
J-R ECOMMERCE ! OF !1 17

Web Computing

eCommerce

Version 2016.1. Copyright © 2015, 2016 by:

m Jenkin + h Roumani

J-R ECOMMERCE ! OF !2 17

1. Introduction
This lab takes all of the work that you have done in the course and applies it to the
development of a simple eCommerce site. This site does not implement the details
of actual purchasing — although that could easily be added. Rather it provides
remote access to a database that represents products on hand including their unit
price that could in relatively short order be used as the repository for some
collection of information that you might be interested in selling to a customer on
the web.

The particular articles that are going to be represented in this lab are LP (long
playing records). In the previous lab you saw how information could be stored in
tables in a database and accessed from the local machine using SQL commands
typed on the terminal. In this lab you will use the database and the same access
mechanism but rather than typing commands in a terminal window you will utilize
a web-based application to enable a remote user access to your database.

So to make this concrete, consider the SQL Table you used in the previous lab to
represent a record collection that is being offered for sale. For each album in stock,
the online store will represent

• The title of the album (call this album)

• The artist of the album (call this artist)

• The year of pressing (call this pressing)

• The artwork of the album (call this cover)

We will also want to assign to each album a unique id (called id) that will allow us to
refer to an album in a unique way. You will note that this is the database table
collection that you used in the previous lab.

Now to simulate the operation of an eCommerce site, we will add a very small
amount of information to simulate the information that is required to operate a
storefront. In particular to each item we will add

• The unit cost of the item

J-R ECOMMERCE ! OF !3 17

• The number of items of this type currently available in the storefront.

Now to actually make this work as a storefront we would likely have to add other
information such as shipping cost, and so on. But these are details for another day
and time. Here, the goal is to build the basic online infrastructure. In particular,
some way of accessing a collection of data, browsing through it (say be year and
artist), and computing a simple shopping cart of the material that you might be
interested in purchasing. Adding other features would be straightforward, but
beyond the scope of the basic project.

As with all labs in this course, this lab is laid out as an ePub. It is expected that you
will have read the lab electronic book prior to attending the lab. In order to
encourage this, each lab has an associated set of ‘pre lab’ assignments that must be
completed prior to attending the lab. You will not receive a grade for this lab unless
you have completed the pre lab exercises. Exercises in the lab are to be documented
in your ePortfolio lab book.

J-R ECOMMERCE ! OF !4 17

2. Background
This lab involves building an interface with HTML, CSS and JavaScript that
provides a user access to a SQL database of material that can be queried and that
could be used as the backbone of an eCommerce site related to the sale of LP’s to
the general public. Many similar commercial sites exist such as discogs. You may
want to have a look at sites such as discogs or amazon prior to proceeding to far in
this laboratory.

You may want to skim through the background material in your first review of this
lab. After wards, go to the actual exercises associated with the lab and then refer
back to the material presented here as needed.

2.1 Creating and manipulating the
database
The consumer is not usually able to add or delete records from the database of
material stored on hand. (If they could, you can imagine the sort of trouble that
they might cause.) Rather, the database and additions/deletions to the database
would be performed by office staff or by special purpose software that exists to
automate parts of the process. So for the purpose of the software that you are
going to write for this lab, let us assume that someone (you) has gone to the trouble
of setting up the database. And to make this even more straightforward, let us use
the database that was provided in the previous lab (the collection table in the
data.db file found in ~/db in the virtual box).

Working through this lab will cause you to make changes in the database found in
the ~/db/data.db file in the virtual box. If you discover that you have “messed up”
the database then you can recreate the file and the databased within it. To do this,
execute the following command at the command line in the directory ~/db in the
virtual box.

node_stop

http://www.discogs.com

J-R ECOMMERCE ! OF !5 17

rm data.db

sqlite3 data.db <default.sql

node_start

This first stops the server running in the virtual box, then deletes the existing
data.db file and then uses sqlite3 to re-create the file using the sql commands found
in default.sql. Finally this re-starts the node server. Do not edit the default.sql file as
it is needed to re-initialize the database. To verify that the default database has
been restored execute the following at the command line

sqlite3 data.db

sqlite3> select * from collection;

sqlite3> .quit

And you should see the standard screen dump of the original collections table.

2.2 Accessing a remote SQL database
The virtual box appliance provided for the course supports access to a database
stored within the appliance (the server). The database is represented in sqlite3, and
is stored in the file ~/db/data.db. Access to the database is through the URL
http://host:8000/sql?query=QUERY. So for example, to execute the query “select
* from collection” from a server running on 127.0.0.1, the appropriate URL would
be http://127.0.0.1:8000/sql?query=select * from collection

The following code snippet illustrates how one might access the database from
JavaScript using AJAX to deal with the asynchronous nature of the remote
database.

var ajax;
var acallback=null;
function access(query, callback)
{
 acallback = mycallback;
 ajax = new XMLHttpRequest();
 ajax.onreadystatechange = ajaxProcess;
 ajax.open("GET", "http://127.0.0.1:8000/sql?query=" + query);
 ajax.send(null);
}

http://host:8000/sql?query=QUERY
http://127.0.0.1:8000/sql?query=select

J-R ECOMMERCE ! OF !6 17

function ajaxProcess() {
 if((ajax.readyState == 4)&&(ajax.status == 200)){
 ajaxCompleted(ajax.responseText)
 }
}

function ajaxCompleted(text) {
 if(acallback != null) {
 var data = JSON.parse(text);
 acallback(data);
 }
}

Note that when accessing the database from somewhere else, it will be necessary to
change the 127.0.0.1 IP address to the real address of your computer.

This code uses AJAX to perform an asynchronous http call, and registers a callback
that will be passed the JavaScript object that is returned from the SQL call. Given
this code it is then possible to query the database and display an alert that contains
the response

function mycallback(json) {
 alert(JSON.stringify(json));
}

function go() {
 access("select * from collection", mycallback);
}

A sample JavaScript program and HTML wrapper to test this can be found on the
course web site.

Note: Remember to always select the HTML file from http://127.0.0.1:8000/
serve/ not from file:// as cross-site scripting rules apply.

Example: http://127.0.0.1:8000/serve/ecommerce/index.html selects the
HTML from the ecommerce directory in ~/server/

127.0.0.1:8000/serve/
127.0.0.1:8000/serve/
127.0.0.1:8000/serve/ecommerce/index.html

J-R ECOMMERCE ! OF !7 17

2.2 Unit testing
Unit testing is the process in the development of software in which small portions
of the software (called units) are written and tested independently. For example, the
code shown above to access the database from JavaScript could be written
independently of any code that might later use it. Unit testing can often be
automated and code is often written with unit testing tools delivered along with the
actual code or library.

The code that you are writing in this lab is relatively complex, and it is worthwhile
building the code in small blocks and the validating the individual blocks through
unit testing rather than trying to build the software as one large monolithic unit. To
make this more specific, imagine trying to test the code module shown above (and
provided on the course web site). Here we can test the performance of the function
access(query,callback) using different queries and callbacks to ensure that the basic
function ‘works’ and also to explore the performance of the function when
provided with off-nominal inputs. (What does it do when the query is not a valid
query, for example?)

2.3 Building a pull-down menu
Although for small collections of information is may be possible to manually search
through all of the items in the collection, for any reasonably large collection of data
it can be desirable to limit the search to certain subsets. Or for the case of the
record collection given here, to limit the search to certain artists or years of
production. Now we could do this in many different ways, but for the dataset here,
perhaps the most straightforward is to build a collection of pull-down menus that
enables the user to select either ‘all’ (by not selecting a specific element from the
menu), or to select one specific value from the pulldown menu.

So for the Artists and production years used here, you could imagine building a
pulldown menu for Artists and Years similar to that shown below.

J-R ECOMMERCE ! OF !8 17

!
The question becomes — how do we build these tables of values? As discussed in
class, we could do this programmatically if we knew what values we had to use. For
example, the code snippet below will build a pull down menu (a select element) of a
number of Artists.

var s = document.createElement(“select”);
var h = document.createElement(“option”);
h.innerHTML = “Artists”;
s.appendChild(h)
h = document.createElement(“option”);
h.innerHTML = “AC/DC”;
s.appendChild(h);
…
h = document.createElement(“option”);
h.innerHTML = “Who, The”;
s.appendChild(h);

If the list of artists was available as (say) a list, we could iterate over the list and
construct the pull down list automatically. This is the approach taken in the lab and
as detailed below.

J-R ECOMMERCE ! OF !9 17

2.4 Adding columns (attributes) to the
database
To add a column to a database, the SQL command is alter. So to add a new
column of type foo of type int (Integer) to the table junk, you would execute the
SQL command

sqlite3> alter table junk insert column foo int;
In SQL columns have a type. int type columns store integer numbers, real type
columns store real numbers and so on. Remember that to change the value of an
attribute in the database you use the update command. To set all of the foo values
to zero, one could use

sqlite3> update junk set foo=0;
To set the foo attribute for only one record, say the record corresponding to id=110
one would execute

sqlite3> update junk set foo=1 where id=110;
Remember to use the SQL command .quit to quit from the database and save its
state to the disk. You may also find the following dot commands useful
	 .tables - lists all tables in the database
	 .schema table_name - shows the schema of the table table_name
Note: prior to making changes to the SQL database data.db and to ensure
consistency with the web-based version of the database, it is important to stop the
node server (node_stop). Don’t forget to restart the node server (node_start)
afterwards so that you can access the node services in the virtual machine.

J-R ECOMMERCE ! OF !10 17

3. Exercises
As with other labs in this course, lab exercises are broken down into three sections,
A, B and C. Exercises in section A are Pre-Lab exercises. All Pre-lab exercises
must be completed prior to attending your lab. You will not be allowed to
participate in the lab if you have not completed these exercised prior to attending
the lab. Furthermore, you will not receive course credit for a lab for which the Part
A lab was not completed. You will also get much more out of each laboratory if
you spend some time going through the B and C exercises for each laboratory
before attending your laboratory session.

A. Pre-lab
1. Download the storefront.sql file from the course web site and have a look at it.

How does the table defined in this text file differ from the one that you used in
the previous lab? If you are using your own machine, install this table into the
default database file within the VBOX.

2. Download the code from the course web site and if you are using your own
machine download it to the virtual box.

3. Complete the pre-lab quiz on the course moodle page.

4. Look at the collections table in the SQL database in the virtual box. If you were
going to sell these LP’s, what would a reasonable price be for each one?

5. You are going to modify the collections table in the SQL database so that it has
two new columns, number (an int) and price (a real). What SQL commands
would you execute on the command line in order for this to happen?

6. Initially the online store will have 3 copies of each of the albums in the
collection available for sale at $19.99 each. What SQL commands would you
execute on the command line in order for this to happen?

J-R ECOMMERCE ! OF !11 17

7. How would you verify that the changes to the database have been executed
properly? How would you do this on the command line? How would you do this
using the web-based interface to the database?

B. In-lab
1. Update the SQL table collection in data.db so that there are two new columns

number (an int) and price (a real). Initialize the number on hand to be 3 and
the price to be 19.99. Ensure that you use node_stop prior to making changes
to the database and use node_start afterwards to restart the node server. Verify
that you have correctly added this information to the database both using the
terminal access to the database as well as using the web-based interface to it.

2. This lab will build the entire software enterprise in terms of small units that can
be developed and tested individually, using the concept of unit testing. After all
of the modules have been built the entire package will be put together into one
large application. The first thing you are going to do in this lab is to build a
module that creates pull-down menus for artist, and year so that shoppers can
browse the database by these values. Now you could imagine creating the pull-
down menus manually, but a more attractive mechanism is to query the
database for the limit of the possible values. Now, if the set of possible
categories gets too large this is likely to be impractical. But for reasonably small
possible values this is an attractive approach. This lab will work by building
small components, validating they are working (unit tests) and then moving
forward.

3. Use the code provided on the course web site to obtain all of the artists that
exist in the database. Specifically, modify the code provided so that the go()
function invokes an artistCallback as shown below

function artistCallback(json) {
 alert(JSON.stringify(json));
}

function go() {
 access("select distinct artist from collection order by artist",
artistCallback);
}

J-R ECOMMERCE ! OF !12 17

Test this code to make sure that it works. Look at the database using the tools
from the previous lab to ensure that the code retrieves all of the artists (without
duplication). Note that we accomplished removing duplicates through the use
of the ‘distinct’ keyword in the SQL query, and that we sorted the list using the
‘order by artist’ query option.

4. Modify the artistCallback so that after displaying the alert (which is useful in
debugging but should probably be removed before deployment), the
artistCallback invokes the following method which you should include in your
JavaScript file

function buildArtistPullDown(json) {
 var s = document.createElement(“select");
 s.setAttribute(“id”, “artist”);

 var h = document.createElement("option");
 h.innerHTML = "Artists";
 s.appendChild(h);
 for(var i=0;i<json.length;i++) {
 var v = json[i].artist;
 var q = document.createElement("option");
 q.innerHTML = v;
 s.appendChild(q);
 }
 return s;
}

5. Walk through the buildArtistPullDown code. What does it do? (It may be
helpful to use the JavaScript debugger in Firefox to see exactly what this code
does.) Remember that you will have to access the URL as http://
127.0.0.1:8000/serve/ecommerce (assuming the site is in the server/
ecommerce directory) in order to avoid cross site scripting errors when
executing the database access calls.

6. Modify your artistCallback code so that after calling buildArtistPullDown(json)
it adds the returned pulldown interaction element to the HTML element with
id=“selection”. Test your code. Is the proper pulldown menu created? Does it
match with the alert you generate?

7. You are now going to modify the code so that after creating the Artist pulldown
menu a second menu for Year will be created. To do this you will leverage the

http://127.0.0.1:8000/serve/ecommerce
http://127.0.0.1:8000/serve/ecommerce

J-R ECOMMERCE ! OF !13 17

code that you have already written. Inner the following as the last line of your
artistCallback code.

access("select distinct year from collection order by year",
yearCallback);

Duplicate your artistCallback as yearCallback and create a new
buildYearPullDown that duplicates the work done by buildArtistPullDown but
that puts ‘Year’ at the top of the pulldown list rather than ‘Artists’. Also make
sure that the id for this select element is ‘year’. Add this created pull down list to
the right of the Artists pull down list in the HTML element with
id=“selection”. When this is done you should have an interactive display that
looks similar to the figure given in Section 2.3 above. Document this in your
ePortfolio.

8. Now modify your yearCallback so that after you have created the Year
pulldown input element and added it to the output HTML element, you create
a Button HTML element with innerHTML ‘Find’ and onclick value find, and
add this to the output HTML element with id=“selection”. Also create a
function find() that just creates an alert with ‘Find’ in it. Test your code. You
should have two workable pulldown menus and a find button. Each should
work as you might expect, although we have yet to actually query the database
or capture the current preferences given by the user.

9. Now you are going to modify the find() function so that it retrieves the values set
by the user in the pulldown menu’s. An HTML element that corresponds to a
select HTML element has an element selectedIndex which retrieves the
selected element from the list (0 is the first element, 1 is the second element and
so on). Modify the alert() in the find() function so that it outputs the selected
element number from the year and artist pull down selections.

10. You are now going to recover the selected year and artist. Suppose that you
have stored the selectedIndex for year in the variable y and that e is a reference
to the HTML select element. If y is greater than zero, then e[y].text is the text
of the pull down element that was selected. Modify the find() alert() so that it
displays the text for both the year and artist pulldown. Test your code and
record this performance in your ePortfolio.

J-R ECOMMERCE ! OF !14 17

11. You are now going to use the information that you recovered in the previous
step to query the database to obtain all records that meet the user’s
specifications as given in the pull down menu. First, you will construct the
appropriate query string. To do this, use the following logic: Suppose year is a
reference to the HTML select element for the year selection and artist is a
reference to the HTML select element for the artists selection. Then if artist is
0 and year is 0 then the query is “select * from collection”. Otherwise if only
the artist is 0 then the query is “select * from collection where year=‘value’”
where value is the value of the year. If only year is 0 then the query is “select *
from collection where artist=‘value’” where value is the value of the artist.
Finally, if neither artist or year is 0 then the query is “select * from collection
where artist=‘avalue’ and year=‘yvalue’” where avalue is the artist value and
yvalue is the year value. Use an alert to display this value. Test all four possible
cases and record this in your eReport.

12. Once you have computed the appropriate query, use the access function used
earlier to query the database for the appropriate records. Create a new function
selectCalback(json) to service the callback and initially define it so that it creates
an alert with JSON.stringify(json) to display the output of the query. Test that
this is working before moving on.

13. Add a new <div> to the index.html file with id of results. Rewrite the
queryCallback method so that it does the following. First, it should delete all
children of the ‘results’ node. (Code to do this was provided in class earlier, but
the simplest approach is to loop as long as the results node has a firstChild, and
to delete this firstChild node if it exists. Then, for each of the elements in the
array object described in json, do the following: Create a new div HTML node.
Then to this node add the following items (in order).

13.1.An img HTML element, and set its width and height to 100 pixels. Also set
its src field to be json[i].cover where i is the index over the json array.

13.2.A span HTML element. Set its innerText field to be the string
json[i].album where i is the index over the json array. Append to this string a
blank and then json[i].price.

J-R ECOMMERCE ! OF !15 17

13.3.A button HTML element. Set its innerText field to be the string
“Purchase” and set its onClick attribute to be “purchase(json[i].id)”. Doing
this is a bit tricky as you will have to create the string so that the value of
json[i].id is used rather than the actual text “json[i].id”. Define the function
purchase so that it creates an alert with its argument (the id of the album
selected by the user). Test your code to this point to make sure that it works
as expected.

14. It is now time to write the code to execute the purchase itself. You will do this
in two parts. First, the purchase button handler which just displayed an alert
should be modified so that it re-queries the database for information about the
album the user wants to purchase. To do this define the purchase function as

function purchase(id) {

 alert(id);
 access("select price,album,number,id from collection where id=" +
id, purchaseCallback);
}

This re-queries the database for information about the album the user wants to
purchase collecting only the information we need and will call the
purchaseCallback function with this information.

15. Now define the purchaseCallback function. This will do all of the work of
executing the purchase. It will be passed one argument, an array of one
element. The one element is an object with fields price, album, number and id
of the album to purchase. Your purchaseCallback function should do the
following

15.1.If the number is less than one, display an alert that the store is out of stock,
otherwise

15.2.Display an alert to the user that they are going to be charged for the
purchase of this album at the given price.

J-R ECOMMERCE ! OF !16 17

15.3.Access the database again to reduce the number of items on hand by 1.
Note that you will have to define a callback to service the call.

16. Finally, test the system on the android device. Remember that you will have to
change the IP address in order to make this all work.

C. Advanced
1. There are many different ways you can augment the basic lab. Perhaps the

simplest is to add a logo and other style elements to make the web page appear
more attractive.

2. Although the basic application retrieves the records that meet the search
criteria, there is considerably more information about each album available in
the database. When you created the cover image HTML element (suppose that
it is called x), then execute x.setAttribute(‘onclick’, ‘doSelect(‘ + v + ‘)’), where v
is the id of the album in the database. Then define a function doSelect(id) that
creates an alert with the value id being displayed. You can imagine in some
more complete system, this could bring up detailed information on the LP
selected.

	

J-R ECOMMERCE ! OF !17 17

5. Credits

