o f read and write requests of requesting
transactions.

Question: Does there exist a new database system state in which the request-
ing transactions can be immediately put into execution (their read and write
requests satisfied, or in the case of predeclared writeset transactions, write
requests are guaranteed to be satisfied) while preserving consistency under a
given set of additional constraints? (The amount of concurrency achieved is
defined by the set of additional constraints).

In this paper we derive "l imits" of performance achievable by polynomial
time concurrency control algorithms. Each limit is characterized by a minimal
set of constraints that allow the on-line scheduling problem to be solved in
polynomial time. If any one constraint in that minimal set is omitted, al though
it could increase the amount of concurrency, it would also have the dramatic
negative effect of making the scheduling problem NP-complete; whereas if we
do not omit any constraint in the minimal set, then the scheduling problem
can be solved in polynomial time. With each of these limits, one can construct
an efficient scheduling algorithm that achieves an optimal level of concurrency
in polynomial computat ion time according to the constraints defined in the
minimal set.

* Current address: Department of Computer Science, York University, 4700 Keele Street,
North York, Ontario, Canada M3J 1P3

122 J. Xu

1 Introduction

This paper studies the performance vs. computation time tradeoff involved in
on-line database concurrency control.

The objective of database concurrency control is to allow many users to
simultaneously read existing information in a common database, perform local
computation based on previously read information, and write new information
resulting from local computation into the database, while guaranteeing correct-
ness of the database system.

The database concurrency control problem has received considerable atten-
tion in recent years, and a great number of algorithms have been proposed
(e.g. I-1-4, 7, 10-18, 23]). A principal measure of the performance of a database
concurrency control algorithm is the amount of concurrency it achieves while
guaranteeing serializability [13, 15, 20]. Generally speaking, the higher the
amount of concurrency achieved by a concurrency control algorithm, the greater
the computation time required to achieve that amount of concurrency. In fact,
the computation time required to achieve concurrency beyond a certain limit
may become intolerably high, such that it does not pay off any more to achieve
concurrency beyond that limit. Generally, we would want to maximize concur-
rency while restricting the required computation time to be polynomial (as
opposed to exponential). Hence it is important to study the performance vs.
computation time tradeoff involved in database concurrency control.

Previous work on this subject includes [14-16]. In [15], the computational
complexity involved in database concurrency control is studied in a two step
model of transactions. In [14], the two step model of transactions in [15] is
extended to a multistep model of transactions. [16] considers the case where
multiversions of data exist in the database.

This paper presents a new model for studying the concurrency vs. computa-
tion time tradeoffs involved in on-line multiversion database concurrency con-
trol. A major difference between our model and previous models is the basic
problem that is studied. In previous models, the basic problem that is studied
is the following:

Given: a schedule s of a set of transactions representing the output of some
concurrency control algorithm; and a class C of serializable schedules.

Question: Is schedule s in class C? (The amount of concurrency achieved
is defined by the restrictions on membership in C).

In contrast the basic problem that is studied in our model is the following:

Given: (i) a current database system state which includes information such
as which transaction previously read a version from which other transaction;
which transaction has written which versions into the database; and the ordering
of versions previously written; and (ii) a set of read and write requests of request-
ing transactions. (Note that (i) and (ii) above represent the input to a concurrency
control algorithm).

Question: Does there exist a new database system state in which the requesting
transactions can be immediately put into execution (their read and write requests
satisfied, or in the case of predeclared writeset transactions, write requests are

On-line multiversion database concurrency control 123

guaranteed to be satisfied) while preserving consistency under a given set of
additional constraints? (The amount of concurrency achieved is defined by the
set of additional constraints).

In our model, whenever the existence of the new database system state can
be determined in polynomial time, a corresponding on-line polynomial time
multiversion concurrency control algorithm that actually constructs the new
database system state is shown.

In order to obtain a higher amount of concurrency, various optimizing strate-
gies have been designed for database concurrency control. Below, we briefly
introduce some of the optimizing strategies studied in this model.

In many cases, user transactions are able to specify in advance the names
of the database entities they intend to write new information into. Such transac-
tions are called predeclared writeset transactions. Previous work has shown
that it is possible to increase the performance of a database system by using
a preventive strategy to eliminate restarts of predeclared writeset transactions,
i.e.: the scheduler puts a predeclared writeset transaction into execution only
if it determines beforehand that the future write of that transaction will never
compromise correctness of the database system [4, 21].

In practice, it is often the case that more than one read or write request
may have arrived in the system within a same short period of time and it
may be either impossible (in the case of distributed systems that do not have
a global time reference) or not important to distinguish them in terms of real
arrival time. In such cases, it seems perfectly logical to allow the concurrency
control algorithm to have the freedom to schedule a whole set of read or write
requests in a logical order that optimizes performance, i.e., achieves more concur-
rency. Previously proposed algorithms for concurrency control in database sys-
tems typically schedule requesting transactions one at a time, or some times
even one step of a transaction at a time, even if a large number of transactions
have arrived in the system and are requesting execution simultaneously. In this
case, the scheduler may chose for first execution a transaction whose execution
precludes the simultaneous execution of any other transaction. In such situations,
it is possible to achieve higher performance of the database system by analyzing
the whole set of requesting transactions to chose the largest subset or simply
any large subset which can be simultaneously executed in parallel with all trans-
actions currently executing in the system [21].

The performance of a database system can also be increased if the database
system supports multiversions of data. That is, each time a user transaction
writes new information into some database entity with name x, a new version
of x is produced. If a user transaction requests to read information in the data-
base entity bearing name x, then the scheduler selects one of the existing versions
of x to be read. Since writes do not overwrite each other, and since reads
can read any existing version (additional constraints can be specified on which
version should be read), a higher level of concurrency can be achieved [-2, 16,
213.

However, in order to use any of the optimizing strategies described above,
the concurrency control algorithm must spend additional computat ion time.
In our model, we study what additional constraints we need to add in order
to restrict the computat ion time to be polynomial.

Our model is capable of handling the various optimizing concurrency control
strategies above within a unified model.

124 J. Xu

In the next section we define transactions and serial schedules. In our model
transactions consist of a read and write step. The complexity results that are
obtained in this two step model can be easily extended to a more general n-step
model of transactions, as will be discussed at the end of this paper.

In Sect. 3 we introduce the formal model for on-line multiversion concurrency
control. In our model there are two types of transactions: predeclared writeset
transactions and non-predeclared writeset transactions. Predeclared writeset
transactions declare the entities they intend to read and write at submission
time. Non-predeclared transactions declare only their read sets at submission
time; their write sets become known only at the end when they have finished
their computation.

Our paper studies the following two basic problems:

(1) Preventive scheduling of predeclared writeset transactions, so that they
never have to be restarted. That is, given the current database system state
where some transactions are currently executing and some transactions are al-
ready completed, determine if one or more predeclared writeset transactions
can start execution (i.e., perform their read steps), while guaranteeing that the
final results of their computation can always be written into the database while
preserving serializability.

(2) When one or more non-predeclared writeset transactions finish their com-
putation and announce their writesets, determine if they can write into the
database (while preserving serializability) without aborting any transactions.

It will be shown that the first problem is actually equivalent to the second
problem when the constraint DSRD introduced in Sect. 4 is imposed on the
first problem.

It is assumed that the system supports multiple versions of data. The model
contains only a minimum set of built-in constraints (precisely those necessary
to guarantee serializability). The possibility of using various optimizing strategies
(such as predeclare writesets [-4, 21], or schedule a whole set of read or write
requests simultaneously [21], or use multiversion data [-2, 16, 21], etc.) is inherent
in the formalism. In fact, denying the scheduler the possibility of using any
single optimizing strategy is formally defined to be an additional constraint.
The performance achieved by a scheduler with no additional constraints on
its input or output represents the upper bound of performance that can ever
be achieved by a scheduler when serializability is used as the correctness
criterion.

In Sect. 4, we introduce additional constraints that we have found to have
a significant effect on the computational complexity of the on-line concurrency
problem. That is, the addition or omission of any single one of these constraints,
can make an otherwise NP-complete problem polynomial time solvable, or vice-
versa.

The constraints that we study include: imposing a fixed explicit total ordering
of all existing versions for each variable name (FTWP); restricting each transac-
tion to read the "latest" available version (LTRD) or a designated version
(DSRD), or write an "up- to-date" version (UPDW) or a designated version
(DSWT); imposing an invariant ordering between existing versions and versions
to be written by predeclared writeset transactions (IVWP) for each variable
name; and, imposing an upper bound on the number of transactions being
scheduled each time (UB).

On-line multiversion database concurrency control 125

It is interesting to note that these constraints that affect computat ional com-
plexity are also constraints that may naturally arise in practical applications.

In this paper we derive "l imits" of performance achievable by polynomial
time concurrency control algorithms. Each limit is characterized by a minimal
set of constraints that allow the on-line scheduling problem to be solved in
polynomial time. If any one constraint in that minimal set is omitted, al though
it could increase the amount of concurrency, it would also have the dramatic
negative effect of making the scheduling problem NP-complete; whereas if we
do not omit any constraint in the minimal set, then the scheduling problem
can be solved in polynomial time.

We also introduce a constraint (2 V) that restricts the number of versions
for each variable name in a previous database system state. The main purpose
of this constraint is to make the NP-completeness results as strong as possible
and show that in most cases restricting the number of version values for each
variable name in the database will not help to substantially reduce the required
computat ion time (unless the number of version values is restricted to be 1).

In Sects. 5 and 6, we prove that the minimal set of restrictions {FTWP,
(LTRD or DSRD), IVWP, (UPDWor DSWT)} and the minimal set of restrictions
{FTWP, 1VWP, UB} constitute two fundamental limits of performance achiev-
able by polynomial- t ime concurrency control algorithms. With each of these
limits, one can construct an efficient scheduling algorithm that achieves an opti-
mal level of concurrency in polynomial computat ion time according to the con-
straints defined in the minimal set.

In Sect. 7 we provide a summary of the complexity results. Finally, in Sect. 8,
we discuss how existing concurrency control algorithms fit into our f ramework
and how to extend our results to an n-step model of transactions.

2 Preliminaries: Transactions and serial schedules

In order to develop our model in the following section, we first introduce some
basic definitions of transactions, schedules, serial schedules and "read f rom"
relations between transactions in a schedule.

In our model, we consider transactions that consist of two atomic steps:
a read on a set of database entities - called the "readset" of the transaction,
followed by a write on a set of database entities - the "writeset". The notat ion
adopted here is similar to that used in [15].

A database system consists of a set V of variable names and a set T =
T1, T2, ... , T, of transactions. A transaction Ti is a pair ([SRJ, [SWJ), where
SR~ is a subset of V called the readset of T~, and SW~ is a subset of V called
the writeset of T~.

The variables are abstractions of data entities, whose granularity is not
important for the present discussion. The variables can represent bits, files or
records, as long as they are individually accessible.

It is assumed that the system supports multiple versions of data [2, 16],
i.e., there may co-exist one or more values, called "versions "' for each variable
name in the database.

Each transaction T~ can be thought of as first reading a set of versions
for each variable name in its readset, then performing a possibly lengthy local
computat ion based on that set of versions. The results of the computat ion are

t26 J. Xu

finally used to produce a new set of versions for each variable name in its
writeset. The first step, i.e., the read step is denoted by R i[SRJ, while the last
step, i.e., the write step is denoted by W~ [SW/].

A schedule of a set of transactions T = {T1, T2, ..., T,}: T1 = ([SR1], [SW1]),
T2=([-SR2] , [SW2]) , . . . , T,=([SR,], [SW~]) is a permutation of the set S , =
{R1 [SRI], W1 [SWL] R, [SR,], VV, [SW,]}, such that for every i: R~ [SR~]
precedes W/[SW~]. We abbreviate R~[SRI] as Ri and Wi[SWi] as W i whenever
we need not specify SR~ and SW~. Associated with a schedule we have a one
to one function ~z:S,~{1,2, ..., 2n}, such that for all i, j, e,~S,, ej~S,, if ei
precedes c 9 in the permutation, then ~z(ei)< ~z(~i).

Below we define a serial schedule, which models the situation where all
transactions are executed sequentially.

A schedule of a set of transactions T={Ta , ..., T,} is a serial schedule
of T i f f rc(Wi)=Tr(Ri)+l for all 1,2, . . . ,n , i.e. a read R~ always immediately
precedes a write W~ of the same transaction. We abbreviate the serial
schedule R h [SRh] W h [SWh] Ri2 [SRJ Wi~ [S W J ... R,, [SRJ Wi,~ [S W j as
(T/1 Ti2 ... T~,) whenever we need not specify the readset and writeset of each
transaction in the serial schedule. We associate with a serial schedule a one
to one function /~: T ~ { 1 , 2 , ..., n}, such that for all i, j, T/~T, TjsT, if ~(W/)
< rc (W j) and ~r (R i)< ~r (R j) in the serial schedule, then #(T/)</~ (T j).

We say Rj reads x from l/Vii in schedule s if x~(SWic~SRj) and ~(W//) <~(Rj)
in s and there exists no ~ such that xeSWk and re(W0 < rC(Wk) < rc(Rj) in s.

In the following sections, we shall also say 77. / reads x from T~ in schedule
s when Rj reads x from W/in s.

Example 2.I
s~ =R1 Ix] W 1 [y, z, b] Rz [-z] W2 [y] R3 [-y, b] W3 [Y]

s~ = R~ [y, b] Vr [y] R2 [z] W~ [y] R~ Ix] W~ [y, z, bl

s~ and s a are both serial schedules of the set of transactions T={T~, T2, T3}
where T l=([x] , [y,z,b-]), T2=([z], [-y]) and Ta=([y,b], [y]). In serial schedule
sl of T :R 2 reads z from I4~,R 3 reads b from Wa, R 3 reads y from W2. In
serial schedule s2 of T: no transaction reads from any other transaction. []

3 The formal model

In a database system, the task of a scheduler is to maintain consistency of
the database system while allowing as many user transactions as possible to
simultaneously access the database system.

Serializability [3, 6, 15] is used as the consistency criterion here. If an inter-
leaved execution of a set of transactions produces the same overall effect as
a serial execution of the same set of transactions, then the execution is called
serializable. (We shall call the order of the transactions in such a serial execution,
which is not necessarily identical to the actual time order in which the reads
and writes of those transactions are processed, a "virtual order".)

We model this as the following problem: Given a database system state
consisting of four elements: an executing set of predeclared writeset transactions,
an executing set of non-predeclared writeset transactions, a terminated set of
transactions, and a serial schedule defining the virtual order of all executing

On-line multiversion database concurrency control 127

and terminated transactions; construct a new database system state, such that
requesting transactions can be put into execution in parallel with all transactions
already in execution, or transactions that have finished their computat ion can
write new versions of data into the database, while the reads and writes of
all transactions in the new virtual order are consistent with the previous virtual
order.

To begin, we start with a most unrestrictive model, where the only correctness
criterion is serializability.

Definition 3.1 A database system state is a quadruple Q = (PE, NE, TT, s) where
(a) PE is called the set of predeclared writeset (P-)executing transactions;
(b) NE is called the set of nonpredeclared writeset (N-)executing transactions;
(c) TTis called the set of terminated transactions;
(d) s is a serial schedule of T = (P E u N E u TT) called the virtual sched-

ule. []

A P-executing transaction is a transaction which has been put into execution
by reading a set of existing versions for each variable name in its readset, but
has not yet completed its local computat ion, thus has not yet made a set of
versions for each variable name in its writeset available for reading by other
transactions. An N-executing transaction is a transaction which has been put
into execution by reading a set of existing versions for each variable name
in its readset, but has not yet completed its local computation, and its writeset
has not yet been defined (its writeset is assumed to be empty). A terminated
transaction is a transaction which has completed its local computat ion and
has written a set of versions for each variable name in its writeset into the
database. The set of versions for each variable name in the writeset of a terminat-
ed transaction can be read by other transactions. The virtual schedule is a serial
schedule of all P-executing transactions, N-executing transactions and terminat-
ed transactions. The scheduler guarantees that the reads and writes of all P-
executing transactions, N-executing transactions and terminated transactions
will have the same effect as if they were executed sequentially in the same order
as the virtual schedule. A virtual schedule completely defines which transaction
has read the versions of which variable names f rom the writeset of which transac-
tion so far up to the present system state.

Definition 3.2 Given a set PR of predeclared writeset transactions that are
requesting to be put into execution (PR is called a P-requesting set), and a
database system state Q=(PE, NE, TT, s), a new database system state QI=
(PE1, NE1, TT1, sl) is a valid P-execution of Q and PR, whenever

(a) sl is a serial schedule; and
(b) N E I = N E and T T I = T T and for some nonnull subset PR~_PR:PEI

= (PE u PRs); and
(c) (consistency condition:) for all i, j, x, T ie (PEwNEwTT) ,T j~(PEu

NEwTT) , x~V: Tj reads x from T/in s iff Tj reads x from T/in sl (i.e., every
read from relation in s is preserved in sl); and

(d) (existence condition:) for all i, j, x, Ti~(PEI ~ NE1u TT1) , Tj~(PE1u
NEI~TT1), x~V: if Tj reads x from Ti in sl then Ti~TT 1 (i.e., Tj can read
from T i only if T/has terminated). []

Definition 3.2 defines the conditions under which a set of predeclared writeset
requesting transactions can be put into execution. P-requesting transactions

128 J. X u

are scheduled as follows: the concurrency control algorithm or scheduler must
find a new virtual schedule s t which includes both the P-requesting transactions
and all the transactions in the previous virtual schedule s, such that the "con-
sistency condit ion" is satisfied, i.e.: all the read from relations in s are preserved
in st . In addition, the existence condition must be satisfied, i.e.: no transaction
can read from a predeclared writeset transaction before it has terminated and
has produced a version value for each variable name in its writeset. If a new
virtual schedule sl can be found that satisfies these conditions, then a new
valid database system state Q1 can be constructed, where each P-requesting
transaction is put into execution by reading the version values specified by
the virtual schedule sl and by transferring that transaction from the requesting
set PR to the executing set PE. The "existence condit ion" states that no transac-
tion in the virtual order should read a version which has not yet been produced.
Note that for the same P-executing set, N-executing set and terminated set
of transactions, more than one virtual schedule can be constructed by rearrang-
ing the virtual schedule while satisfying all the consistency and existence condi-
tions. In our model we do not allow transactions to read version values written
by "uncommi t t ed" transactions, i.e., transactions that have not terminated. This
is mainly to prevent "cascading aborts", i.e., situations where in the event that
some transaction has to be aborted, all transactions that read from that transac-
tion must also be aborted.

Definition 3.3 Given a set NR of non-predeclared writeset transactions that
are requesting to be put into execution (NR is called a N-requesting set), and
a database system state Q = (P E , NE, TT, s), a new database system state
Q1 = (PE1, NE1, TT1, sa) is a valid N-execution of Q and NR, whenever

(a) sl is a serial schedule; and
(b) PE=PE and T T I = T T and for some nonnull subset N R ~ N R : N E a

= (NE u NR~); and
(c) (consistency condition:) for all i, j, x, T i e (PEuNE~TT) , Tj~(PEw

NEwTT) , x~V: Tj reads x from T~ in s iff Tj reads x from T i in Sl (i.e.,
every read from relation in s is preserved in sl); and

(d) (existence condition:) for all i, j, x, Ti~(PEl w NEl u TT~), Tie
(P E l w N E l u T T O , xeV: if Tj reads x from T/ in s 1 then T~TT1 (i.e., Tj can
read from T i only if Ti has terminated). []

Definition 3.4 Let PE c ~_PE be a nonnull subset of P-executing transactions
that have completed their local computat ion and are requesting to write a new
version for each variable name in their respective writeset into the database.
(PEc is called a P-commit set). A new database system state Q1 =(PE~, NE 1,
TT1, sO is a valid P-termination of a current database system state Q=(PE,
NE, TT, s) and PEc, whenever

(a) Sl is a serial schedule; and
(b) NE~ = NE and TTt = (TTu PEc) and PEI = (PE-- PEc) and
(c) (consistency condition:) for all i, j, x, T i~ (PEuNEuTT) , Tje(PEu

N E u T T) , x~V: Tj reads x from T i in s iff Tj reads x from T i in sl (i.e., every
read from relation in s is preserved in sO. []

Since a preventive strategy was used for putting P-requesting transactions
into execution, a set of versions produced by the local computat ion of a P-
commit transaction for each variable name in its writeset can always be immedi-

On-line multiversion database concurrency control 129

ately written into the database while preserving consistency of the database
system.

Note that whenever a transaction terminates, it creates a new version for
each variable name in its writeset. Thus, more than one version may coexist
for each variable name in the current database system state, including the initial
version for each variable name in the initial database system state.

Definition 3.5 Let NE~. be a set of nonpredeclared writeset transactions where
every transaction T/~NE'c has a writeset defined and corresponds to a N-execut-
ing transaction T~eNE that has completed its local computat ion and is request-
ing that the set of versions in the writeset SW~' produced by its local computat ion
be written into the database. For corresponding transactions T~ and T~': SR~
= SR' i. (NE'c is called a N-commit set). Let NE~ ~_ NE be the set of N-executing
transactions that correspond to the set NE' c. A new database system state
Q~ = (P E t, NE1, TT1, sl) is a valid N-termination of a current database system
state Q---(PE, NE, TT, s) and NE" whenever

(a) sl is a serial schedule; and
(b) PE 1 = PE and
(c) for some nonnull subset NE'~ ~_ NE'~ and NEc~ ~_ NE~ where NE~s is the

set of N-executing transactions that correspond to the set NE'cs: TTI=
(T T u NE'~,) and NE~-- (NE-NEc); and for all i,j, x, T~' ~(TT~- TT) and T ~ T T
and T~eNEc~, xeV: Ti' reads x from Tj in sl iff T/ reads x from Tj in s (i.e.,
every terminated nonpredeclared writeset transaction T/ must read the same
set of versions in s~ that its corresponding N-executing transaction T~ read
in s); and

(d) for all i, j, x, Ti~(PE1 w NE1 ~ TT), Tj~(PE 1 ~ NE 1 u TT), x~ V: Ti reads
x from Tj in s a iff Ti reads x from Tj in s (i.e., every other transaction must
read the same set of versions in sa that was read in s). []

In Definition 3.5, it is possible that some transactions (in the subset NE~
--NEcs) may have to be aborted if it is determined that they cannot write
into the database without compromising consistency.

Definition 3.6 A database system state Q =(PE, NE, TT, s) is a valid database
system state iff:

(a) PE = 0 and NE = 0 and TT = 0 and s is empty (called the initial database
system state); or,

(b) Q is a valid P-execution of a valid database system state and a P-request-
ing set of transactions; or,

(c) Q is a valid N-execution of a valid database system state and a N-request-
ing set of transactions; or,

(d) Q is a valid P-termination of a valid database system state and a P-
commit set of transactions; or,

(e) Q is a valid N-terminat ion of a valid database system state and a N-
commit set of transactions. []

Definition 3.6 Precisely defines which database system states are considered
to be valid, i.e., preserve consistency. Here it is assumed that all valid system
states are derived from the initial state, i.e., a state in which no transaction
exists within the system. A valid system state corresponds to a state in which
for all transactions currently executing in parallel or terminated in the database

130 J. Xu

system, their reads and writes on the database have the same overall effect as
if they were executed sequentially in the same order as the serial schedule s.

Definition 3.7 Given a P-requesting set PR and a current database system state
Q=(PE, NE, TT, s), we call the valid database system state Q I =
(PE,, NE~, TT1, sl) a maximum concurrency P-execution of Q and PR iff: Q1
is a valid P-execution of Q and PR; and no other database system state
Q2=(PE2, NE2, TT2, s2) exists such that Q2 is also a valid P-execution of Q
and PR; and [PEI[< [PE 2[. []

Definition 3.8 Given a current database system state Q = (PE, NE, TT, s) and
a N-commit set NE'c of nonpredeclared writeset transactions, we call the valid
database system state Q1 = (PEt, NE, , TT 1 , sO a maximum concurrency N-termi-
nation of Q and NE'c iff: Q1 is a valid N-termination of Q and NE'c; and no
other database system state Q2 =(PE2, NE2, TT2, s2) exists such that Q2 is also
a valid N-termination of (2 and NE'c ; and [TTI[<[TT2[. []

Note that in Definition 3.5 and 3.8 above we did not allow P-executing
transactions to be aborted in favor of terminating non-predeclared writeset trans-
actions. In other words we have guaranteed that once a predeclared writeset
transaction is put into execution, it will never be aborted. (If a system designer
wishes to change that policy, then the requirement for maximum concurrency
in Definition 3.8 could be changed to [TT~ w PEI[< [TT2 w PE2] besides changing
the condition PE = PE, in Definition 3.5.)

In order to have an intuitive notion of how a scheduler would work according
to such a model, let us first examine the following example:

Figure 3.1
PRi: P-requesting set of transactions.
NRi: N-requesting set of transactions.
PEck: P-commit set of transactions.
NEc'~: N-commit set of transactions.
Qi : database system state.
PE~ : P-executing set of transactions.
NEi: N-executing set of transactions.
TT~ : terminated set of transactions.
s~: virtual ordering.

Qo : PEo=O NEo=O TTo=O
So=(>.
(The initial database system state).

PR~ = {T~ =([b] , [a])},

Qa : PEI={T,} NEI=O TTI=O
sx = (T 1) = R 1 I-b] W1 [a].

(T1 is put into execution in Q1. Q1 is a valid execution of PR~ and Qo by
Definition 3.2.)

PR2 = {Ta =([c, a], [d, a])};
Q2 : PE2-- {T~, T2} NE2 = 0 TT2 = 0
s2 = (T2 T1 > = R2 [c, a] W2 [d, a] R1 [b] W1 [a].

On-line multiversion database concurrency control 131

(T z is put into execution in (22" (22 is a valid execution of PR 2 and Q1 by
Definition 3.2.)

PR 3 = {T 3 = ([-a, d , [f , g, c]), T4 = (If, a], [b, c]), Ts =([a, g], [e, a])};
(22: PE2={T1, T2} N E 2 = 0 TT2=0
52 = <T2 T1) = R2 [c, a] W 2 [d, a] R1 [b] W1 [a].

(There does not exist any valid P-execution of PR 3 and (22 in which any transac-
tion in PR3 can be put in execution.)

PR3={T3, T4, Ts} PECl={T1};
(23: PE3={T2} NE3=O TT3={TI}
S 3 ~ S 2 �9

(7"1 is terminated in Q3. (23 is a valid P-termination of PEcl and Q2 by Definition
3.4.)

PR3={ T3, T,,, Ts};
Q4: PE4={T2, T4, Ts} NE4=O TT4={T1}
54 = (T2 T1 T4 Ts)
= e 2 [-c, a] W 2 [d, a] e I [b] W 1 [-a] e 4 [f~ a] W 4 Eb, c] e 5 [a, g] W 5 I-e, a].

(T 4, T 5 are put into execution in (24. Q4 is a valid P-execution of PR 3 and
(23 by Definition 3.2.)

PR4 = { r3} NRI = { T6 = ([a] , []), T7 = ([a, b] , [])},
Qs: PEs={T2, T4, Ts} NEs={T6, TT) TTs={T1}
s5 = (r2 T1 To T7 r~ rs)
= R2 [c, a] W2 [d, a] R1 [b] W1 [a]R 6 [a] W6 [7 R7 [a, bJ W7 D R4 I f , a]
W4 [b, c] R5 [a, g] W5 [e, a].

(T 6 and T v are put into execution in (25. Q5 is a valid N-execution of NR 1
and Q4 by Definition 3.3.)

PR 4 = {T3} NEc'~ = {T; = ([a], [f]) , T~ = ([a, b], I f , g])};
(26: PE6={Tz, T4, T5} N E 6 = 0 TT6={T1,TI}
s6 = (T2 T 1 T~ T~ Ts)= R2[c, a] W2[d, a] Rl [b] Wl[a] R4
I f , a] W4 [b, c] R~ [a]
W~ I f] R5 [a, g] W5 [e, a].

(T~ is terminated but T 7 is aborted in (26- (26 is a valid N-termination of NEcl
and (25 by Definition 3.5.)

Example 3.1 Figure 3.1 demonstrates how a database scheduler may transform
one system state to another system state while preserving serializability of all
transactions currently executing in parallel.

Below, some explanation may be useful:
In the transformation from database system state (21 to state (22, the sche-

duler is able to put transaction T 2 into execution in parallel with T1, because
there exists a virtual ordering identical to the serial schedule s2, where a set
of versions corresponding to the variable names in T2's readset are available,
and T1 reads the same versions as in the previous virtual ordering sl. Note
that T2 cannot be executed according to the virtual ordering s = (T 1 T 2), because
in that virtual ordering T2 is supposed to read a version of the variable name

132 J. Xu

a in Tl's writeset, which has not yet been produced, since T1 has not yet ter-
minated.

With database system state Q2, no transaction in the P-requesting set P R 3
can be executed, because no transaction in PR3 can be inserted into the serial
schedule without creating a virtual ordering in which at least one transaction
is supposed to read a version which has not yet been produced.

In the transformation from database system state Q3 to state Q4, since T~
has terminated previously, each single transaction in the P-requesting set P R 3
can be put in execution by reading the version of a produced by T~. But because
T 4 and T 5 is the largest subset of all P-requesting transactions in P R 3 which
can be simultaneously put into execution in parallel with T2, we chose T 4 and
T 5 to be executed first. On the contrary, if we chose T 3 for execution first,
then both T4 and T 5 would be blocked from execution, since no virtual ordering
can be found which allows T 4 and T5 to be executed in parallel with T 3.

In the transformation from database system state Qs to Q6, two N-executing
transactions T 6 and T7 have completed their local computation. Their corre-
sponding N-commit transactions T; and T4 each has a writeset defined. Among
the two N-commit transactions T~ and T~ in the N-commit set NEc'~, only
T; can be committed, without aborting other transactions; whereas if T~ is
committed, then two P-executing transactions T4 and T 5 must be aborted. This
is because T4 cannot be positioned after T4, nor positioned before T4 in any
virtual ordering, otherwise either T~ would read b from T 4, or T 4 would read
f from T4. But T 7 - the N-completed transaction corresponding to TT, did
not read b from T4, neither did T 4 read f from T4 in the previous virtual
schedule ss. Similarly, T4 cannot be positioned after Ts, nor positioned before
Ts, otherwise T~ would read a from Ts, or T5 would read g from T~, which
both violates the conditions in Definition 3.5. Thus, in order to minimize the
total number of aborted transactions, we chose to abort and restart the single
N-completed transaction T 7. Note that T~ must be positioned after T e and
before T 5 in the new virtual ordering s6, otherwise either T 4 would read f
from T~, or T~ would read a from Ts, which also violates the conditions in
Definition 3.5. And we can continue like this constructing successive new valid
database system states.

Note that in this example all valid P-executions are maximum concurrency
P-executions of the previous state, and the valid N-termination Q6 is a maximum
concurrency N-termination of NEc'~ and Qs- [~

Two problems, modeled as state transformations above, involve major per-
formance vs. computation time tradeoffs. The first is the problem of constructing
valid P-executions of a P-requesting set and a valid database system state, which
formalizes the problem of determining whether a given set of predeclared writeset
transactions can be put into execution while guaranteeing that their future writes
on the database will never compromise correctness of the database system. That
is, the predeclared writeset transactions are guaranteed to be "commit ted" (ter-
minated) without aborting any of the executing transactions. The second is
the problem of constructing valid N-terminations of a N-commit set and a
given valid database system state, which formalizes the problem of determining
whether the writesets of a given set of non-predeclared writeset transactions
can be written into the database while preserving correctness of the database
system.

On-line multiversion database concurrency control 133

As will be shown in the next section, the second problem is equivalent to
the first problem if a particular additional constraint called the "designated
read (DSRD)" constraint is imposed on the first problem. For this reason, we
need only study in detail the performance vs. computat ion time tradeoff involved
in solving the first problem. That is, all the results that we derive for the problem
of constructing valid P-executions of a P-requesting set and a valid database
system state under the DSRD constraint can be directly applied to the problem
of constructing valid N-terminations of a N-commit set and a valid database
system state. Since the problem of constructing a valid N-execution or a valid
P-termination of a given valid database system state can be trivially solved
in polynomial time, we do not address these problems any further.

4 Additional constraints

Since the general problem of constructing valid P-executions or valid N-termina-
tions of a given valid database system state when no additional constraints
are imposed is NP-complete (even under a combination of various additional
constraints, the problem is still NP-complete, as we will show in the following
sections), even for the sole reason of reducing computational complexity, it would
prove beneficial to investigate possible additional constraints to obtain subsets
of valid P-executions or N-terminations of a valid database system state and
a P-requesting set or N-commit set in polynomial time.

The constraints that we introduce below, are constraints that we have found
to have a significant effect on the computational complexity of the on-line con-
currency problem. That is, the addition or omission of any single one of these
constraints, can make an otherwise NP-complete problem polynomial time solv-
able, or vice-versa. At the same time, it is interesting to note that these constraints
that affect computational complexity are also constraints that may naturally
arise in practical applications.

Given a P-requesting set PR (or a N-commit set NEc) of transactions and
a valid database system state Q=(PE, NE, TT, s), we may impose that one
or more of the constraints introduced below are to be satisfied by a valid P-
execution (or valid N-termination) QI=(PEt,NE1, TT1,s1) of PR (or NEc)
and Q.

Conventional concurrency control schemes impose a fixed explicit total
ordering of all existing versions of each data variable. This implies a fixed order-
ing of all terminated transactions which have produced different versions of
the same variable. If we adopt this restriction, then we have the following con-
straint:

1. Fixed terminated write position (F TWP) constraint: for all i, j, if (SIVii n SWj) =~ 0
and Ti~TT and Tj~TT then: p(T/)<#(Tj) in s iff #I(T/)<#1(T~) in sl (i.e., if
two transactions have terminated and their writesets intersect, then their relative
ordering in the virtual schedule s of the previous database system state Q must
be kept invariant in the virtual schedule s 1 of the new database system state
Q1).

In conventional concurrency control schemes, the constraint below is also
imposed:

134 J. Xu

2. Invariant write position (IVWP) constraint: for all i, j, TIe(PEw TT), Tje
(PEu TT), if (SW~caSWj)#~b and ((T~TT and Tj~PE) or (TjeTT and T~PE))
then #(Ti) <#(T~) in s iff #a(T~)<#I(Tj) in Sl (i.e., if the writesets of two transac-
tions intersect, and one is a terminated transaction and the other is a P-executing
transaction, then their relative ordering in the virtual schedule s of the previous
database system state Q must be kept invariant in the virtual schedule Sl of
the new database system state Q0.

In Definitions 3.2 and 3.3, when a P-requesting or an N-requesting transac-
tion is put into execution, it may read any one out of existing versions for
each variable name in its readset. There may well exist applications in which
reading an "o ld" version of a data item is not acceptable. In such cases, we
have the following constraint:

3. Latest read version (LTRD) constraint: for all i, j, x, T~e(PE1--PE) (or
Tje(NE1-NE)), Ti~TT, xeV: if T i reads x from T~ in sl , then there exists
no k, Tk~ TT, such that xeSWk and/~a (Ti)< ktl (Tk) in sl (i.e., when a predeclared
writeset transaction is put into execution in Q1, for each variable name in its
readset, it must read the "latest" available version in the virtual ordering).

The following constraint states that when a P-requesting transaction is put
into execution, for each variable name in its writeset, it must finally write a
version which is ordered after all currently existing versions of that variable
name. The same constraint can be applied to N-commit transactions.

4. Up to date write (UPDW) constraint: for all j, x, TjE(PE 1-PE) (or Tje(TT 1
--TT) if Q1 is a valid N-termination), xeV: if x~SWj, then there exists no
k, such that Tke T T a n d xeSFVk and/z 1 (T~) </z~ (Tk) in sl (i.e., for every predeclared
writeset transaction that is put into execution in Q 1 (or for every non-predeclared
writeset transaction that is currently being terminated in Q0, for each variable
name in its writeset, if any terminated transaction produced a version for that
variable name then the predeclared writeset transaction (or non-predeclared
writeset transaction currently being terminated) must be positioned after (not
necessarily immediately after) that terminated transaction in the virtual schedule
Sl).

In the LTRD constraint, a P-requesting or N-requesting transaction is re-
stricted to read the "latest" available version for each variable name in its
readset when put into execution. In the following constraint, instead of restricting
a P-requesting or N-requesting transaction to read the "latest" available version,
we can restrict it to read a pre-designated version for each variable name in
its readset.

5. Designated read (DSRD) constraint: for all i, j, x, such that T~e(PE 1-PE)
(or Tie(NE1--NE)) and ((dr(i,x)=Tj and Tj~TT and xe(Siic~SWj)) or
(dr(i,x)=vo)): if dr(i,x)=Tj then Ti reads x from Tj in s l ; else if dr(i,x)=Vo
then for all v, T~ TT: -7 (T~ reads x from Tv in sl) (i.e., a P-requesting transaction
is restricted to read a designated version for each variable name in its readset
when put into execution. "dr(i, x)" designates the terminated transaction from
which P-requesting transaction T/must read a version of x. "dr(i, x)= v0" desig-
nates that Ti must read the initial version of x).

On-line multiversion database concurrency control 135

Similarly, instead of restricting a P-requesting or N-commit transaction to
be positioned after all terminated transactions which have produced a version
for any variable name in that P-requesting or N-commit transaction's writeset,
we can restrict a P-requesting or N-commit transaction to be positioned after
a pre-designated terminated transaction which has produced a version for a
variable name in that P-requesting or N-commit transaction's writeset.

6. Designated write (DSWT) constraint: for all i, j, x, such that T~(PE1-PE)
(or Tie(TT~ - TT) in the case of a valid N-termination) and ((dw(i, x) = T~ and
TjeTT and xe(SW~c~SVV~)) or (dw(i, x)=vo)): if dw(i, x) = Tj then: #1 (Tj) < #1(T~)
in sl and there exists no k, such that TkeTT and xe(SWjc~SI/VknSWi) and
#I(Tj)<#a(Tk)<pl(Ti) in s l ; else if dw(i,x)=vo then: there exists no k, such
that TkeTT and xe(SWknSWi) and #l(Tk)<pl(Ti) in s 1 (i.e., a P-requesting
or N-commit transaction is restricted to be positioned after a designated termin-
ated transaction which has produced a version for a variable name in that
P-requesting or N-commit transaction's writeset. "dw(i, x)" designates the ter-
minated transaction that has produced a version for the variable name x in
T[s writeset and that should be positioned before T i. "dw(i, x) = v 0 " designates
that T~ must be positioned before all terminated transactions which have pro-
duced a version for the variable name x in Tz's writeset).

There may also exist situations where one would prefer to limit the number
of transactions being scheduled each time. This leads to the following constraint:

7. Upper bound (UB) constraint: [PR[<C or]NE'~] <C (i.e., the number of P-
requesting transactions or N-commit transactions scheduled each time cannot
exceed a constant C).

In order to examine the effect of limiting the number of versions that exists
for each variable name in the database system, we specify the following con-
straint:

8. Two version data (2 V) constraint: for all x, i, if xESWi and Ti~ TT then there
exists no k, such that Tk~TT and x~(SVVkc~SW~) and k+i (i.e., there exists no
more than two versions - the initial version plus another version created by
a terminated transaction for each variable name in the datebase).

We need not explicitly define a "one version data (1 V) constraint here,
since if only one version exists for each variable name in the database, then
the problem of constructing valid P-executions or valid N-terminat ions of a
given valid database system state is trivially polynomial time solvable.

In this paper only NP-completeness theorems use the 2-version (2 V) con-
straint. The 2 V constraint is only defined on the "previous" database system
state Q in those theorems. The main purpose of the 2 V constraint is to make
the NP-completeness results as strong as possible. The 2 V constraint in Theo-
rems 5.1-5.6 in the next section essentially states that "even if only two version
values for each variable name exist in the previous database system state
(under the other constra ints) . . . , the problem is still NP-comple te ' . This tells
us that if only those other constraints are enforced, then restricting the number
of version values for each variable name in the database will not help to substan-
tially reduce the required computat ion time (unless the number of version values
is restricted to be 1). None of the polynomial time result theorems in this paper
use any version constraints. The on-line polynomial time multiversion concur-

136 J. Xu

rency control algorithms presented in this paper do not use or depend on the
definition of the n-version constraint.

In the definition of the UPDWand DSWTconstraints above, for P-requesting
transactions, the UPDW or DSWT constraint is checked at the time when the
transaction is being scheduled for execution. If one also wishes to enforce the
UPDW or DSWT constraint when a P-executing transaction terminates, then
one may have to abort the P-executing transaction if the constraint cannot
be satisfied at that time.

Note that implementation details of the on-line multiversion concurrency
control algorithms are not explicitly addressed in this paper. For example, in
an actual implementation, instead of allowing the number of versions for each
variable name to grow forever, one would put a limit on the total number
of versions for each variable name that is allowed to exist in the database.
One could achieve this by "purging" old versions (or "terminated transactions")
from the system when the total number of versions exceeds the specified limit.
Thus the so-called "initial version" (which is really the "oldest version" among
all versions that are still kept in the database) and other existing versions for
each variable name will be continuously "upda ted" throughout the life time
of the database. By doing so, we could easily solve the problem of the scheduler
getting slower as the number of versions increase over time. In such an implemen-
tation, the 2 V constraint would mean that there exists no more than the latest
two versions for each variable name in the database. Note that in the model,
the set of "terminated transactions" defines which version values currently exist
in the database, which transaction wrote those version values, while the ordering
of the existing versions is defined by the ordering of the terminated transactions
which wrote each version in the virtual schedule.

In an actual implementation, it is also possible to allow the constraints
above to be applied differently for different transactions. The complexity results
in the next three sections are still applicable in such cases. That is, if any subset
of the transactions have the same or fewer constraints compared with each
set of constraints defined in Theorems 5.1-5.6 in the next section, then the sche-
duling problem would still be NP-complete.

As we mentioned in the previous section, the problem of constructing valid
N-terminations of a N-commit set and a valid database system state is equivalent
to the problem of constructing valid P-executions of a P-requesting set and
a valid database system state under the DSRD constraint. To see this, note
that given a valid N-commit set NE'c and a valid database system state Q--(PE,
NE, TT, s), in any valid N-termination QI=(PEt, NE1, TTt, sl) of NE'c and
Q, every nonpredeclared writeset transaction T/ in NE'c which is terminated
in Qt must read the same set of versions in Sl that its corresponding N-executing
transaction T~ read in s. We can construct an equivalent problem of finding
valid P-executions of a P-requesting set PR* and a valid database system state
Q* = (PE*, NE*, TT*, s*) under the DSRD constraint as follows: let PR* = NE'~ ;
let P E * = P E and TT*=TT; let NE*=(NE--{T~[T/eNE'~}); let the ordering
between every pair of transactions Ti and Tj in s* be the same as in s, i.e.:
for all i, j, T~, T je(PE*uNE*uTT*): #*(T~)<#*(Tj) in s* iff #(T~)<#(Tj) in
s. We specify the DSRD constraint as follows: for every P-requesting transaction
T/ in PR*, let dr(i, x)= Tj iff T,. reads x from Tj in s. It is straightforward to
verify that there exists a valid N-termination QI=(PE1 , NE t, TTt, sl) of Q
and NE'~ in which the set NE'c of N-commit transactions is terminated in Q1,

On-line multiversion database concurrency control 137

that is, TTI = (T T u NE'c) if and only if there exists a valid P-execution Ql* - (PE1 , - *
NE~, TT[~, s*) of Q* and PR* in which the set PR* =NE'~ of P-requesting
transactions is put into execution in Q*, i.e.: PE* = (PE* u PR*) under the speci-
fied DSRD constraint.

If we are given any problem of terminating non-predeclared transactions
under a set of additional constraints and we have an algorithm for solving
the problem of scheduling predeclared writeset transactions for execution under
the same set of additional constraints plus the DSRD constraint, then we can
always solve the former problem by first transforming it to an equivalent latter
problem by constructing the set PR*, the database system state Q * = (PE*, NE*,
TT*, s*) and the DSRD constraints as defined above (if any additional con-
straints are specified in the former problem then the same set of additional
constraints plus the DSRD constraint defined above should be specified for
the equivalent latter problem), then use the algorithm to obtain a valid P-
execution * - * Qt - (PE1 , NE*, TT(~, s~) of Q* and PR* in which the subset PR*
=NE'c of P-requesting transactions is put into execution in Q*, i.e.: PE~'
= (P E * ~ P R *) under the constructed DSRD constraint. We can then obtain
the valid N-termination Q~ =(PE1, NE1, TT1, sa) of Q and NE; in which the
set NE' c of N-commit transactions is terminated in Q1, that is, NE'~_ TTI, as
follows: let PE~ =PE; let NEI=(NE--{T~[TjeNE;}), let TT~=(TTwNE'~); let
the ordering between every pair of transactions T~ and Tj in s~ be the same
as in s*.

5 Scheduling predeclared writeset transactions for execution

In this and the following section, we shall study the computational complexity
of the problem of determining whether a set of predeclared writeset transactions
can be put into execution while guaranteeing that their future writes will never
compromise correctness of the database system under any combination of the
constraints FTWP, LTRD or DSRD, IVWP, UPDW or DSWT, IV, 2V and
UB.

For each scheduling problem that is proved to be NP-complete below, the
scheduling problem contains a "maximal" set of constraints. That is, if one
more additional constraint is imposed, then the problem would become polyno-
mial time solvable. Whereas for each scheduling problem that is proved to
be polynomial time solvable below, the scheduling problem contains a "mini-
real" set of restrictions. That is, if one restriction is removed from that set,
then the scheduling problem would become NP-complete. We construct an effi-
cient scheduling algorithm for each problem that can be solved in polynomial
time.

Theorem 5.1 The following problem (LI) is NP-complete:
Given a P-requesting set PR and a valid database system state Q=(PE, NE,
TT, s) that satisfies the 2 V constraint, does there exist a valid database system
state QI=(PE1 , NE1, TT1, sl) such that Q1 is a valid P-execution of PR and
Q under the FTWP, IVWP and LTRD constraints and PE 1 =(PR w PE)? []

Theorem 5.2 The following problem (UI) is NP-complete: Given a P-requesting
set PR and a valid database system state Q = (PE, NE, TT, s) that satisfies the

138 J. Xu

2 V constraint, does there exist a valid database system state Q~I =(PEx, NEa,
TT1, sl) such that QI is a valid P-execution of PR and Q under the FTWP,
I VWP and UPD W constraints and PE1 - (PR u PE) ? []

(See the Appendix for the proofs of Theorems 5.1 and 5.2.)

Theorem 5.3 The following problem (LU1) is NP-complete:
Given a P-requesting set P R = {T~} and a valid database system state Q=(PE,
NE, TT, s) that satisfies the 2 V constraint, does there exist a valid database
system state Q I = (P E I , NE1, TT1, sl) such that Qa is a valid P-execution of
PR and Q~ under the FTWP, LTRD and U P D W constraints and PEa=
({~} ~ P E) ? []

(See the Appendix for the proof of Theorem 5.3.)

Theorem 5.4 The following problem is NP-complete :
Given a P-requesting set PR and a valid database system state Q=(PE, NE,
TT, s) that satisfies the 2 V constraint, does there exist a valid database system
state Qs=(PE1, NE1, T T z, sa) such that Q1 is a valid P-execution of PR and
Q under the FTWP, I V W P and DSRD constraints and PE a = (PR u PE)? []

Theorem 5.5 The following problem is NP-complete :
Given a P-requesting set PR and a valid database system state Q=(PE, NE,
TT, s) that satisfies the 2 V constraint, does there exist a valid database system
state QI=(PE1, NE 1, TT1, sl) such that Qa is a valid P-execution of PR and
Q under the FTWP, I V W P and D S W T constraints and PE 1 = (PR ~ PE)? []

Theorem 5.6 The following problem is NP-complete:
Given a P-requesting set PR={Tr} and a valid database system state Q=(PE,
NE, TT, s) that satisfies the 2 V constraint, does there exist a valid database
system state Q1 =(PE1, NE~, TTI, Sx) such that Q1 is a valid P-execution of
PR and Q under the FTWP, (L TRD or DSRD) and (UPD W or DSWT) constraints
and PE I=({7 ; }~PE)? []

The proof of Theorems 5.4-5.6 immediately follows from Theorems 5.1-5.3
and the fact that the constraint LTRD is a special case of the constraint DSRD,
and the constraint U P D W is a special case of the constraint DSWT. One can
replace the LTRD constraint by the DSRD constraint as follows: for all i, x,
such that T~ePR and xeSR~, let dr(i, x) designate the terminated transaction
which is rightmost in the virtual schedule s and contains x in its writeset. If
no terminated transaction exists in T T which contains x in its writeset, then
let dr(i, x)=vo. Similarly, one can replace the U P D W constraint by the D S W T
constraint as follows: for all i, x, such that T ~ P R and x~SW~, let dw(i,x)
designate the terminated transaction which is rightmost in the virtual schedule
s and contains x in its writeset. If no terminated transaction exists in T T which
contains x in its writeset, then let dw(i, x) = v o.

If we combine the constraints FTWP, IVWP, (LTRD or DSRD), (U P D W
or DSWT) together, the computational complexity of our problem can be sub-
stantially reduced.

Definition 5.1 We call a directed graph G = (N, A) the"IDRWdependency graph "
of a valid database system state Q=(PE, NE, TT, s) whenever in G there is
the set of nodes N = { T i [T i e (P R u P E u N E u T T) } ; and the set of arcs A =
{(Ti, Tj)c(X x X) l (i# j) and

On-line multiversion database concurrency control 139

((a) (((SWjnSRi)#O) or ((SWjnSRj)+O)) and (T~e(PE~NEwTT)) and
(Tie(PEuNEu TT)) and (#(Tj)< #(T 0 in s); or

(b) ((SWjc~SWO#O) and (Tje(PEuTT)) and (T/~(PEu TT)) and ((TjETT)
or (TieTT)) and (#(Tj) < #(T~) in s); or

(c) ((SWjnSRi)+O) and (TiEPR) and (Tj~TT) and there exists some x, such
that (Tj= dr(i, x)); or

(d) ((SRjnSWi)+O) and (Tj~PR) and (T/=(TT~ PE)) and there exists some
x, such that ((#(dr(j, x)) <#(T/) in s) or (dr(j, x)=vo)); or

(e) ((SWjn SWi)+f)) and (Ti~PR) and (TjETT) and there exists some x, such
that (Tj=dw(i, x)); or

(f) ((SWj~SWI)+O and (T~PR) and (Ti~TT) and there exists some x, such
that ((#(dw(j, x)) < #(Ti) in s) or (dw(j, x) = Vo)); or

(g) ((SRj c~ S Wi) # O) and (Ti s PR) and (Tj ~ (PEw NE u TT)) and ((there exists
some t; x, such that (TteTT) and (T~=dw(i,x)) and (Tj reads x from T~ in s))
or (there exists some x, x~SW~ such that for all v, T~c TT:-q(Tj reads x from
T~ in s))); or

(h) ((SR;c~SWi)#O) and (TiePR) and (T~ePR) ((there exist some t, x, such
that (Tt~ TT) and (T~= dw(i, x)) and (T~ = dr(j, x))) or (dr(j, x)= Vo))) []

Theorem 5.7 Given a P-requesting set PR and a valid database system state
Q=(PE, NE, TT, s), there exists a valid database system state Q1 =(PE1, NE1,
TT1, sl) such that Q1 is a valid P-execution of PR and Q under the FTWP,
IVWP, DSRD and DSWT constraints and PEI=(PRuPE) if and only if the
IDRW dependency graph of Q and PR is acyclic.

Proof Suppose G is acyclic, by topologically sorting G, we can obtain a serial
schedule Sl of the set of transactions T = (PR u PE~ NE u TT), such that if
the arc(T~, Tj) exists in U, then Ti is ordered after Tj. One can verify that the
set of arcs (b) in the IDRW dependency graph G imposes an ordering of all
transactions in Sl that satisfies the FTWP and IVWP constraints. The set of
arcs (a), (b) and (g) in G imposes an ordering in S l that preserves all the read
from relations in s. The set of arcs (a), (c), (d) and (h) in G imposes an ordering
in Sl that satisfies the DSRD constraint. The set of arcs (b), (e) and (f) in G
imposes an ordering in sl that satisfies the DSWT constraint.

Conversely, if there exists a valid database system state Q1 =(PE1, NE1,
TT~, Sl) such that Q1 is a valid P-execution of PR and Q under the FTWP,
IVWP, DSRD and DSWT constraints and PE1 = (PR ~ PE), then the graph indi-
cating the order of every pair of transactions in sl, which we call G~, must
be acyclic. Furthermore, every arc in the IDRW dependency graph G must
be included in G 1. This is because: if condition (a) in Definition 5.1 is true,
but the arc (T/, Tj)r i.e., #(Tj)<#(T/) in sl is not true, then either the con-
sistency condition in Definition 3.2 or the FTWP constraint will be violated.
If condition (b) is true, but (T~, Tj)r G1, then the I VWP constraint will be violated.
If condition (c) is true, but (T~, Tj)q~ G 1, then the DSRD constraint will be violated.
If condition (d) is true, but (Ti, Tj)r then either the DSRD or the FTWP
or the IVWP constraint will be violated. If condition (e) is true but (Ti, Tj)r
then the DSWT constraint will be violated. If condition (f) is true, but (T/, Tj)r G1,
then either the DSWT or the FTWP constraint will be violated. If condition
(g) is true, but (T~, Tj)r then either the DSWT constraint or the consistency
condition in Definition 3.2 will be violated. If condition (h) is true, but

140 J. Xu

(T~, Tj)r then either the DSRD or the DSWT constraint will be violated.
Thus GI is a supergraph of G, and since G1 is acyclic, G must also be acyclic. []

Theorem 5.8 Given a P-requesting set PR and a valid database system state
Q=(PE, NE, TT, s), the problem of determining whether there exists a valid
database system state Q 1 = (P E1, N E 1, TT1, s l) such that Q 1 is a valid P-execution
of PR and Q under the FTWP, IVWP, (DSRD or LTRD) and (DSWT or UPDW)
constraints and PE1 = (PR u PE) can be determined in 0(1 V[IX[2) time. []

The proof of Theorem 5.8 also immediately follows from the fact that the
constraint LTRD is a special case of the constraint DSRD, and the constraint
UPDW is a special case of the constraint DSWT. Again, one can replace the
LTRD constraint by the DSRD constraint and replace the UPDW constrint
by the DSWT constraint in exactly the same way as explained before. Then
one can construct the I DRW dependency graph and determine whether it is
acyclic in O([VI [X[2) time.

In the case where one wishes to achieve more concurrency by allowing more
than one read or write request to be scheduled simultaneously, the NP-complete-
ness results in Theorems 5.1-5.2 and 5.4-5.5 in combination with the polynomial
time result in Theorem 5.7-5.8 indicate what additional constraints must be
added in order to obtain an on-line concurrency control algorithm that achieves
an optimal level of concurrency in polynomial time and whose computation
time is not exponential relative to the number of simultaneously scheduled
requesting transactions.

Now suppose the I DRW dependency graph G of Q is cyclic, what can we
do then? An optimal solution can be found by finding a largest subset PRs
of the P-requesting set of transactions PR, such that the subgraph G s of G
is acyclic and Gs is obtained by removing nodes belonging to the P-requesting
set (PR--PRs). Then a virtual schedule sl in which all P-requesting transactions
in that largest subset PRs are put into execution in Q1 can be constructed
by topologically sorting Gs.

This is explained by an example below:

Example 5.1 Suppose we wish to construct a valid maximum concurrency P-
execution of the P-requesting set PR 3 and the valid database system state Q3
in Example 3.1 under the FTWP, IVWP, LTRD and UPDW constraints. Then
dr[3, a]=dr[-4, a]=dr[5, a] = T 1 ; dr[3, c]=dr[4 , f]=dr[5 , g]=vo; dw[3 , f]
=dw[3, g] = dw [3 , c]=dw[4 , b]=dw[4 , c]=dw[5 , e]=Vo; dw[5, a]=T1 ; The
IDRWdependency graph of Q3 and PR 3 is shown in Fig. 1.

Since the ID RW dependency graph G1 of Q3 and PR3 is cyclic, there exists
no valid database system state Q~ such that Q] is a valid P-execution of Q3
and PR 3 under the FTWP, IVWP, LTRD and UPDW constraints, and the
whole set of P-requesting transactions PR3 = {T3, T,, Ts} can be put into execu-
tion in paralM in Q~ while preserving serializability. Here, the largest subset
PR3s of PR 3 for which the subgraph GI~ of G 1 is acyclic and the nodes removed
from G1 belong to (P R 3 - P R 3) contains trwo transactions, i.e.: T 4 and T 5.
Thus we determine that in order to achieve maximum concurrency, PR3~=
{T4, Ts} should be put into execution in parallel first.

By topologically sorting Gls (Fig. 2), we obtain the serial schedule s 4 with
which we can construct the new valid database system state Q4=
({T2, T4, Ts}, 0, {T1}, (T 2 T~ T,~ Ts)) shown in Example 3.1 where T 4 and T 5 can

On-line multiversion database concurrency control 141

T2 T4

Fig. 1

T2 T4

Fig. 2

be put into execution in parallel with T2, and Q4 is a valid P-execution of
P R 3 and Qa under the F T W P , I V W P , L T R D and U P D W constraints. And
we can continue like this constructing successive new valid system states. Notice
that Q4 is a maximum concurrency P-execution of P R 3 and Q3 by Defini-
tion 3.Z []

The Feedback Vertex Set (FVS) problem [8] can be transformed to the
problem of finding an optimal solution in the example above. Although the
FVS problem is known to be NP-complete, we can always limit computational
complexity by using efficient heuristics to find good approximations to an opti-
mal solution. Algorithms actually exist which either find an optimal solution
or a suboptimal solution for the FVS problem and which are known by experi-
ence to have a good performance. (For example, see [5, 9, 19]. An algorithm
for a suboptimal solution described in [19] has a computation time upper bound
of only O(]X31).

We emphasize that in our model achieving more concurrency by scheduling
more than one read or write request simultaneously is only one among many
possible options which the algorithm designer has the freedom to choose from.
The model certainly does not preclude the possibility of enforcing a condition
that certain transactions must be scheduled in an order that is identical to
their arrival order - it is a very simple task to add such a facility to an actual
implementation. For example, in an algorithm based on Theorem 5.7, if it is
desired that some transaction T~ be scheduled before another transaction Tj,
all we have to do is add the arc(T~, Tj) to the I D R W dependency graph to
achieve the desired effect.

142 J. Xu

1"3 "1"6

"r4

O R

Fig. 3

In [3], a class of schedules called CPSR (Conflict-preserving serializable)
is described. CPSR requires that the order of every pair of writes be preserved
in the serialization whenever there is a "conflict" between the two writes, i.e.,
their write sets intersect. The set of constraints {FTWP, IVWP, (DSRD or LTRD)
and (D S W T or UPDW)} is less restrictive than CPSR in the sense that it does
not require that the order of two P-executing transactions be preserved whenever
their writesets intersect.

6 Scheduling transactions under the FTWP, IVWP and UB constraints

In this section, we shall construct a polynomial time algorithm for solving the
problem of scheduling transactions with predeclared writesets one at a time
in a database system which supports multiple versions of data when the F T W P
and I V W P constraints (if the writeset of any two transactions intersect and
at lease one of them has terminated, then their relative ordering must be kept
invariant) is imposed.

At the end of this section, we show that these results can be generalized
to the case where an upper bound is imposed on the number of P-requesting
transactions scheduled each time.

Definition 6.1 We call a directed graph G = (X, Z) the I V W P P-dependency graph
of a valid database system state Q=(PE, NE, TT, s) whenever in G there is
the set of nodes X={T/[a l l i: T i ~ (P E u N E v o T T) }, and the set of arcs Z =
{(77i, Tj) E X x X I all i, j: i q=j and T/~ (PE u N E to TT) and Tj ~ (PE u NE u TT) and

(P1) ((((SW~nSRi)@O) or (SI/VjnSRi)@O) and #(Tj)<#(T/) in s) or
(P2) ((SW~nSWj)#0 and (T ~ e T r o r TjETT) and/~(T~)<#(T~) in s))}. []

Lemma 6.1 In valid database system state Q = (PE, NE, TT, s), for all i, j, such
that Ti, T j E (P E u N E u TT), if there exists a path from T~ to T i in the I V W P
P-dependency graph of Q, then in any valid database system state QI=(PE1,
NE1, TT1, sl) such that Q1 is a valid P-execution of {Tr} and Q under the F T W P
and I VWP constraints, # 1 (Ti) < !~ 1 (Tj) in s 1 must be satisfied in Q 1.

Proof. It should be easy to see that for any two transactions
Ti, T j ~ (P E v o N E u T T) , if condition (P1) and (P2) is satisfied in Q, but #I(T~)
</zt (Tj) in s~ is not satisfied in Q 1, then either the F T W P and I V W P constraints
would not be satisfied, or at least one read from relation in s would be changed
in s~, which violates the consistency condition in Definition 3.2. []

On-line multiversion database concurrency control 143

DT1

Fig. 4

Example 6.1 The I VWP P-dependency graph G--(X, Z) of valid database sys-
t e m state Q=(PE, NE, TT, s) where PR={T~}, PE={T1, 7"4, T6} , NE={TT} ,

TT={T2, 7"3, Ts}, s=T1Tz Ta T4 Ts T6 T7 and Tl=(g,[z]) , T2=([a],[bJ), T3=
([c],[a]), T4=(S,[y]), Ts=(D, [c, y]), T6=([a], [x]), TT=([b] ,g) and T~=
(Ix, y, z], [a, b]) is shown in Fig. 3. []

Below we introduce a set PB(Tr) called the "P-boundary set of T~". PB(Tr)
is the set of transactions that must be serialized after T~ in any valid execution
of Q and T~ under the FTWP and IVWP constraints.

Definition 6.2 In valid database system state Q =(PE, NE, TT, s) for each P-
requesting transaction T~PR, we define the P-boundary set of T~: PB(T~) as
follows: for all i,j, such that T~e(PEwNEw TT) and TjE(PEwNEu TT):

(initial set) TiePB(T~) if
(a) T~PE and there exists some x, such that x~(SW~n SRr) and there exists

no t, such that Tte TT and x~SWt and #(Ti)< #(Tt) in s.

(inductive set) TiePB(T~) if Tj~PB(T~) and
(b) T~e(PEuNEu TT) and TiE(PEuNE~ TT) and there exists a path from

T/to Tj in the IVWP P-dependency graph of Q, or
(c) T j ~ (P E ~ N E u T T) and Ti~TT and there exists some x, such that

xe(SW~c~SVV~c~SR~) and Tj reads x from Ti in s, or
(d) Tje T T a n d TiePE and there exists some x, such that xs (SW i c~ SR r c~ SVVj)

and #(Ti)<#(Tj) in s and there exists no t, TteTT such that x e S W t and #(Ti)
<#(Tt)<#(Tj) in s. []

Lemma 6.2 In valid database system state Q = (PE, NE, TT, s), for all i, r such
that T i~(PEuNEw TT) and T~PR: if TiePB(T~) , then in any valid database
system state Q1 =(PE1, NE1, TT1, sO such that Q1 is a valid P-execution of
{T~} and Q under the FTWP and IVWP constraints and T,. is put into execution
in Q1 : #1 (T~)<#I (T~) in sl must be satisfied in Q1-

Proof We prove Lemma 6.2 induction. For all T/in the initial set, if #1 (T~) < #1 (Ti)
in sl is not satisfied, then Condition (a) and the FTWP and IVWP constraints
imply that either T~ reads x from TI~PE in sl, or T~ reads x from some other
transaction T~'~ TT in s~, which violates the existence condition in Definition 3.2.

As an induction hypothesis, suppose that #1(T~)<#I(Tj) in sl must be sat-
isfied for all Tj~PB(T~). Condition (b) and Lemma 6.1 imply that #1 (Tj)<#1 (Ti)
in sl must be satisfied. This and our induction hypothesis imply that #1(T~)
<#~ (T~) in sl must be satisfied. Condition (c) implies that T~ must read x from

144 J. Xu

T~ in Sa. This and our induction hypothesis imply that #1 (T~)< #1 (T~) in sl must
be satisfied, otherwise Tj will read x from T~, which violates the consistency
condition in Definition 3.2. Condition (d) and the FTWP and IVWP constraints
and our induction hypothesis also imply that #I(T~)<#I(Ti) in Sl must be sat-
isfied, otherwise either T~ reads x from T~PE, or Tr reads x from some other
transaction T/r TT, which violates the existence condition in Definition 3.2. []

The P-boundary set PB(T~) of a given valid database system state Q=(PE,
NE, TT, s) where T~ePR can be found by the following procedure (Suppose
PB'(Tr) is the set of transactions already known to be in PB(T~) at any intermedi-
ate stage of the computation):

I) Find the initial P-boundary set of T~ in Q according to condition (a)
in Definition 6.2. If the initial P-boundary set of T~ in Q is empty then terminate
with PB (Tr) = O.

2) Construct the IVWP P-dependency graph G=(X,Z) of Q according to
Definition 6.1.

3) For each TjePB'(T~) such that the current step has not been performed
before for Tj, find all T~ such that Tie((PEwNEw TT)--PB'(Tr)) and T~ satisfies
(b), (c) and (d) related to Tj in Definition 6.2 and put T~ in PB'(T,.). When no
new transaction Ti in ((PEw N E w TT)-PB'(T~)) which satisfies (b), (c) and (d)
can be found for any TjePB' (T~), then PB(T~)= PB' (T~).

Example 6.2 The P-boundary set PB(T~) of the same valid database system
state (2 as given in Example 6.1 can be found as follows:

First we find all transactions belonging to the initial P-boundary set of
T~ in Q by checking condition (a) in Definition 6.2 on all Ti such that TiePE
in Q. Here T6ePE and xE(SW6c~SRr) and there does not exist any TteTT
such that xeSWt and #(T6)<#(Tt) in s. Similarly, TlePE and ze(SW1 c~SRr)
and there does not exist any TteTT such that zeSW~ and #(T1)<#(TJ in s.
According to condition (a) in Definition 6.2:T6 e PB' (T~) and T1 e PB' (T~).

Next we construct the IVWP P-dependency graph G = (X, Z) of Q (Fig. 3).
Then for all TjePB'(T~) such that the same step has not been performed

before for Tj, we check conditions (b), (c) and (d) on all Tie((PEwNEw TT)
- PB'(T~)). From T 6 e PB' (T~), we find T 3 e TT and a e (S W 3 ~ S W~ ~ SR 6) and T 6
reads a from T 3 in s. According to condition (c): T3EPB'(T~). From T3ePB'(T~),
we find T 5 such that there exists a path from T 5 to T 3 in the IVWP P-dependency
graph G of Q. According to condition (b): T5ePB'(T~). From T5ePB'(T~) and
TseTT, we find T4ePE and ye(SW4~SR,~SWs) and #(T4)<#(Ts) in s and
there does not exist any TteTT such that yeSW~ and #(T4)<#(Tt)<#(Ts) in
s. According to condition (d): T4ePB'(Tr). After PB'(Tr)={T6, Tt, 7"3, Ts, T4}
is found, no other transaction in ((PEwNEwTT)-{T~}) can be found which
satisfies (b), (c) and (d) related to any transaction TjePB'(T~). Thus PB(T~)=
{T6, T1, T3, Ts, T4}. []

Definition 6.3 Given valid database system state Q = (PE, NE, TT, s) and P-
requesting transaction T~ePR, we call the directed graph G1 = (X I , Z I) the P-
boundary graph of T~ in Q whenever in G there is the set of nodes X 1
= ({ T~} u PEw NE u TT); and the set of arcs Z1 = (Z ~ Z' ~ Z"); where

(a) Z is the set of arcs in the I VWP P-dependency graph G = (X, Z) of Q;
(b) Z ' = {(T/, T~)lall i, TIePB(T~)};
(c) Z"={(T, , 7~)]all i, T~((PEu N E w TT)--PB(T~))}. []

On-line multiversion database concurrency control 145

Example 6.3 The P-boundary graph GI =(X1, Z1) of T~ in the valid database
system state Q given in Example 6.1 is shown in Fig. 4. []

Theorem 6.1 Given valid database system state Q = (PE, NE, TT, s) and P-request-
ing transaction T~ePR, there exists a valid database system state Q~I = (PEt, NE~,
TT1, sl) such that Q~I is a valid P-execution of {T~} and Q under the FTWP
and IVWP constraints and T~ is put into execution in Q1, i.e.: PE 1 = (P E u {T~}),
iff in Q:

(PI) for all i, T i e (P E u N E u T T) : if there exists some x, such that
x~(SRi~SW~), and for all v such that T~E(PEu N E u r r) : ~ (T i reads x from
T~ in s) then Tir

Condition (PI) states that for all transactions T~, if T~ reads the initial version
for some variable name x in s, i.e.: it does not read x from any other transaction
in s, and x also belongs to the writeset of P-requesting transaction T~, then
T~ should not belong to the P-boundary set of T~ in Q.

Proof. (PI) is a necessary condition because from Lemma 6.3, TiePB(T~) implies
that #~(T~)</~(T~) in s~ must be satisfied. If (PI) is not satisfied, then T~ would
read x from T~, which violates the consistency condition in Definition 3.2.

Now we show that (PI) is a sufficient condition. From Definition 6.3, any
serial schedule sl obtained by topologically sorting G1 has the following form:
sl = s"T~ s', where all transactions in the sub-schedule s' belong to the set PB(T~),
and all transactions in the sub-schedule s" belong to the set ((PE u NE u TT)
-PB(T~)). Furthermore, since all arcs in the IVWP dependency graph of Q
are included in the P-boundary graph G of T~ in Q, the FTWP and IVWP
constraints are satisfied in s~. No TjcPB(T~) in s' can read any x from T~
in Sx, because if TjePB(T~) read the initial version of x in s, then (PI) will
not hold; whereas if Tj read x from some transaction T/'~PB(T~) in s, then
condition (c) in Definition 6.2 implies T/'ePB(T~) which is a contradiction. T~
cannot read from any TiePE in s~, where T~(~PB(T~), otherwise this and the
FTWP and IVWP constraints together with condition (d) in Definition 6.2 imply
that T~ePB(T~), which is also a contradiction. Hence Q1 is a valid P-execution
of {T~} and Q under the FTWP and IVWP constraints. []

In the proof of Theorem 6.1, we simultaneously proved the following:

Theorem 6.2 Given valid database system state Q~ = (PE, NE, TT, s) and P-request-
ing transaction T~ePR, if (PI) is satisfied in Q, then the following database system
state Q~a is a valid P-execution of {T~} and Q under the FTWP and IVWP con-
straints: Q1 =(PE1, NE1, TT1, sO where PEI=(PEu{T~}) and T T I = T T and
sl is a serial schedule of ({ T~} u PE u N E w TT) constructed by topologically sort-
ing the P-boundary graph G1 =(X1, Z1) of T~ in Q. []

The proof of Theorem 6.1 leads to the following algorithm for scheduling
one P-requesting transaction T~ E PR at a time in a given valid database system
state Q=(PE, NE, TT, s) (Suppose PB'(T~) is the set of transactions already
known to be in PB(T~) at any intermediate stage of the computation):

1) Find the initial P-boundary set of T~ in Q according to condition (a)
in Definition 6.2. If the initial P-boundary set of T~ in Q is empty then terminate
with s i = s T~.

2) Construct the IVWP P-dependency graph G=(X ,Z) of Q according to
Definition 6.1.

146 J. Xu

3) For each TjePB'(T~) such that the current step has not been performed
before for Tj, find all T/such that Tie((PE w N E w TT)--PB' (PR)) and T i satisfies
(b), (c) and (d) related to T~ in Definition 6.2 and put T~ in PB'(T~). If (PI) is
not satisfied for some TjePB'(T~), then te rmina te - T~ cannot be put into execu-
tion in any valid P-execution of {T~} and Q under the FTWP and IVWP con-
straints. When no new transaction T~ in ((P E w N E w TT)-PB'(T~)) which sat-
isfies (b), (c) and (d) can be found for any TjePB'(T~), then PB(T~)= PB'(T~).

4) Construct the P-boundary graph Gt = (Xt , Z1) of T~ in Q according to
Definition 6.3.

5) Topologically sort G t to obtain the serial schedule Sl. Terminate.
If the computation of the algorithm terminates in either Step 1 or Step

5, then T~ can be put into execution in the database system state Qt =(PEa,
NE~, TT,, sl) where PEt=(PEw{Tr}), TTI= TT and s 1 is obtained by Step 1
or Step 5 above and Q1 is a valid P-execution of {T~} and Q under the FTWP
and IVWP constraints.

Corollary 6.1 Given valid database system state Q=(PE, NE, TT, s) and P-
requesting transaction T~EPR, the problem of determining whether there exists
at least one database system state Qt=(PE, , NE t, TTt, Sl) such that Q~I is
a valid P-execution of {T~} and Q under the F T W P and IVWP constraints and
PEI = (PEw { T~}) can be determined in O(I V[]PE w NE w TTI 2) time.

Furthermore, if (PI) is satisfied in Q, then a database system state Q~I =(PE1,
NEt , TTt, Sl) such that Q~1 is a valid P-execution of {T~} and Q~ under the FTWP
and IVWP constraints and P E I = (P E u {Tr}) can be constructed in O(IVIIPEw
N E w TTI 2) time. []

Example 6.4 Given the same valid database system state Q as in Example 6.1,
we can obtain the following serial schedule st by topologically sorting the P-
boundary graph G1=(X1,Z1) of T~ in (2: (Fig. 4) s t = (T 2 T 7 T~ T1 T a T 4 Ts T6)
= R 2 [a] W2[b] RT[b] WTrlRr[x,y,z] W~[a,b] RtDWt[z] R3[-c] W4[a]
R4~W4[y] RsDWs[c, y] R6[a] We[x]. The new database system state Q1
=(PE~, NE t, TTt, s~) where P E t = { T I , T4, T6, T~}, NE~={TT} , TTa={T2,
T3, Ts} and Sl=(T2 T 7 TrT 1 T3 T4T5 T6) is a valid P-execution of {Tr} and Q
under the FTWP and IVWP constraints and T~ is put into execution in Qt,
i.e.: PEt=(PEw{Tr}). []

Corollary 6.1 indicates that if one imposes the constraint of scheduling one
requesting transaction at a time, then one only needs two other additional
constraints-FTWP and IVWP, i.e., one does not need to add the constraints
((LTRD or DSRD) and (UPDW or DSWT)) as in Theorem 5.8 in order to
obtain a polynomial time algorithm.

The results obtained above can be generalized to the case where an upper
bound is imposed on the number of predeclared writeset transactions scheduled
each time.

Theorem 6.3 The following problem can be determined in polynomial time: Given
valid database system state Q=(PE, NE, TT, s) and P-requesting set PR such
that for some constant C, IPRI<C; Does there exist a valid database system
state Qt=(PE1, NEt , TT1, sl), such that PEx=(PEwPR) and QI is a valid
P-execution of PR and Q under the FTWP and IVWP constraints?

Proof. The following procedure can be used to determine the existence of Qt :

On-line multiversion database concurrency control 147

1. Generate all permutations of the set of P-requesting transactions PR: {si}
2. For each permutation si= Ti" Ti n- 1 T/2 Til, n = IPRI, i= 1, 2 , n!, try to
put each P-requesting transaction into the P-executing set and the virtual sched-
ule one by one according to the order of the permutation as follows:

2.1. Use condition (PI) in Theorem 6.1 to determine whether there exists a
valid database system state Q]=(PE], NE~, TT/1, s~) such that P E r
(PEu{T~I}) and Q~ is a valid P-execution of {T~ ~} and Q under the F T W P
and I V W P constraints. If (PI) is satisfied for PB(Ti 1) in Q, then construct Q1
according to Theorem 6.2.

2.2. For each j, j = 2, 3, ..., n, respectively do the following:
Redefine the P-boundary set PB(T/) in Qt -1 as follows: Let the initial P-

boundary set of T/j in Qt -1 be the union of {T/ j -1 , T / j -2 , . . . , T/l} and the set
defined by condition (a) in Definition 6.2. Let all other members of PB(T/)
in Qt- ~ be still defined by (b), (c) and (d) in Definition 6.2. Use this new definition
of PB(T/j) in Qt -1 together with condition (PI) in Theorem 6.1 to determine
whether there exists a valid database system state Qt = (PEt, NE{, TTj , s{) such
that P E t = (P E t - ~ u {T/J}) and Qt is a valid P-execution of {T/} and Qi -1 under
the F T W P and I V W P constraints and for all k, k = j - 1 , ..., 1: #t(Tj)</~t(T/k)
in st (including Tj-1 T~ 1 in the initial P-boundary set of T/J in Qt-1 implies
that the latter condition must be satisfied in Qt). If (PI) is satisfied for the rede-
fined P-boundary set PB(T/) in Qt -~, then construct Q{ according to Theo-
rem 6.2.

By reasoning similar to that in the proof of Theorem 6.1 and 6.2, it is
straightforward to prove that there exists a valid database system state Q1 =
(PE1, NE1, TT1, $1) such that P E I = (P E w P R) and Q~ is a valid P-execution
of PR and Q, if and only if for at least one i, 1 _< i < n!: Q1 is a valid P-execution
of {T/l} and Q under the F T W P and I V W P constraints and for allj, j = 2 , 3 n:
Qt is a valid P-execution of {T/} and Q{-I under the F T W P and I V W P con-
straints and for all k, k = j - 1 1,/~t(T/J)<#{(T/k) in st. Furthermore, if this
condition is satisfied, then Q7 is a valid P-execution of PR and Q under the
F T W P and I V W P constraints and PE'2 = (PEw PR).

Note that this procedure requires the same order of computation time as
the algorithm presented above for scheduling P-requesting transactions one at
a time, since the same algorithm can be used here without substantial modifica-
tion for constructing Q~ , Q7 (the only difference is that T/J- 1, ..., T~" is added
to the initial P-boundary set of T/J in Qt-~ in Step 2.2), and the number of
times the algorithm must be applied is bounded above by n x n!, where
n=IPR[<C. []

Example 6.5 Suppose we are given the valid database system state Q=(PE,
NE, TT, s) where T T = { T I } , P E = N E = O , s = (T a) , TI=(D, [b]), T2=([a], [b]),
T 3 =([b] , [a]) and a set of P-requesting transactions P R = {T2, T3}.

The set of all permutations of PR has two elements: s~ = T2 T3 and s2 = T3 T2.
For the permutation sa = T2 T3, from Step 2.1, one can obtain the valid database
system state QI=({T3},0 , {T1},(T 1 T3)) such that Q1 i is a valid P-execution
of {T3} and Q under the F T W P and I V W P constraints and PEI = (P E w {T3}).
By adding T 3 to the initial P-boundary set of T 2 in QI and applying the algorithm,
from Step2.2, one can obtain the valid database system state Q2=
({r2, T3}, 0, {T1}, (T2 Zl T3)) such that Q2 is a valid P-execution of {Ta} and
Q~ under the F T W P and I V W P constraints and PE~=(PE 1 w {T2}) and #Z~(T2)

148 J. Xu

<#2(T3) in s 2. Q2 is also a valid P-execution of PR and Q under the FTWP
and IVWP constraints where PE~=(PEuPR) . Note that applying the Steps
2.1 and 2.2 according to the permutation s2 = T 3 T 2 will not lead to any valid
database system state Q1, such that Q1 is a valid P-execution of PR and Q
under the F TWP and I VWP constraints and PEt = (PE u PR). []

Finally, we mention that if we wish to solve the same problem as in Theo-
rem 6.2 or the same problem as in Theorem 6.3 but with the DSRD constraint
added, all we have to do is add the set of arcs (c), (d) and (h) of the IDRW
dependency graph defined in Definition 5.1 to the P-boundary graph defined
in Definition 6.3 and follow the same procedure as described earlier.

If we wish to solve the same problem as in Theorem 6.2 or the same problem
as in Theorem 6.3 but with the DSWT constraint added, then we should add
the set of arcs (b), (e), (f) and (g) of the I D R W dependency graph defined in
Definition 5.1 to the P-boundary graph defined in Definition 6.3 and follow
the same procedure as described earlier.

If only the DSRD constraint is added then the corresponding algorithm
can be used to solve the problem of terminating nonpredeclared writeset transac-
tions under the FTWP, IVWP and UB constraints as described in Sect. 4. The
algorithm will achieve an optimal level of concurrency in polynomial time for
the problem of terminating nonpredeclared writeset transactions since the ver-
sions that must be read by each transaction in the N-commit set are fixed
already - they must be the same versions that were read by each corresponding
transaction in the N-executing set.

7 Summary of complexity results

Table 1 below summarizes the computational complexity of the problem of
determining whether a set of predeclared writeset transactions can be put into
execution while guaranteeing that their future writes will never compromise
correctness of the database system under any combination of the constraints
FTWP, LTRD or DSRD, IVWP, UPDW or DSWT, 1 V, 2 V a n d UB.

The results in Table 1 are respectively proved in Theorems 5.1 and 5.4;
5.2 and 5.5; 5.3 and 5.6; 6.1; 5.7 and 5.8.

In the following tables, "yes" signifies that the corresponding constraint is
imposed, while " - " signifies that the corresponding constraint is not imposed.

For each NP-complete problem:
If "yes" is replaced b y " - ", then problem remains NP-complete.
I f " -- " is replaced by "yes", then problem becomes polynomial time solvable.

For each polynomial time solvable problem:
I f " - " is replaced by "yes", then problem remains polynomial time solvable.
If "yes" is replaced by " - " , then problem becomes NP-complete.

This suggests that each NP-complete problem below contains a maximal subset
of constraints, while each polynomial time solvable problem below contains
a minimal subset of constraints.

On-line multiversion database concurrency control 149

Table 1

FTWP LTRD or DSRD IVWP UPDW or DSWT 1 V 2 V UB

yes yes yes -- -- yes -- NP
yes yes -- yes -- yes yes NP
yes - yes yes -- yes - NP
yes -- yes -- -- -- yes P
yes yes yes yes - -- -- P

Note that here the constraint 1 V trivially implies the constraints FTWP, LTRD, IVWP and
UPD W. The constraint 2 V trivially implies the constraint F TWP

Table 2

FTWP IVWP U P D W o r D S W T 1V 2V UB

yes yes -- -- yes -- NP
yes - yes -- yes yes NP
yes yes -- -- - yes P
yes yes yes -- - -- P

Note that the constraint 1 V trivially implies the constraints FTWP, IVWP and UPDW. The
constraint 2 V trivially implies the constraint FTWP

T a b l e 2 b e l o w s u m m a r i z e s t he c o m p u t a t i o n a l c o m p l e x i t y o f the p r o b l e m of
d e t e r m i n i n g w h e t h e r the wr i t ese t s o f a set o f n o n - p r e d e c l a r e d wr i t e se t t r a n s a c -
t i ons c a n be w r i t t e n in t he d a t a b a s e whi le p r e s e r v i n g co r r ec tne s s u n d e r a n y
c o m b i n a t i o n o f the c o n s t r a i n t s F T W P , I V W P , U P D W or D S W T , 1V, 2 V or
UB.

T h e s e resul t s a re p r o v e d by the fact t h a t the p r o b l e m of c o n s t r u c t i n g va l id
N - t e r m i n a t i o n s o f a N - c o m m i t set a n d a va l id d a t a b a s e sys tem s ta te is e q u i v a l e n t
to the p r o b l e m of c o n s t r u c t i n g va l id P - e x e c u t i o n s of a P - r e q u e s t i n g set a n d
a va l i d d a t a b a s e sys t em s ta te u n d e r t he D S R D cons t r a in t .

8 Conclusions

In this pape r , we p r e s e n t e d a n e w m o d e l for s t u d y i n g the c o n c u r r e n c y vs. c o m p u -
t a t i o n t i m e t radeof fs i n v o l v e d in on - l i ne m u l t i v e r s i o n d a t a b a s e c o n c u r r e n c y c o n -
trol . T h e m a j o r d i f ference b e t w e e n o u r m o d e l a n d p r e v i o u s m o d e l s is the bas ic
p r o b l e m t h a t is s tudied .

W h i l e m o s t p r e v i o u s m o d e l s s tudy the p r o b l e m of d e t e r m i n i n g w h e t h e r a
s chedu le s r e p r e s e n t i n g the o u t p u t of a c o n c u r r e n c y c o n t r o l a l g o r i t h m b e l o n g s
to a c e r t a i n class C of se r ia l i zab le schedules , o u r m o d e l s tud ies the f o l l o w i n g
p r o b l e m : G i v e n s o m e p r e v i o u s s ta te o f t he d a t a b a s e sys t em d e t e r m i n e w h e t h e r
a n e w d a t a b a s e s y s t e m s ta te exists (and c o n s t r u c t t he n e w d a t a b a s e sys t em
s ta te if i t d o e s exist) in w h i c h a set of r e a d a n d wr i t e r eques t s c a n be sat isf ied
whi le p r e s e r v i n g c o n s i s t e n c y of the d a t a b a s e sys tem.

150 J. Xu

In our model the following two basic problems were studied: (1) Preventive
scheduling of predeclared writeset transactions, so that they never have to be
restarted. (2) When one or more non-predeclared writeset transactions finish
their computation and announce their writesets, determine if they can write
into the database (while preserving serializability) without aborting any transac-
tions.

It was shown that the first problem is actually equivalent to the second
problem when the constraint DSRD is imposed on the first problem. Consequent-
ly, all the complexity results that we have derived for the first problem under
the DSRD constraint can be directly applied to the second problem.

We proved that the set of restrictions {FTWP, (LTRD or DSRD), IVWP,
(UPDW or DSWT)} and the set of restrictions {FTWP, IVWP, UB} define
two fundamental limits of performance achievable by polynomial time concur-
rency control algorithms. If any one constraint in the minimal sets is omitted,
although it could increase the amount of concurrency, it would also have the
dramatic negative effect of making the scheduling problem NP-complete; where-
as if we do not omit any constraint in the minimal sets, then the scheduling
problem can be solved in polynomial time. With each one of these minimal
set of restrictions, we constructed an efficient scheduling algorithm that achieves
an optimal level of concurrency in polynomial computation time.

In the following we briefly discuss how previously proposed concurrency
control algorithms fit into our framework. By examining previously proposed
concurrency control algorithms in the literature one can observe that in general
they do not allow more than one read or write request to be scheduled simulta-
neously. Furthermore, previously proposed multiversion concurrency control
algorithms do not exhaustively examine all possibilities of allowing each transac-
tion to read or write any version, and they impose a fixed ordering of all versions
for each variable name in the database. This implies that in general, previously
proposed algorithms impose at least all the following constraints (in fact, each
previously proposed concurrency control algorithm individually imposes more
constraints than the common subset listed below): (i) IPRI= 1 or INE;F=I;
(ii) (DSWT or UPDW) and (DSRD or LTRD); (iii) FTWP and 1VWP.

Thus it should be easy to see that previously proposed algorithms achieve
less concurrency than the polynomial time algorithms corresponding to the
two minimal sets in this paper. This does not mean that one can always achieve
more concurrency than previous algorithms for a particular database application
because in many cases the application itself may require that certain constraints
be imposed. However, our results do provide interesting insight in determining
whether and what additional constraints must be enforced to obtain a polyno-
mial time concurrency control algorithm that achieves an optimal level of con-
currency for a given set of application imposed constraints.

Finally, we mention that the complexity results obtained within the two
step transaction model can be easily extended to an n-step transaction model
[22]. In an n-step model of transactions a transaction can be associated with
three sets of variable names: a readset, a writeset and a predeclared writeset
which respectively are the set of variable names for which that transaction has
previously read, written or intends to write in future a version. These three
sets are not invariant as in our two step model. They may all grow as new
read, write or predeclared write requests are satisfied. However, when these
three sets become known dynamically then one cannot guarantee anymore that

On-line multiversion database concurrency control 151

a t r ansac t ion will never abort . (One can only guaran tee that a t ransac t ion will
never be abor ted at the t ime a request is accepted if that t r ansac t ion does
no t make any unacceptable further requests to read or write addi t iona l version
values). Despite these differences the condi t ions that mus t be satisfied when
scheduling requests in an n-step t r ansac t ion model are basically the same as
when cons t ruc t ing valid P-(N-)executions and P-(N-) terminat ions of a current
da tabase system state in the two step model and consequent ly the complexity
results i nTheorems 5.1-5.8 and Theorems 6.1-6.3 in the two step model carry
over to the n-step model.

Acknowledgements. The author is greatly indebted to Pierre-Jacques Courtois. Without his
help, encouragement and support this work could never have been done. The author also
wishes to express his gratitude to Michel Sintzoff and Elie Milgrom for their support, encourage-
ment and suggestions. Philippe van Bastelaer, G6rard Roucairol provided helpful comments
on earlier versions of this work. Kenneth C. Sevcik also provided helpful comments and sugges-
tions during the author's presentations of earlier versions of this work. The author is grateful
to the anonymous referees, whose comments and suggestions have led to important improve-
ments in the presentation of this paper.

References

1. Bernstein, P.A., Goodman, N.: Concurrency control in distributed database systems. ACM
Comput. Surv. 13, 185-221 (1981)

2. Bernstein, P.A., Goodman, N.: Multiversion concurrency control Theory and algorithms.
ACM Trans. Database Syst. 8, 465-483 (1983)

3. Bernstein, P.A., Shipman, D.W., Wong, S.W.: Formal aspects of serializability in database
concurrency control. IEEE Trans. Software Eng. SE-5, 203516 (1979)

4. Casanova, M.A. : The concurrency control problem for database systems. (Lect. Notes Corn-
put. Sci., Vol. 116) Berlin Heidelberg New York: Springer 1981

5. Diaz, M. et al.: A note on minimal and quasi-minimal essential sets in complex directed
graphs. IEEE Trans. Circuit Theory CT-19, 512-513 (1972)

6. Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger, I.L.: The notions of consistency and predi-
cate locks in a database system.CAM 19, 624~633 (1976)

7. Franaszek, P., Robinson, J.T.: Limitations on concurrency in transaction processing. ACM
Trans. Database Syst. 10, 1 28 (1985)

8. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-
completeness. San Francisco: Freeman 1979

9. Guardabassi, G.: A note on minimal essential sets. IEEE Trans. Circuit Theory CT-18,
557-560 (1971)

10. Ibaraki, T., Kameda, T., Katoh, N.: Cautious transaction schedulers for database concur-
rency control. IEEE Trans. Software Eng. 14, 997 1009 (1988)

11. Ibaraki, T., Kameda, T., Minoura, T.: Serializability with constraints. ACM Trans. Database
Syst. 12, 429-452 (1987)

12. Katoh, N., Ibaraki, T., Kameda, T.: Cautious transaction schedulers with admission control.
ACM Trans. Database Syst. 10, 205-229 (1985)

13. Kung, H.T., Papadimitriou, C.H.: An optimality theory of concurrency control for data-
bases. Acta Inf. 19, 1-11 (1983)

14. Krishnamurthy, R., Dayal, U. : Theory of serializability for a parallel model of transactions.
Proceedings ACM Symposium on Principles of Database Systems, California, pp. 293 305,
1982

15. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM 26, 631-653
(1979)

16. Papadimitriou, C.H., Kanellakis, P.: On concurrency control by multiple versions. ACM
Trans. Database Syst. 9, 89-99 (1984)

17. Rosenkrantz, D.J., Stearns, R.E., Lewis, P.M.: System level concurrency control for distrib-
uted database systems. ACM Trans. Database Syst. 3, 178-198 (1978)

152 J. Xu

18. Silberschatz, A., Kadem, Z.: Consistency in hierarchical database systems. J. ACM 27,
72 80 (1980)

19. Smith, G.W., Walford, R.B. : The identification of a minimal feedback vertex set of a directed
graph. IEEE Trans. Circuits Syst. Cas-22, 9-15 (1975)

20. Vidyasankar, K. : Generalized theory of serializability. Acta Inf. 24, 105-119 (1987)
21. Xu, J.: A formal model for maximum concurrency in transaction systems with predeclared

writesets. Proceedings of the 8th International Conference on Very Large Data Bases,
pp. 77 90, 1982

22. Xu, J.: The complexity of database concurrency control. Doctorate Dissertation, Unit6
d'Informatique, Universit6 Catholique de Louvain, Belgium, 1984

23. Yannakakis, M. : A theory of safe locking policies in database systems. J. ACM 29, 718-740
(1982)

Appendix

Proof of Theorem 5.1

Proof. It is easy to see that LI is in NP, because a non deterministic a lgor i thm
need only guess a new valid database system state Q1, in which sl is a serial
schedule of T = (P R u P E u N E w T T) and check in polynomial time that Q1
is a valid P-execution of PR and Q under the LTRD and IVWP constraints.

Below, we accomplish our p roo f by t ransforming a well k n o w n N P complete
problem - the " G R A P H K - C O L O R A B I L I T Y " problem (GKC) [8] to LI.

G K C is as follows: Given a graph G=(V, E) and a positive integer K < N ,
where N = I V I , determine whether g raph G is K-colorable, i.e., is it possible
to assign each node in G one out of K colors, such that no two connected
nodes are assigned the same color?

Suppose G = (V, E) and a positive integer K < N, where N = I V], is an arbi t rary
instance of G K C . We now construct a valid database system state Q = (P E ,
NE, TT, s) and a set PR of P-request ing transactions, such that there exists
a valid database system state QI =(PE 1, NE~, TTI, s~) which is a valid P-execu-
t ion of PR and Q under the LTRD and I V W P constraints if and only if G
is K-colorable.

We construct N " n o d e components" . Each node componen t corresponds
to one node in the g raph G. We call the node componen t cor responding to
node i in G as " n o d e componen t i". Each node componen t i is in turn composed
of K "co lo r componen ts" . Each color componen t corresponds to one color.
We call the color componen t in node componen t i cor responding to color j
as color componen t [i,j].

Each color componen t [-i,j] is composed of three t ransact ions: One terminat-
ed t ransact ion TtEi, j]=([SRt[i , j]] , [SWt[i,j]]), one P-executing t ransact ion
Te [i,j] = ([SR e [-i,j]], [SWe [i, j]]) and one P-requesting t ransact ion
Tr [i,j] = ([SR r [i , j]] , [SWr [i, j]]) .

In each color componen t [i,j], i = 1, 2 N, j--= 1, 2, ..., K, we let" a [i,j]
S Wt [i, j] , a [i, j] ~ S. Wr [i, j], a [i, j] ~ SR e[i, j].

In each node componen t i, i = 1 , 2 , N , we let: b[i , j ,k]ESWe[i , j] ,
b[i , j , k]~SRr[i ,k] for all j, k: l = j , k<=K and j # : k ; c [i , j + l , j] ~ S W r [i , j + l] ,
c [i , j + l , j] 6 S R t [i , j] for all j : I<=j<=K-1; and c[i, 1, K]~SWr[i , 1],
c[i, 1, K]~SRt[i , K].

For all p, q such that 1 < p, q_-< N, p 4: q and node p and node q are connected,
we let: d[p, q,j] e S W e [p,j], d[p, q,j] ~SRr [q,j] for all j : 1 =<j < K.

On-line multiversion database concurrency control 153

We further construct a serial schedule s = Tt[1, 1] Te[1, 1] Tt[1, 2] Te [1, 2]
... rt[i,j] re[i,j] ... r t [N , K] Te[N,K].

Then we collect all the transactions constructed above together to form
the three sets: PE={re[i,j]} rr={rt[i,j]}eR={rr[i,j]} for all i, j, i =
1, 2, ..., N, j = 1, 2, ..., K. We let NE be empty.

It is not difficult to see that the valid database system state Q--(PE, NE,
TT, s) and the requesting set PR of P-transactions thus constructed can be
constructed in polynomial time.

Notice that in s, in every color component [i,j], Te[i,j] reads a[i,j] from
Tt[i,j]. Also, in s no transaction reads any of the variable names b[i,j,k],
c [i,j, k], d [p, q, k] from any other transaction. From the consistency condition
of Definition 3.2, in any valid P-execution QI=(PE1, NEI, TT1, sl) of PR
and Q, the same read from relations must be satisfied, i.e., in sl, for every
color component [i,j], Tell, j] must read a[i,j] from Tt[i,j]. Also, in Sl no
transaction should read any of the variable names b[i,j, k], c[i,j, k], dip, q, k]
from any other transaction.

We now prove that there exists a valid database system state QI=(PE1,
NE1, TT1, sl) which is a valid P-execution of PR and Q under the LTRD
and IVWP constraints if and only if G is K-colorable.

By the way we have constructed color component [i,j], it is easy to verify
that in any serial schedule sl which includes Tr[i,j], Tt[i,j] and Te[i,j] and
Q1 is a valid P-execution of PR and Q, one and only one of the following
formulas must be satisfied for the three transactions Tr [i,j], Tt [i,j] and Te [i,j]
in each color component [i,j] : N O T C O L O R E D (i,j): #a (Tr [-i,j]) < pl(Tt [-i,j])
<#l(re[i,j]) in s~ (exclusive) or COLORED(/ , j) : #l(rt[i,j])<#~(Te[i,j])
< #1 (Tr [i,j]) in s 1 . This is because if neither N O T C O L O R E D (i,j) nor COLOR-
ED(i,j) is satisfied in sl, then Te[i,j] would not read a[i,j] from Tt[i,j]
in Sl.

In each node component i, for any two color components [i,j] and [i, k],
k:t=j, #1(Tr[i, k])<#l(Te[i,j]) in sl must hold, otherwise Tr[i, k] would read
b[i,j, k] from Te[i,j] in sl. For a similar reason, #l(rr[i, j])<#l(re[i,k]) in
Sl must hold. This implies that COLORED(i , j) and COLORED(i , k) cannot
hold simultaneously, otherwise they would generate the following cycle:
#1 (Te [i, j]) < #1 (Tr [i, j]) < #1 (Te [i, k]) < #1 (Tr [i, k]) < #1 (Te [i, j]).

In each node component i, #l(Tt[i,j])<#1(Tr[i,j+ 1]) in Sl for all j: 1 __<j
__<K-l, and pl(Tt[i,K])<gl(Tr[i, 1]) in sl must hold, otherwise for some j,
Tt[i,j] would read c[i,j+l,j] from Tr[i,j+ 1] in Sl or Tt[i,K] would read
c I-i, 1, K] from Tr[i, 1] in sl. This implies that for at least one j, COLORED(i , j)
must be true, otherwise the following cycle would be created: #1(Tr[i, 1])
<#l(Tt[i, 1])<#l(Tr[i, 2])<#1(Tt[i, 2])...<#l(Tr[i, K])<#1(Tt[i , Kl)
<#l(Tr[i, 1]).

Suppose that node p and node q are connected, then #1(Tr[q,k-])
<#l(Te[p, k]) in st must hold, otherwise Tr[q, k] would read dip, q, k] from
Te [p, k]. Similarly, #1 (Tr [p, k]) < #1 (Te [q, kl) in s 1 must hold. This implies that
COLORED(p, k) and COLORED(q, k) cannot simultaneously hold, otherwise
this would generate the following cycle: #1 (Te [p, k]) < Pl (Tr [p, k]) <
#1(re[q, k])< pl (rr[q, k])< #l (re[p, k]).

So far we have proved that in any serial schedule s 1 of valid database system
state Qt =(PE1, NE1, TT1, sl) such that Q1 is a valid P-execution of PR and
Q, in each node component i, COLORED(i,j) must be satisfied for one and

154 J. Xu

only one color component j, and if node p and node q are connected, then
COLORED(p, j) and COLORED(q, j) cannot simultaneously be satisfied for
two color components in node components p and q which correspond to the
same color j.

Suppose that there exists Q~ which is a valid P-execution of PR and Q.
We set node i to color j iff COLORED(i , j) is satisfied for color component
[i,j] in sl in Qt. Then each node will be set to one and only one color, and
connected nodes will be set to different colors.

Conversely, if the graph G is K-colorable, then we divide all transactions
in (P R ~ P E u N E w TT) into 3 + 2 K - 1 disjoint sets: SET[l] = {Te[i, j]]node i
is NOT colored j}; SET[2] = {Tr[i , j] Inode i is colored j}; SET[3] = {Te[i,j]l
node i is colored j}; SET[4] = { Tt [i,j] I node i is colored (j mod K) + 1}; S E T
[51 = { r r [i,j] I node i is colored (j mod K) + 1 }; ... SE r[3 + 2 m -- 11 = { r t [i, j] I
node i is colored ((j + m - 1) mod K) + 1} ; SET[3 + 2m] = {Tr[i, j l]node i is col-
ored ((j + m - 1) rood K) + 1} ; . . . SET[3 + 2 (g - - 1)-- 11 = { r t [i, j l]1 < i < N, node
i is colored ((j + (K-- 1)-- 1) mod K + 1)}; SET[3 + 2 (K - 1)1 = {Tr[i, j] I1 < i<N ,
node i is colored ((j + (K - 1) - 1) mod K + 1)}; SET[3 + 2 K - - 11 = { r t [i, j l]node
i is colored j} where 1 < i_< N, 1 < j__< K.

We can construct a valid database system state Q~ =(PE~, NE1, zrl,sl)
as follows: PE 1 = (PE u PR), N E 1 = NE, T T 1 = TT, and s 1 = { S E T [3 -t- 2 K -- 11)
{SET[3 + 2 (K - 1)]) {SET[3 + 2 (K - 1) - 11) ... {SET[3 + 2m]) {SET[3 +
2 m - 11) ... {SET[5]) {SET[41) {SET[31) {SET[21) { S E T [l]) .
(" {SET[k]) " denotes any serial schedule of the transactions in SET[k]). One
can verify that in s~: for all i, j, Te[i, j l reads a[i,j] from Tt[i,j], which is
the same as in s, and for all i, j, Tr[i, j] reads the initial version for every
variable name in its read set. Also in sl, as in s, no transaction reads any
of the variable names b[i,j, kl, c[i,j, kl, dip, q, k] from any other transaction.
Thus both the consistency condition and existence condition of Definition 3.2
are satisfied, and Q a is a valid P-execution of PR and Q. Since the write sets
of all transactions in (PE u TT) do not intersect with each other, the FTWP,
I V W P and 2V constraints are satisfied in Q~. Since none of the terminated
transactions in T T have written a version for any variable name that is in
a read set of any P-requesting transaction in PR, the L T R D constraint is also
satisfied in Q1. []

Proof of Theorem 5.2

Proof. We transform the " G R A P H K - C O L O R A B I L I T Y " problem to UI in
the same fashion as in the proof of Theorem 5.1. Below, we show the construction
of the valid database system state Q = (PE, NE, TT, s), for which there exists
a valid database system state Q1 =(PEt , N E t , TT1, sO which is a P-execution
of Q and PR under the FTWP, IVWP, U P D W and 2V constraints and PEx
= (PE u PR) if and only if graph G is K-colorable.

Here, each color component [i, j l is also con~posed of three transactions:
one terminated transaction Tt [i,j] = ([SR t [i,J]], [SWt [i,J]]), one P-executing
transaction Te [i, j] = ([SRe [i,J]], [SWe [i , j]]) and one P-requesting transaction
Tr [i,j] = ([SR r [i, J]], [SWr [i, j l]).

In each color component [i,j], i= 1, 2 N, j = 1, 2 K, we let: a[i, j l~
S W t [i,j], a [i,j] ~SR r [i,j], a [i,j] 6 S W e [i,j 1.

On-line multiversion database concurrency control 155

In each node component i, i=1 ,2 , . . . ,N , we let: bl[i , j , k]eSWt[i , j] ,
b 2[i,j, k]eSRr[i , k] for all j, k: 1 < j, k < K and j 4:k; c[i,j + 1, j]eSWr[i , j + 1],
c[i,j + 1,j]eSRe[i, j] for all j: I <=j<=K-1, and c[i, 1, K]~SWr[i , 1], c[i, 1, k]e-
SR e[i, K].

For all l<=p,q<N, p:t:q and node p and node q are connected, we let:
d l [p, q,jl eSWt[p,j] , d2[p, q, j]eSRr[q,j] for all j : 1 <=j <=K.

We further construct two sets of auxiliary P-executing transactions TBE
and TDE as follows: TBE={Tbe[i , j , k]} for all i, j, k, l<i<=N, l<j ,k<=K
and j 4:k, where SRbe[i,j , k] = {bl [i,j, k]} and SWbe[i,j , k] = {b2[i,j, k]};

TDE={Tde[p,q , j]} for all l<=p,q<N, p:t:q and node p and node q are
connected, where SR d e [p, q, j] = {d 1 [p, q, j l} and S Wd e [p, q, j] = {d 2 [p, q,jl }.

We then construct a serial schedule s=Te[1,11Te[1,21 ... Te[N,K]
Tbe[1, 1,2] Tbe[1, 1, 31 ... Tbe[N, K, K - 1] ({Tde[_p, q, j]})
Tt[1, 11 T t [1 ,2] . . .Tt[N, K1.

Then we collect all the transactions constructed above together to form
the three sets: PE = { Te [i,j] } • TBE u TDE, TT = { Tt [i,j] }, PR = { Tr [i, Jl } for
i-=1,2, ..., N , j = I , 2 , ..., K, we let NE=O.

It is not difficult to see that the valid database system state Q =(PE, TT,
PR, s) thus constructed can be constructed in polynomial time.

Notice that in s: for all i, j, i= 1, 2 N, j= 1, 2, ..., K: a[i,j]e(SWe[i,j] c~
SWt[i,j]) and #(Te[i, j])<#(Tt[i , jl). Also, in s no transaction reads any of
the variable names bl[i , j ,k] , b2[i,j,k], c[i,j,k], dl[p,q, kl d2[p,q,k] from
any other transaction; from the consistency condition of Definition 3.2, no trans-
action should read any of these variable names from any other transaction
in sl.

In each color component [i,j], one and only one of the following formulas
must be satisfied for the three transactions Tr[i,j], Te[i,j] and Tt[i,j]: NOT-
CO L OR ED (i,j): #2 (Tr [i, j l) < #1 (Te [i, j]) < #1 (Tt [i, j]) in sl (exclusive) or COL-
ORED(i, j) : #2 (Te [i,j]) < #1 (Tt [i, j l) < # l (T r [i,j]) in s~.

Either NOTCOLORED(i , j) or COLORED(i , j) must be satisfied in each
color component [i,j] because: #1(Te[i,j])<#l(Tt,[i,j]) must be satisfied in
Sl, otherwise the IVWP constraint will not be satisfied in Q~; and: Tr[i,j]
cannot be positioned between Tell, j] and Tt [i,j], otherwise Tr[i,j] will read
a [i,j] from Te [i,j], which viotates the existence condition in Definition 3.2.

In each node component i, for any two color components [i,j] and [i, k],
k:t:j, #~(Tr[i,k])<p~(Tbe[i,j ,k])<#~(Tt[i,j]) in s~ must hold. Otherwise
Tr [i, k] will read b 2 [i, j, k] from Tb e [i, j, k], which violates the existence condi-
tion in Definition 3.2; or Tbe[i, j ,k] will read bl[i , j ,k] from Tt[i,j] in sl,
which violates the consistency condition in Definition 3.2. Similarly,
#l(Tr[i , j])<#1(Tbe[i ,k, j l)<#l(Tt[i ,k]) in st must hold. This implies that
C O L O R E D (i, j) and C O L O R E D (i, k) cannot hold simultaneously.

In each node component i, #1(Te[i , j])<#l(Tr[i , j+ 11) in st for all j, such
that 1 <j<=K- 1 and #l(Te[i, Kl)<#t(Tr[i , 11) in s 1 must hold. Otherwise for
some j, Te[i,j] will read c[i , j+l , j] from Tr[i , j+ l] in st or Te[i ,K] will
read c[i, 1, K] from Te[i, 1] in st. This implies that for at least one j, COL-
ORED(i , j) must be true.

For all p, q, such that 1 <p, q<=N, p@-q and node p and node q are connected:
#1(Tr[q, k l)<#t(Tde[p, q, k])<#1(Tt[p, k]) in Sl for all k, 1 <_k<_K must hold.
Otherwise Tr[q, k] will read d2[p, q, k] from Tde[p, q, k] in st, or Tde[p, q, k]
will read d l [p , q , k] from Tt[2, k] in st. Similarly, #1(Trip, k])<

156 J. Xu

#~(Tde[q,p, k])<p~(Tt[q, k]) in s~ for all k, 1 <_k<_K must hold. This implies
that COLORED (p, k) and COLORED (q, k) cannot simultaneously hold.

Conversely, if the given graph G is K-colorable, then we can construct a
database system state Q 1 = (PE1, NE1, TT1, sO, where PE 1 = (PEw PR), NE 1 = O,
T T I = r r and sl =({re[i , j]]node i is colored j}) ({Tr[i, j] I n o d e / i s colored
((j+ K - 2) mod K + 1)}) ({Tel l , j] Inode i is colored ((j + K - - 2) rood K + 1)})
({rr[i , j]]node i is colored ((j + K - - 3) mod K + 1)}) ({Te[i, j]]node i is colored
((j+ K - 3) mod g + 1)})... ({rr[i , j]]node i is colored ((j + K - - /) mod K + 1)})
({ r e [i,j]]node i is colored ((j + K - l) rood K + 1)})... ({Tr [i,j] Inode i is col-
ored ((j rood K) + 1)}) ({re[i,j] Inode i is colored ((j rood K) + 1)}) ({The[i,
j, k]]node i is colored j}) ({Tde[p, q, k] Inode p is colored k and node p and
node q are connected}) ({Tt[i,j]]node / i s colored j}) ({Tr[i,j]]node i is
colored j}) ({rbe[i,j, k3]node i is NOT colored j}) ({Tale[p, q, k3 Inode p is
NOT colored k and node p and node q are connected}) ({Tt[i,j]]node i is
NOT colored j}) where 1 <_iNN, 1 < j < K, 1 <= p, q <= N, 1 <_ k <<_ K.

One can verify that in Sl : for all i,j, either Tr[i,j] reads a[i,j] from Tt[i,j],
or Tr[i,j] reads the initial version of all, j]. Also, in Sl no transaction reads
any of the variable names bl [i,j, k], b2 [i, j, k], c [i, j, k], d 1 [p, q, k], d2 [p, q, k]
from any other transaction, which is the same as in s. Thus both the consistency
condition and existence condition of Definition 3.2 are satisfied, and Q~ is a
valid P-execution of PR and Q. Since the write sets of all transactions in (PE w
TT) do not share any other variable names except for a[i,j]~(SWe[i,j]r
SWt [i,j]) and p(Te [i , j])< #(Tt [i,j]) in Sl, which is the same as in s, the FTWP,
IVWP and 2V constraints are satisfied in Q1. Since none of the terminated
transactions in TT have written a version for any variable name that is in
a write set of any P-requesting transaction in PR, the UPDW constraint is
also satisfied in Q~. []

Proof of Theorem 5.3

Proof. It is easy to see that LU1 is in NP, because given any valid database
system state Q=(PE, NE, TT, s) and the set of P-requesting transactions
PR--{Tr}, a non deterministic algorithm need only guess a new valid database
system state QI=(PE1 , NE 1, TT1, sl) such that P E I = P E w { T r } , N E I = N E ,
TT1 = TT, and Sa is a serial schedule of T=({Tr} w P E w N E • TT), and check
in polynomial time that Q1 is a valid P-execution of PR={Tr} and Q under
the FTWP, LTRD and UPDW constraints.

Below, we accomplish our proof by transforming a well known NP-complete
problem-3-satisfiabil i ty of Boolean formulas (3-SAT) [8] to LU 1.

3-SAT is as follows: given a set of clauses C on a finite set of variables
U such that each clause in C contains three literals, does there exist a truth
assignment for U that satisfies all the clauses in C?

Let C = {c [1], c [2], . . . ,c[-M]} be the set of clauses and U =
{u [1], u [2] u I-N]} be the set of variables in an arbitrary instance of 3-SAT.
We now construct a valid database system state Q=(PE, NE, TT, s) and a
P-requesting transaction Tr such that the 2 V constraint is satisfied in Q and
there exists a valid system state QI=(PEa, NEI, TT~,sO which is a valid P-
execution of P R = {Tr} and Q under the FTWP, LTRD and UPDW constraints
if and only if C is satisfiable.

On-line multiversion database concurrency control 157

For each variable u El] E U, i= 1, 2, . . . , N, we construct a "variable compo-
nent i" that consists of two terminated transactions: Tt[i, 1]=([SRt[i, 1]],
[SWt[i, 1]]) and rt[i , 2] =([SRt[i, 2]], [SWt[i, 2]]).

For each literal z U, k] = u [i] or z [j, k-1 = ~ [i] in each clause c [j] = (z [j, 11,
z [j, 2], z [j, 3]), k--- 1, 2, 3, j = 1, 2, ..., M, we construct a "literal component
[j, i]" which is composed of four P-executing transactions: Te[j, i, 1] =([SR e
[j, i, 131, [SWe[j, i, 1]]), Te[j, i, 2] =([SRe[j, i, 2]], [SWe[J, i, 2]]), TEE/, i, 3]
= ([SR e [j, i, 333, [SWe U, i, 331) and me U, i, 41 = ([SR e [.j, i, 4]], [SWe [j, i, 4]]).

For each literal component [j, i], and its corresponding variable component
i, j = l , 2 ,M, i = I , 2 , . . . , N , we let: a[_j,i]eSWt[i, 1], a[_j,i]eSRe[j,i, 1],
a[j, i]mSWe[j, i, 2]; b[j, i]~SWt[i, 2], b[j, i]eSRe[j , i, 3], b [j, i]eSWe[j , i, 4];
c[_l',i]eSWe[_j,i, 4], cO, i leSRt[i , 1]; d[j , i]eSWe[j , i , 2], d[j , i]eSRt[i , 2];
e[_j,i]eSWe[j,i, 3], e[j , i]~SRe[j , i , 2]; f [j , i] eSWe[j , i , 1], f [j , i] e -
SRe[j , i ,4];

We construct one P-requesting transaction Tr = (SRr, SWr).
For each clause c[j]=(z[j , 1], z[j, 2], z[j, 3]), where (z[j, 1] = u [i l] or

z[j, 1]=vi[i l]) and (zU, 2]=u[i2] or z[j, 2]=~7[i2]) and (z[_j, 3]=u[i3] or
z [j, 3] = ~2[ia]) for j = 1, 2 , M, 1 < il, i2, i3 < N, we have one "clause compo-
nent j " that consists of the three literal components [j, i j], [j, i21, [j, ia]. For
every literal component [j, i~], k = 1, 2, 3, we define one "output node"
Tout[j , ik] =([SRout [j , ik]], [SWout[j , ik]]) and one "input node" Tin[j , ik]
=([SRin[j , ik]], [SWin[j , ik]]) as follows: iff z[j, k] =U[ik] then Tout[j , ik]
=Te[j , ik, 1] and Tin[j, ik]=Te[j , ik,2], else iff z[j, kJ=fi[ik] then
Tout [j, ik] = Te [_j, ik, 3] and Tin [j, ik] = Te [j, ik, 4]. For every clause compo-
nent j, we let: w [j, i 1 , 0] eSRr, w [j, ii , 0] eSWout [j, il], w [j, i3, i2] eSRin [j, i21,
w[j, ia,iz]~SWout[j, is], w[j, i2, i t]6SRin[j , il] , w[j, i2 , i l]~SWout[j , i2],
w [j, O, i3] E SR in [j, ia], w [j, O, i3] ~ S Wr.

We construct a serial schedule s of all P-executing and terminated transac-
tions constructed above: s=({T t[i , Z l}) ({Te[j , i , 2]})({Tt[i , 1]})({Te
[j, i, 3] Iz U, 1] = a [i] }) ({Tel_j, i,4] Iz[j, 1] = ~i[i]}) ({TeU, i, 3] Iz[j, 2] = ~i[i]})
({re[j, i, 4]lzU, 2] =a[i]}) ({reU, i, 3] IzU, 3] =f i [i]}) ({reO, i,4]]z[j, 3] =
a[i]}) ({re [j, i, 3] Iz U, k] =u[i]}) ({TeU, i, 411z[j, k] --u[i]}) ({re[j, i, 1]})
where 1 <_j_<_ M, 1 _< i < N and 1 < k_< 3. ((T) (T ') ... means a serival schedule
obtained by a concatenation of the serial schedules of the sets T, T', ... of
transactions).

Then we collect all the transactions constructed above to form the four
sets: PR = { r r} ; PE = { Te [j, i, 1], re [j, i, 2], re [j, i, 31, r e [j, i, 4] I for all j, k, i,
j = l , 2 ,M, k=1 ,2 ,3 , such that c [j]= (z [j , 1], z[j, 2], z[j, 3]) in C and
(z[j ,k]=u[i] or z[j ,k]=a[i]) and I_<i<N}; N E = 0 ; TT={Tt [i , 1],
Yt [i, 2] Ifor all i, i = 1, 2 N}.

It is not difficult to see that the system state Q = (PE, NE, TT, s) thus con-
structed is a valid database system state which satisfies the 2 V constraint and
can be constructed in polynomial time.

Notice that in s, in every literal component [j, i I and its corresponding
variable component i, Te[j, i, 1] reads a[j , i] from Tt[~, 1] and Te[j, i, 3] reads
b [j, i] from Tt [i, 2] in s. Also in s, no transaction reads any of the variable
names c[j,i], d[j,i], e[j,i], f[.j,i], w[j, il,i2], I <j<=M, l_~i, i~,i2<N from
any other transaction. From the consistency condition of Definition 3.2, in any
valid P-execution QI=(PEa,NEt , TT~,sO of PR and Q, the same read from
relations must be satisfied, i.e., in sl, for every literal component [j, i], Te[j, i, 1]

158 J. Xu

must read a[j , i] from Tt[i, 1] and Te[j, i, 3] must read b[j, i1 from Tt[i, 2]
in s. Also, in st no transaction should read any of the variable names c I j , i],
d[j, i], e[j, i1, f [j , i], w[j, it , i2], 1 <=j<M, 1 <i, il, i 2<N from any other trans-
action.

We now prove that there exists a valid database system state Q I =
(PEt, NE1, TT1, st) such that Q1 is a valid P-execution of PR and Q if and
only if C is satisfiable.

By the way we have constructed each literal component [j, i], it is easy
to verify that in any serial schedule Sa which includes Tt[i, 11, TEL], i, 1] and
Te[j',i, 2] and Q1 is a valid P-execution of PR and Q, one and only one of
the following formulas must be satisfied for the three transactions Tt[i, 1],
Te[j, i , 1] and Te[j, i , 2] in each literal component [j , i] : TI(j , i) :
#t (re[j , i , 2])<pl(rtFi , 1])<pl (re[j , i , 1]) in S t (exclusive) or Fl(j , i) :
#t(Tt[i , l l)<p~(Te[j , i , 1])<#~(Te[j,i , 2]) in s 1. This is because if neither
TI(j, i) or Fl(j , i) is satisfied in s~, then Te[j, i, 1] will not read a[j , i] from
Tt [i, 1] in s t . Similarly, one and only one of the following two formulas must
be satisfied for the transactions Tt [i, 2], Te [j, i, 31 and Te [j, i, 4] in literal com-
ponent [j, i1: T2(j, i): #1(rt[i , 2])<#~(re[j , i, 31)<#t(re[j , i, 41) in st (exclu-
sive) or F2(j,i): #l(Te[j , i , 41)<p~(Tt[i, 2])<p~(Te[j , i , 31) in s 1. This is be-
cause if neither T2(j, i) nor F2(j, /) is satisfied, then Te[j, i, 31 will not read
b [j, i] from Tt [i, 2] in s t .

We now prove that for every literal component [j, i] and its corresponding
variable component i, one and only one of the following two formulas must
be satisfied for the six transactions Tt[i, 1], TED', i, 1], Tel_j, i, 2], Tt[i, 2],
Te [j, i, 3] and Te [j, i, 4] : TRUE (j, i): T1 (j, i) and T2 (j, i) (exclusive) or FALSE
(j, i): Fl(j , i) and F2(j, i).

Suppose the contrary, then either (Tl(j , i) and F2(j,i)) or (T2(j,i) and
F l (j , i)) must be satisfied in s 1 .

Notice that #1(Tt[i, 1])<gx(Te[j , i, 4]) must be satisfied in Sa, otherwise
Tt[i, 1] would read c[j, i] from Te[j, i, 4] in s 1 ; #t(Tt[i , 21)<#t(Te[j , i, 2])
must also be satisfied in st, otherwise Tt[i, 2] would read d[j, i] from Te[j, i, 21
in st ; But this and F2(j, i) and T1 (j, i) lead to a contradiction, since they generate
the following cycle: gl (r t [i , 1])<#l (reU, i, 4])<#1(rt[i , 2])<pa(re[j , i, 21)
<#t (r t [i , 11). Similarly, notice that #a(re[J', i, 2])<pl(Te[j , i, 3]) must be sat-
isfied in st, otherwise Te[j, i , 2] would read e[j,i] from Te[_j,i, 3] in s l ;
r i, 4])<gx(Te[j , i, 1]) must also be satisfied in Sl, otherwise re[j , i, 4]
would read f [j , i] from re[j , i, 1] in sl. But this and F l (j , i) and T2(j, i) lead
to a contradiction, since they generate the following cycle: #t(Te[j , i , 1])
<#1 (re[j , i, 2])<#,(Te[j , i, 31)< #t (r e [j, i, 4])<#1 ((e[j, i, 1]).

In the following, we prove that either TRUE(j, i) must hold for all literal
components [j, i1, or FALSE(j, i) must hold for all literal components [j, i],
which correspond to a literal u [i] or ~i [i1. Suppose the contrary: for two literal
components [j~, i] and [j2, i], Jl =t=Ja, either (TRUE(j1, i) and FALSE(j 2, i))
or (TRUE(j2,i) and FALSE(jr , i)) is satisfied in s~. But T R U E (j l , i) and
FALSE(J2, i) lead to a contradiction, since they generate the following cycle:
#t(Tt[i , 2])<#1(Te[j2, i, 21)<r 1])<#x(Te[j2, i, 41)<g1(Tt[i, 2]). Sim-
ilarly, TRUE(j2, i) and FALSE(jr , i) also lead to a contradiction, since they
generate the following cycle: #~ (Tt [i, 1])<#1 (Te[j~, i, 41) <#~ (Tt [i, 2]) <
#1 (Te [j2, i, 2])<#t(Tt[i , 1]).

Below, we define a function "VAL": VAL is a mapping from the set of

On-line multiversion database concurrency control 159

all literals z I j , k], k = 1, 2, 3, in all clauses c[j] =(z[j', 1], z[j , 2], z I j , 3]) in
C, j = 1, 2 , M, to the set {true, false}: VAL(z[j , k])=t rue iff ((z[j, k] =u [i]
and TRUE(j,/)) or (z[j,k]=~[i] and FALSE(j,/)); VAL(z[j ,k])=false iff
((z [j, k] = u [i] and FALSE (j, i)) or (z [j, k] = ~i [i] and TRUE (j, i)).

Now we prove that in any valid database system state QI-=
(PE1,NE1, TTI,sl) such that Sa is a serial schedule of ({Tr}uPEuTT) and
Q1 is a valid P-execution of Q: for each clause c [jl -- (z [j, 1], z[j, 2], z[j, 3])
in C, j = 1, 2, ..., M, VAL(z[j , k])=t rue must be satisfied for at least one literal
z[j, k] in c[j], 1_<k__3.

In each clause component j, for the three literal components [j, i l] , [j , i2]
and [j, i3] which correspond to the same clause c [j] --- (z [j, 11, z [j, 2], z [j, 3]),
where for k = 1, 2, 3, z [j, k] = u [ik] or z [j, k] = ~i [ik], the following formula must
be satisfied:

CL(J): #1(rr)<#l(Tout[j, il]) and #l(rin[j, il])<#l(rout[j, i2]) and
#1 (Tin [j, i2])<#1 (Tout [j, i31) and #1 (Tin[j, i3]) < #l(Tr) in sl.

This is because if CL(J) is not satisfied, then either Tr will read w [j, il, 03
from Tout[j , il], or Tin[j , il] will read w[j, i2, il] from Tout[j , i2], or Tin[j , i2]
will read w[j, i3,i23 from Tout[j, i3], or Tin[j , i3] will read w[j, 0, ia] from
Tr in Sl.

For every literal component [j, ik] in each clause component j, TRUE(J, ik)
implies that #1 (Te [j, ik, 3])</~1 (Te [j, ik, 4]) must be satisfied in s~ ; FALSE(j, ik)
implies that #l(Te[j, ik, 1])<# l (Te[j , ik, 2]) must be satisfied in s 1. Earlier, we
defined Tout[j , ik] to be Te[j, ik, 1] and Tin[j , ik] to be Tel j, ik, 2] iff Z[j, k]
=U[ik]; and we defined Tout[j , ik] to be Te[j, ik,3] and Tin[j, ik] to be
Te [j, ik, 4] iff Z [j, k] = ~ [ik]; This and the definition of the function VAL implies
that whenever VAL (z [j, k]) = false, #1 (Tout [j, ik]) < #1 (Tin [j, ik]) must be sat-
isfied in sl. Suppose that for some clause c[j], VAL(z[j , 1])=false and
VAL(z [j, 2]) =false and VAL(z [j, 3]) = false. This would imply that the follow-
ing must be satisfied: #1(rout[j, il])<#l(Tin[j, il]) and # l (r o u t [j , i2])
<#1(rin[j, i2]) and #l(Tout[j, i3])<#l(rin[j, i3]) in sl. But this and CL(J)
would lead to the following cycle: i~l(Tr)<l~l(Tout[j, il])<#l(Tin[j, il])
</~1 (Tout [j, ia])<#1 (Tin [j, i2])<#1 (Tout [j, i3])<#1 (Tin [j, i3])<#1 (rr).
Hence VAL(z[j ,k])= t rue must be satisfied for at least one literal z[j,k],
l<k<_3 in c [j].

Suppose there exists Q1 =(PE1, NE1, TTI, sl) such that s 1 is a serial schedule
of ({Tr}~PEuTT) and Q1 is a valid P-execution of PR={Tr} and (2. We
assign the value true to each variable u[i]eU iff TRUE(j , i) is satisfied for
all transactions belonging to any literal component [j, i], and assign the value
false to each variable u[i]~U iff FALSE(j, i) is satisfied for all transactions
belonging to any literal component [j, i]. From what we have proved above
and the definition of the truth setting function VAL, at least one literal z[j, k],
l_<k<3, will be set true in each clause c[j]=(z[j, 1],z[j, 2,],z[j, 3]),

j = 1, 2 M. Thus, we obtain a truth setting assignment to all variables u [i] ~ U
which satisfies every clause c [j] in C.

Conversely, we show that if there exists a satisfying truth assignment for
C, then for valid database system state Q = (PE, NE, TT, s) and the set of P-
requesting transactions PR={Tr} , there exists a valid database system state
Q1 =(PE~,NE1, TT1, Sl), such that sl is a serial schedule of (PR~PEu TT)
and QI is a valid P-execution of PR and Q under the FTWP, LTRD, UPDW
and 2 V constraints. Let t: U--+ {T, F} be a satisfying truth assignment for C.

160 J. Xu

We can construct a serial schedule s 1 of ({Tr}wPEw TT) for the database
system state Q1 =(PE1, NE1, TT1, sl) where PE1 =(PEw {Tr}) and TT1 = TT
and Q~ is a valid P-execution of Q by topological sorting the following acyclic
directed graph G=(X, Z) where X is the set of nodes and Z is the set of arcs
in G:X={T~[T~e(PEw TTu{Tr})}; Z={(T~, Tv)[for all u, v,j, i, I < j<M, 1<
i< N, (t(u [i]) = r and (TRUE(j,/) ~ pl(Tv) < gl(T~) in s~)) or (t(u [i]) = f and
(FALSE(j, i)~#~(Tv)<p~(Tu)in sl)) or (CL(j)~#~(Tv)<#I(T,) in sO}. Then for
all i, if t(u[i])=T then s 1 would have the same ordering of transactions as
in the formula TRUE(j,i): r l (j , i) and r2(j,i) , i.e., #1(re [j , i , 2])
<#,(rt[i , l])<#~(reu, i, 1]), and #~(rt[i, 2])<Hi(re[j, i, 3])<#1 (re [j , i, 41)
in s l ; and for all i, if t(u[i])=F then s~ would have the same ordering of
transactions as in the formula FALSE(j, i): FI(j , i) and F2(j, i), i.e., #l(Tt[i, lJ)
<#~(Te[j,i, 1])<#l(re[j,i, 21) , and #1(re[j,i, 41)<H~(Tt[i, 21)
<#1(Te[j, i, 31) in s 1. Also, s~ would have the same ordering of transactions
as in the formula CL(j), i.e., #1(Tr)<t~(Tout[j,i~l) and #l (Tin[j , ial)
<#1 (Tout [j, i2]) and it, (Tin [-j, i21)</~ (Tout [j, i3]) and #1 (Tin [j, i3])<#~(Tr)
in Sl.

One can verify that in sx, as in s, for all i, j, Te[j, i, 11 reads a[j , i] from
Tt[i, 11 and Te[j, i, 3J reads b[j, i] from Tt[i, 21. Also, in sl, as in s, no transac-
tion reads any of the variable names c [j, i], d [j, i], e [j, i], f [j, i], w [j, i,, i21,
I < j < M , 1<i, il, i2<-_N from any other transaction; and T~ reads the initial
version for each variable name in its read set. Thus both the consistency condi-
tion and existence condition of Definition 3.2 are satisfied, and Q1 is a valid
P-execution of PR and Q. Since the write sets of all terminated transactions
in TT do not share any variable names with each other, the FTWP and 2 V
constraints are satisfied in Q~. Since none of the terminated transactions in
TT have written a version for any variable name that is in either the read
set or the write set of the P-requesting transaction T~, the LTRD and UPDW
constraints are also satisfied in Q1. [5]

