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Abstract. This paper  presents a new model for studying the concurrency vs. 
computat ion time tradeoffs involved in on-line multiversion database concur- 
rency control. The basic problem that is studied in our model is the following: 

Given: a current database system state which includes information such as 
which transaction previously read a version from which other transaction; which 
transaction has written which versions into the database;  and the ordering of 
versions previously written; and a set o f  read and write requests of requesting 
transactions. 

Question: Does there exist a new database system state in which the request- 
ing transactions can be immediately put into execution (their read and write 
requests satisfied, or in the case of predeclared writeset transactions, write 
requests are guaranteed to be satisfied) while preserving consistency under a 
given set of additional constraints? (The amount  of concurrency achieved is 
defined by the set of additional constraints). 

In this paper  we derive "l imits"  of performance achievable by polynomial  
time concurrency control algorithms. Each limit is characterized by a minimal 
set of constraints that  allow the on-line scheduling problem to be solved in 
polynomial  time. If any one constraint in that minimal set is omitted, al though 
it could increase the amount  of concurrency, it would also have the dramatic  
negative effect of making the scheduling problem NP-complete;  whereas if we 
do not omit any constraint in the minimal set, then the scheduling problem 
can be solved in polynomial  time. With each of these limits, one can construct 
an efficient scheduling algorithm that achieves an optimal level of concurrency 
in polynomial  computat ion time according to the constraints defined in the 
minimal set. 

* Current address: Department of Computer Science, York University, 4700 Keele Street, 
North York, Ontario, Canada M3J 1P3 
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1 Introduction 

This paper studies the performance vs. computation time tradeoff involved in 
on-line database concurrency control. 

The objective of database concurrency control is to allow many users to 
simultaneously read existing information in a common database, perform local 
computation based on previously read information, and write new information 
resulting from local computation into the database, while guaranteeing correct- 
ness of the database system. 

The database concurrency control problem has received considerable atten- 
tion in recent years, and a great number of algorithms have been proposed 
(e.g. I-1-4, 7, 10-18, 23]). A principal measure of the performance of a database 
concurrency control algorithm is the amount  of concurrency it achieves while 
guaranteeing serializability [13, 15, 20]. Generally speaking, the higher the 
amount  of concurrency achieved by a concurrency control algorithm, the greater 
the computation time required to achieve that amount  of concurrency. In fact, 
the computation time required to achieve concurrency beyond a certain limit 
may become intolerably high, such that it does not pay off any more to achieve 
concurrency beyond that limit. Generally, we would want to maximize concur- 
rency while restricting the required computation time to be polynomial (as 
opposed to exponential). Hence it is important  to study the performance vs. 
computation time tradeoff involved in database concurrency control. 

Previous work on this subject includes [14-16]. In [15], the computational 
complexity involved in database concurrency control is studied in a two step 
model of transactions. In [14], the two step model of transactions in [15] is 
extended to a multistep model of transactions. [16] considers the case where 
multiversions of data exist in the database. 

This paper presents a new model for studying the concurrency vs. computa- 
tion time tradeoffs involved in on-line multiversion database concurrency con- 
trol. A major difference between our model and previous models is the basic 
problem that is studied. In previous models, the basic problem that is studied 
is the following: 

Given: a schedule s of a set of transactions representing the output of some 
concurrency control algorithm; and a class C of serializable schedules. 

Question: Is schedule s in class C? (The amount  of concurrency achieved 
is defined by the restrictions on membership in C). 

In contrast the basic problem that is studied in our model is the following: 

Given: (i) a current database system state which includes information such 
as which transaction previously read a version from which other transaction; 
which transaction has written which versions into the database; and the ordering 
of versions previously written; and (ii) a set of read and write requests of request- 
ing transactions. (Note that (i) and (ii) above represent the input to a concurrency 
control algorithm). 

Question: Does there exist a new database system state in which the requesting 
transactions can be immediately put into execution (their read and write requests 
satisfied, or in the case of predeclared writeset transactions, write requests are 
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guaranteed to be satisfied) while preserving consistency under a given set of 
additional constraints? (The amount  of concurrency achieved is defined by the 
set of additional constraints). 

In our model, whenever the existence of the new database system state can 
be determined in polynomial  time, a corresponding on-line polynomial  time 
multiversion concurrency control algorithm that actually constructs the new 
database system state is shown. 

In order to obtain a higher amount  of concurrency, various optimizing strate- 
gies have been designed for database concurrency control. Below, we briefly 
introduce some of the optimizing strategies studied in this model. 

In many  cases, user transactions are able to specify in advance the names 
of the database entities they intend to write new information into. Such transac- 
tions are called predeclared writeset transactions. Previous work has shown 
that it is possible to increase the performance of a database system by using 
a preventive strategy to eliminate restarts of predeclared writeset transactions, 
i.e.: the scheduler puts a predeclared writeset transaction into execution only 
if it determines beforehand that the future write of that transaction will never 
compromise correctness of the database system [4, 21]. 

In practice, it is often the case that more than one read or write request 
may have arrived in the system within a same short period of time and it 
may be either impossible (in the case of distributed systems that do not have 
a global time reference) or not important  to distinguish them in terms of real 
arrival time. In such cases, it seems perfectly logical to allow the concurrency 
control algorithm to have the freedom to schedule a whole set of read or write 
requests in a logical order that optimizes performance, i.e., achieves more concur- 
rency. Previously proposed algorithms for concurrency control in database sys- 
tems typically schedule requesting transactions one at a time, or some times 
even one step of a transaction at a time, even if a large number  of transactions 
have arrived in the system and are requesting execution simultaneously. In this 
case, the scheduler may chose for first execution a transaction whose execution 
precludes the simultaneous execution of any other transaction. In such situations, 
it is possible to achieve higher performance of the database system by analyzing 
the whole set of requesting transactions to chose the largest subset or simply 
any large subset which can be simultaneously executed in parallel with all trans- 
actions currently executing in the system [21]. 

The performance of a database system can also be increased if the database 
system supports multiversions of data. That  is, each time a user transaction 
writes new information into some database entity with name x, a new version 
of x is produced. If a user transaction requests to read information in the data- 
base entity bearing name x, then the scheduler selects one of the existing versions 
of x to be read. Since writes do not overwrite each other, and since reads 
can read any existing version (additional constraints can be specified on which 
version should be read), a higher level of concurrency can be achieved [-2, 16, 
213. 

However,  in order to use any of the optimizing strategies described above, 
the concurrency control algorithm must spend additional computat ion time. 
In our model, we study what additional constraints we need to add in order 
to restrict the computat ion time to be polynomial.  

Our model is capable of handling the various optimizing concurrency control 
strategies above within a unified model. 
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In the next section we define transactions and serial schedules. In our model 
transactions consist of a read and write step. The complexity results that are 
obtained in this two step model can be easily extended to a more general n-step 
model of transactions, as will be discussed at the end of this paper. 

In Sect. 3 we introduce the formal model for on-line multiversion concurrency 
control. In our model there are two types of transactions: predeclared writeset 
transactions and non-predeclared writeset transactions. Predeclared writeset 
transactions declare the entities they intend to read and write at submission 
time. Non-predeclared transactions declare only their read sets at submission 
time; their write sets become known only at the end when they have finished 
their computation. 

Our paper studies the following two basic problems: 

(1) Preventive scheduling of predeclared writeset transactions, so that they 
never have to be restarted. That  is, given the current database system state 
where some transactions are currently executing and some transactions are al- 
ready completed, determine if one or more predeclared writeset transactions 
can start execution (i.e., perform their read steps), while guaranteeing that the 
final results of their computation can always be written into the database while 
preserving serializability. 

(2) When one or more non-predeclared writeset transactions finish their com- 
putation and announce their writesets, determine if they can write into the 
database (while preserving serializability) without aborting any transactions. 

It will be shown that the first problem is actually equivalent to the second 
problem when the constraint DSRD introduced in Sect. 4 is imposed on the 
first problem. 

It is assumed that the system supports multiple versions of data. The model 
contains only a minimum set of built-in constraints (precisely those necessary 
to guarantee serializability). The possibility of using various optimizing strategies 
(such as predeclare writesets [-4, 21], or schedule a whole set of read or write 
requests simultaneously [21], or use multiversion data [-2, 16, 21], etc.) is inherent 
in the formalism. In fact, denying the scheduler the possibility of using any 
single optimizing strategy is formally defined to be an additional constraint. 
The performance achieved by a scheduler with no additional constraints on 
its input or output represents the upper bound of performance that can ever 
be achieved by a scheduler when serializability is used as the correctness 
criterion. 

In Sect. 4, we introduce additional constraints that we have found to have 
a significant effect on the computational complexity of the on-line concurrency 
problem. That  is, the addition or omission of any single one of these constraints, 
can make an otherwise NP-complete problem polynomial time solvable, or vice- 
versa. 

The constraints that we study include: imposing a fixed explicit total ordering 
of all existing versions for each variable name (FTWP); restricting each transac- 
tion to read the "latest" available version (LTRD) or a designated version 
(DSRD), or write an "up- to-date"  version (UPDW) or a designated version 
(DSWT); imposing an invariant ordering between existing versions and versions 
to be written by predeclared writeset transactions (IVWP) for each variable 
name; and, imposing an upper bound on the number of transactions being 
scheduled each time (UB). 
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It  is interesting to note that these constraints that affect computat ional  com- 
plexity are also constraints that  may  naturally arise in practical applications. 

In this paper  we derive "l imits"  of performance achievable by polynomial  
time concurrency control algorithms. Each limit is characterized by a minimal 
set of constraints that allow the on-line scheduling problem to be solved in 
polynomial  time. If any one constraint in that minimal set is omitted, al though 
it could increase the amount  of concurrency, it would also have the dramatic  
negative effect of making the scheduling problem NP-complete;  whereas if we 
do not omit  any constraint in the minimal set, then the scheduling problem 
can be solved in polynomial  time. 

We also introduce a constraint (2 V) that  restricts the number  of versions 
for each variable name in a previous database system state. The main purpose 
of this constraint is to make the NP-completeness results as strong as possible 
and show that in most  cases restricting the number  of version values for each 
variable name in the database will not help to substantially reduce the required 
computat ion time (unless the number  of version values is restricted to be 1). 

In Sects. 5 and 6, we prove that the minimal set of restrictions {FTWP, 
(LTRD or DSRD), IVWP, (UPDWor DSWT)} and the minimal set of restrictions 
{FTWP, 1VWP, UB} constitute two fundamental  limits of performance achiev- 
able by polynomial- t ime concurrency control algorithms. With each of these 
limits, one can construct an efficient scheduling algorithm that achieves an opti- 
mal level of concurrency in polynomial  computat ion time according to the con- 
straints defined in the minimal set. 

In Sect. 7 we provide a summary  of the complexity results. Finally, in Sect. 8, 
we discuss how existing concurrency control algorithms fit into our f ramework 
and how to extend our results to an n-step model of transactions. 

2 Preliminaries: Transactions and serial schedules 

In order to develop our model in the following section, we first introduce some 
basic definitions of transactions, schedules, serial schedules and "read f rom"  
relations between transactions in a schedule. 

In our model, we consider transactions that consist of two atomic steps: 
a read on a set of database entities - called the "readset"  of the transaction, 
followed by a write on a set of database entities - the "writeset". The notat ion 
adopted here is similar to that used in [15]. 

A database system consists of a set V of variable names and a set T =  
T1, T2, ... ,  T, of transactions. A transaction Ti is a pair ([SRJ, [SWJ), where 
SR~ is a subset of V called the readset of T~, and SW~ is a subset of V called 
the writeset of T~. 

The variables are abstractions of data entities, whose granularity is not 
important  for the present discussion. The variables can represent bits, files or 
records, as long as they are individually accessible. 

It  is assumed that the system supports multiple versions of data [2, 16], 
i.e., there may co-exist one or more values, called "versions "' for each variable 
name in the database. 

Each transaction T~ can be thought  of as first reading a set of versions 
for each variable name in its readset, then performing a possibly lengthy local 
computat ion based on that set of versions. The results of the computat ion are 
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finally used to produce a new set of versions for each variable name in its 
writeset. The first step, i.e., the read step is denoted by R i[SRJ, while the last 
step, i.e., the write step is denoted by W~ [SW/]. 

A schedule of a set of transactions T =  {T1, T2, ..., T,}: T1 = ([SR1], [SW1]), 
T2=([-SR2] , [SW2] ) ,  . . . ,  T,=([SR,], [SW~]) is a permutation of the set S , =  
{R1 [SRI], W1 [SWL] . . . . .  R, [SR,], VV, [SW,]}, such that for every i: R~ [SR~] 
precedes W/[SW~]. We abbreviate R~[SRI] as Ri and Wi[SWi] as W i whenever 
we need not specify SR~ and SW~. Associated with a schedule we have a one 
to one function ~z:S,~{1,2,  ..., 2n}, such that for all i, j, e,~S,,  ej~S,,  if ei 
precedes c 9 in the permutation, then ~z(ei)< ~z(~i). 

Below we define a serial schedule, which models the situation where all 
transactions are executed sequentially. 

A schedule of a set of transactions T={Ta ,  ..., T,} is a serial schedule 
of T i f f  rc(Wi)=Tr(Ri)+l for all 1,2, . . . ,n ,  i.e. a read R~ always immediately 
precedes a write W~ of the same transaction. We abbreviate the serial 
schedule R h [SRh] W h [SWh] Ri2 [SRJ  Wi~ [ S W J  ... R,, [SRJ  Wi,~ [ S W j  as 
(T/1 Ti2 ... T~,) whenever we need not specify the readset and writeset of each 
transaction in the serial schedule. We associate with a serial schedule a one 
to one function /~: T ~ { 1 , 2 ,  ..., n}, such that for all i, j, T/~T, TjsT, if ~(W/) 
< rc (W j) and ~r (R i)< ~r (R j) in the serial schedule, then #(T/)</~ (T j). 

We say Rj reads x from l/Vii in schedule s if x~(SWic~SRj) and ~(W//) <~(Rj) 
in s and there exists no ~ such that xeSWk and re(W0 < rC(Wk) < rc(Rj) in s. 

In the following sections, we shall also say 77. / reads x from T~ in schedule 
s when Rj reads x from W/in s. 

Example 2.I 
s~ =R1 Ix] W 1 [y, z, b] Rz [-z] W2 [y] R3 [-y, b] W3 [Y] 

s~ = R~ [y, b] Vr [y] R2 [z] W~ [y] R~ Ix] W~ [y, z, bl 

s~ and s a are both serial schedules of the set of transactions T={T~, T2, T3} 
where T l=( [x ] ,  [y,z,b-]), T2=([z],  [-y]) and Ta=([y,b], [y]). In serial schedule 
sl of T :R 2 reads z from I4~,R 3 reads b from Wa, R 3 reads y from W2. In 
serial schedule s2 of T: no transaction reads from any other transaction. []  

3 The formal model 

In a database system, the task of a scheduler is to maintain consistency of 
the database system while allowing as many user transactions as possible to 
simultaneously access the database system. 

Serializability [3, 6, 15] is used as the consistency criterion here. If an inter- 
leaved execution of a set of transactions produces the same overall effect as 
a serial execution of the same set of transactions, then the execution is called 
serializable. (We shall call the order of the transactions in such a serial execution, 
which is not necessarily identical to the actual time order in which the reads 
and writes of those transactions are processed, a "virtual order".) 

We model this as the following problem: Given a database system state 
consisting of four elements: an executing set of predeclared writeset transactions, 
an executing set of non-predeclared writeset transactions, a terminated set of 
transactions, and a serial schedule defining the virtual order of all executing 
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and terminated transactions; construct a new database system state, such that  
requesting transactions can be put into execution in parallel with all transactions 
already in execution, or transactions that have finished their computat ion can 
write new versions of data  into the database, while the reads and writes of 
all transactions in the new virtual order are consistent with the previous virtual 
order. 

To begin, we start with a most  unrestrictive model, where the only correctness 
criterion is serializability. 

Definition 3.1 A database system state is a quadruple Q = (PE, NE, TT, s) where 
(a) PE is called the set of predeclared writeset (P-)executing transactions; 
(b) NE is called the set of nonpredeclared writeset (N-)executing transactions; 
(c) TTis called the set of terminated transactions; 
(d) s is a serial schedule of T = ( P E u N E u  TT) called the virtual sched- 

ule. [] 

A P-executing transaction is a transaction which has been put into execution 
by reading a set of existing versions for each variable name in its readset, but 
has not yet completed its local computat ion,  thus has not yet made a set of 
versions for each variable name in its writeset available for reading by other 
transactions. An N-executing transaction is a transaction which has been put 
into execution by reading a set of existing versions for each variable name 
in its readset, but has not yet completed its local computation,  and its writeset 
has not yet been defined (its writeset is assumed to be empty). A terminated 
transaction is a transaction which has completed its local computat ion and 
has written a set of versions for each variable name in its writeset into the 
database. The set of versions for each variable name in the writeset of a terminat- 
ed transaction can be read by other transactions. The virtual schedule is a serial 
schedule of all P-executing transactions, N-executing transactions and terminat- 
ed transactions. The scheduler guarantees that the reads and writes of all P- 
executing transactions, N-executing transactions and terminated transactions 
will have the same effect as if they were executed sequentially in the same order 
as the virtual schedule. A virtual schedule completely defines which transaction 
has read the versions of which variable names f rom the writeset of which transac- 
tion so far up to the present system state. 

Definition 3.2 Given a set PR of predeclared writeset transactions that are 
requesting to be put into execution (PR is called a P-requesting set), and a 
database system state Q=(PE, NE, TT, s), a new database system state QI= 
(PE1, NE1, TT1, sl) is a valid P-execution of Q and PR, whenever 

(a) sl is a serial schedule; and 
(b) N E I = N E  and T T I = T T  and for some nonnull subset PR~_PR:PEI  

= (PE u PRs); and 
(c) (consistency condition:) for all i, j, x, T ie (PEwNEwTT) ,T j~(PEu 

NEwTT) ,  x~V: Tj reads x from T/in s iff Tj reads x from T/in sl (i.e., every 
read from relation in s is preserved in sl); and 

(d) (existence condition:) for all i, j, x, Ti~(PEI ~ NE1u TT1) , Tj~(PE1u 
NEI~TT1), x~V: if Tj reads x from Ti in sl then Ti~TT 1 (i.e., Tj can read 
from T i only if T/has terminated). []  

Definition 3.2 defines the conditions under which a set of predeclared writeset 
requesting transactions can be put into execution. P-requesting transactions 



128 J. X u  

are scheduled as follows: the concurrency control algorithm or scheduler must 
find a new virtual schedule s t which includes both the P-requesting transactions 
and all the transactions in the previous virtual schedule s, such that the "con-  
sistency condit ion" is satisfied, i.e.: all the read from relations in s are preserved 
in st .  In addition, the existence condition must be satisfied, i.e.: no transaction 
can read from a predeclared writeset transaction before it has terminated and 
has produced a version value for each variable name in its writeset. If  a new 
virtual schedule sl can be found that satisfies these conditions, then a new 
valid database system state Q1 can be constructed, where each P-requesting 
transaction is put into execution by reading the version values specified by 
the virtual schedule sl and by transferring that transaction from the requesting 
set PR to the executing set PE. The "existence condit ion" states that no transac- 
tion in the virtual order should read a version which has not yet been produced. 
Note that for the same P-executing set, N-executing set and terminated set 
of transactions, more than one virtual schedule can be constructed by rearrang- 
ing the virtual schedule while satisfying all the consistency and existence condi- 
tions. In our model we do not allow transactions to read version values written 
by "uncommi t t ed"  transactions, i.e., transactions that have not terminated. This 
is mainly to prevent "cascading aborts",  i.e., situations where in the event that  
some transaction has to be aborted, all transactions that read from that transac- 
tion must also be aborted. 

Definition 3.3 Given a set NR of non-predeclared writeset transactions that 
are requesting to be put into execution (NR is called a N-requesting set), and 
a database system state Q = ( P E ,  NE, TT, s), a new database system state 
Q1 = (PE1, NE1, TT1, sa) is a valid N-execution of Q and NR, whenever 

(a) sl is a serial schedule; and 
(b) PE=PE and T T I = T T  and for some nonnull subset N R ~ N R : N E a  

= (NE u NR~); and 
(c) (consistency condition:) for all i, j, x, T i e (PEuNE~TT) ,  Tj~(PEw 

NEwTT) ,  x~V: Tj reads x from T~ in s iff Tj reads x from T i in Sl (i.e., 
every read from relation in s is preserved in sl); and 

(d) (existence condition:) for all i, j, x, Ti~(PEl w NEl u TT~), Tie 
( P E l w N E l u T T O ,  xeV: if Tj reads x from T/ in s 1 then T~TT1 (i.e., Tj can 
read from T i only if Ti has terminated). []  

Definition 3.4 Let PE c ~_PE be a nonnull subset of P-executing transactions 
that have completed their local computat ion and are requesting to write a new 
version for each variable name in their respective writeset into the database. 
(PEc is called a P-commit set). A new database system state Q1 =(PE~, NE 1, 
TT1, sO is a valid P-termination of a current database system state Q=(PE, 
NE, TT, s) and PEc, whenever 

(a) Sl is a serial schedule; and 
(b) NE~ = NE and TTt = (TTu  PEc) and PEI = (PE-- PEc) and 
(c) (consistency condition:) for all i, j, x, T i~ (PEuNEuTT) ,  Tje(PEu 

N E u T T ) ,  x~V: Tj reads x from T i in s iff Tj reads x from T i in sl (i.e., every 
read from relation in s is preserved in sO. [] 

Since a preventive strategy was used for putting P-requesting transactions 
into execution, a set of versions produced by the local computat ion of a P- 
commit  transaction for each variable name in its writeset can always be immedi- 
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ately written into the database while preserving consistency of the database 
system. 

Note  that whenever a transaction terminates, it creates a new version for 
each variable name in its writeset. Thus, more than one version may coexist 
for each variable name in the current database system state, including the initial 
version for each variable name in the initial database system state. 

Definition 3.5 Let NE~. be a set of nonpredeclared writeset transactions where 
every transaction T/~NE'c has a writeset defined and corresponds to a N-execut- 
ing transaction T~eNE that has completed its local computat ion and is request- 
ing that the set of versions in the writeset SW~' produced by its local computat ion 
be written into the database. For  corresponding transactions T~ and T~': SR~ 
= SR' i. (NE'c is called a N-commit set). Let NE~ ~_ NE be the set of N-executing 
transactions that correspond to the set NE' c. A new database system state 
Q~ = ( P E  t, NE1, TT1, sl) is a valid N-termination of a current database system 
state Q---(PE, NE, TT, s) and NE" whenever 

(a) sl is a serial schedule; and 
(b) PE 1 = PE and 
(c) for some nonnull subset NE'~ ~_ NE'~ and NEc~ ~_ NE~ where NE~s is the 

set of N-executing transactions that correspond to the set NE'cs: TTI= 
( T T u  NE'~,) and NE~-- (NE-NEc);  and for all i,j, x, T~' ~(TT~-  TT) and T ~ T T  
and T~eNEc~, xeV: Ti' reads x from Tj in sl iff T/ reads x from Tj in s (i.e., 
every terminated nonpredeclared writeset transaction T/ must read the same 
set of versions in s~ that  its corresponding N-executing transaction T~ read 
in s); and 

(d) for all i, j, x, Ti~(PE1 w NE1 ~ TT), Tj~(PE 1 ~ NE 1 u TT), x~ V: Ti reads 
x from Tj in s a iff Ti reads x from Tj in s (i.e., every other transaction must 
read the same set of versions in sa that was read in s). []  

In Definition 3.5, it is possible that some transactions (in the subset NE~ 
--NEcs) may have to be aborted if it is determined that they cannot write 
into the database without compromising consistency. 

Definition 3.6 A database system state Q =(PE,  NE, TT, s) is a valid database 
system state iff: 

(a) PE = 0 and NE = 0 and TT = 0 and s is empty (called the initial database 
system state); or, 

(b) Q is a valid P-execution of a valid database system state and a P-request- 
ing set of transactions; or, 

(c) Q is a valid N-execution of a valid database system state and a N-request- 
ing set of transactions; or, 

(d) Q is a valid P-termination of a valid database system state and a P- 
commit  set of transactions; or, 

(e) Q is a valid N-terminat ion of a valid database system state and a N- 
commit  set of transactions. [] 

Definition 3.6 Precisely defines which database system states are considered 
to be valid, i.e., preserve consistency. Here it is assumed that all valid system 
states are derived from the initial state, i.e., a state in which no transaction 
exists within the system. A valid system state corresponds to a state in which 
for all transactions currently executing in parallel or terminated in the database 
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system, their reads and writes on the database have the same overall effect as 
if they were executed sequentially in the same order as the serial schedule s. 

Definition 3.7 Given a P-requesting set PR and a current database system state 
Q=(PE, NE, TT, s), we call the valid database system state Q I =  
(PE,, NE~, TT1, sl) a maximum concurrency P-execution of Q and PR iff: Q1 
is a valid P-execution of Q and PR; and no other database system state 
Q2=(PE2, NE2, TT2, s2) exists such that Q2 is also a valid P-execution of Q 
and PR; and [PEI[ < [PE 2[. [] 

Definition 3.8 Given a current database system state Q = (PE, NE, TT, s) and 
a N-commit set NE'c of nonpredeclared writeset transactions, we call the valid 
database system state Q1 = (PEt, NE, , TT 1 , sO a maximum concurrency N-termi- 
nation of Q and NE'c iff: Q1 is a valid N-termination of Q and NE'c; and no 
other database system state Q2 =(PE2,  NE2, TT2, s2) exists such that Q2 is also 
a valid N-termination of (2 and NE'c ; and [TTI[ <[TT2[. [] 

Note that in Definition 3.5 and 3.8 above we did not allow P-executing 
transactions to be aborted in favor of terminating non-predeclared writeset trans- 
actions. In other words we have guaranteed that once a predeclared writeset 
transaction is put into execution, it will never be aborted. (If a system designer 
wishes to change that policy, then the requirement for maximum concurrency 
in Definition 3.8 could be changed to [TT~ w PEI[ < [TT2 w PE2] besides changing 
the condition PE = PE, in Definition 3.5.) 

In order to have an intuitive notion of how a scheduler would work according 
to such a model, let us first examine the following example: 

Figure 3.1 
PRi: P-requesting set of transactions. 
NRi: N-requesting set of transactions. 
PEck: P-commit set of transactions. 
NEc'~: N-commit set of transactions. 
Qi : database system state. 
PE~ : P-executing set of transactions. 
NEi: N-executing set of transactions. 
TT~ : terminated set of transactions. 
s~: virtual ordering. 

Qo : PEo=O NEo=O TTo=O 
So=( >. 
(The initial database system state). 

PR~ = {T~ =([b] ,  [a])}, 

Qa : PEI={T,}  NEI=O TTI=O 
sx = ( T 1 ) = R 1  I-b] W1 [a]. 

(T1 is put into execution in Q1. Q1 is a valid execution of PR~ and Qo by 
Definition 3.2.) 

PR2 = {Ta =([c, a], [d, a])}; 
Q2 : PE2-- {T~, T2} NE2 = 0  TT2 = 0  
s2 = (T2 T1 > = R2 [c, a] W2 [d, a] R1 [b] W1 [a]. 
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(T z is put into execution in (22" (22 is a valid execution of PR 2 and Q1 by 
Definition 3.2.) 

PR 3 = {T 3 = ([-a, d ,  [ f ,  g, c]), T4 = (If,  a], [b, c]), Ts =([a, g], [e, a])}; 
(22: PE2={T1, T2} N E 2 = 0  TT2=0 
52 = <T2 T1) = R2 [c, a] W 2 [d, a] R1 [b] W1 [a]. 

(There does not exist any valid P-execution of PR 3 and (22 in which any transac- 
tion in PR3 can be put in execution.) 

PR3={T3, T4, Ts} PECl={T1}; 
(23: PE3={T2} NE3=O TT3={TI} 
S 3 ~ S 2 �9 

(7"1 is terminated in Q3. (23 is a valid P-termination of PEcl and Q2 by Definition 
3.4.) 

PR3={ T3, T,,, Ts}; 
Q4: PE4={T2, T4, Ts} NE4=O TT4={T1} 
54 = (T2 T1 T4 Ts) 
= e 2 [-c, a ]  W 2 [d, a ] e  I [b]  W 1 [-a] e 4 [f~ a]  W 4 Eb, c ] e  5 [a, g]  W 5 I-e, a].  

(T 4, T 5 are put into execution in (24. Q4 is a valid P-execution of PR 3 and 
(23 by Definition 3.2.) 

PR4 = { r3} NRI = { T6 = ( [a ] ,  []), T7 = ([a,  b] ,  [])}, 
Qs: PEs={T2, T4, Ts} NEs={T6, TT) TTs={T1} 
s5 = (  r2 T1 To T7 r~ rs) 
= R2 [c, a] W2 [d, a] R1 [b] W1 [a ]R  6 [a] W6 [7 R7 [a, bJ W7 D R4 I f ,  a] 
W4 [b, c] R5 [a, g] W5 [e, a]. 

(T 6 and T v are put into execution in (25. Q5 is a valid N-execution of NR 1 
and Q4 by Definition 3.3.) 

PR 4 = {T3} NEc'~ = {T; = ([a], [ f ] ) ,  T~ = ([a, b], I f ,  g])}; 
(26: PE6={Tz, T4, T5} N E 6 = 0  TT6={T1,TI} 
s6 = (T2 T 1 T~ T~ Ts)= R2[c, a] W2[d, a] Rl [b] Wl[a] R4 
I f ,  a] W4 [b, c] R~ [a] 
W~ I f ]  R5 [a, g] W5 [e, a]. 

(T~ is terminated but T 7 is aborted in (26- (26 is a valid N-termination of NEcl 
and (25 by Definition 3.5.) 

Example 3.1 Figure 3.1 demonstrates how a database scheduler may transform 
one system state to another system state while preserving serializability of all 
transactions currently executing in parallel. 

Below, some explanation may be useful: 
In the transformation from database system state (21 to state (22, the sche- 

duler is able to put transaction T 2 into execution in parallel with T1, because 
there exists a virtual ordering identical to the serial schedule s2, where a set 
of versions corresponding to the variable names in T2's readset are available, 
and T1 reads the same versions as in the previous virtual ordering sl. Note 
that T2 cannot be executed according to the virtual ordering s = ( T  1 T 2), because 
in that virtual ordering T2 is supposed to read a version of the variable name 



132 J. Xu 

a in Tl's writeset, which has not yet been produced, since T1 has not yet ter- 
minated. 

With database system state Q2, no transaction in the P-requesting set P R  3 
can be executed, because no transaction in PR3 can be inserted into the serial 
schedule without creating a virtual ordering in which at least one transaction 
is supposed to read a version which has not yet been produced. 

In the transformation from database system state Q3 to state Q4, since T~ 
has terminated previously, each single transaction in the P-requesting set P R  3 
can be put in execution by reading the version of a produced by T~. But because 
T 4 and T 5 is the largest subset of all P-requesting transactions in P R  3 which 
can be simultaneously put into execution in parallel with T2, we chose T 4 and 
T 5 to be executed first. On the contrary, if we chose T 3 for execution first, 
then both T4 and T 5 would be blocked from execution, since no virtual ordering 
can be found which allows T 4 and T5 to be executed in parallel with T 3. 

In the transformation from database system state Qs to Q6, two N-executing 
transactions T 6 and T7 have completed their local computation. Their corre- 
sponding N-commit transactions T; and T4 each has a writeset defined. Among 
the two N-commit transactions T~ and T~ in the N-commit set NEc'~, only 
T; can be committed, without aborting other transactions; whereas if T~ is 
committed, then two P-executing transactions T4 and T 5 must be aborted. This 
is because T4 cannot be positioned after T4, nor positioned before T4 in any 
virtual ordering, otherwise either T~ would read b from T 4, or T 4 would read 
f from T4. But T 7 - the N-completed transaction corresponding to TT, did 
not read b from T4, neither did T 4 read f from T4 in the previous virtual 
schedule ss. Similarly, T4 cannot be positioned after Ts, nor positioned before 
Ts, otherwise T~ would read a from Ts, or T5 would read g from T~, which 
both violates the conditions in Definition 3.5. Thus, in order to minimize the 
total number of aborted transactions, we chose to abort and restart the single 
N-completed transaction T 7. Note that T~ must be positioned after T e and 
before T 5 in the new virtual ordering s6, otherwise either T 4 would read f 
from T~, or T~ would read a from Ts, which also violates the conditions in 
Definition 3.5. And we can continue like this constructing successive new valid 
database system states. 

Note that in this example all valid P-executions are maximum concurrency 
P-executions of the previous state, and the valid N-termination Q6 is a maximum 
concurrency N-termination of NEc'~ and Qs- [~ 

Two problems, modeled as state transformations above, involve major per- 
formance vs. computation time tradeoffs. The first is the problem of constructing 
valid P-executions of a P-requesting set and a valid database system state, which 
formalizes the problem of determining whether a given set of predeclared writeset 
transactions can be put into execution while guaranteeing that their future writes 
on the database will never compromise correctness of the database system. That  
is, the predeclared writeset transactions are guaranteed to be "commit ted"  (ter- 
minated) without aborting any of the executing transactions. The second is 
the problem of constructing valid N-terminations of a N-commit set and a 
given valid database system state, which formalizes the problem of determining 
whether the writesets of a given set of non-predeclared writeset transactions 
can be written into the database while preserving correctness of the database 
system. 
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As will be shown in the next section, the second problem is equivalent to 
the first problem if a particular additional constraint called the "designated 
read (DSRD)" constraint is imposed on the first problem. For  this reason, we 
need only study in detail the performance vs. computat ion time tradeoff involved 
in solving the first problem. That  is, all the results that we derive for the problem 
of constructing valid P-executions of a P-requesting set and a valid database 
system state under the DSRD constraint can be directly applied to the problem 
of constructing valid N-terminations of a N-commit set and a valid database 
system state. Since the problem of constructing a valid N-execution or a valid 
P-termination of a given valid database system state can be trivially solved 
in polynomial time, we do not address these problems any further. 

4 Additional constraints 

Since the general problem of constructing valid P-executions or valid N-termina- 
tions of a given valid database system state when no additional constraints 
are imposed is NP-complete (even under a combination of various additional 
constraints, the problem is still NP-complete, as we will show in the following 
sections), even for the sole reason of reducing computational complexity, it would 
prove beneficial to investigate possible additional constraints to obtain subsets 
of valid P-executions or N-terminations of a valid database system state and 
a P-requesting set or N-commit set in polynomial time. 

The constraints that we introduce below, are constraints that we have found 
to have a significant effect on the computational complexity of the on-line con- 
currency problem. That  is, the addition or omission of any single one of these 
constraints, can make an otherwise NP-complete problem polynomial time solv- 
able, or vice-versa. At the same time, it is interesting to note that these constraints 
that affect computational complexity are also constraints that may naturally 
arise in practical applications. 

Given a P-requesting set PR (or a N-commit set NEc) of transactions and 
a valid database system state Q=(PE,  NE, TT, s), we may impose that one 
or more of the constraints introduced below are to be satisfied by a valid P- 
execution (or valid N-termination) QI=(PEt,NE1, TT1,s1) of PR (or NEc) 
and Q. 

Conventional concurrency control schemes impose a fixed explicit total 
ordering of all existing versions of each data variable. This implies a fixed order- 
ing of all terminated transactions which have produced different versions of 
the same variable. If we adopt  this restriction, then we have the following con- 
straint: 

1. Fixed terminated write position (F TWP) constraint: for all i, j, if (SIVii n SWj) =~ 0 
and Ti~TT and Tj~TT then: p(T/)<#(Tj) in s iff #I(T/)<#1(T~) in sl (i.e., if 
two transactions have terminated and their writesets intersect, then their relative 
ordering in the virtual schedule s of the previous database system state Q must 
be kept invariant in the virtual schedule s 1 of the new database system state 
Q1). 

In conventional concurrency control schemes, the constraint below is also 
imposed: 
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2. Invariant write position (IVWP) constraint: for all i, j, TIe(PEw TT), Tje 
(PEu TT), if (SW~caSWj)#~b and ((T~TT and Tj~PE) or (TjeTT and T~PE)) 
then #(Ti) <#(T~) in s iff #a(T~)<#I(Tj) in Sl (i.e., if the writesets of two transac- 
tions intersect, and one is a terminated transaction and the other is a P-executing 
transaction, then their relative ordering in the virtual schedule s of the previous 
database system state Q must be kept invariant in the virtual schedule Sl of 
the new database system state Q0. 

In Definitions 3.2 and 3.3, when a P-requesting or an N-requesting transac- 
tion is put into execution, it may read any one out of existing versions for 
each variable name in its readset. There may well exist applications in which 
reading an "o ld"  version of a data item is not acceptable. In such cases, we 
have the following constraint: 

3. Latest read version (LTRD) constraint: for all i, j, x, T~e(PE1--PE ) (or 
Tje(NE1-NE)), Ti~TT, xeV: if T i reads x from T~ in sl ,  then there exists 
no k, Tk~ TT, such that xeSWk and/~a (Ti)< ktl (Tk) in sl (i.e., when a predeclared 
writeset transaction is put into execution in Q1, for each variable name in its 
readset, it must read the "latest" available version in the virtual ordering). 

The following constraint states that when a P-requesting transaction is put 
into execution, for each variable name in its writeset, it must finally write a 
version which is ordered after all currently existing versions of that variable 
name. The same constraint can be applied to N-commit transactions. 

4. Up to date write (UPDW) constraint: for all j, x, TjE(PE 1-PE) (or Tje(TT 1 
--TT) if Q1 is a valid N-termination), xeV: if x~SWj, then there exists no 
k, such that Tke T T a n d  xeSFVk and/z 1 (T~) </z~ (Tk) in sl (i.e., for every predeclared 
writeset transaction that is put into execution in Q 1 (or for every non-predeclared 
writeset transaction that is currently being terminated in Q0, for each variable 
name in its writeset, if any terminated transaction produced a version for that 
variable name then the predeclared writeset transaction (or non-predeclared 
writeset transaction currently being terminated) must be positioned after (not 
necessarily immediately after) that terminated transaction in the virtual schedule 
Sl). 

In the LTRD constraint, a P-requesting or N-requesting transaction is re- 
stricted to read the "latest" available version for each variable name in its 
readset when put into execution. In the following constraint, instead of restricting 
a P-requesting or N-requesting transaction to read the "latest" available version, 
we can restrict it to read a pre-designated version for each variable name in 
its readset. 

5. Designated read (DSRD) constraint: for all i, j, x, such that T~e(PE 1-PE) 
(or Tie(NE1--NE)) and ((dr(i,x)=Tj and Tj~TT and xe(Siic~SWj) ) or 
(dr(i,x)=vo)): if dr(i,x)=Tj then Ti reads x from Tj in s l ;  else if dr(i,x)=Vo 
then for all v, T~ TT: -7 (T~ reads x from Tv in sl) (i.e., a P-requesting transaction 
is restricted to read a designated version for each variable name in its readset 
when put into execution. "dr(i, x)" designates the terminated transaction from 
which P-requesting transaction T/must read a version of x. "dr(i, x)=  v0" desig- 
nates that Ti must read the initial version of x). 
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Similarly, instead of restricting a P-requesting or N-commit  transaction to 
be positioned after all terminated transactions which have produced a version 
for any variable name in that  P-requesting or N-commit  transaction's writeset, 
we can restrict a P-requesting or N-commit  transaction to be positioned after 
a pre-designated terminated transaction which has produced a version for a 
variable name in that  P-requesting or N-commit  transaction's writeset. 

6. Designated write (DSWT) constraint: for all i, j, x, such that T~(PE1-PE) 
(or Tie(TT~ - TT) in the case of a valid N-termination) and ((dw(i, x ) =  T~ and 
TjeTT and xe(SW~c~SVV~)) or (dw(i, x)=vo)): if dw(i, x ) =  Tj then: #1 (Tj) < #1(T~) 
in sl and there exists no k, such that TkeTT and xe(SWjc~SI/VknSWi) and 
#I(Tj)<#a(Tk)<pl(Ti)  in s l ;  else if dw(i,x)=vo then: there exists no k, such 
that TkeTT and xe(SWknSWi) and #l(Tk)<pl(Ti)  in s 1 (i.e., a P-requesting 
or N-commit  transaction is restricted to be positioned after a designated termin- 
ated transaction which has produced a version for a variable name in that 
P-requesting or N-commit  transaction's writeset. "dw(i, x)" designates the ter- 
minated transaction that has produced a version for the variable name x in 
T[s writeset and that  should be positioned before T i. "dw(i, x ) = v 0 "  designates 
that  T~ must be positioned before all terminated transactions which have pro- 
duced a version for the variable name x in Tz's writeset). 

There may also exist situations where one would prefer to limit the number  
of transactions being scheduled each time. This leads to the following constraint: 

7. Upper bound (UB) constraint: [PR[<C or ]NE'~] <C (i.e., the number  of P- 
requesting transactions or N-commit  transactions scheduled each time cannot  
exceed a constant C). 

In order to examine the effect of limiting the number  of versions that exists 
for each variable name in the database system, we specify the following con- 
straint: 

8. Two version data (2 V) constraint: for all x, i, if xESWi and Ti~ TT then there 
exists no k, such that Tk~TT and x~(SVVkc~SW~) and k+i (i.e., there exists no 
more than two versions - the initial version plus another  version created by 
a terminated transaction for each variable name in the datebase). 

We need not explicitly define a "one  version data (1 V) constraint here, 
since if only one version exists for each variable name in the database, then 
the problem of constructing valid P-executions or valid N-terminat ions of a 
given valid database system state is trivially polynomial  time solvable. 

In this paper  only NP-completeness theorems use the 2-version (2 V) con- 
straint. The 2 V constraint is only defined on the "previous"  database system 
state Q in those theorems. The main purpose of the 2 V constraint is to make 
the NP-completeness results as strong as possible. The 2 V constraint in Theo- 
rems 5.1-5.6 in the next section essentially states that "even if only two version 
values for each variable name exist in the previous database system state . . . .  
(under the other constra ints) . . . ,  the problem is still NP-comple te ' .  This tells 
us that if only those other constraints are enforced, then restricting the number  
of version values for each variable name in the database will not help to substan- 
tially reduce the required computat ion time (unless the number  of version values 
is restricted to be 1). None  of the polynomial  time result theorems in this paper  
use any version constraints. The on-line polynomial  time multiversion concur- 
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rency control algorithms presented in this paper do not use or depend on the 
definition of the n-version constraint. 

In the definition of the UPDWand DSWTconstraints above, for P-requesting 
transactions, the UPDW or DSWT constraint is checked at the time when the 
transaction is being scheduled for execution. If one also wishes to enforce the 
UPDW or DSWT constraint when a P-executing transaction terminates, then 
one may have to abort the P-executing transaction if the constraint cannot 
be satisfied at that time. 

Note that implementation details of the on-line multiversion concurrency 
control algorithms are not explicitly addressed in this paper. For  example, in 
an actual implementation, instead of allowing the number of versions for each 
variable name to grow forever, one would put a limit on the total number 
of versions for each variable name that is allowed to exist in the database. 
One could achieve this by "purging" old versions (or "terminated transactions") 
from the system when the total number of versions exceeds the specified limit. 
Thus the so-called "initial version" (which is really the "oldest version" among 
all versions that are still kept in the database) and other existing versions for 
each variable name will be continuously "upda ted"  throughout  the life time 
of the database. By doing so, we could easily solve the problem of the scheduler 
getting slower as the number of versions increase over time. In such an implemen- 
tation, the 2 V constraint would mean that there exists no more than the latest 
two versions for each variable name in the database. Note that in the model, 
the set of "terminated transactions" defines which version values currently exist 
in the database, which transaction wrote those version values, while the ordering 
of the existing versions is defined by the ordering of the terminated transactions 
which wrote each version in the virtual schedule. 

In an actual implementation, it is also possible to allow the constraints 
above to be applied differently for different transactions. The complexity results 
in the next three sections are still applicable in such cases. That  is, if any subset 
of the transactions have the same or fewer constraints compared with each 
set of constraints defined in Theorems 5.1-5.6 in the next section, then the sche- 
duling problem would still be NP-complete. 

As we mentioned in the previous section, the problem of constructing valid 
N-terminations of a N-commit set and a valid database system state is equivalent 
to the problem of constructing valid P-executions of a P-requesting set and 
a valid database system state under the DSRD constraint. To see this, note 
that given a valid N-commit set NE'c and a valid database system state Q--(PE,  
NE, TT, s), in any valid N-termination QI=(PEt,  NE1, TTt, sl) of NE'c and 
Q, every nonpredeclared writeset transaction T/ in NE'c which is terminated 
in Qt must read the same set of versions in Sl that its corresponding N-executing 
transaction T~ read in s. We can construct an equivalent problem of finding 
valid P-executions of a P-requesting set PR* and a valid database system state 
Q* = (PE*, NE*, TT*, s*) under the DSRD constraint as follows: let PR* = NE'~ ; 
let P E * = P E  and TT*=TT; let NE*=(NE--{T~[T/eNE'~}); let the ordering 
between every pair of transactions Ti and Tj in s* be the same as in s, i.e.: 
for all i, j, T~, T je(PE*uNE*uTT*):  #*(T~)<#*(Tj) in s* iff #(T~)<#(Tj) in 
s. We specify the DSRD constraint as follows: for every P-requesting transaction 
T/ in PR*, let dr(i, x)=  Tj iff T,. reads x from Tj in s. It is straightforward to 
verify that there exists a valid N-termination QI=(PE1 ,  NE t, TTt, sl) of Q 
and NE'~ in which the set NE'c of N-commit transactions is terminated in Q1, 
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that is, TTI = ( T T u  NE'c) if and only if there exists a valid P-execution Ql* - (PE1 , -  * 
NE~, TT[ ~, s*) of Q* and PR* in which the set PR* =NE'~ of P-requesting 
transactions is put into execution in Q*, i.e.: PE* = (PE* u PR*) under the speci- 
fied DSRD constraint. 

If we are given any problem of terminating non-predeclared transactions 
under a set of additional constraints and we have an algorithm for solving 
the problem of scheduling predeclared writeset transactions for execution under 
the same set of additional constraints plus the DSRD constraint, then we can 
always solve the former problem by first transforming it to an equivalent latter 
problem by constructing the set PR*, the database system state Q * =  (PE*, NE*, 
TT*, s*) and the DSRD constraints as defined above (if any additional con- 
straints are specified in the former problem then the same set of additional 
constraints plus the DSRD constraint defined above should be specified for 
the equivalent latter problem), then use the algorithm to obtain a valid P- 
execution * -  * Qt - (PE1 ,  NE*, TT( ~, s~) of Q* and PR* in which the subset PR* 
=NE'c of P-requesting transactions is put into execution in Q*, i.e.: PE~' 
= ( P E * ~ P R * )  under the constructed DSRD constraint. We can then obtain 
the valid N-termination Q~ =(PE1,  NE1, TT1, sa) of Q and NE; in which the 
set NE' c of N-commit transactions is terminated in Q1, that is, NE'~_ TTI, as 
follows: let PE~ =PE; let NEI=(NE--{T~[ TjeNE;}), let TT~=(TTwNE'~); let 
the ordering between every pair of transactions T~ and Tj in s~ be the same 
as in s*. 

5 Scheduling predeclared writeset transactions for execution 

In this and the following section, we shall study the computational complexity 
of the problem of determining whether a set of predeclared writeset transactions 
can be put into execution while guaranteeing that their future writes will never 
compromise correctness of the database system under any combination of the 
constraints FTWP, LTRD or DSRD, IVWP, UPDW or DSWT, IV, 2V and 
UB. 

For  each scheduling problem that is proved to be NP-complete below, the 
scheduling problem contains a "maximal"  set of constraints. That  is, if one 
more additional constraint is imposed, then the problem would become polyno- 
mial time solvable. Whereas for each scheduling problem that is proved to 
be polynomial time solvable below, the scheduling problem contains a "mini- 
real" set of restrictions. That  is, if one restriction is removed from that set, 
then the scheduling problem would become NP-complete. We construct an effi- 
cient scheduling algorithm for each problem that can be solved in polynomial 
time. 

Theorem 5.1 The following problem (LI) is NP-complete: 
Given a P-requesting set PR and a valid database system state Q=(PE, NE, 
TT, s) that satisfies the 2 V constraint, does there exist a valid database system 
state QI=(PE1 ,  NE1, TT1, sl) such that Q1 is a valid P-execution of PR and 
Q under the FTWP, IVWP and LTRD constraints and PE 1 =(PR w PE)? [] 

Theorem 5.2 The following problem (UI) is NP-complete: Given a P-requesting 
set PR and a valid database system state Q = (PE, NE, TT, s) that satisfies the 
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2 V constraint, does there exist a valid database system state Q~I =(PEx,  NEa, 
TT1, sl) such that QI is a valid P-execution of PR and Q under the FTWP,  
I VWP and UPD W constraints and PE1 - (PR u PE) ? [] 

(See the Appendix for the proofs of Theorems 5.1 and 5.2.) 

Theorem 5.3 The following problem (LU1) is NP-complete: 
Given a P-requesting set P R =  {T~} and a valid database system state Q=(PE,  
NE, TT, s) that satisfies the 2 V constraint, does there exist a valid database 
system state Q I = ( P E I ,  NE1, TT1, sl) such that Qa is a valid P-execution of 
PR and Q~ under the FTWP,  LTRD and U P D W  constraints and PEa= 
({~} ~ P E ) ?  [] 

(See the Appendix for the proof  of Theorem 5.3.) 

Theorem 5.4 The following problem is NP-complete : 
Given a P-requesting set PR and a valid database system state Q=(PE,  NE, 
TT, s) that satisfies the 2 V constraint, does there exist a valid database system 
state Qs=(PE1,  NE1, T T  z, sa) such that Q1 is a valid P-execution of PR and 
Q under the FTWP,  I V W P  and DSRD constraints and PE a = (PR u PE)? [] 

Theorem 5.5 The following problem is NP-complete : 
Given a P-requesting set PR and a valid database system state Q=(PE,  NE, 
TT, s) that satisfies the 2 V constraint, does there exist a valid database system 
state QI=(PE1,  NE  1, TT1, sl) such that Qa is a valid P-execution of PR and 
Q under the FTWP,  I V W P  and D S W T  constraints and PE 1 = (PR ~ PE)? [] 

Theorem 5.6 The following problem is NP-complete: 
Given a P-requesting set PR={Tr}  and a valid database system state Q=(PE,  
NE, TT, s) that satisfies the 2 V constraint, does there exist a valid database 
system state Q1 =(PE1, NE~, TTI, Sx) such that Q1 is a valid P-execution of 
PR and Q under the FTWP,  (L TRD or DSRD) and (UPD W or DSWT)  constraints 
and PE I=({7 ; }~PE)?  [] 

The proof of Theorems 5.4-5.6 immediately follows from Theorems 5.1-5.3 
and the fact that the constraint LTRD is a special case of the constraint DSRD, 
and the constraint U P D W  is a special case of the constraint DSWT. One can 
replace the LTRD constraint by the DSRD constraint as follows: for all i, x, 
such that T~ePR and xeSR~, let dr(i, x) designate the terminated transaction 
which is rightmost in the virtual schedule s and contains x in its writeset. If 
no terminated transaction exists in T T  which contains x in its writeset, then 
let dr(i, x)=vo.  Similarly, one can replace the U P D W  constraint by the D S W T  
constraint as follows: for all i, x, such that T ~ P R  and x~SW~, let dw(i,x) 
designate the terminated transaction which is rightmost in the virtual schedule 
s and contains x in its writeset. If no terminated transaction exists in T T  which 
contains x in its writeset, then let dw(i, x) = v o. 

If we combine the constraints FTWP,  IVWP,  (LTRD or DSRD), ( U P D W  
or DSWT)  together, the computational complexity of our problem can be sub- 
stantially reduced. 

Definition 5.1 We call a directed graph G = (N, A) the"IDRWdependency graph " 
of a valid database system state Q=(PE, NE, TT, s) whenever in G there is 
the set of nodes N = { T i [ T i e ( P R u P E u N E u T T ) } ;  and the set of arcs A =  
{(Ti, Tj)c(X x X) l ( i# j )  and 
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((a) (((SWjnSRi)#O) or ((SWjnSRj)+O)) and (T~e(PE~NEwTT)) and 
(Tie(PEuNEu TT)) and (#(Tj)< #(T 0 in s); or 

(b) ((SWjc~SWO#O) and (Tje(PEuTT)) and (T/~(PEu TT)) and ((TjETT) 
or (TieTT)) and (#(Tj) < #(T~) in s); or 

(c) ((SWjnSRi)+O) and (TiEPR) and (Tj~TT) and there exists some x, such 
that (Tj= dr(i, x)); or 

(d) ((SRjnSWi)+O) and (Tj~PR) and (T/=(TT~ PE)) and there exists some 
x, such that ((#(dr(j, x)) <#(T/) in s) or (dr(j, x)=vo)); or 

(e) ((SWjn SWi)+f)) and (Ti~PR) and (TjETT) and there exists some x, such 
that (Tj=dw(i, x)); or 

(f) ((SWj~SWI)+O and (T~PR) and (Ti~TT) and there exists some x, such 
that ((#(dw(j, x)) < #(Ti) in s) or (dw(j, x) = Vo)); or 

(g) ((SRj c~ S Wi) # O) and (Ti s PR) and (Tj ~ (PEw NE u TT)) and ((there exists 
some t; x, such that (TteTT) and (T~=dw(i,x)) and (Tj reads x from T~ in s)) 
or (there exists some x, x~SW~ such that for all v, T~c TT:-q(Tj reads x from 
T~ in s))); or 

(h) ((SR;c~SWi)#O) and (TiePR) and (T~ePR) ((there exist some t, x, such 
that (Tt~ TT) and (T~= dw(i, x)) and (T~ = dr(j, x))) or (dr(j, x)= Vo))) [] 

Theorem 5.7 Given a P-requesting set PR and a valid database system state 
Q=(PE, NE, TT, s), there exists a valid database system state Q1 =(PE1, NE1, 
TT1, sl) such that Q1 is a valid P-execution of PR and Q under the FTWP, 
IVWP, DSRD and DSWT constraints and PEI=(PRuPE) if and only if the 
IDRW dependency graph of Q and PR is acyclic. 

Proof Suppose G is acyclic, by topologically sorting G, we can obtain a serial 
schedule Sl of the set of transactions T = (PR u PE~ NE u TT), such that if 
the arc(T~, Tj) exists in U, then Ti is ordered after Tj. One can verify that the 
set of arcs (b) in the IDRW dependency graph G imposes an ordering of all 
transactions in Sl that satisfies the FTWP and IVWP constraints. The set of 
arcs (a), (b) and (g) in G imposes an ordering in S l that preserves all the read 
from relations in s. The set of arcs (a), (c), (d) and (h) in G imposes an ordering 
in Sl that satisfies the DSRD constraint. The set of arcs (b), (e) and (f) in G 
imposes an ordering in sl that satisfies the DSWT constraint. 

Conversely, if there exists a valid database system state Q1 =(PE1, NE1, 
TT~, Sl) such that Q1 is a valid P-execution of PR and Q under the FTWP, 
IVWP, DSRD and DSWT constraints and PE1 = (PR ~ PE), then the graph indi- 
cating the order of every pair of transactions in sl, which we call G~, must 
be acyclic. Furthermore, every arc in the IDRW dependency graph G must 
be included in G 1. This is because: if condition (a) in Definition 5.1 is true, 
but the arc (T/, Tj)r i.e., #(Tj)<#(T/) in sl is not true, then either the con- 
sistency condition in Definition 3.2 or the FTWP constraint will be violated. 
If condition (b) is true, but (T~, Tj)r G1, then the I VWP constraint will be violated. 
If condition (c) is true, but (T~, Tj)q~ G 1, then the DSRD constraint will be violated. 
If condition (d) is true, but (Ti, Tj)r then either the DSRD or the FTWP 
or the IVWP constraint will be violated. If condition (e) is true but (Ti, Tj)r 
then the DSWT constraint will be violated. If condition (f) is true, but (T/, Tj)r G1, 
then either the DSWT or the FTWP constraint will be violated. If condition 
(g) is true, but (T~, Tj)r then either the DSWT constraint or the consistency 
condition in Definition 3.2 will be violated. If condition (h) is true, but 
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(T~, Tj)r then either the DSRD or the DSWT constraint will be violated. 
Thus GI is a supergraph of G, and since G1 is acyclic, G must also be acyclic. [] 

Theorem 5.8 Given a P-requesting set PR and a valid database system state 
Q=(PE, NE, TT, s), the problem of determining whether there exists a valid 
database system state Q 1 = ( P E1, N E 1, TT1, s l) such that Q 1 is a valid P-execution 
of PR and Q under the FTWP, IVWP, (DSRD or LTRD) and (DSWT or UPDW) 
constraints and PE1 = (PR u PE) can be determined in 0(1 V[ IX[ 2) time. [] 

The proof of Theorem 5.8 also immediately follows from the fact that the 
constraint LTRD is a special case of the constraint DSRD, and the constraint 
UPDW is a special case of the constraint DSWT. Again, one can replace the 
LTRD constraint by the DSRD constraint and replace the UPDW constrint 
by the DSWT constraint in exactly the same way as explained before. Then 
one can construct the I DRW dependency graph and determine whether it is 
acyclic in O([ VI [X[ 2) time. 

In the case where one wishes to achieve more concurrency by allowing more 
than one read or write request to be scheduled simultaneously, the NP-complete- 
ness results in Theorems 5.1-5.2 and 5.4-5.5 in combination with the polynomial 
time result in Theorem 5.7-5.8 indicate what additional constraints must be 
added in order to obtain an on-line concurrency control algorithm that achieves 
an optimal level of concurrency in polynomial time and whose computation 
time is not exponential relative to the number of simultaneously scheduled 
requesting transactions. 

Now suppose the I DRW dependency graph G of Q is cyclic, what can we 
do then? An optimal solution can be found by finding a largest subset PRs 
of the P-requesting set of transactions PR, such that the subgraph G s of G 
is acyclic and Gs is obtained by removing nodes belonging to the P-requesting 
set (PR--PRs). Then a virtual schedule sl in which all P-requesting transactions 
in that largest subset PRs are put into execution in Q1 can be constructed 
by topologically sorting Gs. 

This is explained by an example below: 

Example 5.1 Suppose we wish to construct a valid maximum concurrency P- 
execution of the P-requesting set PR 3 and the valid database system state Q3 
in Example 3.1 under the FTWP, IVWP, LTRD and UPDW constraints. Then 
dr[3, a]=dr[-4, a]=dr[5, a ] = T  1 ; dr[3, c ]=dr[4 , f ]=dr[5 ,  g]=vo; dw[3 , f ]  
=dw[3,  g ] = dw [3 ,  c ]=dw[4 ,  b ]=dw[4 ,  c ]=dw[5 ,  e]=Vo; dw[5, a]=T1 ; The 
IDRWdependency graph of Q3 and PR 3 is shown in Fig. 1. 

Since the ID RW dependency graph G1 of Q3 and PR3 is cyclic, there exists 
no valid database system state Q~ such that Q] is a valid P-execution of Q3 
and PR 3 under the FTWP, IVWP, LTRD and UPDW constraints, and the 
whole set of P-requesting transactions PR3 = {T3, T,, Ts} can be put into execu- 
tion in paralM in Q~ while preserving serializability. Here, the largest subset 
PR3s of PR 3 for which the subgraph GI~ of G 1 is acyclic and the nodes removed 
from G1 belong to ( P R 3 - P R 3 )  contains trwo transactions, i.e.: T 4 and T 5. 
Thus we determine that in order to achieve maximum concurrency, PR3~= 
{T4, Ts} should be put into execution in parallel first. 

By topologically sorting Gls (Fig. 2), we obtain the serial schedule s 4 with 
which we can construct the new valid database system state Q4= 
({T2, T4, Ts}, 0, {T1}, ( T  2 T~ T,~ Ts)) shown in Example 3.1 where T 4 and T 5 can 
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be put into execution in parallel with T2, and Q4 is a valid P-execution of 
P R  3 and Qa under the F T W P ,  I V W P ,  L T R D  and U P D W  constraints. And 
we can continue like this constructing successive new valid system states. Notice 
that Q4 is a maximum concurrency P-execution of P R  3 and Q3 by Defini- 
tion 3.Z []  

The Feedback Vertex Set (FVS) problem [8] can be transformed to the 
problem of finding an optimal solution in the example above. Although the 
FVS problem is known to be NP-complete, we can always limit computational 
complexity by using efficient heuristics to find good approximations to an opti- 
mal solution. Algorithms actually exist which either find an optimal solution 
or a suboptimal solution for the FVS problem and which are known by experi- 
ence to have a good performance. (For example, see [5, 9, 19]. An algorithm 
for a suboptimal solution described in [19] has a computation time upper bound 
of only O(]X31). 

We emphasize that in our model achieving more concurrency by scheduling 
more than one read or write request simultaneously is only one among many 
possible options which the algorithm designer has the freedom to choose from. 
The model certainly does not preclude the possibility of enforcing a condition 
that certain transactions must be scheduled in an order that is identical to 
their arrival order - it is a very simple task to add such a facility to an actual 
implementation. For  example, in an algorithm based on Theorem 5.7, if it is 
desired that some transaction T~ be scheduled before another transaction Tj, 
all we have to do is add the arc(T~, Tj) to the I D R W  dependency graph to 
achieve the desired effect. 
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In [3], a class of schedules called CPSR (Conflict-preserving serializable) 
is described. CPSR requires that the order of every pair of writes be preserved 
in the serialization whenever there is a "conflict" between the two writes, i.e., 
their write sets intersect. The set of constraints {FTWP, IVWP,  (DSRD or LTRD) 
and ( D S W T  or UPDW)} is less restrictive than CPSR in the sense that it does 
not require that the order of two P-executing transactions be preserved whenever 
their writesets intersect. 

6 Scheduling transactions under the FTWP, IVWP and UB constraints 

In this section, we shall construct a polynomial time algorithm for solving the 
problem of scheduling transactions with predeclared writesets one at a time 
in a database system which supports multiple versions of data when the F T W P  
and I V W P  constraints (if the writeset of any two transactions intersect and 
at lease one of them has terminated, then their relative ordering must be kept 
invariant) is imposed. 

At the end of this section, we show that these results can be generalized 
to the case where an upper bound is imposed on the number of P-requesting 
transactions scheduled each time. 

Definition 6.1 We call a directed graph G = (X, Z) the I V W P  P-dependency graph 
of a valid database system state Q=(PE,  NE, TT, s) whenever in G there is 
the set of nodes X={T/[a l l  i: T i ~ ( P E u N E v o T T )  }, and the set of arcs Z =  
{(77i, Tj) E X x X I all i, j: i q=j and T/~ (PE u N E  to TT)  and Tj ~ (PE u NE u TT)  and 

(P1) ((((SW~nSRi)@O) or (SI/VjnSRi)@O) and #(Tj)<#(T/) in  s) or 
(P2) ((SW~nSWj)#0 and ( T ~ e T r o r  TjETT) and/~(T~)<#(T~) in s))}. []  

Lemma 6.1 In valid database system state Q = (PE, NE, TT, s), for all i, j, such 
that Ti, T j E ( P E u N E u  TT), if there exists a path from T~ to T i in the I V W P  
P-dependency graph of Q, then in any valid database system state QI=(PE1,  
NE1, TT1, sl) such that Q1 is a valid P-execution of {Tr} and Q under the F T W P  
and I VWP constraints, # 1 (Ti) < !~ 1 (Tj) in s 1 must be satisfied in Q 1. 

Proof. It should be easy to see that for any two transactions 
Ti, T j ~ ( P E v o N E u T T ) ,  if condition (P1) and (P2) is satisfied in Q, but #I(T~) 
</zt (Tj) in s~ is not satisfied in Q 1, then either the F T W P  and I V W P  constraints 
would not be satisfied, or at least one read from relation in s would be changed 
in s~, which violates the consistency condition in Definition 3.2. [] 
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Example 6.1 The I VWP P-dependency graph G--(X, Z) of valid database sys- 
t e m  state Q=(PE, NE, TT, s) where PR={T~}, PE={T1, 7"4, T6} , NE={TT} , 

TT={T2, 7"3, Ts}, s=T1Tz Ta T4 Ts T6 T7 and Tl=(g,[z]) ,  T2=([a],[bJ), T3= 
([c],[a]),  T4=(S,[y]),  Ts=(D, [c, y]), T6=([a], [x]), TT=([b] ,g  ) and T~= 
(Ix, y, z], [a, b]) is shown in Fig. 3. []  

Below we introduce a set PB(Tr) called the "P-boundary  set of T~". PB(Tr) 
is the set of transactions that must be serialized after T~ in any valid execution 
of Q and T~ under the FTWP and IVWP constraints. 

Definition 6.2 In valid database system state Q =(PE,  NE, TT, s) for each P- 
requesting transaction T~PR, we define the P-boundary set of T~: PB(T~) as 
follows: for all i,j, such that T~e(PEwNEw TT) and TjE(PEwNEu TT): 

(initial set) TiePB(T~) if 
(a) T~PE and there exists some x, such that x~(SW~n SRr) and there exists 

no t, such that Tte TT and x~SWt and #(Ti)< #(Tt) in s. 

(inductive set) TiePB(T~) if Tj~PB(T~) and 
(b) T~e(PEuNEu TT) and TiE(PEuNE~ TT) and there exists a path from 

T/to Tj in the IVWP P-dependency graph of Q, or 
(c) T j ~ ( P E ~ N E u T T )  and Ti~TT and there exists some x, such that 

xe(SW~c~SVV~c~SR~) and Tj reads x from Ti in s, or 
(d) Tje T T a n d  TiePE and there exists some x, such that xs (SW i c~ SR r c~ SVVj) 

and #(Ti)<#(Tj) in s and there exists no t, TteTT such that x e S W  t and #(Ti) 
<#(Tt)<#(Tj)  in s. []  

Lemma 6.2 In valid database system state Q = (PE, NE, TT, s), for all i, r such 
that T i~(PEuNEw TT) and T~PR: if TiePB(T~) , then in any valid database 
system state Q1 =(PE1, NE1, TT1, sO such that Q1 is a valid P-execution of 
{T~} and Q under the FTWP and IVWP constraints and T,. is put into execution 
in Q1 : #1 (T~)<#I (T~) in sl must be satisfied in Q1- 

Proof We prove Lemma 6.2 induction. For  all T/in the initial set, if #1 (T~) < #1 (Ti) 
in sl is not satisfied, then Condition (a) and the FTWP and IVWP constraints 
imply that either T~ reads x from TI~PE in sl,  or T~ reads x from some other 
transaction T~'~ TT in s~, which violates the existence condition in Definition 3.2. 

As an induction hypothesis, suppose that #1(T~)<#I(Tj) in sl must be sat- 
isfied for all Tj~PB(T~). Condition (b) and Lemma 6.1 imply that #1 (Tj)<#1 (Ti) 
in sl must be satisfied. This and our induction hypothesis imply that #1(T~) 
<#~ (T~) in sl must be satisfied. Condition (c) implies that T~ must read x from 
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T~ in Sa. This and our induction hypothesis imply that #1 (T~)< #1 (T~) in sl must 
be satisfied, otherwise Tj will read x from T~, which violates the consistency 
condition in Definition 3.2. Condition (d) and the FTWP and IVWP constraints 
and our induction hypothesis also imply that #I(T~)<#I(Ti) in Sl must be sat- 
isfied, otherwise either T~ reads x from T~PE, or Tr reads x from some other 
transaction T/r TT, which violates the existence condition in Definition 3.2. []  

The P-boundary set PB(T~) of a given valid database system state Q=(PE,  
NE, TT, s) where T~ePR can be found by the following procedure (Suppose 
PB'(Tr) is the set of transactions already known to be in PB(T~) at any intermedi- 
ate stage of the computation): 

I) Find the initial P-boundary set of T~ in Q according to condition (a) 
in Definition 6.2. If the initial P-boundary set of T~ in Q is empty then terminate 
with PB (Tr) = O. 

2) Construct the IVWP P-dependency graph G=(X,Z)  of Q according to 
Definition 6.1. 

3) For  each TjePB'(T~) such that the current step has not been performed 
before for Tj, find all T~ such that Tie((PEwNEw TT)--PB'(Tr)) and T~ satisfies 
(b), (c) and (d) related to Tj in Definition 6.2 and put T~ in PB'(T,.). When no 
new transaction Ti in ((PEw N E w  TT)-PB'(T~)) which satisfies (b), (c) and (d) 
can be found for any TjePB' (T~), then PB(T~)= PB' (T~). 

Example 6.2 The P-boundary set PB(T~) of the same valid database system 
state (2 as given in Example 6.1 can be found as follows: 

First we find all transactions belonging to the initial P-boundary set of 
T~ in Q by checking condition (a) in Definition 6.2 on all Ti such that TiePE 
in Q. Here T6ePE and xE(SW6c~SRr) and there does not exist any TteTT 
such that xeSWt and #(T6)<#(Tt) in s. Similarly, TlePE and ze(SW1 c~SRr) 
and there does not exist any TteTT such that zeSW~ and #(T1)<#(TJ in s. 
According to condition (a) in Definition 6.2:T6 e PB' (T~) and T1 e PB' (T~). 

Next we construct the IVWP P-dependency graph G = (X, Z) of Q (Fig. 3). 
Then for all TjePB'(T~) such that the same step has not been performed 

before for Tj, we check conditions (b), (c) and (d) on all Tie( (PEwNEw TT) 
- PB'(T~)). From T 6 e PB' (T~), we find T 3 e TT  and a e (S W 3 ~ S W~ ~ SR 6) and T 6 
reads a from T 3 in s. According to condition (c): T3EPB'(T~ ). From T3ePB'(T~), 
we find T 5 such that there exists a path from T 5 to T 3 in the IVWP P-dependency 
graph G of Q. According to condition (b): T5ePB'(T~ ). From T5ePB'(T~) and 
TseTT, we find T4ePE and ye(SW4~SR,~SWs)  and #(T4)<#(Ts) in s and 
there does not exist any TteTT such that yeSW~ and #(T4)<#(Tt)<#(Ts) in 
s. According to condition (d): T4ePB'(Tr). After PB'(Tr)={T6, Tt, 7"3, Ts, T4} 
is found, no other transaction in ( (PEwNEwTT)-{T~})  can be found which 
satisfies (b), (c) and (d) related to any transaction TjePB'(T~). Thus PB(T~)= 
{T6, T1, T3, Ts, T4}. [] 

Definition 6.3 Given valid database system state Q = (PE, NE, TT, s) and P- 
requesting transaction T~ePR, we call the directed graph G1 = ( X I , Z I )  the P- 
boundary graph of T~ in Q whenever in G there is the set of nodes X 1 
= ({ T~} u PEw NE u TT); and the set of arcs Z1 = (Z ~ Z' ~ Z"); where 

(a) Z is the set of arcs in the I VWP P-dependency graph G = (X, Z) of Q; 
(b) Z ' =  {(T/, T~)lall i, TIePB(T~)}; 
(c) Z"={(T, ,  7~)]all i, T~((PEu N E w  TT)--PB(T~))}. [] 
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Example 6.3 The P-boundary graph GI =(X1,  Z1) of T~ in the valid database 
system state Q given in Example 6.1 is shown in Fig. 4. []  

Theorem 6.1 Given valid database system state Q = (PE, NE, TT, s) and P-request- 
ing transaction T~ePR, there exists a valid database system state Q~I = (PEt, NE~, 
TT1, sl) such that Q~I is a valid P-execution of {T~} and Q under the FTWP 
and IVWP constraints and T~ is put into execution in Q1, i.e.: PE 1 = ( P E u  {T~}), 
iff in Q: 

(PI) for all i, T i e ( P E u N E u T T ) :  if there exists some x, such that 
x~(SRi~SW~), and for all v such that T~E(PEu N E u  r r ) :  ~ ( T  i reads x from 
T~ in s) then Tir 

Condition (PI) states that for all transactions T~, if T~ reads the initial version 
for some variable name x in s, i.e.: it does not read x from any other transaction 
in s, and x also belongs to the writeset of P-requesting transaction T~, then 
T~ should not belong to the P-boundary set of T~ in Q. 

Proof. (PI) is a necessary condition because from Lemma 6.3, TiePB(T~) implies 
that #~(T~)</~(T~) in s~ must be satisfied. If (PI) is not satisfied, then T~ would 
read x from T~, which violates the consistency condition in Definition 3.2. 

Now we show that (PI) is a sufficient condition. From Definition 6.3, any 
serial schedule sl obtained by topologically sorting G1 has the following form: 
sl = s"T~ s', where all transactions in the sub-schedule s' belong to the set PB(T~), 
and all transactions in the sub-schedule s" belong to the set ((PE u NE u TT) 
-PB(T~)). Furthermore,  since all arcs in the IVWP dependency graph of Q 
are included in the P-boundary graph G of T~ in Q, the FTWP and IVWP 
constraints are satisfied in s~. No TjcPB(T~) in s' can read any x from T~ 
in Sx, because if TjePB(T~) read the initial version of x in s, then (PI) will 
not hold; whereas if Tj read x from some transaction T/'~PB(T~) in s, then 
condition (c) in Definition 6.2 implies T/'ePB(T~) which is a contradiction. T~ 
cannot read from any TiePE in s~, where T~(~PB(T~), otherwise this and the 
FTWP and IVWP constraints together with condition (d) in Definition 6.2 imply 
that T~ePB(T~), which is also a contradiction. Hence Q1 is a valid P-execution 
of {T~} and Q under the FTWP and IVWP constraints. []  

In the proof  of Theorem 6.1, we simultaneously proved the following: 

Theorem 6.2 Given valid database system state Q~ = (PE, NE, TT, s) and P-request- 
ing transaction T~ePR, if (PI) is satisfied in Q, then the following database system 
state Q~a is a valid P-execution of {T~} and Q under the FTWP and IVWP con- 
straints: Q1 =(PE1, NE1, TT1, sO where PEI=(PEu{T~}) and T T I = T T  and 
sl is a serial schedule of ({ T~} u PE u N E w  TT) constructed by topologically sort- 
ing the P-boundary graph G1 =(X1, Z1) of T~ in Q. [] 

The proof of Theorem 6.1 leads to the following algorithm for scheduling 
one P-requesting transaction T~ E PR at a time in a given valid database system 
state Q=(PE, NE, TT, s) (Suppose PB'(T~) is the set of transactions already 
known to be in PB(T~) at any intermediate stage of the computation): 

1) Find the initial P-boundary set of T~ in Q according to condition (a) 
in Definition 6.2. If the initial P-boundary set of T~ in Q is empty then terminate 
with s i = s T~. 

2) Construct the IVWP P-dependency graph G=(X ,Z)  of Q according to 
Definition 6.1. 
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3) For each TjePB'(T~) such that the current step has not been performed 
before for Tj, find all T/such that Tie((PE w N E w  TT)--PB'  (PR)) and T i satisfies 
(b), (c) and (d) related to T~ in Definition 6.2 and put T~ in PB'(T~). If (PI) is 
not satisfied for some TjePB'(T~), then te rmina te -  T~ cannot be put into execu- 
tion in any valid P-execution of {T~} and Q under the FTWP and IVWP con- 
straints. When no new transaction T~ in ( ( P E w N E w  TT)-PB'(T~)) which sat- 
isfies (b), (c) and (d) can be found for any TjePB'(T~), then PB(T~)= PB'(T~). 

4) Construct the P-boundary graph Gt = (Xt ,  Z1) of T~ in Q according to 
Definition 6.3. 

5) Topologically sort G t to obtain the serial schedule Sl. Terminate. 
If the computation of the algorithm terminates in either Step 1 or Step 

5, then T~ can be put into execution in the database system state Qt =(PEa, 
NE~, TT,, sl) where PEt=(PEw{Tr}),  TTI= TT and s 1 is obtained by Step 1 
or Step 5 above and Q1 is a valid P-execution of {T~} and Q under the FTWP 
and IVWP constraints. 

Corollary 6.1 Given valid database system state Q=(PE, NE, TT, s) and P- 
requesting transaction T~EPR, the problem of determining whether there exists 
at least one database system state Qt=(PE, ,  NE t, TTt, Sl) such that Q~I is 
a valid P-execution of {T~} and Q under the F T W P  and IVWP constraints and 
PEI = (PEw { T~}) can be determined in O(I V[ ]PE w NE w TTI 2) time. 

Furthermore, if (PI) is satisfied in Q, then a database system state Q~I =(PE1, 
NEt ,  TTt, Sl) such that Q~1 is a valid P-execution of {T~} and Q~ under the FTWP 
and IVWP constraints and P E I = ( P E u  {Tr}) can be constructed in O(IVIIPEw 
N E w  TTI 2) time. [] 

Example 6.4 Given the same valid database system state Q as in Example 6.1, 
we can obtain the following serial schedule st by topologically sorting the P- 
boundary graph G1=(X1,Z1) of T~ in (2: (Fig. 4) s t = ( T  2 T 7 T~ T1 T a T 4 Ts T6) 
= R 2 [ a  ] W2[b ] RT[b ] WTrlRr[x,y,z ] W~[a,b] RtDWt[z  ] R3[-c ] W4[a ] 
R4~W4[y] RsDWs[c, y] R6[a] We[x]. The new database system state Q1 
=(PE~, NE t, TTt, s~) where P E t = { T I ,  T4, T6, T~}, NE~={TT} , TTa={T2, 
T3, Ts} and Sl=(T2 T 7 TrT 1 T3 T4T5 T6) is a valid P-execution of {Tr} and Q 
under the FTWP and IVWP constraints and T~ is put into execution in Qt, 
i.e.: PEt=(PEw{Tr}).  [] 

Corollary 6.1 indicates that if one imposes the constraint of scheduling one 
requesting transaction at a time, then one only needs two other additional 
constraints-FTWP and IVWP, i.e., one does not need to add the constraints 
((LTRD or DSRD) and (UPDW or DSWT)) as in Theorem 5.8 in order to 
obtain a polynomial time algorithm. 

The results obtained above can be generalized to the case where an upper 
bound is imposed on the number of predeclared writeset transactions scheduled 
each time. 

Theorem 6.3 The following problem can be determined in polynomial time: Given 
valid database system state Q=(PE, NE, TT, s) and P-requesting set PR such 
that for some constant C, IPRI<C; Does there exist a valid database system 
state Qt=(PE1, NEt ,  TT1, sl), such that PEx=(PEwPR)  and QI is a valid 
P-execution of PR and Q under the FTWP and IVWP constraints? 

Proof. The following procedure can be used to determine the existence of Qt : 
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1. Generate all permutations of the set of P-requesting transactions PR: {si} 
2. For  each permutation si= Ti" Ti n- 1 .... T/2 Til, n = IPRI, i= 1, 2 . . . .  , n!, try to 
put each P-requesting transaction into the P-executing set and the virtual sched- 
ule one by one according to the order of the permutation as follows: 

2.1. Use condition (PI) in Theorem 6.1 to determine whether there exists a 
valid database system state Q]=(PE],  NE~, TT/1, s~) such that P E r  
(PEu{T~I}) and Q~ is a valid P-execution of {T~ ~} and Q under the F T W P  
and I V W P  constraints. If (PI) is satisfied for PB(Ti 1) in Q, then construct Q1 
according to Theorem 6.2. 

2.2. For  each j, j = 2, 3, ..., n, respectively do the following: 
Redefine the P-boundary set PB(T/)  in Qt -1 as follows: Let the initial P- 

boundary set of T/j in Qt -1 be the union of {T/ j -1  , T / j -2 ,  . . . ,  T/l} and the set 
defined by condition (a) in Definition 6.2. Let all other members of PB(T/)  
in Qt-  ~ be still defined by (b), (c) and (d) in Definition 6.2. Use this new definition 
of PB(T/j) in Qt -1 together with condition (PI) in Theorem 6.1 to determine 
whether there exists a valid database system state Qt = (PEt, NE{, TTj ,  s{) such 
that P E t = ( P E t - ~ u  {T/J}) and Qt is a valid P-execution of {T/} and Qi -1 under 
the F T W P  and I V W P  constraints and for all k, k = j - 1 ,  ..., 1: #t(Tj)</~t(T/k) 
in st (including Tj-1  . . . . .  T~ 1 in the initial P-boundary set of T/J in Qt-1 implies 
that the latter condition must be satisfied in Qt). If (PI) is satisfied for the rede- 
fined P-boundary set PB(T/)  in Qt -~, then construct Q{ according to Theo- 
rem 6.2. 

By reasoning similar to that in the proof of Theorem 6.1 and 6.2, it is 
straightforward to prove that there exists a valid database system state Q1 = 
(PE1, NE1, TT1, $1) such that P E I = ( P E w P R  ) and Q~ is a valid P-execution 
of PR and Q, if and only if for at least one i, 1 _< i < n!: Q1 is a valid P-execution 
of {T/l} and Q under the F T W P  and I V W P  constraints and for allj, j = 2 ,  3 . . . . .  n: 
Qt is a valid P-execution of {T/} and Q{-I under the F T W P  and I V W P  con- 
straints and for all k, k = j - 1  . . . . .  1,/~t(T/J)<#{(T/k) in st. Furthermore,  if this 
condition is satisfied, then Q7 is a valid P-execution of PR and Q under the 
F T W P  and I V W P  constraints and PE'2 = (PEw PR). 

Note that this procedure requires the same order of computation time as 
the algorithm presented above for scheduling P-requesting transactions one at 
a time, since the same algorithm can be used here without substantial modifica- 
tion for constructing Q~ . . . .  , Q7 (the only difference is that T/J- 1, ..., T~" is added 
to the initial P-boundary set of T/J in Qt-~ in Step 2.2), and the number of 
times the algorithm must be applied is bounded above by n x n!, where 
n=IPR[<C.  [] 

Example 6.5 Suppose we are given the valid database system state Q=(PE,  
NE, TT, s) where T T = { T I } ,  P E = N E = O ,  s = ( T a ) ,  TI=(D, [b]), T2=([a],  [b]), 
T 3 =([b] ,  [a]) and a set of P-requesting transactions P R =  {T2, T3}. 

The set of all permutations of PR has two elements: s~ = T2 T3 and s2 = T3 T2. 
For  the permutation sa = T2 T3, from Step 2.1, one can obtain the valid database 
system state QI=({T3},0 , {T1},(T 1 T3) ) such that Q1 i is a valid P-execution 
of {T3} and Q under the F T W P  and I V W P  constraints and PEI = ( P E w  {T3}). 
By adding T 3 to the initial P-boundary set of T 2 in QI and applying the algorithm, 
from Step2.2, one can obtain the valid database system state Q2= 
({r2, T3}, 0, {T1}, (T2 Zl T3)) such that Q2 is a valid P-execution of {Ta} and 
Q~ under the F T W P  and I V W P  constraints and PE~=(PE 1 w {T2}) and #Z~(T2) 
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<#2(T3) in s 2. Q2 is also a valid P-execution of PR and Q under the FTWP 
and IVWP constraints where PE~=(PEuPR) .  Note that applying the Steps 
2.1 and 2.2 according to the permutation s2 = T 3 T 2 will not lead to any valid 
database system state Q1, such that Q1 is a valid P-execution of PR and Q 
under the F TWP and I VWP constraints and PEt = (PE u PR). [] 

Finally, we mention that if we wish to solve the same problem as in Theo- 
rem 6.2 or the same problem as in Theorem 6.3 but with the DSRD constraint 
added, all we have to do is add the set of arcs (c), (d) and (h) of the IDRW 
dependency graph defined in Definition 5.1 to the P-boundary graph defined 
in Definition 6.3 and follow the same procedure as described earlier. 

If we wish to solve the same problem as in Theorem 6.2 or the same problem 
as in Theorem 6.3 but with the DSWT constraint added, then we should add 
the set of arcs (b), (e), (f) and (g) of the I D R W  dependency graph defined in 
Definition 5.1 to the P-boundary graph defined in Definition 6.3 and follow 
the same procedure as described earlier. 

If only the DSRD constraint is added then the corresponding algorithm 
can be used to solve the problem of terminating nonpredeclared writeset transac- 
tions under the FTWP, IVWP and UB constraints as described in Sect. 4. The 
algorithm will achieve an optimal level of concurrency in polynomial time for 
the problem of terminating nonpredeclared writeset transactions since the ver- 
sions that must be read by each transaction in the N-commit set are fixed 
already - they must be the same versions that were read by each corresponding 
transaction in the N-executing set. 

7 Summary of complexity results 

Table 1 below summarizes the computational complexity of the problem of 
determining whether a set of predeclared writeset transactions can be put into 
execution while guaranteeing that their future writes will never compromise 
correctness of the database system under any combination of the constraints 
FTWP, LTRD or DSRD, IVWP, UPDW or DSWT, 1 V, 2 V a n d  UB. 

The results in Table 1 are respectively proved in Theorems 5.1 and 5.4; 
5.2 and 5.5; 5.3 and 5.6; 6.1; 5.7 and 5.8. 

In the following tables, "yes"  signifies that the corresponding constraint is 
imposed, while " - "  signifies that the corresponding constraint is not imposed. 

For  each NP-complete problem: 
If "yes"  is replaced b y "  - ", then problem remains NP-complete. 
I f "  -- " is replaced by "yes", then problem becomes polynomial time solvable. 

For  each polynomial time solvable problem: 
I f "  - " is replaced by "yes", then problem remains polynomial time solvable. 
If "yes"  is replaced by " - " ,  then problem becomes NP-complete. 

This suggests that each NP-complete problem below contains a maximal subset 
of constraints, while each polynomial time solvable problem below contains 
a minimal subset of constraints. 
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Table 1 

FTWP LTRD or DSRD IVWP UPDW or DSWT 1 V 2 V UB 

yes yes yes -- -- yes -- NP 
yes yes -- yes -- yes yes NP 
yes - yes yes -- yes - NP 
yes -- yes -- -- -- yes P 
yes yes yes yes - -- -- P 

Note that here the constraint 1 V trivially implies the constraints FTWP, LTRD, IVWP and 
UPD W. The constraint 2 V trivially implies the constraint F TWP 

Table 2 

FTWP IVWP U P D W o r D S W T  1V 2V UB 

yes yes -- -- yes -- NP 
yes - yes -- yes yes NP 
yes yes -- -- - yes P 
yes yes yes -- - -- P 

Note that the constraint 1 V trivially implies the constraints FTWP, IVWP and UPDW. The 
constraint 2 V trivially implies the constraint FTWP 

T a b l e  2 b e l o w  s u m m a r i z e s  t he  c o m p u t a t i o n a l  c o m p l e x i t y  o f  the  p r o b l e m  of  
d e t e r m i n i n g  w h e t h e r  the  wr i t ese t s  o f  a set o f  n o n - p r e d e c l a r e d  wr i t e se t  t r a n s a c -  
t i ons  c a n  be  w r i t t e n  in t he  d a t a b a s e  whi le  p r e s e r v i n g  co r r ec tne s s  u n d e r  a n y  
c o m b i n a t i o n  o f  the  c o n s t r a i n t s  F T W P ,  I V W P ,  U P D W  or  D S W T ,  1V, 2 V  or  
UB. 

T h e s e  resul t s  a re  p r o v e d  by  the  fact  t h a t  the  p r o b l e m  of  c o n s t r u c t i n g  va l id  
N - t e r m i n a t i o n s  o f  a N - c o m m i t  set a n d  a va l id  d a t a b a s e  sys tem s ta te  is e q u i v a l e n t  
to  the  p r o b l e m  of  c o n s t r u c t i n g  va l id  P - e x e c u t i o n s  of  a P - r e q u e s t i n g  set a n d  
a va l i d  d a t a b a s e  sys t em s ta te  u n d e r  t he  D S R D  cons t r a in t .  

8 Conclusions 

In  this  pape r ,  we p r e s e n t e d  a n e w  m o d e l  for  s t u d y i n g  the  c o n c u r r e n c y  vs. c o m p u -  
t a t i o n  t i m e  t radeof fs  i n v o l v e d  in on - l i ne  m u l t i v e r s i o n  d a t a b a s e  c o n c u r r e n c y  c o n -  
trol .  T h e  m a j o r  d i f ference  b e t w e e n  o u r  m o d e l  a n d  p r e v i o u s  m o d e l s  is the  bas ic  
p r o b l e m  t h a t  is s tudied .  

W h i l e  m o s t  p r e v i o u s  m o d e l s  s tudy  the  p r o b l e m  of  d e t e r m i n i n g  w h e t h e r  a 
s chedu le  s r e p r e s e n t i n g  the  o u t p u t  of  a c o n c u r r e n c y  c o n t r o l  a l g o r i t h m  b e l o n g s  
to  a c e r t a i n  class C of  se r ia l i zab le  schedules ,  o u r  m o d e l  s tud ies  the  f o l l o w i n g  
p r o b l e m :  G i v e n  s o m e  p r e v i o u s  s ta te  o f  t he  d a t a b a s e  sys t em d e t e r m i n e  w h e t h e r  
a n e w  d a t a b a s e  s y s t e m  s ta te  exists  (and  c o n s t r u c t  t he  n e w  d a t a b a s e  sys t em 
s ta te  if  i t  d o e s  exist)  in w h i c h  a set of  r e a d  a n d  wr i t e  r eques t s  c a n  be  sat isf ied 
whi le  p r e s e r v i n g  c o n s i s t e n c y  of  the  d a t a b a s e  sys tem.  
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In our model the following two basic problems were studied: (1) Preventive 
scheduling of predeclared writeset transactions, so that they never have to be 
restarted. (2) When one or more non-predeclared writeset transactions finish 
their computation and announce their writesets, determine if they can write 
into the database (while preserving serializability) without aborting any transac- 
tions. 

It was shown that the first problem is actually equivalent to the second 
problem when the constraint DSRD is imposed on the first problem. Consequent- 
ly, all the complexity results that we have derived for the first problem under 
the DSRD constraint can be directly applied to the second problem. 

We proved that the set of restrictions {FTWP, (LTRD or DSRD), IVWP, 
(UPDW or DSWT)} and the set of restrictions {FTWP, IVWP, UB} define 
two fundamental limits of performance achievable by polynomial time concur- 
rency control algorithms. If any one constraint in the minimal sets is omitted, 
although it could increase the amount  of concurrency, it would also have the 
dramatic negative effect of making the scheduling problem NP-complete; where- 
as if we do not omit any constraint in the minimal sets, then the scheduling 
problem can be solved in polynomial time. With each one of these minimal 
set of restrictions, we constructed an efficient scheduling algorithm that achieves 
an optimal level of concurrency in polynomial computation time. 

In the following we briefly discuss how previously proposed concurrency 
control algorithms fit into our framework. By examining previously proposed 
concurrency control algorithms in the literature one can observe that in general 
they do not allow more than one read or write request to be scheduled simulta- 
neously. Furthermore, previously proposed multiversion concurrency control 
algorithms do not exhaustively examine all possibilities of allowing each transac- 
tion to read or write any version, and they impose a fixed ordering of all versions 
for each variable name in the database. This implies that in general, previously 
proposed algorithms impose at least all the following constraints (in fact, each 
previously proposed concurrency control algorithm individually imposes more 
constraints than the common subset listed below): (i) IPRI= 1 or INE;F=I;  
(ii) (DSWT or UPDW) and (DSRD or LTRD); (iii) FTWP and 1VWP. 

Thus it should be easy to see that previously proposed algorithms achieve 
less concurrency than the polynomial time algorithms corresponding to the 
two minimal sets in this paper. This does not mean that one can always achieve 
more concurrency than previous algorithms for a particular database application 
because in many cases the application itself may require that certain constraints 
be imposed. However, our results do provide interesting insight in determining 
whether and what additional constraints must be enforced to obtain a polyno- 
mial time concurrency control algorithm that achieves an optimal level of con- 
currency for a given set of application imposed constraints. 

Finally, we mention that the complexity results obtained within the two 
step transaction model can be easily extended to an n-step transaction model 
[22]. In an n-step model of transactions a transaction can be associated with 
three sets of variable names: a readset, a writeset and a predeclared writeset 
which respectively are the set of variable names for which that transaction has 
previously read, written or intends to write in future a version. These three 
sets are not invariant as in our two step model. They may all grow as new 
read, write or predeclared write requests are satisfied. However, when these 
three sets become known dynamically then one cannot guarantee anymore that 
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a t r ansac t ion  will never  abort .  (One can only guaran tee  that  a t ransac t ion  will 
never be abor ted  at the t ime a request  is accepted if that  t r ansac t ion  does 
no t  make  any  unacceptable  further requests to read or write addi t iona l  version 
values). Despite  these differences the condi t ions  that  mus t  be satisfied when 
scheduling requests in an  n-step t r ansac t ion  model  are basically the same as 
when cons t ruc t ing  valid P-(N-)executions and  P-(N-) terminat ions  of a current  
da tabase  system state in the two step model  and  consequent ly  the complexity 
results i nTheorems  5.1-5.8 and  Theorems 6.1-6.3 in the two step model  carry 
over to the n-step model.  
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Appendix 

Proof of Theorem 5.1 

Proof. It  is easy to see that  LI is in NP, because a non  deterministic a lgor i thm 
need only guess a new valid database system state Q1, in which sl is a serial 
schedule of  T = ( P R u P E u N E w T T )  and check in polynomial  time that  Q1 
is a valid P-execution of  PR and Q under  the LTRD and IVWP constraints.  

Below, we accomplish our  p roo f  by t ransforming a well k n o w n  N P  complete 
problem - the " G R A P H  K - C O L O R A B I L I T Y "  problem (GKC) [8] to LI. 

G K C  is as follows: Given a graph  G=(V, E) and a positive integer K < N ,  
where N = I V I ,  determine whether g raph  G is K-colorable,  i.e., is it possible 
to assign each node in G one out  of  K colors, such that  no two connected 
nodes are assigned the same color?  

Suppose G = (V, E) and a positive integer K < N, where N = I V], is an arbi t rary 
instance of  G K C .  We now construct  a valid database system state Q = ( P E ,  
NE, TT, s) and a set PR of P-request ing transactions,  such that  there exists 
a valid database  system state QI =(PE 1, NE~, TTI, s~) which is a valid P-execu- 
t ion of PR and Q under  the LTRD and I V W P  constraints  if and only if G 
is K-colorable.  

We construct  N " n o d e  components" .  Each  node componen t  corresponds  
to one node  in the g raph  G. We call the node  componen t  cor responding  to 
node i in G as " n o d e  componen t  i". Each node componen t  i is in turn composed  
of  K "co lo r  componen ts" .  Each  color  componen t  corresponds  to one color. 
We call the color  componen t  in node  componen t  i cor responding  to color  j 
as color  componen t  [i,j]. 

Each color  componen t  [-i,j] is composed  of three t ransact ions:  One terminat-  
ed t ransact ion TtEi, j ]=([SRt[ i , j ]] ,  [SWt[i,j]]), one P-executing t ransact ion 
Te [i,j] = ([SR e [-i,j]], [SWe [i, j ] ] )  and one P-requesting t ransact ion 
Tr [i,j] = ([SR r [ i , j ] ] ,  [SWr [i, j]]) .  

In  each color  componen t  [i,j],  i =  1, 2 . . . . .  N, j--= 1, 2, ..., K, we let" a [i,j] 
S Wt [i, j ] ,  a [i, j] ~ S. Wr [i, j], a [i, j] ~ SR e[i, j]. 

In  each node componen t  i, i = 1 , 2  . . . .  , N ,  we let: b[i , j ,k]ESWe[i , j] ,  
b[ i , j , k]~SRr[ i ,k]  for all j, k: l = j ,  k<=K and j # : k ;  c [ i , j + l , j ] ~ S W r [ i , j + l ] ,  
c [ i , j + l , j ] 6 S R t [ i , j ]  for all j : I<=j<=K-1; and c[i, 1, K]~SWr[ i ,  1], 
c[i, 1, K]~SRt[ i ,  K]. 

For  all p, q such that  1 < p, q_-< N, p 4: q and node p and node q are connected,  
we let: d[p, q,j] e S W e  [p,j], d[p, q,j] ~SRr [q,j] for all j :  1 =<j < K. 
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We further construct a serial schedule s =  Tt[1, 1] Te[1, 1] Tt[1, 2] Te [1, 2] 
... rt[i,j] re[i,j] ... r t [ N ,  K] Te[N,K]. 

Then we collect all the transactions constructed above together to form 
the three sets: PE={re[i,j]} rr={rt[i,j]}eR={rr[i,j]} for all i, j, i =  
1, 2, ..., N, j = 1, 2, ..., K. We let NE be empty. 

It is not difficult to see that the valid database system state Q--(PE, NE, 
TT, s) and the requesting set PR of P-transactions thus constructed can be 
constructed in polynomial time. 

Notice that in s, in every color component [i,j], Te[i,j] reads a[i,j] from 
Tt[i,j]. Also, in s no transaction reads any of the variable names b[i,j,k], 
c [i,j, k], d [p, q, k] from any other transaction. From the consistency condition 
of Definition 3.2, in any valid P-execution QI=(PE1, NEI, TT1, sl) of PR 
and Q, the same read from relations must be satisfied, i.e., in sl,  for every 
color component  [i,j], Tell, j] must read a[i,j] from Tt[i,j]. Also, in Sl no 
transaction should read any of the variable names b[i,j, k], c[i,j, k], dip, q, k] 
from any other transaction. 

We now prove that there exists a valid database system state QI=(PE1, 
NE1, TT1, sl) which is a valid P-execution of PR and Q under the LTRD 
and IVWP constraints if and only if G is K-colorable. 

By the way we have constructed color component  [i,j], it is easy to verify 
that in any serial schedule sl which includes Tr[i,j], Tt[i,j] and Te[i,j] and 
Q1 is a valid P-execution of PR and Q, one and only one of the following 
formulas must be satisfied for the three transactions Tr [i,j], Tt [i,j] and Te [i,j] 
in each color component  [i,j] : N O T C O L O R E D  (i,j): #a (Tr [-i,j]) < pl(Tt [-i,j]) 
<#l(re[i,j]) in s~ (exclusive) or COLORED(/ , j ) :  #l(rt[i,j])<#~(Te[i,j]) 
< #1 (Tr [i,j]) in s 1 . This is because if neither N O T C O L O R E D  (i,j) nor COLOR- 
ED(i,j) is satisfied in sl,  then Te[i,j] would not read a[i,j] from Tt[i,j] 
in Sl. 

In each node component i, for any two color components [i,j] and [i, k], 
k:t=j, #1(Tr[i, k])<#l(Te[i,j]) in sl must hold, otherwise Tr[i, k] would read 
b[i,j, k] from Te[i,j] in sl.  For  a similar reason, #l(rr[i, j])<#l(re[i,k]) in 
Sl must hold. This implies that COLORED(i , j )  and COLORED(i ,  k) cannot 
hold simultaneously, otherwise they would generate the following cycle: 
#1 (Te [i, j]) < #1 (Tr [i, j]) < #1 (Te [i, k]) < #1 (Tr [i, k]) < #1 (Te [i, j]). 

In each node component i, #l(Tt[i,j])<#1(Tr[i,j+ 1]) in Sl for all j: 1 __<j 
__<K-l, and pl(Tt[i,K])<gl(Tr[i,  1]) in sl must hold, otherwise for some j, 
Tt[i,j] would read c[i,j+l,j] from Tr[i,j+ 1] in Sl or Tt[i,K] would read 
c I-i, 1, K] from Tr[i, 1] in sl.  This implies that for at least one j, COLORED(i , j )  
must be true, otherwise the following cycle would be created: #1(Tr[i, 1]) 
<#l(Tt[i, 1])<#l(Tr[i, 2])<#1(Tt[i, 2])...<#l(Tr[i, K])<#1(Tt[i , Kl)  
<#l(Tr[i, 1]). 

Suppose that node p and node q are connected, then #1(Tr[q,k-]) 
<#l(Te[p, k]) in st must hold, otherwise Tr[q, k] would read dip, q, k] from 
Te [p, k]. Similarly, #1 (Tr [p, k]) < #1 (Te [q, kl) in s 1 must hold. This implies that 
COLORED(p,  k) and COLORED(q,  k) cannot simultaneously hold, otherwise 
this would generate the following cycle: #1 (Te [p, k]) < Pl (Tr [p, k]) < 
#1(re[q, k])< pl (rr[q, k])< #l (re[p, k]). 

So far we have proved that in any serial schedule s 1 of valid database system 
state Qt =(PE1,  NE1, TT1, sl) such that Q1 is a valid P-execution of PR and 
Q, in each node component  i, COLORED(i,j) must be satisfied for one and 
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only one color component j, and if node p and node q are connected, then 
COLORED(p, j )  and COLORED(q, j )  cannot simultaneously be satisfied for 
two color components in node components p and q which correspond to the 
same color j. 

Suppose that there exists Q~ which is a valid P-execution of PR and Q. 
We set node i to color j iff COLORED(i , j )  is satisfied for color component  
[i,j] in sl in Qt. Then each node will be set to one and only one color, and 
connected nodes will be set to different colors. 

Conversely, if the graph G is K-colorable, then we divide all transactions 
in ( P R ~  P E u  N E w  TT) into 3 + 2 K -  1 disjoint sets: SET[ l ]  = {Te[i, j] ]node i 
is NOT colored j}; SET[2] = {Tr[i , j]  Inode i is colored j}; SET[3] = {Te[i,j]l  
node i is colored j}; SET[4] = { Tt  [i,j] I node i is colored (j mod K ) +  1}; S E T  
[51 = { r r  [i,j] I node i is colored (j mod K) + 1 }; ... SE r[3  + 2 m -- 11 = { r t  [i, j] I 
node i is colored ( ( j + m -  1) mod K) + 1} ; SET[3 + 2m] = {Tr[i, j l  ]node i is col- 
ored ((j + m -  1) rood K) + 1} ; . . .  SET[3 + 2 ( g - -  1)-- 11 = { r t  [i, j l  ]1 < i < N, node 
i is colored ((j + (K--  1)-- 1) mod K +  1)}; SET[3 + 2 ( K -  1)1 = {Tr[i, j] I1 < i<N ,  
node i is colored ((j + (K - 1 ) -  1) mod K + 1)}; SET[3 + 2 K - -  11 = { r t  [i, j l  ]node 
i is colored j} where 1 < i_< N, 1 < j__< K. 

We can construct a valid database system state Q~ =(PE~, NE1, zrl,sl) 
as follows: PE 1 = (PE u PR), N E  1 = NE, T T  1 = TT, and s 1 = { S E T  [3 -t- 2 K -- 11) 
{SET[3 + 2 ( K -  1)]) {SET[3 + 2 ( K -  1 ) -  11) ... {SET[3 + 2m])  {SET[3  + 
2 m -  11) ... {SET[5] )  {SET[41)  {SET[31)  {SET[21)  { S E T [ l ] ) .  
( " {SET[k] ) "  denotes any serial schedule of the transactions in SET[k]). One 
can verify that in s~: for all i, j, Te[i, j l  reads a[i,j] from Tt[i,j],  which is 
the same as in s, and for all i, j, Tr[i, j] reads the initial version for every 
variable name in its read set. Also in sl,  as in s, no transaction reads any 
of the variable names b[i,j, kl, c[i,j, kl, dip, q, k] from any other transaction. 
Thus both the consistency condition and existence condition of Definition 3.2 
are satisfied, and Q a is a valid P-execution of PR and Q. Since the write sets 
of all transactions in (PE u TT) do not intersect with each other, the FTWP,  
I V W P  and 2V constraints are satisfied in Q~. Since none of the terminated 
transactions in T T  have written a version for any variable name that is in 
a read set of any P-requesting transaction in PR, the L T R D  constraint is also 
satisfied in Q1. [] 

Proof of Theorem 5.2 

Proof. We transform the " G R A P H  K - C O L O R A B I L I T Y "  problem to UI in 
the same fashion as in the proof  of Theorem 5.1. Below, we show the construction 
of the valid database system state Q = (PE, NE, TT, s), for which there exists 
a valid database system state Q1 =(PEt ,  N E t ,  TT1, sO which is a P-execution 
of Q and PR under the FTWP,  IVWP,  U P D W  and 2V constraints and PEx 
= (PE u PR) if and only if graph G is K-colorable. 

Here, each color component [i, j l  is also con~posed of three transactions: 
one terminated transaction Tt  [i,j] = ([SR t [i,J]], [SWt  [i,J]]), one P-executing 
transaction Te [i, j] = ([SRe [i,J]], [SWe [i , j]]) and one P-requesting transaction 
Tr [i,j] = ([SR r [i, J]], [SWr [i, j l]).  

In each color component [i,j], i= 1, 2 . . . . .  N, j =  1, 2 . . . . .  K, we let: a[i, j l~  
S W t  [i,j], a [i,j] ~SR r [i,j], a [i,j] 6 S W e  [i,j 1. 
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In each node component  i, i=1 ,2 ,  . . . ,N ,  we let: bl[ i , j , k]eSWt[ i , j ] ,  
b 2[i,j, k]eSRr[i ,  k] for all j, k: 1 < j, k < K and j 4:k; c[i,j + 1, j]eSWr[i , j  + 1], 
c[i,j + 1,j]eSRe[i, j] for all j: I <=j<=K-1, and c[i, 1, K]~SWr[i ,  1], c[i, 1, k]e- 
SR e[i, K]. 

For  all l<=p,q<N, p:t:q and node p and node q are connected, we let: 
d l [p, q,jl eSWt[p,j] ,  d2[p, q, j]eSRr[q,j]  for all j :  1 <=j <=K. 

We further construct two sets of auxiliary P-executing transactions TBE 
and TDE as follows: TBE={Tbe[ i , j , k]}  for all i, j, k, l<i<=N, l<j ,k<=K 
and j 4:k, where SRbe[i,j ,  k] = {bl [i,j, k]} and SWbe[i,j ,  k] = {b2[i,j, k]}; 

TDE={Tde[p,q , j ]}  for all l<=p,q<N, p:t:q and node p and node q are 
connected, where SR d e [p, q, j] = {d 1 [p, q, j l} and S Wd e [p, q, j] = {d 2 [p, q,jl }. 

We then construct a serial schedule s=Te[1,11Te[1,21 ... Te[N,K]  
Tbe[1, 1,2] Tbe[1, 1, 31 ... Tbe[N, K, K -  1] ({Tde[_p, q, j ]})  
Tt[1, 11 T t [1 ,2 ]  . . .Tt[N,  K1. 

Then we collect all the transactions constructed above together to form 
the three sets: PE = { Te [i,j] } • TBE u TDE, TT  = { Tt [i,j] }, PR = { Tr [i, Jl } for 
i-=1,2, ..., N , j = I , 2 ,  ..., K, we let NE=O. 

It is not difficult to see that the valid database system state Q =(PE, TT, 
PR, s) thus constructed can be constructed in polynomial time. 

Notice that in s: for all i, j, i= 1, 2 . . . . .  N, j=  1, 2, ..., K: a[i,j]e(SWe[i,j] c~ 
SWt[i,j]) and #(Te[i, j])<#(Tt[i ,  jl). Also, in s no transaction reads any of 
the variable names bl[i , j ,k] ,  b2[i,j,k], c[i,j,k], dl[p,q,  kl d2[p,q,k] from 
any other transaction; from the consistency condition of Definition 3.2, no trans- 
action should read any of these variable names from any other transaction 
in sl.  

In each color component [i,j], one and only one of the following formulas 
must be satisfied for the three transactions Tr[i,j], Te[i,j] and Tt[i,j]: NOT- 
CO L OR ED (i,j): #2 (Tr [i, j l )  < #1 (Te [i, j]) < #1 (Tt [i, j]) in sl (exclusive) or COL- 
ORED(i, j) :  #2 (Te [i,j]) < #1 (Tt [i, j l )  < # l ( T r  [i,j]) in s~. 

Either NOTCOLORED( i , j )  or COLORED(i , j )  must be satisfied in each 
color component  [i,j] because: #1(Te[i,j])<#l(Tt,[i,j]) must be satisfied in 
Sl, otherwise the IVWP constraint will not be satisfied in Q~; and: Tr[i,j] 
cannot be positioned between Tell, j] and Tt [i,j], otherwise Tr[i,j] will read 
a [i,j] from Te [i,j], which viotates the existence condition in Definition 3.2. 

In each node component  i, for any two color components [i,j] and [i, k], 
k:t:j, #~(Tr[i,k])<p~(Tbe[i,j ,k])<#~(Tt[i,j]) in s~ must hold. Otherwise 
Tr [i, k] will read b 2 [i, j, k] from Tb e [i, j, k], which violates the existence condi- 
tion in Definition 3.2; or Tbe[i, j ,k] will read bl[i , j ,k]  from Tt[i,j] in sl,  
which violates the consistency condition in Definition 3.2. Similarly, 
#l(Tr[i , j])<#1(Tbe[i ,k,  j l )<#l(Tt[ i ,k] )  in st must hold. This implies that 
C O L O R E D  (i, j) and C O L O R E D  (i, k) cannot hold simultaneously. 

In each node component  i, #1(Te[i , j])<#l(Tr[i , j+ 11) in st for all j, such 
that 1 <j<=K-  1 and #l(Te[i, Kl )<#t(Tr[ i ,  11) in s 1 must hold. Otherwise for 
some j, Te[i,j] will read c[ i , j+l , j ]  from Tr[ i , j+ l ]  in st or Te[i ,K] will 
read c[i, 1, K] from Te[i, 1] in st.  This implies that for at least one j, COL- 
ORED(i , j )  must be true. 

For  all p, q, such that 1 <p, q<=N, p@-q and node p and node q are connected: 
#1(Tr[q, k l )<#t(Tde[p,  q, k])<#1(Tt[p, k]) in Sl for all k, 1 <_k<_K must hold. 
Otherwise Tr[q, k] will read d2[p, q, k] from Tde[p, q, k] in st,  or Tde[p, q, k] 
will read d l [ p , q , k ]  from Tt[2, k] in st.  Similarly, #1(Trip,  k ] )<  
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#~(Tde[q,p, k])<p~(Tt[q, k]) in s~ for all k, 1 <_k<_K must hold. This implies 
that COLORED (p, k) and COLORED (q, k) cannot simultaneously hold. 

Conversely, if the given graph G is K-colorable, then we can construct a 
database system state Q 1 = (PE1, NE1, TT1, sO, where PE 1 = (PEw PR), NE 1 = O, 
T T I =  r r  and sl =({re[i , j]]node i is colored j})  ({Tr[i, j] I n o d e / i s  colored 
((j+ K - 2 )  mod K +  1)}) ({Tel l ,  j] Inode i is colored ( ( j + K - - 2 )  rood K +  1)}) 
({rr[ i , j ]  ]node i is colored ((j + K - -  3) mod K +  1)}) ({Te[i, j]  ]node i is colored 
((j+ K -  3) mod g + 1)})...  ({rr[ i , j ]  ]node i is colored ( ( j + K - - / )  mod K +  1)}) 
( { r e  [i,j] ]node i is colored ((j + K -  l) rood K + 1)})...  ({Tr  [i,j] Inode i is col- 
ored ((j rood K ) +  1)}) ({re[i,j] Inode i is colored ((j rood K ) +  1)}) ({The[i,  
j, k]]node i is colored j} )  ({Tde[p, q, k] Inode p is colored k and node p and 
node q are connected}) ({Tt[i,j]]node / i s  colored j})  ({Tr[i,j]]node i is 
colored j})  ({rbe[i,j, k3 ]node i is NOT colored j} )  ({Tale[p, q, k3 Inode p is 
NOT colored k and node p and node q are connected}) ({Tt[i,j]]node i is 
NOT colored j})  where 1 <_iNN, 1 < j < K, 1 <= p, q <= N, 1 <_ k <<_ K. 

One can verify that in Sl : for all i,j, either Tr[i,j] reads a[i,j] from Tt[i,j], 
or Tr[i,j] reads the initial version of all, j]. Also, in Sl no transaction reads 
any of the variable names bl [i,j, k], b2 [i, j, k], c [i, j, k], d 1 [p, q, k], d2 [p, q, k] 
from any other transaction, which is the same as in s. Thus both the consistency 
condition and existence condition of Definition 3.2 are satisfied, and Q~ is a 
valid P-execution of PR and Q. Since the write sets of all transactions in (PE w 
TT) do not share any other variable names except for a[i,j]~(SWe[i,j]r 
SWt [i,j]) and p(Te [ i , j ] )<  #(Tt  [i,j]) in Sl, which is the same as in s, the FTWP, 
IVWP and 2V constraints are satisfied in Q1. Since none of the terminated 
transactions in TT have written a version for any variable name that is in 
a write set of any P-requesting transaction in PR, the UPDW constraint is 
also satisfied in Q~. []  

Proof of Theorem 5.3 

Proof. It is easy to see that LU1 is in NP, because given any valid database 
system state Q=(PE, NE, TT, s) and the set of P-requesting transactions 
PR--{Tr},  a non deterministic algorithm need only guess a new valid database 
system state QI=(PE1 ,  NE 1, TT1, sl) such that P E I = P E w { T r } ,  N E I = N E ,  
TT1 = TT, and Sa is a serial schedule of T=({Tr}  w P E w N E •  TT), and check 
in polynomial time that Q1 is a valid P-execution of PR={Tr}  and Q under 
the FTWP, LTRD and UPDW constraints. 

Below, we accomplish our proof by transforming a well known NP-complete 
problem-3-satisfiabil i ty of Boolean formulas (3-SAT) [8] to LU 1. 

3-SAT is as follows: given a set of clauses C on a finite set of variables 
U such that each clause in C contains three literals, does there exist a truth 
assignment for U that satisfies all the clauses in C? 

Let C =  {c [1], c [2], . . . ,c[-M]} be the set of clauses and U =  
{u [1], u [2] . . . . .  u I-N]} be the set of variables in an arbitrary instance of 3-SAT. 
We now construct a valid database system state Q=(PE, NE, TT, s) and a 
P-requesting transaction Tr such that the 2 V constraint is satisfied in Q and 
there exists a valid system state QI=(PEa, NEI,  TT~,sO which is a valid P- 
execution of P R =  {Tr} and Q under the FTWP, LTRD and UPDW constraints 
if and only if C is satisfiable. 
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For each variable u El] E U, i= 1, 2, . . . ,  N, we construct a "variable compo- 
nent i" that consists of two terminated transactions: Tt[i, 1]=([SRt[i,  1]], 
[SWt[i, 1]]) and rt[i ,  2] =([SRt[i, 2]], [SWt[i, 2]]). 

For each literal z U, k] = u [i] or z [j, k-1 = ~ [i] in each clause c [j] = (z [j, 11, 
z [j, 2], z [j, 3]), k--- 1, 2, 3, j = 1, 2, ..., M, we construct a "literal component 
[j, i]" which is composed of four P-executing transactions: Te[j, i, 1] =([SR e 
[j, i, 131, [SWe[j, i, 1]]), Te[j, i, 2] =([SRe[j,  i, 2]], [SWe[J, i, 2]]), TEE/, i, 3] 
= ([SR e [j, i, 333, [SWe U, i, 331) and me U, i, 41 = ([SR e [.j, i, 4]], [SWe [j, i, 4]]). 

For each literal component [j, i], and its corresponding variable component 
i, j = l ,  2 . . . .  ,M,  i = I ,  2 , . . . , N ,  we let: a[_j,i]eSWt[i, 1], a[_j,i]eSRe[j,i, 1], 
a[j, i]mSWe[j, i, 2]; b[j, i]~SWt[i, 2], b[j, i]eSRe[j ,  i, 3], b [j, i]eSWe[j ,  i, 4]; 
c[_l',i]eSWe[_j,i, 4], cO, i leSRt[i ,  1]; d[ j , i ]eSWe[j , i ,  2], d[j , i]eSRt[i ,  2]; 
e[_j,i]eSWe[j,i, 3], e[j , i]~SRe[j , i ,  2]; f [ j , i ] eSWe[ j , i ,  1], f [ j , i ] e -  
SRe[j , i ,4];  

We construct one P-requesting transaction Tr = (SRr, SWr). 
For  each clause c[j]=(z[j ,  1], z[j,  2], z[j, 3]), where (z[j, 1 ] = u [ i l ]  or 

z[j,  1]=vi[i l]  ) and (zU, 2]=u[i2] or z[j,  2]=~7[i2] ) and (z[_j, 3]=u[i3] or 
z [j, 3] = ~2[ia]) for j =  1, 2 . . . .  , M, 1 < il,  i2, i3 < N, we have one "clause compo- 
nent j "  that consists of the three literal components [j, i j], [j, i21, [j, ia]. For 
every literal component [j, i~], k =  1, 2, 3, we define one "output  node" 
Tout[ j ,  ik] =([SRout [ j ,  ik]], [SWout[ j ,  ik]]) and one "input node" Tin[j ,  ik] 
=([SRin[ j ,  ik]], [SWin[j ,  ik]]) as follows: iff z[j, k] =U[ik] then Tout[ j ,  ik] 
=Te[j ,  ik, 1] and Tin[j,  ik ]=Te[ j ,  ik,2], else iff z[j,  kJ=fi[ik] then 
Tout [j, ik] = Te [_j, ik, 3] and Tin [j, ik] = Te [j, ik, 4]. For every clause compo- 
nent j, we let: w [j, i 1 , 0] eSRr,  w [j, ii , 0] eSWout  [j, il], w [j, i3, i2] eSRin  [j, i21, 
w[j, ia,iz]~SWout[j,  is], w[j, i2, i t]6SRin[j ,  il] , w[j, i2 , i l]~SWout[j ,  i2], 
w [j, O, i3] E SR in [j, ia], w [j, O, i3] ~ S Wr. 

We construct a serial schedule s of all P-executing and terminated transac- 
tions constructed above: s=({T t[ i ,  Z l} ) ({Te[ j , i ,  2]})({Tt[ i ,  1]})({Te 
[j, i, 3] Iz U, 1] = a [ i ] } )  ({Tel_j, i,4] Iz[j, 1] = ~i[i]}) ( {TeU,  i, 3] Iz[j, 2] = ~i[i]}) 
({re[j, i, 4]lzU, 2] =a[i]}) ({reU, i, 3] IzU, 3] =f i [ i ]})  ({reO, i,4] ]z[j, 3] = 
a[i]}) ({re [j, i, 3] Iz U, k] =u[i]}) ({TeU, i, 411z[j, k] --u[i]})  ({re[j, i, 1]}) 
where 1 <_j_<_ M, 1 _< i < N and 1 < k_< 3. ( ( T )  ( T ' )  ... means a serival schedule 
obtained by a concatenation of the serial schedules of the sets T, T', ... of 
transactions). 

Then we collect all the transactions constructed above to form the four 
sets: PR = { r r} ;  PE = { Te [j, i, 1], re  [j, i, 2], re  [j, i, 31, r e  [j, i, 4] I for all j, k, i, 
j = l ,  2 . . . .  ,M,  k=1 ,2 ,3 ,  such that c [ j ]= (z [ j ,  1], z[j,  2], z[j,  3]) in C and 
(z[j ,k]=u[i] or z[j ,k]=a[i])  and I_<i<N};  N E = 0 ;  TT={Tt [ i ,  1], 
Yt [i, 2] Ifor all i, i =  1, 2 . . . . .  N}. 

It is not difficult to see that the system state Q = (PE, NE, TT, s) thus con- 
structed is a valid database system state which satisfies the 2 V constraint and 
can be constructed in polynomial time. 

Notice that in s, in every literal component [j, i I and its corresponding 
variable component i, Te[j, i, 1] reads a[ j ,  i] from Tt[~, 1] and Te[j, i, 3] reads 
b [j, i] from Tt [i, 2] in s. Also in s, no transaction reads any of the variable 
names c[j,i], d[j,i], e[j,i], f[.j,i], w[j, il,i2], I <j<=M, l_~i, i~,i2<N from 
any other transaction. From the consistency condition of Definition 3.2, in any 
valid P-execution QI=(PEa,NEt ,  TT~,sO of PR and Q, the same read from 
relations must be satisfied, i.e., in sl, for every literal component [j, i], Te[j, i, 1] 
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must read a[j ,  i] from Tt[i, 1] and Te[j, i, 3] must read b[j, i1 from Tt[i, 2] 
in s. Also, in st no transaction should read any of the variable names c I j ,  i], 
d[j,  i], e[j, i1, f [ j ,  i], w[j, it ,  i2], 1 <=j<M, 1 <i, il, i 2<N from any other trans- 
action. 

We now prove that there exists a valid database system state Q I =  
(PEt, NE1, TT1, st) such that Q1 is a valid P-execution of PR and Q if and 
only if C is satisfiable. 

By the way we have constructed each literal component [j, i], it is easy 
to verify that in any serial schedule Sa which includes Tt[i, 11, TEL], i, 1] and 
Te[j',i, 2] and Q1 is a valid P-execution of PR and Q, one and only one of 
the following formulas must be satisfied for the three transactions Tt[i, 1], 
Te[j, i ,  1] and Te[j, i ,  2] in each literal component [ j , i] :  TI(j , i) :  
#t ( re[ j , i ,  2])<pl(rtFi ,  1] )<pl (re[ j , i ,  1]) in S t (exclusive) or Fl( j , i ) :  
#t(Tt[ i ,  l l )<p~(Te[ j , i ,  1])<#~(Te[j,i ,  2]) in s 1. This is because if neither 
TI(j,  i) or Fl( j , i )  is satisfied in s~, then Te[j, i, 1] will not read a[j ,  i] from 
Tt [i, 1] in s t . Similarly, one and only one of the following two formulas must 
be satisfied for the transactions Tt [i, 2], Te [j, i, 31 and Te [j, i, 4] in literal com- 
ponent [j, i1: T2(j, i): #1(rt[i ,  2])<#~(re[j ,  i, 31)<#t(re[ j ,  i, 41) in st (exclu- 
sive) or F2(j,i):  #l(Te[j , i ,  41)<p~(Tt[i, 2])<p~(Te[j , i ,  31) in s 1. This is be- 
cause if neither T2(j, i) nor F2(j, /)  is satisfied, then Te[j, i, 31 will not read 
b [j, i] from Tt [i, 2] in s t . 

We now prove that for every literal component [j, i] and its corresponding 
variable component i, one and only one of the following two formulas must 
be satisfied for the six transactions Tt[i, 1], TED', i, 1], Tel_j, i, 2], Tt[i, 2], 
Te [j, i, 3] and Te [j, i, 4] : TRUE (j, i): T1 (j, i) and T2 (j, i) (exclusive) or FALSE 
(j, i): Fl( j ,  i) and F2(j, i). 

Suppose the contrary, then either (Tl( j , i )  and F2(j,i)) or (T2(j,i) and 
F l ( j ,  i)) must be satisfied in s 1 . 

Notice that #1(Tt[i, 1])<gx(Te[j ,  i, 4]) must be satisfied in Sa, otherwise 
Tt[i, 1] would read c[j, i] from Te[j, i, 4] in s 1 ; #t(Tt[i ,  21)<#t(Te[j ,  i, 2]) 
must also be satisfied in st, otherwise Tt[i, 2] would read d[j,  i] from Te[j, i, 21 
in st ; But this and F2(j, i) and T1 (j, i) lead to a contradiction, since they generate 
the following cycle: gl ( r t [ i ,  1] )<#l ( reU,  i, 4])<#1(rt[ i ,  2])<pa(re[j ,  i, 21) 
<#t ( r t [ i ,  11). Similarly, notice that #a(re[J', i, 2])<pl(Te[j ,  i, 3]) must be sat- 
isfied in st, otherwise Te[j, i ,  2] would read e[j,i] from Te[_j,i, 3] in s l ;  
r i, 4])<gx(Te[j ,  i, 1]) must also be satisfied in Sl, otherwise re[ j ,  i, 4] 
would read f [ j ,  i] from re[ j ,  i, 1] in sl. But this and F l ( j ,  i) and T2(j, i) lead 
to a contradiction, since they generate the following cycle: #t(Te[j , i ,  1]) 
<#1 (re[j ,  i, 2])<#,(Te[j ,  i, 31)< #t ( r e  [j, i, 4])<#1 (( e[j, i, 1]). 

In the following, we prove that either TRUE(j,  i) must hold for all literal 
components [j, i1, or FALSE(j,  i) must hold for all literal components [j, i], 
which correspond to a literal u [i] or ~i [i1. Suppose the contrary: for two literal 
components [j~, i] and [j2, i], Jl =t=Ja, either (TRUE(j1, i) and FALSE(j  2, i)) 
or (TRUE(j2,i) and FALSE(jr , i))  is satisfied in s~. But T R U E ( j l , i  ) and 
FALSE(J2, i) lead to a contradiction, since they generate the following cycle: 
#t(Tt[i ,  2])<#1(Te[j2,  i, 21)<r 1])<#x(Te[j2, i, 41)<g1(Tt[i,  2]). Sim- 
ilarly, TRUE(j2,  i) and FALSE(jr ,  i) also lead to a contradiction, since they 
generate the following cycle: #~ (Tt [i, 1])<#1 (Te[j~, i, 41) <#~ (Tt [i, 2]) < 
#1 (Te [j2, i, 2])<#t(Tt[ i ,  1]). 

Below, we define a function "VAL":  VAL is a mapping from the set of 
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all literals z I j ,  k], k =  1, 2, 3, in all clauses c[j]  =(z[j', 1], z[ j ,  2], z I j ,  3]) in 
C, j =  1, 2 . . . .  , M, to the set {true, false}: VAL(z[j ,  k ] )=t rue  iff ((z[j, k] =u [ i ]  
and TRUE(j,/)) or (z[j,k]=~[i] and FALSE(j,/)); VAL(z[ j ,k])=false  iff 
((z [j, k] = u [i] and FALSE (j, i)) or (z [j, k] = ~i [i] and TRUE (j, i)). 

Now we prove that in any valid database system state QI-= 
(PE1,NE1, TTI,sl) such that Sa is a serial schedule of ( {Tr}uPEuTT)  and 
Q1 is a valid P-execution of Q: for each clause c [jl  -- (z [j, 1], z[j,  2], z[j,  3]) 
in C, j =  1, 2, ..., M, VAL(z[j ,  k] )=t rue  must be satisfied for at least one literal 
z[j,  k] in c[j],  1_<k__3. 

In each clause component j, for the three literal components [j, i l ]  , [j ,  i2] 
and [j, i3] which correspond to the same clause c [j] --- (z [j, 11, z [j, 2], z [j, 3]), 
where for k = 1, 2, 3, z [j, k] = u [ik] or z [j, k] = ~i [ik], the following formula must 
be satisfied: 

CL(J): #1(rr)<#l(Tout[j, il]) and #l(rin[j, il])<#l(rout[j, i2]) and 
#1 (Tin [j, i2])<#1 (Tout [j, i31) and #1 (Tin[j,  i3]) < #l(Tr) in sl. 

This is because if CL(J) is not satisfied, then either Tr will read w [j, il, 03 
from Tout[ j ,  il], or Tin[j ,  il] will read w[j, i2, il] from Tout[ j ,  i2], or Tin[j ,  i2] 
will read w[j, i3,i23 from Tout[j, i3], or Tin[j ,  i3] will read w[j, 0, ia] from 
Tr in Sl. 

For every literal component [j, ik] in each clause component j, TRUE(J, ik) 
implies that #1 (Te [j, ik, 3])</~1 (Te [j, ik, 4]) must be satisfied in s~ ; FALSE(j,  ik) 
implies that #l(Te[j, ik, 1] )<# l (Te[ j ,  ik, 2]) must be satisfied in s 1. Earlier, we 
defined Tout[ j ,  ik] to be Te[j, ik, 1] and Tin[j ,  ik] to be Tel j, ik, 2] iff Z[j, k] 
=U[ik]; and we defined Tout[ j ,  ik] to be Te[j, ik,3] and Tin[j,  ik] to be 
Te [j, ik, 4] iff Z [j, k] = ~ [ik]; This and the definition of the function VAL implies 
that whenever VAL (z [j, k]) = false, #1 (Tout [j, ik]) < #1 (Tin [j, ik]) must be sat- 
isfied in sl. Suppose that for some clause c[j],  VAL(z[j ,  1])=false and 
VAL(z [j, 2]) =false and VAL(z [j, 3]) = false. This would imply that the follow- 
ing must be satisfied: #1(rout[j, il])<#l(Tin[j, il]) and # l ( r o u t [ j ,  i2]) 
<#1(rin[j, i2]) and #l(Tout[j, i3])<#l(rin[j, i3]) in sl. But this and CL(J) 
would lead to the following cycle: i~l(Tr)<l~l(Tout[j, il])<#l(Tin[j, il] ) 
</~1 (Tout [j, ia])<#1 (Tin [j, i2])<#1 (Tout [j, i3])<#1 (Tin [j, i3])<#1 (rr). 
Hence VAL(z[ j ,k ] )= t rue  must be satisfied for at least one literal z[j,k], 
l<k<_3 in c [j]. 

Suppose there exists Q1 =(PE1, NE1, TTI, sl) such that s 1 is a serial schedule 
of ({Tr}~PEuTT)  and Q1 is a valid P-execution of PR={Tr} and (2. We 
assign the value true to each variable u[i]eU iff TRUE(j , i )  is satisfied for 
all transactions belonging to any literal component [j, i], and assign the value 
false to each variable u[i]~U iff FALSE(j, i)  is satisfied for all transactions 
belonging to any literal component [j, i]. From what we have proved above 
and the definition of the truth setting function VAL, at least one literal z[j,  k], 
l_<k<3, will be set true in each clause c[j]=(z[j, 1],z[j, 2,],z[j, 3]), 

j = 1, 2 . . . . .  M. Thus, we obtain a truth setting assignment to all variables u [i] ~ U 
which satisfies every clause c [j] in C. 

Conversely, we show that if there exists a satisfying truth assignment for 
C, then for valid database system state Q = (PE, NE, TT, s) and the set of P- 
requesting transactions PR={Tr} ,  there exists a valid database system state 
Q1 =(PE~,NE1, TT1, Sl), such that sl is a serial schedule of (PR~PEu  TT) 
and QI is a valid P-execution of PR and Q under the FTWP, LTRD, UPDW 
and 2 V constraints. Let t: U--+ {T, F} be a satisfying truth assignment for C. 
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We can construct a serial schedule s 1 of ({Tr}wPEw TT) for the database 
system state Q1 =(PE1, NE1, TT1, sl) where PE1 =(PEw {Tr}) and TT1 = TT 
and Q~ is a valid P-execution of Q by topological sorting the following acyclic 
directed graph G=(X,  Z) where X is the set of nodes and Z is the set of arcs 
in G:X={T~[T~e(PEw TTu{Tr})}; Z={(T~, Tv)[ for all u, v,j, i, I < j<M,  1< 
i< N, (t(u [i]) = r and (TRUE(j,/) ~ pl(Tv) < gl(T~) in s~)) or (t(u [i]) = f and 
(FALSE(j, i)~#~(Tv)<p~(Tu)in sl) ) or (CL(j)~#~(Tv)<#I(T,) in sO}. Then for 
all i, if t(u[i])=T then s 1 would have the same ordering of transactions as 
in the formula TRUE(j,i):  r l ( j , i )  and r2(j,i) ,  i.e., #1( re [ j , i ,  2]) 
<#,(rt[i ,  l])<#~(reu,  i, 1]), and #~(rt[i, 2])<Hi(re[j, i, 3])<#1 ( re [ j ,  i, 41) 
in s l ;  and for all i, if t(u[i])=F then s~ would have the same ordering of 
transactions as in the formula FALSE(j,  i): FI(j ,  i) and F2(j, i), i.e., #l(Tt[i, lJ) 
<#~(Te[j,i, 1])<#l(re[j,i,  21) , and #1(re[j,i, 41)<H~(Tt[i, 21) 
<#1(Te[j, i, 31) in s 1. Also, s~ would have the same ordering of transactions 
as in the formula CL(j), i.e., #1(Tr)<t~(Tout[j,i~l) and #l (Tin[ j ,  ial) 
<#1 (Tout [j, i2]) and it, (Tin [-j, i21)</~ (Tout [j, i3]) and #1 (Tin [j, i3])<#~(Tr) 
in Sl. 

One can verify that in sx, as in s, for all i, j, Te[j, i, 11 reads a[j ,  i] from 
Tt[i, 11 and Te[j, i, 3J reads b[j, i] from Tt[i, 21. Also, in sl, as in s, no transac- 
tion reads any of the variable names c [j, i], d [j, i], e [j, i], f [j, i], w [j, i,, i21, 
I < j < M ,  1<i, il, i2<-_N from any other transaction; and T~ reads the initial 
version for each variable name in its read set. Thus both the consistency condi- 
tion and existence condition of Definition 3.2 are satisfied, and Q1 is a valid 
P-execution of PR and Q. Since the write sets of all terminated transactions 
in TT do not share any variable names with each other, the FTWP and 2 V 
constraints are satisfied in Q~. Since none of the terminated transactions in 
TT have written a version for any variable name that is in either the read 
set or the write set of the P-requesting transaction T~, the LTRD and UPDW 
constraints are also satisfied in Q1. [5] 


