1. Locks and Security
This lab deals with the problem of providing physical security to some environment. The concept of providing security through the use of keys or similar structures can be traced back to ancient Egypt which does give you an idea of how long people have been working at securing property. Physical locks and keys have gone through many changes over the centuries although the basic goal remains the same, to restrict access to some resource to those who have permission, specifically the key holder.
Keys have evolved over the centuries. Early keys, like those invented by the Egyptians, were simple mechanical devices, much like wooden versions of the metal keys that we use today. Mechanical keys have gone through a number of critical changes over the years. They have become more difficult to duplicate and the locks themselves more difficult to open without the correct key. But the basic concept remains the same, there is a mechanical device that is used to secure the lock, and any holder of the key can unlock the device.
Mechanical keys are still widely used. They are inexpensive and durable. They are easily copied — which makes it straightforward to have multiple keys to the same device but this also means that it is easy to have problems with key management. How many keys are there to a given lock and who has them. There is also an issue with it being relatively straightforward to mimic the action of a physical key in a lock. That is, to open a lock without an original key. Given these concerns, there is considerable interest in developing keys that do not rely on physical interaction to provide security. Electronic key cards are a popular alternative to physical keys. Early key cards relied on a magnetic strip — similar to the strip found on the back of credit cards — to encode information about the key. This technology is widely deployed and the technology to read and write credit cards strips is well understood. Unfortunately magnetic stripe readers suffer from problems related to the durability of the signal on the magnetic stripe and the card reader. The stripe comes in physical contact with the reader which not only wears away the stripe on the card but it also wears away the reader itself. More recent cards utilize either a direct electronic or wireless connection between the key and the lock. This increases the complexity of the key somewhat, but makes the entire system more robust and typically more convenient for the users. Wireless electronic key cards for example, can often be used without removing them from your wallet.
Unlike a physical key that opens the lock directly, electronic key cards identify the key uniquely and software connected to the key reader determines if the key is authorized for the lock. This provides enhanced flexibility in environments with many keys and many locks. Users (employees or students, for example) are assigned a key card. This card may be printed with information to also enable the card to act as a visual ID. This card has its own unique ID number encoded within it. Each lock in the system has a similar identification number. When a user is to be provided access to a given lock, the pair (key-number, lock-number) is added to the database of valid keys in the system. Note that for a given lock there may be a number of keys that have access to it and that a given key may open multiple locks. Operationally, such a system is very flexible. Users do not carry around a large number of keys. They only cary a single key card. When presented with the key, a lock queries the database to determine if this key is authorized for this lock. (And note that access can be dependent upon other factors, day of the week, time of day, etc.) One downside of such a system is that it can be expensive to install and operate, but given the cost of re-keying a physical lock system it is not surprising that many large installations — such as York University — employ an electronic lock system for devices (typically doors) that can be accessed by multiple users.
Although keys of any type provide enhanced security over systems that do not require a key, the fact that the lock can be opened by any holder of the key is a weakness of the system. In order to unlock the device one only needs to produce a single device or piece of information in order to be granted access. A system that requires only a single token to be presented in order to gain access is known as is a single factor authentication system. A more secure mechanism requires the user to present two independent valid tokens in order to gain access. Such systems are said to require two factor authentication. This access model is typically used by credit and debit card systems. In order to gain access to the funds represented by the card you must present not only a valid card, but you must also present a valid signature or secret identification code (a personal identification number or PIN). Two factor authentication systems are now commonly used in a range of online systems as well. In order to reset your password on a computer, for example, you might be required to not only be able to present appropriate answers online, but you might also be required to receive a text message and respond to it appropriately.
This lab deals with the development of a two factor authentication system. Unlike earlier labs in this course, this lab is designed to take place over two lab sessions. Each lab has its own deliverables (assignments, readings, etc.) but the use of two lab sessions will enable you to build a more sophisticated system than is possible in a single laboratory period. Over the next two lab sessions you will develop a simple two factor security system comprised of both a keypad and a radio frequency identification (RFID) card reader system. When presented with an appropriate RFID card your system will prompt the user for the corresponding keypad password, and then verify that the RFID card and password pair are valid. The first lab deals with processing a PIN presented at a keypad. The second lab deals with processing a RFID card and verifying the card number with a PIN entered on a keypad. Although the work here is split into two parts at a specific point, if you finish the first part early you may wish to consider getting a head start on the second part. This would provide you with the opportunity to try out some of the extensions that can be found at the end of the second laboratory.

Getting started
As with all labs in this course there are three sets of exercises associated with the lab. The first set (set A) must be completed prior to taking part in the lab. You will not be allowed to take part in the lab if you cannot convince your TA that you have completed the work. The second set (set B) must be completed in order to receive a grade for the lab. The final set (set C) are extensions to the basic lab. As two labs sessions are associated with this project you will find two sets of exercises towards the end of this eBook: one for the first lab and one for the second.

2. Background
The security system that you will construct in this lab is based around authentication through two independent mechanisms: a secret numeric password (a personal identification number or PIN) and a valid RFID card. Authentication requires querying a database to verify that this combination is valid. Thus two key pieces of technology that you will have to deal with in this lab are keypads — and user inputs through them — and RFID cards and readers.

[image: pasted-image.png]
Figure 1. A simple 4x3 keypad

2.1 Keypads
Keypads find wide application, from the traditional typewriter keypad found on computers to specialized keypads used in bank machines, electronic door locks on the like. A keypad is essentially a collection of buttons ganged together in order to allow a user to enter commands or passwords. In the context of this lab we are particularly interested in keypads that are designed to enable a user to enter a password or pass phrase as part of a security protocol.
Keypads come in a wide range of different layouts but an extremely common form — for reasons that will become readily apparent — is the 4 x 3 matrix of buttons shown above. This layout was used on push button telephones and is also widely used in the security industry as part of a two factor authentication system.
The keypad has been mounted on a plastic substrate with its seven pins connected to the left-most seven connectors at the top of the board. The four pins on the right are connected to LED’s with an accompanying resister. On the right edge of the plastic board are a set of keyed connectors that will enable this board to be connected to an RFID board in the second lab.
You can imagine many different ways in which a keypad might be wired. For example, each one of the buttons on the keypad might be a different switch each with its own wire sharing a common connection to power or ground. In such a scheme the device would require one wire for each button plus one wire to the common power/ground. Although a potential solution, that would be quite inefficient in terms of wiring the device. Furthermore, it would require a large number of different input lines on the computer. But lets imagine that the system is wired up in this manner. Then for each button, we imagine connecting a reference line through a switch. For the digital input switches on the Interface Board, a grounded input reads as true while a line at +5V reads as false, so a collection of simple switches such as that shown in Figure 2 could be used. When the switch is set to the on position a non-zero voltage is present on the input pin that can be monitored by your code.

[image: pasted-image-1.png]
Figure 2. One input switch

For the 12 input buttons, we would require 12 inputs. The Interface Board provides only eight digital inputs, so although this simple wiring approach would ‘work’, it would not work with our input hardware. Furthermore, input lines are expensive, and even if the system was being built for some specialized application, it would be better to look for a more cost-effective solution to the problem.
Rather than thinking of the input keypad as a simple array of switches, a more clever solution is to think of the matrix of buttons as a matrix of buttons as shown in Figure 3.
[image: pasted-image-2.png]
Figure 3. Input button array

Now imagine what happens if one of the input lines (say I1) is tied to +5V, while the other two input lines (I2 and I3) are set to ground. Then if you push only one button, then only one of the output lines will produce a +5V signal (or false in terms of the Interface Board). It is thus possible to determine which button is pressed by cycling through each one of the input lines, and tying only that line to ground with the other lines set to +5V and then checking each one of the output lines to see if they are tied to ground. Assuming only one button is pressed then at most one output line will be tied to+5V — the line corresponding to the button pressed between the input and output lines. Note that this solution requires only seven digital input/output pins and not the twelve required by the one switch per button model although it does require a little more sophistication in terms of the software required to understand which button is pressed.

2.2 Keypad-related API
The m-file Keypad.m provides a template program that interfaces with the Phidget boards used in this lab. In this particular lab you will interact with the keypad using the following API:

diChange()
setOuptputState()
setTimerCallback()
timerCallback()

In order to service a device such as the input keypad, we need to write code that cycles through each row tying that row to +5V while the other rows are at ground. Now you could do this in many ways: you could write code that loops through each line waiting at each line for an event. A more ‘event driven’ approach is to use code that, on a regular basis, receives an event (a timer event). The timerCallback() event handler accomplishes this. Every ‘timerCallbackDelay’ msec, this event handler is called. You can use this to change which output line is held to 5V and which is not.

2.3 Timer Callbacks
It often turns out to be necessary to write code that does something on a particular schedule. That is, to have to turn a light on or off at a particular rate, to sample something on a particular schedule, etc. In this lab, you have to write code that powers a line on the keypad following a particular pattern. How might one accomplish this?
One approach might be to write code that turns on one line, then waits a bit, then turns on the next and so on. Although this could certainly work, its a bit difficult to program within an event-driven environment such as that used with the Phidget library. Another approach — and the one followed here — takes advantage of a timer callback. A timer callback is a piece of code that will be executed at some time in the future. You can think of it as an alarm event. At some time in the future that we can schedule, we can cause a timer to generate a callback, just like the callbacks associated with digital and analog inputs. In terms software, take a look at the KeyPad.m program and note the function ‘timerCallback’. This is the timer event callback handler and it is scheduled to fire once by the main function. Every time it is called, it re-schedules itself. The duration of the rescheduling is controlled by the value of timerCallbackDelay property.

2.4 RFID
Radio-frequency identification (RFID) refers to the use of wireless non-contact cards to provide identification. There is a wide range of different technologies associated with RFID identification, but perhaps the most ubiquitous is the use of passive RFID tags with a wireless base station. Each tag encodes an identification token and when the tag is brought sufficiently close to the base station that the base can access the tag information. Some tags are immutable, in that the tag can only be read while other tags can be written to by the base station. Tags come in a wide range of different form factors, including credit card shapes and small dongles that can be attached to key chains.
The process of having the base station communicate with the tag involves both the base station and tag transmit information. This transmission requires some power source to be present at both the base station and tag. In order to reduce the cost associated with the tag and to reduce operational issues a very common form of the technology is to deploy passive tags, that is tags that lack an internal power source. Such passive tags rely on the base station as the power source. When a passive tag is brought sufficiently close to the base station a radio signal emitted by the base station powers the tag. The tag then broadcasts a signal that is received by the base station and the two devices begin to communicate. Different RFID systems work at different radio frequencies. For example, the Skylander’s video game figures use RFID technology to communicate with the game system, but unfortunately at a frequency that is incompatible with the system being used in the lab.
The Phidgets’ RFID board supports a number of different tag formats, including tags that can be written to. In this lab you will only be reading information off of the RFID tags — we will only be using them as part of a two factor authentication system. Figure 4 below shows the Phidget control panel interface to the RFID reader. As a card is presented to the device the number encoded on the card is displayed.

rfid.mov
Figure 4. Phdiget RFID control panel

2.5 RFID API
As should be apparent from playing with the RFID control panel, each time a card is presented to the RFID reader a tag is decoded and made available to the software. The Phdiget software library processes the presentation and removal of a RFID card as two separate events: rfidGain, when a card is acquired by the sensor, and rfidLoss when the card is no longer presented to the sensor. Figure 5 illustrates the default callback handlers in the Matlab Template.m file.

Figure 5. Default rfidGain/rfidLoss callback handlers

Although the RFID reader/writer supports a number of other operations,[image: image.png] including turning on/off the LED on the board and writing information to writeable RFID cards, in this lab the primary interest is in terms of acquiring a string that represents the RFID tag presented. To turn the LED on the RFID board on/off one can use them method this.rfid.setLEDOn(true) and this.rfid.setLEDOn(false) within your m-file.

2.6 Databases
A central problem in the design of an access system is representing the users that are authorized access. In the two factor authentication system that you will develop in these labs this representation must include (at the very least) the RFID identification number associated with a valid user of the system along with their corresponding PIN. The system may certainly represent other information, of course. For example, in any real system it is also likely that information such as the user’s name, their supervisor, access times and the like will also be required to be represented. But at the very least, it is necessary to represent the collection of valid users (RFID identification strings) and their corresponding PIN numbers.
The problem of representing information such of this in an efficient and effective manner is a common problem in computer systems and a large collection of different systems and technologies have emerged in order to deal with the problem. More generally, a representation of an organized collection of data is known as a database (or db for short). A key advance in the design of database systems is the concept of a relational database in which information is the database is stored in the form of tables. Tables are collections of tuples that represent relationships. For example, for the security system being developed here, it might be useful to have a table that represents the relationship between RFID key identifiers, and their corresponding PIN numbers, as shown below in Figure 6.

[image: pasted-image-3.png]
Figure 6. Table of RFID identifiers and PIN numbers
The columns of the table identify fields associated with records (rows) in the table. So the table above has four records, each record having two fields (here RFID identifier and PIN number). In each table one of the fields is identified as being the key. Key’s are unique — a given RFID identifier only occurs once in this table. Note that PIN numbers may, or may not, be unique. A database typically consists of many different tables. For example, a second table might represent the relationship between RFI identifier (the key) and the user’s name as illustrated in Figure 7.

[image: pasted-image-4.png]
Figure 7: Table of RFID identifiers and first and last names
Note that this table contains no entry (row) for RFID identifier 1234568 — this RFID has no associated PIN (yet).
A large number of operations can be defined on a given database. For example, for the database defined here consisting of these two tables, it is possible to query the database to identify the rows in a table that meet a particular requirement. For example, we could query the database to find all of the names of users with an RFID identifier within a given range. In terms of the security system being developed here, a common query will be to find the PIN associated with a given RFID identifier.

2.7 Database API
Real database systems are very complex. For this lab an extremely simple database has been provided as part of the c4e library. It has the following API:

•simpleDB()
Creates and returns a simple database of (rfid,pin) pairs. Each of rfid and pin are strings. To create a database called ‘db’ one would execute ‘db = c4e.simpleDB()’.
•db.add(‘ab12345’,’123456’)
Adds the pair rfid: ‘ab12345’ and pin: ‘123456’ to the database ‘db’. Note: this will fail if this rfid already has a pin.
•db.isValid(‘ab12345’,’123456’)
Return true if the pair rfid: ‘ab12345’ and pin: ‘123456’ already exists in the database, and false otherwise.
•db.print()
Prints out the database.
•db.size()
Returns the number of rows in the database. An empty database has zero rows.
•db.get(index)
Returns the index’th row of the database (where index is in the range 1 through db.size() inclusive). Given the value z=db.get(index), then z.getPassword() will obtain the password for this row and z.getRFID() will obtain the RFID for this row.

4. Further Reading
Keypad
•Details on the Phidget 8/8/8 board.
•Interfacing a 4x3 keypad to a microcontroller.
•Sparkfun page on 4x3 keypad.

RFID
•Details on the Phdiget RFID board.
•Wikipedia’s entry on RFID.
•Sweeny II, P. J. (2005). RFID for Dummies. NJ: Wiley Publishing Inc.

Databases
•Dale, C. J. (2003). An Introduction to Database Systems (8th Edition). Addison-Wesley.
•Rockoff, L. (2010). The Language of SQL: How to Access Data in Relational Databases. Cengage Learning.
•Database Management Systems, Third Edition (2003), Raghu Ramakrishnan and Johannes Gehrke, WCB/McGraw Hill.

5. Exercises /Part 1
Each lab in this course must be properly documented using your e-Portfolio. Rich media content (e.g., videos) should be converted for publication using YouTube, Vimeo or some similar online video system. You should be aware that all material that you are publishing on these sites will be visible to a large number of people, including people outside of the class and the university. Inappropriate publication can result in penalties beyond those associated with your academic record.
Lab exercises are broken down into three sections, pre-lab, in-lab and advanced. pre-lab exercises must be completed before entering the lab. A Moodle quiz associated with the pre-lab must be completed before attending your lab session. The lab monitor will not allow you to participate in the lab without passing this quiz prior to the lab.

A. Pre-lab
1.Sketch how a keypad might be wired if each button in the keypad was actually a separate switch. For the 12 button keypad that is being used in this lab, how many input lines would have to be monitored?
2.The keypad is wired internally much like the wiring shown in Figure 3 above but the seven wires connected to the keypad are brought out to seven terminals at the edge of the board. How will you go about determining which terminal corresponds to which wire? You may find it useful to review the operation of a multimeter in the collection of lab workbooks.
3.In order to have your program interface with the 12 button keypad, we will use three lines of input to read from the columns of the keypad and four lines of output to set power along one of the rows at a time. Plan out how you will wire the keypad board to the interface board. A specific strategy is followed in the In-lab exercise below, but you may identify a more effective/efficient way of accomplishing the same task. If so, use it instead when completing the in-lab work.
4.The Matlab program skeleton provided for this lab generates an event and issues a callback whenever the state of an input line changes. Download the skeleton code and review it. How do you change the state of an output line? How does the skeleton program respond to the change in the state of an input line?
5.Suppose that you had three output lines in a system, and that every 50 msec you had to write a program that was to change which one of the three was held at +5V, while the other two were high. That is, for the first 100 msec line 1 was grounded while the other two where high, then for the next 100 msec line 2 was grounded while the other two where high, and then for the next 100 msec line 3 was grounded while the other three where high, and then this pattern repeats. How would you code up such a pattern using the timer callback and output state methods provided in the sample m-file provided? Hint: Use the timerCallback() to set all of the output lines to ground except one, and to change that one on a regular basis.

B. In Lab
1.Inspect the tackle box that was given to you for this lab and check its inventory. It should contain the items listed below. Let the TA know if anything is missing because you will be asked to return these items when you finish your session:

•The Interface Board with its USB cable
•The RFID Board with its USB cable (for the second lab only)
•A collection of RFID tags
•A keypad board
•A multimeter
•Assorted wire leads and LEDs.
Note #1: You will find that if you have at least nine alligator clip wires, then the lab will be a bit easier to wire. You can make do with regular wires but the alligator clip wires will make things a bit easier.

Note #2: The libraries in your virtual box has been updated. If you are using your own laptop, make sure you start by obtaining the most recent libraries. Simply start your VBox and click"Applications", "System Tools", "EECS Vbox System Update". The update will be applied in a few seconds.

2.Follow your plan from the pre-lab exercises to identify the lines connected to the board. Here is one suggested approach. You may find that you thought up a more effective plan, if so, use it. If you look at the wiring from the keypad you will see that the seven pins from the keypad are brought out to the first seven posts on the board (numbered 1..7). Use your multimeter to ensure that with no button pressed there is no connection between any of the posts. Then connect your multimeter to post 1 — perhaps using an alligator wire — and hold down button 1. Using the multimeter determine which wires button 1 connects to post 1. Repeat this process with post 2, and so on. Identify the four row connections and the three column connections.
3.Connect the interface board using the USB cable to the laptop and ensure that it is operating properly (refer to the Interface Board Lab for details). Connect outputs 1, 2, 3 and 4 from the interface board to rows 1, 2, 3 and 4 on the keypad board (alligator wires work well for this) and connect inputs 1, 2, 3 from the interface board to the column connections 1, 2, 3 on the keypad board. Connect output 7 from the interface board to the power end of the red LED on the keypad board, and connect the ground end of the red LED on the keypad board to ground on the interface board.
4.Using the idea you prototyped in step A5 above, write a timerCallback() method that ensures that only one of the digital outputs numbered 1..4 is connected to +5V while the others are tied to ground. Cycle through which one is tied to ground. That is, the first time through only line 1 should be at +5V, the second time through only lines 2 should be at +5V and so on. After line 4 is tied to +5V cycle back to line 1 being at +5V again. Use the property ‘row’ defined in the class to keep track of which row is currently powered. Note: in the sample code provided the timerCallback() includes a call to c4e.QU.reset(). This clears out any events from the event queue, and deals with a potential scheduling problem.
5.Temporarily wire one of the LEDs on the keypad board between one of the digital outputs and ground and run your code. You should be able to see the LED go on/off as your code cycles through the various output lines.
6.Remove the temporary wiring done in B4 above, and insert in the diChange() callback a print statement that prints out this.row and event.getId() whenever event.getValue() is 1. Verify that the pair (this.row, event.getId()) defines the button that is pressed.
7.Convert the pair (this.row, event.getId()) to the corresponding symbol on the keypad. The clever way of doing this is to use the matrix ‘pad’ defined in the properties of the sample code provided.
8.Maintain in the string ‘pin’ the sequence of keypad symbols that are entered by the user. Note that this string will become quite long.
9.Write up this lab in your e-Portfolio. Ensure that you have video capture and imagery of the various steps above.

C. Advanced
1.In the code you used 100 msec as the time each button was dwelled on. Try different values. What effect does that have on the performance of your code? What dwell time do you like the best? Why?
2.Augment your diChange() handler so that whenever a button press is detected, the LED you wired to output port 7 is brought to +5V, and then it is set to ground whenever a timer callback timerCallback() is executed. What is the effect of this change to the code? Would this be a good thing to add to the user’s experience? Why or why not?
3.What happens if you hold a single button down for a long time? Does it get recorded multiple times or only as a single button press? How might you go about improving on the logic of your code so that single distinct button presses are required in order to record an input?
4.If only numeric PINs are going to be allowed, we can use the ‘*’ symbol to mean ‘erase all my input’. Modify your code so that when the ‘*’ symbol is pressed the PIN currently being entered is reset to the empty string.

6. Exercises /Part 2
Each lab in this course must be properly documented using your e-Portfolio. Rich media content (e.g., videos) should be converted for publication using YouTube, Vimeo or some similar online video system. You should be aware that all material that you are publishing on these sites will be visible to a large number of people, including people outside of the class and the university. Inappropriate publication can result in penalties beyond those associated with your academic record.
Lab exercises are broken down into three sections, pre-lab, in-lab and advanced. pre-lab exercises must be completed before entering the lab. A Moodle quiz associated with the pre-lab must be completed before attending your lab session. The lab monitor will not allow you to participate in the lab without passing this quiz prior to the lab.

A. Pre-lab
1.Download the Matlab program DatabaseCreate.m and review it. It enables you to present RFID tags to the RFID reader and enter passwords that correspond to these tags. The program then prints out the entered Tag/Password pairs, one pair per line, separated by a comma.
2.In the Matlab programs used in the lab to date, the main method basically blocks waiting for input while the events are serviced. Here, we wish to utilize keyboard input and output within the callbacks. How does the main method ‘sleep’ until the callbacks have been processed?
3.How many RFID keys will the current code process? How would you change it so that the user was prompted for this number before the program begins?
4.The RFID card board has a method that allows you to turn on (and off) the LED on the RFID board. Review how that works.
5.Review your solution to the previous week’s lab. You will have to integrate your solution from last week with code developed in this week’s lab.
6.Download the Password.m program. It is a template for your final program. Review your solution to last week’s exercises and plan how you will add your code from last week to Password.m.

B. In Lab
1.Ensure that the two m-files associated with the lab (DatabaseCreate.m and Password.m) are installed within your Matlab environment. If you haven’t done so already, download them into your /home/user/mCode folder.
2.Attach the RFID reader to your laptop and run the DatabaseCreate.m program provided. Use it to create a database of three tags with three passwords. (If you have more than three tags, make the database larger.)
3.Modify the code in DatabaseCreate.m so that in addition to writing out the (tags,passwords) on the command line it also prints them out in reverse order — that is from the last tag entered down to the first.
4.Attach the keypad and interface board to your laptop as they were wired last week. Run your solution from last week to ensure that the wiring is correct. (Note: the RFID board and the keypad are designed to snap together.)
5.The goal here is to modify the Password.m program so that when a user presents an appropriate (RFID key, password) pair, your program will output ‘entry accepted’, and when presented with an improper pair your program will output ‘entry denied’, and it will continue to do this until the program is terminated. The following features are desired
5.1. Tag passwords are 4 numeric digits long.
5.2. There are at least three tags with passwords in the database.
5.3. When you present the system with an RFID tag, the LED on the RFID board goes on. When a decision is made as to if the tag-password is valid or not, this LED goes out.
5.4. Once a tag is presented, the next 4 valid numeric button presses are taken as being the corresponding password.
5.5. As each button is pressed, the red LED on the keypad board will flash
5.6. The button ‘*’ on the keypad erases all keypad input.
5.7. The button ‘#’ on the keypad resets the system (keypad input is erased, current RFID tag is forgotten, LED on the RFID board is extinguished).
The steps below are a suggestion on how to proceed in doing this. You may find another approach more effective.
6.Integrate the code from last week into Password.m so that keypad input is accepted. Write the code so that the ‘*’ and ‘#’ cases are handled properly. Test this to make sure that it is working.
7.Deal with RFID cards being presented to the software. When a card is presented, turn on the LED on the RFID board and save the RFID id in the tag field.
8.Augment your keyboard handling code so that when exactly 4 characters are in the ‘pin’ field and the ‘tag’ field is not empty, that you check the database to see if the (tag,pin) pair is valid. Print out the appropriate response and set both the pin and tag values to be empty. Make sure that you turn off the RFID LED after doing this test.
9.Deal with the ‘#’ case so that the tag value is cleared and the RFID LED is extinguished.
10.Test your code intelligently through organized unit tests. Specifically
10.1. Test to ensure that all keypad input is handled properly
10.2.Test to ensure that each of your RFID tags are read.
10.3.Test to ensure that a valid (key,pin) pair works
10.4.Test to ensure that an invalid (key,pin) pair works.
10.5.Test to ensure that the ‘*’ input is handled properly for both no input, 3 character input, 4 character input.
10.6.Test to ensure that the ‘%’ input is handled properly for the no-RFID card presented, RFID-card presented but no PIN input, and RFID card presented and PIN input present cases.
10.7.Test to ensure that keyboard entry before the RFID card is presented is dealt with properly.
10.8.Other tests as you see fit.
11.Write up your report using your e_Portfolio. Ensure that you capture appropriate videos of the various stages of the process. Be sure to include the code that you have written for this lab.

C. Advanced
1.Modify your code so that they keypad buffer is cleared whenever the keycard is removed.
2.Modify your code so that the user must enter the pin within a fixed period of time.
3.Wire up an LED that would correspond to the door lock being opened. Turn it on for a short period of time when a correct (key,pin) pair is presented to the system.
4.Add two LEDs to your system to indicate that the lock is open (say green) or that the PIN is incorrect (say red).
5.Modify your code so that if a card is presented three times in a row without an appropriate PIN, then that card can no longer be used. Write your code first so that there is only one ‘bad RFID’ card. As an added bonus, and somewhat harder problem, maintain an array of ‘bad RFID’ cards and ensure that no bad card can be used with your system.

6. Credits
[image: Screen Shot 2014-08-27 at 8.52.06 AM.jpg]

OPS/toc.xhtml
		1. Locks and Security

		2. Background

		2.1 Keypads

		2.2 Keypad-related API

		2.3 Timer Callbacks

		2.4 RFID

		2.5 RFID API

		2.6 Databases

		2.7 Database API

		4. Further Reading

		5. Exercises /Part 1

		A. Pre-lab

		B. In Lab

		C. Advanced

		6. Exercises /Part 2

		A. Pre-lab

		B. In Lab

		C. Advanced

		6. Credits

OPS/images/pasted-image-1.png
|||||

OPS/images/pasted-image.png

OPS/images/posterImage.png
Phidget RFID

Aached: Phidget RFID Read-Write

Serial Number: 335769
Version: 100
Number of Outputs: 2

Tag Read

Settings

(/ Antenna Enabled () External LED
() Onboard LeD () +5v Output

Tag Write

| PHIDGETS. B (

OPS/images/pasted-image-2.png
oo oo ol o—o
o oo o o—on

O/LO/Q (@—"3

OPS/images/pasted-image-3.png
RFID identifier
1234567

1234568

1234569

1234570

PIN number
1122

9999
1234

1000

OPS/images/image.png
function rfidGain(this, event)
fprintf ('RFID tag gain with protocol #%d and tag %s at %d\n',
event.getId(), char (event.getTag()), event.getWhen())

end

function rfidloss (this, event)
fprintf ('RFID tag lost with protocol #%d and tag %s at %d\n',
event.getId(), char (event.getTag()), event.getWhen())
end

OPS/images/Screen Shot 2014-08-27 at 8.52.06 AM.jpg
COMPUTATIONAL THINKING
THROUGH MECHATRONICS

Copyright © 2014 by:

m Jenkin + h Roumani

OPS/images/pasted-image-4.png
RFID identifer LastName First Name

1234567 Smith John
1234569 Brown Mary
1234570 HoKong Jim

OPS/media/rfid-274.m4v

OPS/images/cover-image.png
= FLECTRONICLOCKS 1or%

Computational thinking through mechatronics

Electronic Locks

Version 0.2 Cofyright © 2014 by:

m _Jenkin + h Roumani

