
Modelling and Testing Requirements
via Executable Abstract State Machines

Jonathan S. Ostroff and Chen-Wei Wang
Department of Electrical Engineering and Computer Science
Lassonde School of Engineering, York University, Canada

Email: {jonathan, jackie}@eecs.yorku.ca

Abstract—We describe a method and tools for deriving spec-
ification models from requirements, and for validating that the
final software product satisfies the requirements. ETF (Eiffel
Testing Framework) is a tool for generating code from an abstract
grammar specification of user interface actions derived from the
requirements document. Mathmodels extends the classical Eiffel
contracting notation with the use of mathematical models (based
on sets, sequences, relations, functions, bags). The Mathmodels
library has immutable queries (for specifications) as well as
relatively efficient mutable commands (for describing executable
abstract state machines). Models are developed and validated
using the industrial strength Eiffel IDE, and the use of these
tools thus scale up to the development of large systems in a
way that supports the derivation of specification models from
requirements, and seamlessness between models and code.

Index Terms—requirements, models, specifications, validation,
tools, reliable software

I. INTRODUCTION

Model Driven Engineering (MDE) holds the promise of
raising the level of abstraction when designing systems by
promoting domain specific modelling languages, model trans-
formation techniques and code generation. The use of models
above the code level is promoted as a method for handling
the complexity of software development. Although there is a
large body of research and industrial successes, there are still
challenging issues especially with respect to keeping code in
sync with the models [1]–[3].

The authors of [4] survey activities including the use of
models for code generation, modelling language creation, and
model-based testing, among a wide range of industrial users
of model-driven engineering (see also [5]). They found it
surprising that 35% of respondents do not use models in
testing. The authors attribute this to the greater degree of
formality and effort needed for the use of models for testing
and simulation. Impedance mismatch between models and
code continues to be a challenge [6].

An important facet of requirements engineering is to refine
requirements into specifications [7]. Although requirements
are often expressed in natural language [8], requirements
models have also been used to elicit, document and ana-
lyze them. As described in [9], there is a tension between
requirements models as a description of the problem space
(entirely elaborated in terms of user and system environment)
and specifications in the solution space (expressing at a high
level of abstraction what the forthcoming artifact will do, with

no concerns about how it will be done). As requirements
engineering deals with both spaces, modelling techniques are
used in both, even if certain techniques (e.g. UML) are more
suited to the solution space, while other techniques (e.g. goal
modelling) might be better suited for the problem space. In
requirements engineering, MDE might be investigated as a
technique to derive models in the solution space from models
in the problem space.

The analysis of requirements models in [9] indicates a
predominance of proposals for new languages for requirements
representation. Also, there is significant research into the
derivation of system specifications from requirements; but
these specifications in the solution space are informal (such
as UML sequence diagrams, Use Cases, Reusable Aspect
Models, RSL-IL, and even natural language [9, Appendix
1], [10]). Other facets such as requirements elicitation and
requirements validation methods are much less tackled, and
traceability is seldom discussed. Many requirements models
are based on variants of UML [11].

In this paper, we describe a method and tools for deriving
specification models in the solution space from requirements,
where the derived specification model (an executable abstract
state machine1) is more formal than those described above, and
thus amenable to analysis and validation. Validation involves
running acceptance tests (derived from the requirements) on
the model to check that user input-output relations and system
safety properties (identified in the requirements) are satisfied.

Our tools (Fig. 1) go some way to making the process of
keeping models and code in sync more seamless, and also to
allowing for tracing requirements into the specification model.

• In section II, we introduce a small illustrative example
called EHealth, to be used in the rest of the paper.
EHealth is an electronic health system to ensure that
patients’ medication prescriptions are safe. We document
the requirements as numbered atomic descriptions.

• In section III, we describe the use of ETF (Eiffel Testing
Framework) to specify an abstract user interface, to iden-
tify the abstract state, and to develop use cases before the
software product is constructed. The ETF tool generates
code in Eiffel that decouples the user interface from

1We use the term “abstract state machine” in the standard sense of a
machine operating on states that are described by mathematical data structures.
This is related to but not the same as the ASM method [12].

8th International Workshop Model-Driven Requirements Engineering (MoDRE), August, 2018

Fig. 1. ETF MDD Tool and Mathmodels Library

Metamodel:
Language for Specifying

User Interfaces

ETF (Eiffel Testing Framework):
Code Generator for

Business Logic stub and Acceptance
Testing via an Abstract User Interface

User Commands

Architecturally Structured, Executable Code

Business Model

Mathmodels:
Language for

Specifying Business Logic
as Abstract State Machines

EHealth acceptance tests

EHealth UI grammar

data flow

dependency

Requirements Engineers
Customers

Requirements Document

the design (the business logic). The use cases become
acceptance tests when the final product is completed, and
these tests check contracts in the business logic, as well
as the correctness of sequences of feature calls.

• In section IV-A, we describe the use of the Mathmodels
library for specifications. A specification of a system
or a system component uses mathematical models (sets,
sequences, relations, functions, bags) to describe an ab-
stract state machine using contracts (preconditions, post-
conditions, class invariants) in the Eiffel programming
language. Classical contracts are incomplete or are low
level implementation assertions. Mathmodels contracts
provide complete specifications of components and sys-
tems, which scale up to validating large systems via
runtime contract checking. Mathmodels have immutable
queries (for specifications) as well as analogous mutable
commands (for making the model executable and thus
amenable to acceptance testing). Efficient code can be
derived from an executable abstract state machine (the
specification model) and kept in sync with it.

• In section IV-B, we complete the ETF generated code
for the business logic with Mathmodels specifications
derived from the requirements. The use cases (from the
earlier phase) are used for acceptance testing of the
software product. As the acceptance tests are run, the
Mathmodels contracts are checked thus validating the
correctness of the model. Class invariants encoded using
Mathmodels ensures the safety of the system. Traceability
is preserved between the numbered atomic requirements
and the Mathmodels contracts. In this way, the program
text retains important system consistency and safety prop-
erties, traced back to the original requirements.

Finally we compare our tools with other approaches to the
development of reliable mission critical business systems. The
use of the ETF Tool and the Mathmodels Library for the
production of reliable software scales up to large systems as
contract checking is done automatically at runtime. We also
discuss the relevance of this method and tools to computer
science and software engineering education.

II. REQUIREMENTS ELICITATION

Specification is one of a trio of terms: requirements; speci-
fications; and programs (Jackson, [13]). Specifications are all
about—and only about—the shared phenomena at the interface
between the machine (the computer) and the environment
in which the machine must function. Requirements are all
about—and only about—the environment phenomena. Pro-
grams, on the other hand, are all about—and only about—the
machine phenomena.

The machine, in this context, is a computing device and its
program that periodically takes inputs via user interfaces and
sensors connected to the environment, and delivers outputs via
actuators and displays.

Writing a good requirements document is a difficult task.
The readers of such a document are (a) customers who may not
have technical knowledge and (b) the engineers and software
developers who will conduct its specification and design. It is
usually difficult for the engineers to exploit the requirements
document if they cannot clearly identify what they have to
take into account and in which order.

Important points may be missing or vague, and on the other
hand, the requirements document is sometimes over-specified
with a number of irrelevant details. It is then difficult for the
reader of the requirements document to distinguish between
which part of the text is devoted to explanations and which part
is devoted to genuine requirements. Explanations are needed
initially for the reader to understand the future system. But
when the reader is more acquainted with the purpose of the
system, explanations are less important. At that time, what
counts is to remember what the real requirements are in order
to know exactly what has to be taken into account in the
system to be constructed.

Our running case study in this paper is an EHealth system
which is an electronic health system where the goal is to ensure
that there are no undesirable interactions between medications
in patient prescriptions. It is kept small to fit the page limit,
but without implying a limitation on the size or complexity of
the systems which our tools and methods can handle.

8th International Workshop Model-Driven Requirements Engineering (MoDRE), August, 2018

We follow Jackson [13] and divide the requirements docu-
ment into atomic ENV-descriptions (environmental constraints
or assumptions) and REQ-descriptions (what the machine must
produce). Elicitation of informal requirements produces the
following:

ENV1 Physicians prescribe medications to patients.

ENV2 There exist pairs of medications that when taken
together have dangerous interactions.

For example, warfarin and aspirin both increase anti-coagulation.

ENV3 If one medication interacts with another, then the
reverse also applies (Symmetry).

ENV4 A medication does not interact with itself
(Irreflexivity).

REQ5 The system shall maintain records of dangerous
medication interactions.

REQ6
The system shall maintain records of patient
prescriptions. No prescription may have a dan-
gerous interaction.

REQ7
Physicians shall be allowed to add a medication
to a patient’s prescription, provided it does not
result in a dangerous interaction.

REQ8
It shall be possible to add a new medication
interaction to the records, provided that it does
not result in a dangerous interaction.

Thus, first remove the new dangerous interaction from patient pre-
scriptions before adding the new interaction to the records.

REQ9 Physicians shall always be allowed to remove a
medication from a patient’s prescription.

The above requirements are informal and may be understood
by customers and engineers alike. The requirements document
is organized around two texts embedded in each other: the
explanatory text and the reference text. These two texts should
be immediately separable, so that it is possible to summarize
the reference text (in the frames) independently. The reference
text takes the form of labeled and numbered short statements
written using natural language, which must be very easy to
read independently from the explanatory text. The explanations
are just there to give some comments which could help a first
reader. But after an initial period, the reference text is the only
one that counts [14].

Obviously, a real requirements document will contain many
more numbered atomic descriptions organized hierarchically
[8]. Labels (such as REQ6) are used later (Sec. IV-B) in the
system models for traceability.

III. ETF: GENERATING AND TESTING MODELS VIA
ABSTRACT USER INTERFACES

ETF (Eiffel Testing Framework) is an MDD tool for gen-
erating code from an abstract grammar specification of user
interface actions derived from the requirements document (e.g.
for EHealth described in Sec. II).2 The generated code is able
to parse and execute acceptance tests (based on use cases
derived from the requirements) that reference the UI actions.

Fig. 2 (p.4) is an example of a grammar specification for
the EHealth system. Based on the requirements (Sec. II), we
specify a grammar for the user input to the system. One may
use a variety of basic types such as INT, VALUE (decimals with
arbitrary precision), CHAR, and enumerations (e.g., KIND and
PHYSICIAN). Composite types—tuples and arrays of tuples—
may be recursively constructed from basic types. We may also
declare synonyms to existing types. For example, in Fig. 2, a
type MEDICATION is defined as:

TUPLE [name: NAME; kind: KIND; low: VALUE; hi: VALUE]
The abstract grammar also defines possible user input actions,
such as adding medications, physicians, interactions, etc. Com-
ments are preceded by double dashes (--).

For illustration, we will use the grammar specification for
a smaller system in Fig. 3 (p.4). Based on the grammar, users
may write acceptance tests even before the development of
the business model (described in Sec. IV-B). Each acceptance
test consists of a sequence of user actions such as adding
medications and prescriptions.

Developers also need to describe the output after each action
(with the help of their customers). Developers might want to
think in terms of the abstract state which for the EHealth
example is the prescriptions relation between patients and
medications prescriptions ⊆ PATIENT × MEDICATION, and the
set of all dangerous interactions between medications given
by interactions ⊆ MEDICATION × MEDICATION.

2“[MDD] Tools can automate the initial transformation [from model to
code], and can help to keep the design and implementation models in step as
they evolve. Typically the tools generate code stubs from the design models
that the user has to further refine. As changes are made to the code they must
at some point be reconciled with the original model” [15, p. 5].

8th International Workshop Model-Driven Requirements Engineering (MoDRE), August, 2018

Fig. 2. ETF Abstract Grammar for an EHealth System

system ehealth
-- manage prescriptions for physicians and patients
type ID MD = INT -- physicians
type ID PT = INT -- patients
type ID RX = INT -- prescriptions
type ID MN = INT -- medications
type NAME = STRING

-- names of physicians, patients and medications
type KIND = {pill, liquid}

-- for a pill, it is a positive real in mg.
-- for a liquid it is a positive real in cc.

type MEDICATION =
TUPLE [name: NAME; kind: KIND; low: VALUE; hi: VALUE]

type PHYSICIAN = {generalist, specialist}
-- User Actions
add physician (id: ID MD; name: NAME; kind: PHYSICIAN)
add patient (id: ID PT; name: NAME)
add medication (id: ID MN; medicine: MEDICATION)
add interaction (id1:ID MN;id2:ID MN)
new prescription (id: ID RX; doctor: ID MD; patient: ID PT)
add medicine (id: ID RX; medicine:ID MN; dose: VALUE)
remove medicine (id: ID RX; medicine:ID MN)
...

Fig. 3. Abstract Grammar for a Smaller EHealth System

system ehealth
-- manage prescriptions for physicians and patients
type MEDICATION = STRING
type PATIENT = STRING
add patient (p: PATIENT)
add medication (m: MEDICATION)
add interaction (m1: MEDICATION; m2: MEDICATION)
add prescription (p: PATIENT; m: MEDICATION)
remove interaction (m1: MEDICATION; m2: MEDICATION)
remove prescription (p: PATIENT; m:MEDICATION))

Table I (p.10) is an example of an acceptance test for the
EHealth system, where the abstract state is written in an ASCII
format by the requirements engineer so that non-technical
customers can understand the use case as well. For example,
the set prescriptions: {p1->m1,m3; p3->m2} in
state 16 means that patient p1 has been prescribed medica-
tions m1 and m3, and patient p3 has ben prescribed medication
m2. In this acceptance test, we add medications, physicians
and dangerous interactions. We also prescribe medications for
the various patients.

If a user action is illegal, the system shall not crash or
generate an exception. Rather, a useful error message is
provided to the user of the system. As an example, consider
the abstract state state 16 in Table I, where medication
m2 interacts with m4 (i.e., the pair m2 -> m4 is a member
of the interactions set). Thus, given that medication m2 is
already prescribed for patient p3 in state 16, in state
17 a doctor cannot prescribe medication m4 for patient p3
because this would be dangerous for the patient. The use

case then continues as follows: the interaction m2 -> m4,
and symmetrically the interaction m4 -> m2, are removed at
state 18, so that the prescription p3 -> m4 can be added
in the subsequent state.

Use of the ETF Tool is as follows:
• Based on the requirements (such as Sec. II), specify the

grammar for an abstract user interface (Fig. 3) of data
types and user inputs to the system. There is no need to
commit, prematurely, to a concrete user interface.

• Once the grammar is specified, the developers may write
acceptance tests to validate the software.

• The ETF tool is invoked on the grammar to generate
architecturally structured code (see Fig. 4, p.5) using the
command design pattern.

– Develop the business logic (described later in
Sec. IV-B) in the Model package.

– The User Commands package contains classes (e.g.,
ETF ADD PATIENT) associated with the user inter-
face. As shown in the UML diagram in Fig. 4,
the user interface is decoupled from the business
logic (i.e. the model). The business logic may easily
be interfaced with different concrete user interfaces
(e.g., a web application or desktop application).

– Integrate the business model with the user
interface. For example, the descendant class
ETF ADD PATIENT from the User Commands
package either signals an error if the input patient
already exists, or invokes the relevant model action.

– Acceptance tests (e.g., Table I, p.10) may be exe-
cuted from the command line. The generated code
will report syntax and type errors (if any) or display
the expected output if the business logic is correct.

• Once the business logic is developed using the Math-
models library (Sec. IV-B), running the acceptance tests
(e.g., Table I) also verifies that relevant classes satisfy
their specifications (preconditions, postconditions, class
invariants).

IV. USING MATHMODELS FOR SPECIFICATIONS

A. Overview of Mathmodels

In this section we provide a small illustrative example of
the use of Mathmodels, and then explain why this modelling
method scales up.

A software specification normally describes the set of ser-
vices a system or component is expected to provide. A sorted
map, for example, has features such as insert, remove and
sorted keys as shown in the class diagram of Fig. 5 (p.6). The
specification must be precise so that it can act as a contract
between the client and the supplier (understandable by both).
A specification is also an abstraction, i.e. it should describe
the important aspects and omit the unimportant ones.

Abstract State: In Fig. 5 and the corresponding Eiffel
program text in Fig. 6 (p.6), sorted maps are specified using
a mathematical model (a function from keys to values, FUN[
KEY, VALUE]) to describe the abstract state. The features are
specified in terms of the abstract state using preconditions,
postconditions, and class safety invariants. For example, the
first invariant (keys are sorted) specifies that keys of any
sorted map can be accessed as a sorted sequence.

8th International Workshop Model-Driven Requirements Engineering (MoDRE), August, 2018

Fig. 4. Generated Code by the ETF Tool

Class Diagram: User Commands package depends on Model package

COMMAND

ETF_ADD_PATIENT ETF_ADD_INTERACTION ...

MODEL

PATIENTMEDICATION

Model

User Commands

User

Consider the generated Eiffel file etf_add_patient.e for example:

class ETF ADD PATIENT inherit COMMAND feature
add patient(p: STRING)

local l p: PATIENT
do

create l p.make (p) -- create a patient from model package
if model.patients.has(l p) then -- error

model.set error (”e1: patient already entered”)
else -- update the model by adding the patient

model.add patient (l p)
end ...

end

The Model package is a placeholder where the software developer
will describe the business logic, by introducing model classes such as
PATIENT and MEDICATION etc., and using Mathmodels to specify
abstract state variables and state changes to user inputs.

By contrast, sorted maps can be implemented in many dif-
ferent ways, e.g., using sorted arrays or red-black trees. These
code implementations will introduce additional lower level
constructs such as nodes, pointers and trees. However, these
implementations inherit all the model specifications of class
SORTED MAP and must thus satisfy its abstract preconditions,
post-conditions and safety invariants. Implementations may
change, but the specifications remain the same. This is the
power of abstraction.

Mathmodels3: The class FUN[KEY,VALUE] representing
mathematical functions is part of our Mathmodels library
which also contains tuples, sets, relations, bags, etc (en-
coded in Eiffel). Thus, for example, the insert(key, val) com-
mand in Fig. 6 is specified with a precondition asserting
that key /∈ model .domain and a postcondition model =
old model ∪ (key , val). The Eiffel notation for these contracts
is shown in Lines 27 and 29 of Fig. 6 (p.6). These contracts
specify how the abstract state changes when an insert operation
is performed.

3For documentation of Mathmodels, see http://www.eecs.yorku.ca/
course archive/2016-17/W/3311/eiffel-docs/mathmodels/index.html. The Li-
brary is available as open source at https://svn.eecs.yorku.ca/repos/sel-open/
mathmodels.

Executable Abstract State Machines: Mathmodels classes
such as FUN have immutable queries for contracts and anal-
ogous mutable commands for making the specifications exe-
cutable (which may be refined to more efficient descendants).
In Line 28 of Fig. 6 (p.6), insert is implemented via the
override by command, which is the mutable analogue of
function overriding (with infix symbol ”+”). Executability of
the model means that the model can be validated—before
developing efficient descendants that are required to conform
to the model. We may thus consider class SORTED MAP with
its model-based contracts as an abstract state machine.

Seamlessness: Formal specification languages must meet the
same challenges as programming languages, such as defining
a coherent type system, supporting abstraction and modularity,
and providing a clear syntax and semantics. In the sorted map,
we use the same notation to express specifications and imple-
mentations within the same syntactic and semantic universe
(Eiffel in this case). In an ideal world where requirements
are fixed at the start, one might switch notations between
models and code. But in practice, requirements, designs and
implementations change, and a seamless process relying on a
single wide spectrum notation makes it possible to go back and
forth between levels of abstraction without having to perform
repeated translations between levels.

Systems specified by Mathmodels are developed and val-
idated using the industrial strength Eiffel IDE [16], and the
use of these models thus scale up to the development of large
systems in a way that supports seamlessness between models
and code.

A method to achieve demonstrable correctness is via math-
ematical proofs performed mechanically, but for large systems
this is still work in progress requiring advanced expertise.
Runtime assertion testing (rather than proof-based methods)
has been perfected on the Eiffel IDE over several decades
and used daily for large-scale mission-critical applications.
The approach is incremental. Unlike fully formal methods and
proofs, it does not require one to write down every single
property down to the last quantifier. One may start with simple
contracts. The more we write, the more we get; it is the
opposite of an all-or-nothing approach.

On the practical side, there are no compromises on the per-
formance of a delivered system. Runtime contract monitoring
is a compilation option, tunable for different kinds of contracts
(invariants, and pre/postconditions) and different parts of a
system. The contracts are used for development, testing and
debugging, and may be turned off on production systems.4

B. EHealth Specification

As explained earlier (Sec. IV-A), the Mathmodels library
has immutable queries for models specified by tuple, sets,
sequences, functions, relations and bags. It also has analogous
mutable commands for making models executable.

4See [17] for more Mathmodels examples, and https://bertrandmeyer.com/
2018/05/24/not-program-right/, accessed 2018-05-24

8th International Workshop Model-Driven Requirements Engineering (MoDRE), August, 2018

Fig. 5. Safety Invariants of Sorted Maps

model: FUN[KEY, VALUE] -- abstract state
-- queries
item
has
count
sorted_keys
-- commands
insert
remove
invariant
 keys_are_sorted:

 8i : 1  i < count : sorted keys[i] < sorted keys[i + 1]8i : 1  i < count : sorted keys[i] < sorted keys[i + 1]
 consistent_key_count:
 sorted keys.count = model.domain.countsorted keys.count = model.domain.count

 sorted_keys_same_as_domain:
 8k 2 sorted keys : k 2 model.domain8k 2 sorted keys : k 2 model.domain

SORTED_MAP[KEY -> COMPARABLE, VALUE]

ARRAYED_SORTED_MAP RED_BLACK_SORTED_MAP

Fig. 6. An Eiffel Abstract State Machine for a Sorted Map

1 class SORTED MAP [K −> COMPARABLE, V] feature
2 model: FUN [K, V] -- abstract state
3 do Result := model imp end
4 model imp: like model -- to make the model executable
5 feature -- queries
6 item alias ‘‘[]’’ (key: K): V
7 -- get value for ‘key’
8 require has (key)
9 do Result := model imp [key]

10 ensure Result = model [key] end
11 sorted keys: ARRAY [K]
12 -- return a sorted array of keys
13 do Result := model imp.domain.as array
14 Result := {SORT [K]}.quicksort (Result)
15 ensure -- see the invariant end
16 has (key: K): BOOLEAN
17 -- does key/value pair exist?
18 do Result := model imp.domain.has (key)
19 ensure Result = model.domain.has (key) end
20 count: INTEGER
21 -- number of elements in the map
22 do Result := model imp.count
23 ensure Result = model.count end
24 feature -- commands
25 insert (key: K; val: V)
26 -- insert ‘key’ and ‘val’
27 require key unique: not has (key)
28 do model imp.override by ([key, val])
29 ensure model ∼ ((old model) + [key, val]) end
30 remove (k: K)
31 -- remove key ‘k’ and associated value
32 require has (k)
33 do model imp.subtract ([k, model imp[k]])
34 ensure model ∼ ((old model) - [k, old model[k]]) end
35 invariant
36 keys are sorted:
37 across 1 |..| (model.count − 1) as i
38 all sorted keys [i.item] < sorted keys [i.item + 1] end
39 consistent key count:
40 sorted keys.count = model.domain.count
41 sorted keys same as domain:
42 across sorted keys as k
43 all model.domain.has (k.item) end
44 end

Fig. 7. parts of classes for MEDICATION and INTERACTION

class MEDICATION feature ...
name: STRING

maps to alias 7→ (other: MEDICATION): INTERACTION
-- maps to operator Current 7→ other

do
create Result.make (Current, other)

end
end

class INTERACTION feature ...
first: MEDICATION
second: MEDICATION

end

Fig. 8. Some Queries of Mathmodels Class REL[G, H]

class REL [G, H] inherit
SET[TUPLE[G, H]]

create
make empty

feature -- queries
domain: SET [G]

-- Return the domain set of relation.
range: SET [H]

-- Return the range set of relation.
image alias ‘‘[]’’ (g: G): SET [H]

-- Retrieve set of range items for domain element ‘g’
extended alias ‘‘+’’ (p:TUPLE[G, H]): REL [G, H]

-- Return a new relation with addition of ‘t’
overriden by (p: TUPLE[G, H]): REL [G, H]
-- Return a new relation the same as Current,
-- except p.first now maps to p.second
...

end

In Sec. III, we described how ETF generates Eiffel code
with a placeholder for developing a model of the business
logic for a software product.

In this section, we illustrate the use the Mathmodels library
to provide executable models (as Eiffel program text) for the
business logic of the EHealth example (Sec. II).

We develop the business logic in the Model package of
the generated code as shown in Fig. 4 (p.5), where we add
model classes such as MEDICATION and INTERACTION (see
Fig. 7). Class HEALTH SYSTEM in Fig. 9 (p.7) describes the
abstract state of the EHealth application (Lines 4 to 11), now
formalized as Eiffel text amenable to compiler syntax, type
and runtime assertion checking, e.g.:

• prescriptions with type REL[PATIENT, MEDICATION] is a
relation between patients and medications. Class REL[G,
H] as shown in Fig. 8 is part of the Mathmodels library.

• interactions with type SET[INTERACTION] is a set of
interactions.

Importance of system safety invariants: From requirements
elicitation (Sec. II), we identified important system constraints
such as REQ6 asserting that patients are never prescribed
dangerous interactions. These requirements become part of the
model as invariants in class HEALTH SYSTEM (Fig. 9, p.7):

8th International Workshop Model-Driven Requirements Engineering (MoDRE), August, 2018

Fig. 9. class HEALTH SYSTEM with Abstract State and Invariants

1 class
2 HEALTH SYSTEM
3 feature -- abstract state
4 patients: SET [PATIENT]
5 -- set of patients
6 medications: SET [MEDICATION]
7 -- set of medications
8 prescriptions: REL [PATIENT, MEDICATION]
9 -- prescriptions

10 interactions: SET [INTERACTION]
11 -- dangerous interactions
12 invariant
13 symmetry ENV3:
14 across medications as m1 all
15 across medications as m2 all
16 interactions.has (m1.item 7→ m2.item)
17 = interactions.has (m2.item 7→ m1.item)
18 end end
19 irreflexivity ENV4:
20 across medications as m1 all
21 not interactions.has (m1.item 7→ m1.item)
22 end
23 no dangerous interactions REQ6:
24 across prescriptions.domain as p all
25 across prescriptions[p.item] as m1 all
26 across prescriptions[p.item] as m2 all
27 interactions.has (m1.item 7→ m2.item)
28 implies
29 not(prescriptions.has([p.item,m1.item])
30 and prescriptions.has([p.item,m2.item]))
31 end end end
32 consistent domain:
33 prescriptions.domain ⊆ patients
34 end

Fig. 10. class ADD PRESCRIPTION with Pre- and Post-Conditions

1 class
2 ADD PRESCRIPTION
3 inherit
4 HEALTH SYSTEM
5 feature -- commands
6 add prescription (p: PATIENT; m: MEDICATION)
7 -- Add a prescription of ’m1’ to ’p1’.
8 require
9 -- p ∈ patients

10 patients.has (p)
11 -- m /∈ prescriptions[p]
12 not prescriptions[p].has (m)
13 -- cannot cause a dangerous interaction
14 -- ∀med ∈ prescriptions[p] : (med ,m) /∈ interaction
15 across prescriptions[p] as med all
16 not interactions.has(med.item 7→ m)
17 end
18 do
19 prescriptions.extend ([p, m])
20 ensure
21 prescriptions ∼ old prescriptions + [p, m]
22 -- UNCHANGED (patients, medications, interactions)
23 end
24 end

• Requirement ENV3 (symmetry) shown at Lines 13–18;
• Requirement ENV4 (irreflexivity) shown at Lines 19–22;
• Requirement REQ6 shown at Lines 23–31.

In standard mathematical notation, for medications m1 and m2

Fig. 11. class ADD INTERACTION with Pre- and Post-Conditions

1 class
2 ADD INTERACTION
3 inherit
4 HEALTH SYSTEM
5 feature -- commands
6 add interaction (m1, m2: MEDICATION)
7 -- Add an interaction between ’m1’ and ’m2’.
8 require
9 medications.has (m1) and medications.has (m2)

10 m1 6= m2
11 not interactions.has (m1 7→ m2)
12 -- ∀p ∈ dom(prescriptions) : {m1,m2} 6⊆ prescriptions[p]
13 across prescriptions.domain as pc all
14 not (〈〈 m1, m2〉〉 ⊆ prescriptions[pc.item])
15 end
16 do
17 interactions.extend ([m1, m2])
18 interactions.extend ([m2, m1])
19 ensure
20 interactions ∼ old interactions + [m1, m2] + [m2, m1]
21 -- UNCHANGED (patients, medications, prescriptions)
22 end
23 end

and patient p, REQ6 is:

∀p ∈ pr .domain,m1,m2 :

m1 6= m2 ∧ (m1,m2) ∈ interactions

⇒ ¬((p,m1) ∈ pr ∧ (p,m2) ∈ pr)

(1)

where pr stands for the prescriptions relation. The Eiffel text
is more verbose but encodes the same specification.

These invariants ensure that any actions performed by users
will preserve the integrity of the data and the safety of patients.
In order to preserve each of these crucial invariants, the actions
(user inputs) must have preconditions that are guaranteed to
ensure the invariants.

Traceability: By documenting the informal requirements as
numbered atomic descriptions (e.g. REQ6) we can trace where
the model formalizes the requirements.

In the EHealth system, each user interface action (e.g. add
prescription and add interaction) has a corresponding model
class (ADD PRESCRIPTION in Fig. 10 and ADD INTERACTION
in Fig. 11) that inherits the abstract state and safety invariants
from HEALTH SYSTEM.

Invariants drive the derivation of preconditions: Consider
the precondition of command add prescription(p, m) in class
ADD PRESCRIPTION starting at Line 6 of Fig. 10:

• Line 10 asserts that patient p must be in the system and
Line 12 asserts that medication m is not yet prescribed
for patient p. The query prescriptions[p] (from class REL
in Fig. 8, p. 6) is the relational image returning a set of
medications for p.

• Lines 15 to 17 assert that adding this medication does
not create a dangerous interaction. This part of the pre-
condition ensures that the system safety invariant REQ6
is preserved.

Classes such as ADD PRESCRIPTION in the Model
package are given demanding preconditions, whereas the

8th International Workshop Model-Driven Requirements Engineering (MoDRE), August, 2018

analogous classes in the User Commands package (e.g.
ETF ADD PRESCRIPTION) invoked at the user interface (see
Fig. 4) have no preconditions and apply defensive program-
ming. Why is this?

The software designer has no control over the users
that provide data at the user interface. Thus, the command
add prescription(p, m) at the user interface has to deal with valid
inputs as well as possible erroneous inputs. Thus there cannot
be a precondition at the user interface. If the input data is legal,
then the user interface can invoke the command in the business
logic (i.e. in the Model package). If it is not legal, it must
signal to the external users that the inputs are problematic.

At the user interface, there is no substitute for the usual
condition-checking constructs for input validation. Any inputs
from the outside world including input data and sensor data in
a real-time system needs that kind of checking. In obtaining
information from the outside one cannot rely on preconditions.
Thus there is no precondition at the user interface to the
external world. The task of the input handling at the interface
to the external world is to guarantee that no information is
passed to the business logic that would cause inconsistent data.

Acceptance Testing: Design by Contract views a software
system as a set of components whose collaboration is based
on precisely defined specifications of mutual obligations—the
contracts. As mentioned earlier (Sec. III, p.3), acceptance tests
(as in Table I, p.10) are used to validate the integrated system.
Also, when these acceptance tests are executed, they also
exercise and thus verify the model contracts of the business
logic.

V. DISCUSSION

The ETF Tool described in this paper does not seem to have
an analogue in the literature. It is used at the transition from
requirements in the problem domain to a specification of the
abstract user interface in the solution domain, the derivation of
acceptance tests, and model-ready code generation. Of course,
modern IDEs contain a sophisticated “design” perspective
where one graphically specifies a concrete user interface, and a
“text” perspective which is generated automatically from the
design (e.g. in XML). But these interfaces have to provide
additional implementation details—beyond the functional ac-
tions that the UI must support; details such as the placement
and organization of the widgets, representation issues (drop
down menu vs. radio buttons) and the various layouts. Also, in
writing acceptance tests for regression testing, the test scripts
are written in a programming language referring to details
such as which browser to to open, which identifiers to access
in the html (in a web application, for example), before actually
getting to tests of the business logic.

The report [18] introduces a Mathematical Model Library
(MML) which is a precursor to Mathmodels. The author reuses
the capabilities of the Eiffel programming language to express
mathematical expressions. All mathematical operations are
immutable yielding new values that do not change the existing
ones. Model classes may not have commands. Queries in a
model class may only rely on queries of the class itself and

public queries of other model classes. Model objects are never
compared by reference. At about the same time, we also used
model libraries in Eiffel together with a theorem prover for
proving properties [19] .

The authors of [20] present their experience verifying the
full functional correctness of an Eiffel-Base2 container library
offering all the features customary in modern language frame-
works, such as external iterators, and hash tables with generic
mutable keys and load balancing. Verification uses the auto-
mated deductive verifier AutoProof. The results indicate that
verification of a realistic container library (135 public methods,
8,400 LOC) is possible with moderate annotation overhead
(1.4 lines of specification per LOC) and good performance
(0.2 seconds per method on average).

The Mathmodels container library differs from MML and
Eiffel-Base2 in many ways. Mathmodels uses runtime veri-
fication rather than theorem proving for scalability to large
systems because the checking is completely automatic, albeit
without the completeness of theorem proving. Also, Mathmod-
els is Void safe [21] whereas the others are not.

Mathmodels may be used to specify concurrent systems
using Eiffel’s SCOOP mechanism [22], [23], but is not suitable
for designing systems with hard real-time constraints.

There is a significant body of work on models, contracting
mechanisms and their analysis. The paper [24] provides a
survey of contracting mechanisms, comparing Eiffel with other
frameworks developed for languages such as Java and C#. A
major challenge is the use of theorem proving to scale up to
large systems.

For example, [25] presents an integrated development en-
vironment for Dafny—a programming language, verifier, and
proof assistant—that addresses issues present in most state-
of-the-art verifiers: low responsiveness and lack of support
for understanding non-obvious verification failures. The paper
demonstrates several new features that move the state-of-the-
art closer towards a verification environment that can provide
verification feedback as the user types and can present more
helpful information about the program or failed verifications
in a demand-driven and unobtrusive way.

The most pressing problem in Dafny is what to do with
verification tasks that require a long time. When a method
is long and difficult, it has to be manually broken up into
smaller pieces. Time-outs occur in some part of any larger
proof attempt, especially those that involve large recursive
functions or non-linear arithmetic, while the user is working
on getting the verification through. Currently, the verifier does
not produce as much information for verification attempts that
time out as it does for attempts that fail.

SPARK Pro is an integrated static analysis toolsuite for ver-
ifying high-integrity software through formal methods [26]. It
provides advanced verification tools that are tightly integrated
into the GNAT Programming Studio. Using SPARK Pro,
developers can formally define and semi-automatically verify
software architectural properties, and guarantee a wide range
of software integrity properties such as freedom from run-
time errors, enforcement of security policies, and functional

8th International Workshop Model-Driven Requirements Engineering (MoDRE), August, 2018

correctness (compliance with a formally defined specification).
This automated verification is particularly well-suited to ap-
plications where software failure is unacceptable.

Systems such as those described above using theorem
provers have been used on tens of thousands of lines of
code. An advantage is that if the verification succeeds, then
we have a proof of correctness, that transcends what testing
can do. However, manual intervention is often required and
expertise is needed. By contrast, in runtime checking such as
in Eiffel, proofs are lacking but large systems can be handled
for verification. Manual intervention is not needed as it is in
theorem proving.

Complementing Testing with more Formal Methods

We have manually transformed models developed with
Mathmodels into TLA+ specifications [27], [28]. This is
relatively simple to do as there are analogous TLA+ constructs
for Mathmodels sets, functions, relations, etc. To give a simple
example, the REQ6 class invariant in Fig. 9 translates to the
predicate shown in equation (1, p.7), which is close to the
TLA+ encoding. The TLA+ modelchecker (called TLC) can
then check the model automatically as described in [17]. Other
formal methods may also be used. It is possible to automate
the transformation from Mathmodels to TLA+, or languages
of other theorem proving or modelchecking tools.

Computer Science and Software Engineering Education

As pointed out in [2], the challenges of MDE adoption has a
“pedagogic/training nature”. Industry representatives have re-
ported the difficulty of hiring well-trained MDE practitioners.

We have used the Mathmodels and ETF tools in a third year
software design course with students from computer science,
software engineering and computer engineering. In the course,
we teach conventional topics such as design patterns, infor-
mation hiding, modularity, testing and good documentation
practice. But we also teach the value of contracting and the
importance of system invariants. Students have mentioned
that they learn most from the design project. The ETF tool
allows us to provide students with testable specifications free
of design and implementation detail, where the user interface
is decoupled from the design. Thus the students must do a
design from scratch, implement it and document it, but we
can also test their design correctness via a comprehensive set
of acceptance tests provided as part of the specification.

In an article titled “Teach Foundational Language Prin-
ciples: Industry is ready and waiting for more graduates
educated in the principles of programming languages”, the
authors make some recommendations for computer science
education looking to the future [29]. The authors are Thomas
Ball, a principal researcher and co-manager of the Research
in Software Engineering (RiSE) group at Microsoft Research,
and Benjamin Zorn is a principal researcher and co-manager
of the Research in Software Engineering (RiSE) group at
Microsoft Research.

They write that experiences with bugs like the recent TLS
heartbeat buffer read overrun in OpenSSL (Heartbleed) show

the cost to companies and society of building fundamental
infrastructure in dated programming languages with weak type
systems that do not protect their abstractions. The suggestion
is that students be taught some of the new specification lan-
guages, which allow the designers of systems and algorithms
to gain more confidence in their design before encoding them
in programs where it is more difficult to find and fix design
mistakes. Recently, Pamela Zave of AT&T Labs showed the
protocol underlying the Chord distributed hash table is flawed
by modelling the protocol in the Alloy language. Emina
Torlak and colleagues used a similar modelling approach to
analyze various specifications of the Java Memory Model
(JMM) against their published test cases, revealing numerous
inconsistencies among the specifications and the results of the
test cases. Ball and Zorn write [29]:

“Our recommendations are threefold, visiting the
three topics discussed in this Viewpoint in reverse
order (formal design languages, domain-specific lan-
guages, and new general-purpose programming lan-
guages). First, computer science majors, many of
whom will be the designers and implementers of
next-generation systems, should get a grounding
in logic, its application in design formalisms, and
experience the creation and debugging of formal
specifications with automated tools such as Alloy
or TLA+. As Leslie Lamport says, ‘To designers
of complex systems, the need for formal specs
should be as obvious as the need for blueprints of
a skyscraper.’ The methods, tools, and materials for
educating students about ‘formal specs’ are ready
for prime time. Mechanisms such as ‘design by
contract,’ now available in mainstream programming
languages, should be taught as part of introductory
programming, as is done in the introductory pro-
gramming language sequence at Carnegie Mellon
University. Students who learn the benefits of prin-
cipled thinking and see the value of the related tools
will retain these lessons throughout their careers. We
are failing our computer science majors if we do not
teach them about the value of formal specifications.”

REFERENCES

[1] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling. John Wiley,
2007.

[2] M. Goulão, V. Amaral, and M. Mernik, “Quality in model-driven
engineering: a tertiary study,” Software Quality Journal, vol. 24, no. 3,
pp. 601–633, Sep 2016.

[3] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engi-
neering in Practice (Second Edition). Morgan & Claypool Publishers,
2017.

[4] J. Hutchinson, J. Whittle, and M. Rouncefield, “Model-driven engineer-
ing practices in industry: Social, organizational and managerial factors
that lead to success or failure,” Science of Computer Programming,
vol. 89, pp. 144 – 161, 2014.

[5] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal,
“A taxonomy of tool-related issues affecting the adoption of model-
driven engineering,” Software and Systems Modeling, vol. 16, no. 2, pp.
313–331, 5 2017.

8th International Workshop Model-Driven Requirements Engineering (MoDRE), August, 2018

[6] R. F. Paige, P. J. Brooke, and J. S. Ostroff, “Metamodel-based model
conformance and multi-view consistency checking,” ACM Transactions
on Software Engineering and Methodology, vol. 16, no. 3, 2007.

[7] F. L. Siqueira, P. S. M. Silva, and P. S. M. Silva, “Transforming an
enterprise model into a use case model using existing heuristics,” in
2011 Model-Driven Requirements Engineering Workshop, Aug 2011,
pp. 21–30.

[8] E. Hull, K. Jackson, and J. Dick, Requirements Engineering. Springer
Verlag, 2005.

[9] S. Assar, “Model driven requirements engineering: Mapping the field and
beyond,” in 2014 IEEE 4th International Model-Driven Requirements
Engineering Workshop (MoDRE), Aug 2014, pp. 1–6.

[10] G. Loniewski, E. Insfran, and S. Abrahão, “A systematic review of the
use of requirements engineering techniques in model-driven develop-
ment,” in Model Driven Engineering Languages and Systems, D. C.
Petriu, N. Rouquette, and Ø. Haugen, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 213–227.

[11] A. van Lamsweerde, Requirements Engineering - From System Goals to
UML Models to Software Specifications. Wiley, 2009.

[12] E. Borger and R. F. Stark, Abstract State Machines: A Method for High-
Level System Design and Analysis. Springer-Verlag, 2003.

[13] M. Jackson, Software Requirements & Specifications: a lexicon of
practice, principles and prejudices. Addison-Wesley, 1995.

[14] J.-R. Abrial, Modeling in Event-B. Cambridge University Press, 2010.
[15] S. Beydeda, M. Book, and V. Gruhn, Eds., Model-Driven Software

Development. Springer, 2005.
[16] B. Meyer, Touch of Class: Learning how to Program Well, with Objects

and Contracts. Springer Verlag, 2013.
[17] J. S. Ostroff, Validating Software via Abstract State Specifications.

EECS, Lassonde School of Engineering, York University, no. EECS-
2017-02.

[18] B. Schoeller, T. Widmer, and B. Meyer, “Making specifications complete
through models,” in Architecting Systems with Trustworthy Components,
R. Reussner, J. Stafford, and C. Szyperski, Eds., vol. 3938. Springer-
Verlag Lecture Notes in Computer Science, 2006.

[19] J. Ostroff, C.-W. Wang, E. Kerfoot, and F. A. Torshizi, “Automated
model-based verification of object oriented code,” in Verified Software:
Theories, Tools, Experiments (VSTTE Workshop, Floc 2006). Microsoft
Research MSR-TR-2006-117, 2006.

[20] J. Tschannen, C. A. Furia, M. Nordio, and N. Polikarpova, “Autoproof:
Auto-active functional verification of object-oriented programs,” in 21st
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, ser. Lecture Notes in Computer Science.
Springer, 2015.

[21] B. Meyer, “Ending null pointer crashes,” Commun. ACM, vol. 60, no. 5,
pp. 8–9, 2017. [Online]. Available: http://doi.acm.org/10.1145/3057284

[22] S. West, S. Nanz, and B. Meyer, “Efficient and reasonable object-
oriented concurrency,” in Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP
2015, San Francisco, CA, USA, February 7-11, 2015, 2015, pp. 273–
274. [Online]. Available: http://doi.acm.org/10.1145/2688500.2688545

[23] B. M. Piotr Nienaltowski1 and J. S. Ostroff, “Contracts for concurrency,”
Formal Aspects of Computing, vol. 21, no. 4, 2009.

[24] G. T. Leavens, K. R. M. Leino, and P. Müller, “Specification and
verification challenges for sequential object-oriented programs,” Formal
Aspects of Computing, vol. 19, no. 2, pp. 159–189, Jun 2007. [Online].
Available: https://doi.org/10.1007/s00165-007-0026-7

[25] R. Leino and V. Wüstholz, “The Dafny Integrated Development Envi-
ronment,” in Workshop on Formal Integrated Development Environment
(F-IDE), April 2014.

[26] C. Brandon and P. Chapin, A SPARK/Ada CubeSat Control Program.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 51–64.
[Online]. Available: https://doi.org/10.1007/978-3-642-38601-5 4

[27] L. Lamport, Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Pearson, 2002.

[28] S. Merz, The Specification Language TLA+. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 401–451. [Online]. Available:
https://doi.org/10.1007/978-3-540-74107-7 8

[29] T. Ball and B. Zorn, “Teach foundational language principles,”
Commun. ACM, vol. 58, no. 5, pp. 30–31, Apr. 2015. [Online].
Available: http://doi.acm.org/10.1145/2663342

TABLE I
ETF USE CASE: ADD DANGEROUS INTERACTIONS AND PRESCRIPTIONS

state 0
patients: {}
medications: {}
interactions: {}
prescriptions: {}
->add_patient("p1")
state 1
patients: {p1}
medications: {}
interactions: {}
prescriptions: {}
...
->add_patient("p3")
state 3
patients: {p1,p2,p3}
medications: {}
interactions: {}
prescriptions: {}
->add_patient("p3")
state 4 Error e1: patient already entered

->add_medication("m1")
state 5
patients: {p1,p2,p3}
medications: {m1}
interactions: {}
prescriptions: {}
...
->add_interaction("m1","m2")
state 10
patients: {p1,p2,p3}
medications: {m1,m2,m3,m4}
interactions: {m1->m2,m2->m1}
prescriptions: {}
->add_interaction("m2","m4")
state 11
patients: {p1,p2,p3}
medications: {m1,m2,m3,m4}
interactions: {m1->m2,m2->m1,m2->m4,m4->m2}
prescriptions: {}
->add_interaction("m2","m1")
state 12 Error e3: interaction already added

->add_prescription("p1","m1")
state 13
patients: {p1,p2,p3}
medications: {m1,m2,m3,m4}
interactions: {m1->m2,m2->m1,m2->m4,m4->m2}
prescriptions: {p1->m1}
...
->add_prescription("p3","m2")
state 16
patients: {p1,p2,p3}
medications: {m1,m2,m3,m4}
interactions: {m1->m2,m2->m1,m2->m4,m4->m2}
prescriptions: {p1->m1,m3; p3->m2}
->add_prescription("p3","m4")
state 17 Error e4: this prescription dangerous

->remove_interaction("m2","m4")
state 18
patients: {p1,p2,p3}
medications: {m1,m2,m3,m4}
interactions: {m1->m2,m2->m1}
prescriptions: {p1->m1,m3; p3->m2}
->add_prescription("p3","m4")
state 19
patients: {p1,p2,p3}
medications: {m1,m2,m3,m4}
interactions: {m1->m2,m2->m1}
prescriptions: {p1->m1,m3; p3->m2,m4}

8th International Workshop Model-Driven Requirements Engineering (MoDRE), August, 2018

