
Theorem Proving Support for View Consist-
ency Checking

Richard F. Paige* — Jonathan S. Ostroff** — Phillip J. Brooke***

* Department of Computer Science, University of York,
Heslington, York YO10 5DD, United Kingdom. paige@cs.york.ac.uk

** Department of Computer Science, York University,
4700 Keele Street, Toronto, Ontario M3J 1P3, Canada. jonathan@cs.yorku.ca

*** School of Computing, University of Plymouth,
Drake Circus, Plymouth, Devon, PL4 8AA, United Kingdom. philb@soc.plym.ac.uk

ABSTRACT. A formal, mechanically checked specification of the consistency constraints between
two views of object-oriented systems are presented. The views, described in the BON modelling
language, capture the static architecture of systems via contract-annotated class diagrams, and
the dynamic view provided by collaboration diagrams. The constraints are specified as an
extension of the BON metamodel, and are implemented in PVS. They ensure that the sequence of
messages appearing in the dynamic view is legal, given the pre- and postconditions of methods
appearing in the static view. An example of how the PVS theorem prover might be used to verify
view consistency is described.

RÉSUMÉ. Cet article présente une approche formelle et automatisée pour la vérification de la
cohérence des contraintes entre deux vues d’un système orientée objets. Les vues, décrites dans
le langage de modélisation BON, capture l’architecture statique du système grâce à des dia-
grammes de classes annotés par des contrats, la vue dynamique est réalisée par des diagrammes
de collaboration. Les contraintes sont spécifiées comme une extension du méta-modèle de BON
et sont implémentées en PVS. Elles assurent que les séquences de messages qui apparaissent
dans la vue dynamique sont légales compte-tenu des pré-post conditions de la vue statique. Un
exemple d’utilisation du prouveur PVS pour démontrer la cohérence des vues est décrit.

KEYWORDS: view consistency, metamodelling, theorem proving, BON, PVS

MOTS-CLÉS : cohérence des vues, méta-modélisation, démonstration, contrat, BON, PVS

L’objet – 8/2002. LMO’2002, pages 45 à 57

46 L’objet – 8/2002. LMO’2002

1. Introduction

Consistency checking of the documents that are produced during software devel-
opment is a difficult task. Consistency checking has been discussed in the context
of work on on multi-viewpoint specification [FIN 94] and combining specifications
[ZAV 93] written in different formal and semiformal languages. It is especially chal-
lenging and relevant when using the modelling language UML [BOO 99], where five
different and potentially conflicting views of a software system of interest can be in-
dependently constructed. The intent of using multiple, disparate views is to describe
different aspects of a system in the most appropriate way. The different descriptions
must at some point be combined to form a consistent description of the system that can
thereafter be used to produce executable program code. The process of combining the
descriptions should identify inconsistencies that need to be resolved by the developers
before executable code can be produced.

In general, consistency checking of software development deliverables involves
the use of constraints, algorithms, and tools to check that information described in
one deliverable (e.g., source code, a UML model) is not contradicted by information
described in another deliverable. In a setting where formal specifications are available,
this can be reduced to the problem of checking that a conjunction of predicates – each
a formal specification of a deliverable – is satisfiable. In general, complete formal
specifications of models are usually unavailable, and thus the problem of consistency
checking is made more complex and challenging.

The problem of consistency checking is not unique to UML; any modelling or
specification language that supports multiple views must be supplemented with tech-
niques for detecting and managing inconsistency. In the case of UML and similar
languages, specifying a complete set of consistency constraints is challenging. It is
thus useful to be able to define the known consistency constraints in an extensible
way. Some constraints, e.g., “modelling elements have unique names”, “classes do
not generalize themselves”, are specified in the UML metamodel [OMG 00] and many
UML-compliant CASE tools implement some of them, e.g., by restricting the user in-
terface or by requiring views to be constructed in a specific order. However, some
of the complex constraints, such as those involving the use of contracts [MEY 92] of
methods, are not implemented in any tool, and thus developers must rely on their own
expertise to identify and resolve inconsistencies. The goal of this paper is to provide
guidance, infrastructure, and tool-supported techniques for users of object-oriented
modelling languages, and particularly designers of tools that support OO modelling
languages, in checking view consistency.

The specific aim of this paper is to formally model, in a machine-checkable lan-
guage, consistency constraints between two views of an object-oriented system: spe-
cifically, the static view presented by class diagrams, and the dynamic view presented
by collaboration diagrams. Formulating these constraints is made more challenging
by the use of contracts – discussed in the sequel – in the static view. The two views
will be specified in the BON modelling language [WAL 95]. We make use of BON

Support for View Consistency Checking 47

since it is designed to use contracts in formally specifying systems, and contracts pose
significant challenges with checking view consistency, which we aim to address.

BON (and UML, and similar modelling language) supports two fundamental mod-
els: class diagrams and collaboration diagrams. These diagrams present, respectively,
a static structural view of a system, and a dynamic view of a system, the latter cap-
tured by describing objects and the messages passed between them. So fundamental
are these two types of models in OO computing that they are supported in many object-
oriented (OO) modelling languages.

The consistency constraints between views are specified as an extension of the
metamodel of BON presented first in [PAI 01b], and implemented in the BON CASE
tool [PAI 01a]. Since the metamodel has been implemented in a CASE tool, it cannot
be arbitrarily restructured to include additional view consistency constraints without
requiring substantial changes to the tool as a whole. Thus, the metamodel will have to
be extended carefully, making use of OO extension facilities such as generalization.
The constraints will also be specified in the PVS specification language [OWR 01],
so that theorem proving technology can be exploited both in checking the consistency
of views, and in validating the specifications of the constraints. This is particularly
useful given that a formal translation from BON to PVS, and a proof of its correct-
ness, does not yet exist. Additional benefits accrued from using PVS for specifying
the constraints will also be discussed. The intent is to use these specifications, and
their implementations, in the construction of a CASE tool for BON that supports not
only consistency checking but also consistent views by construction, i.e., via reverse
engineering.

As stated, the BON language shall be used for describing the two different views.
However, the rules that are presented in this paper are not BON dependent; they can
be applied equally well to profiles of UML and other modelling languages that support
these two views and which support contracts.

2. An Overview of BON

BON [WAL 95] is an OO method possessing a recommended process as well as a
graphical language for specifying object-oriented systems. The language provides
mechanisms for specifying classes and objects, their relationships, and assertions
(written in first-order predicate logic) for specifying the behaviour of routines and
invariants of classes.

The fundamental construct in BON is the class. A class has a name, an optional
class invariant, and zero or more features. A feature may be an attribute, a query –
which returns a value and does not change the system state – or a command, which
changes system state but returns nothing. Fig. 1 contains an example of a BON model
for the interface of a class CITIZEN. A graphical notation is also available for writing
class interfaces; it is detailed in [PAI 01b].

48 L’objet – 8/2002. LMO’2002

class CITIZEN inherit PERSON
feature

�
ANY �

name � sex � STRING
age � INTEGER
spouse � CITIZEN
children � parents � SET �CITIZEN �
single � BOOLEAN

ensure Result ��� spouse � Void 	
divorce is

modifies spouse
require
 single
ensure single ��� old spouse 	� single

invariant����������� ��� ������������
: single ! spouse spouse � Current;��"���#���� ��$ %����&�'��(��
: parents count)+* ;�-,-������(���,

: . c / children 021 p / c parents 0 p � Current
end

Figure 1. Class CITIZEN textual interface

BON emphasizes the use of contracts when writing class interfaces. Each routine
in a class may have a precondition (require) and postcondition (ensure), e.g., as in
divorce, above. The precondition specifies constraints on when the routine can be
called; the postcondition specifies constraints on the behaviour of a routine. The
modifies clause specifies the variables that may be changed by the routine. Classes
themselves may be documented via invariants which specify conditions that client-
accessible routine must maintain. Class invariants describe properties that all instances
of a class must obey at well-defined “stable” points of execution.

BON static diagrams consist of one or more classes, drawn as ellipses, organized in
clusters (drawn as dashed rounded rectangles that may encapsulate classes and other
clusters). Classes and clusters interact via two general kinds of relationships.

– Inheritance: Inheritance defines a subtyping relationship between a child and
one or more parents.

– Client-supplier: there are two client-supplier relationships, association and ag-
gregation. Both relationships are directed from a client to a supplier. Association
depicts reference relationships, while aggregation depicts subobject (or part-of) rela-
tionships; they are thus directly mapped to the implementation concept of an attrib-
ute. Client-supplier relationships can be drawn between classes and clusters; recursive
rules are given in [WAL 95] to explain the meaning of cluster relationships.

An example of a simple class diagram, demonstrating much of the static diagram
notation, is in Figure 2.

Support for View Consistency Checking 49

SUPPLIER2

SUPPLIER1

CHILD

ANCESTOR

Figure 2. Basic elements of BON class diagram notation

BON also provides notation for collaboration diagrams, showing the communic-
ation between objects at run-time. Fig. 3 shows an example. Numbers that annotate
messages are cross-referenced to a scenario box, detailing the purpose of the message.
Messages in dynamic diagrams correspond to feature calls and are thus always poten-
tial, depending, for example, on whether the precondition of a feature is enabled or
not.

SQUARE

CIRCLE

SET

ROOTGROUP
(outer)

1

2

4

3

Figure 3. BON collaboration diagram (without a scenario box)

UML provides five views of a system [OMG 00]. Each view is considered to be a
separate model of the system depicted with a separate diagram. This multiple model
approach can of course lead to inconsistency: information presented in one diagram
may contradict information in another diagram.

By contrast, BON supports the single model principle. A full discussion of the
principle is beyond the scope of this paper; the paper [PAI 02b] explains it in detail.
The basic idea is as follows. As with multiple model approach, languages and meth-
ods that support the single model principle also support multiple views of the system.
However, the principle aims to ensure consistency of views either by automatic con-
struction or by rigorous analysis. A language that follows the single model principle
has several characteristics:

– it is seamless, in that its modelling abstractions can be used throughout the de-
velopment process;

50 L’objet – 8/2002. LMO’2002

– it is reversible: models can be reverse engineered automatically from code;

– it is wide-spectrum, applicable to requirements analysis, design, and implement-
ation;

– it provides conceptual integrity: it uses a small number of powerful descriptions
that work together to help describe the software product; and it provides one good way
to describe every construct of interest.

– it provides mechanisms for automatically establishing or checking the consist-
ency of views.

The desirability of having a modelling language that satisfies these characteristics
when building high-integrity systems has been argued in detail in [PAI 01c]. Es-
sentially, the argument is that following the principle provides greater assurance and
support for building products and having the document deliverables remain consist-
ent. The single model principle also affects the structure of metamodels and how such
metamodels can be extended to support view consistency checking.

3. Checking Collaboration Diagrams Against Class Diagrams

In this section, constraints are specified that consistent class diagrams and col-
laboration diagrams that model a system must obey. It is important to clarify that
the constraints are specifications; they are not meant to be implemented directly in a
CASE tool.

The goal is to check the consistency of one or more BON collaboration diagrams
against one or more BON class diagrams, and if the diagrams are inconsistent, to
report where the inconsistencies arise. Inconsistencies can arise due to object declar-
ation (e.g., an object is unassociated with any class in a model), or routine invocation
(e.g., a routine is being called by a client that does not have the ability to do so, based
either on information hiding rules, or on preconditions). It is critical to observe that
class diagrams contain only contracts, and not implementations, of routines. Further,
the BON assertion language, based on first-order predicate logic, contains constructs
that are not executable (e.g., quantifiers over unbounded domains). Thus, in general,
consistency checking will not be possible by direct simulation of the collaboration
diagram, and will likely require user intervention.

The consistency constraints are meta-level constraints; that is, they will be spe-
cified at the meta-level of BON, and apply to all models that can be described using
BON. Thus, the constraints will be specified as an extension of the BON metamodel,
which was first described in [PAI 01b].

There are several main steps to establishing the consistency of class diagrams and
collaboration diagrams.

1) Syntactic Correctness: ensure that the two diagrams are syntactically cor-
rect; there is a BON CASE tool and a context-free grammar that will do this for us
[PAI 01a].

Support for View Consistency Checking 51

2) Contextual Correctness: ensure that the diagrams are semantically correct
in the sense that they obey typing and scoping rules (e.g., all classes arising in an
interface appear in a class diagram). We call these weak metamodel constraints. Such
constraints are defined as being straightforward to implement in a CASE tool via either
user interface mechanisms or by automated analysis.

3) Semantic Correctness: check that the sequence of messages being fired in the
collaboration diagram is allowable given the pre/postconditions of the routines in the
class diagram. These are strong metamodel constraints that will likely require use
of external tools – particularly, theorem proving technology – and particularly user
intervention to validate.

We consider these steps in order, skipping 1) since the BON CASE tool is described
elsewhere [PAI 01a]. The remaining constraints will be specified as an extension of
the metamodel of BON first presented in [PAI 01b]. It is important to extend the
metamodel in such a way so that the additional constraints can easily be introduced
in to the existing CASE tool, without requiring substantial changes to the existing
system. Some of these constraints, specifically those in 2), are easily implemented in
a CASE tool. Other constraints are more complex, and thus will be expressed using the
PVS language, so that thereafter the PVS system can be used to check the constraints,
either interactively or in batch mode.

In extending the metamodel, we will make use of standard OO practices and design
techniques. The BON metamodel has been specified as an object-oriented model, and
as will be described, extending it will require extending classes in this model. The
open-closed principle [MEY 97] is at the foundation of OO model extension, partic-
ularly in BON, but also in other modelling languages. In other words, extension of
the metamodel will be by inheriting from existing classes and adding new constraints,
routines, and attributes. This should be contrasted with the promising template-based
metamodel extension mechanisms supported by MML and MMT and used in the pro-
posal for UML 2.0 [CLA 02]. In this approach, extensions to a metamodel can be
made by adding new templates, or by changing template instantiations and substitu-
tions. The MML approach appears to be easier to use for metamodel extension, and
can be helpful in avoiding problems with fragile base classes. On the other hand, by
using standard OO extension mechanisms, we need no special tool support in order
to implement the extensions, as standard OO programming constructs will suffice.
Further experiments need to be carried out in order to properly contrast the MML
approach with standard OO extension approaches.

Before specifying the rules in 2) and 3), we briefly recount the key parts of the
BON metamodel from [PAI 01b]. The BON metamodel consists of two clusters and
one root class, MODEL; every BON model is an instantiation of MODEL. The general
outline of the metamodel is in Fig. 4.

Well-formedness constraints in the metamodel are specified as clauses in the in-
variant of MODEL, or in classes in the clusters ABSTRACTIONS or RELATIONSHIPS.
New constraints for the rules in 2) and 3) will also be integrated into the metamodel

52 L’objet – 8/2002. LMO’2002

ABSTRACTIONS RELATIONSHIPS

MODEL
abs: SET[..]

Figure 4. BON metamodel, abstract view

as invariant clauses (as we discuss shortly) of extensions of classes in the original
metamodel specification.

We now present the consistency constraints, and in doing so apply the textual dia-
lect of BON. These specifications will be used in formulating machine-checkable PVS
specifications which can then be applied in automatically proving that a collaboration
diagram is consistent with a class diagram.

First, we recap the concept of a routine of a class from [PAI 01b]. A routine has
a name, a possibly empty sequence of parameters, a set of accessors, a pre- and post-
condition, and a specification, which corresponds to the semantics of the routine. (In
[PAI 01b], a routine is specialized into queries, which return values, and commands,
which change the state of the system; this is a level of complexity that we can ignore
in this paper.) Here is the interface of ROUTINE.

class ROUTINE feature
name � STRING
parameters � SEQUENCE

�
PARAMETER �

pre � post � spec � BOOLEAN
accessors � SET

�
CLASS �

invariant
spec ����� old pre �
	 post � t � old t � t �����

end

spec is the semantics of a routine; t is a global clock. According to the invariant of
ROUTINE, the specification of the routine is satisfied if any implementation starts in
a state satisfying the precondition and terminates in finite time in a state satisfying the
postcondition. The semantics of specifications is from [PAI 99], where a calculus for
refining BON specifications to Eiffel programs is presented.

Part of the PVS formulation of the BON class ROUTINE is given below; missing
details may be found in [PAI 01b]. A new non-empty type is introduced, and features
of the BON class are transformed to PVS functions. The precondition and postcon-
dition are formalized as functions mapping a routine and state (the latter represented
as one or two sets of entities, respectively) to a boolean value; the state is needed for
composing specifications sequentially.

Support for View Consistency Checking 53

�������������
	��
	�������������������������������
�� �!�"$#�%$&�'�%$(�)$& 	�*+�������������-,�.0/ "��$#�%$1324 &�(�"�!���&�'�5���& 	6*+���������������7/ &�" *8����������� 2 ,�.:9 � �;�24 &�(�"�!���&�'�5$ / " 	�*+���������������7/ &�" *8����������� 2 �</ &�" *8����������� 2 ,�.=9 � �;�2

Expressing a routine’s specification in PVS is more complicated. The complication
does not arise in expressing a specification directly, but in combining specifications:
PVS requires explicit specification of a function’s domain (possibly using an unin-
terpreted type) in order to support type checking. In the metamodel, a function is a
specification with its domain being the state of the specification; thus, a specification’s
state must be formally specified in the PVS version of the metamodel. In the previous
version of the metamodel in [PAI 01b], a routine’s specification was not needed, and
thus this problem did not arise.

The formulation of specifications is aimed at being able to (sequentially) compose
them. The formalization of specifications of a routine requires a new type, >@?BADC@EBFB?BA ,
which is a record containing the initial and final state variables of a specification, along
with the value of the specification; initial and final state are sets of entities. The func-
tions GDHJILKNMPO@MDQ and RSQJTUKNMDO@MPQ produce the entities associated with a routine (given
the class in which the routine arises), specifically the parameters, local variables, and
accessible attributes. It is also necessary to introduce a new type for specifications so
that the frame of a specification can be expressed.

V ���W�������J	X��������0Y*[Z �;�\�' / "�(�"�& 	7/ &�" *8����������� 2 � %$&�]�' / "�(�"�& 	^/ &�" *[����������� 2 �_�(�;�!$& 	3*7/ &�" *8����������� 2 �7/ &�" *8����������� 2 ,�.:9 � �;32 Z 2
 �;�\ / "�(�"$& � %$&�] / "�(�"�& 	�*����������������+W�`�� V�V ,�.�/ &�" *8����������� 232

A specification can now be defined in terms of the new type.

/ 5$&�a 	3*��$�������������7/ &�" *[����������� 2 �b/ &�" *8����������� 2 ,�. V ���W������� 2
/ 5$&�a�'�(�c 	+��d$�����e ��������`�` e �� �!�f 	[��������������gh	 e �$������`�` e a 	[W�`�� V�V gh	e)�&�) 9 &�� e �� �!�f � a�;�(/�/ ' 4 &�(�"�!���& / e a g�g:�����`���� Ve / 5$&�a e �� �!�f � �;�\ / "�(�"�& e �� �!�f � a gi� %$&�] / "�(�"$& e �� �!if � a g�g7Ye Z �;�\�' / "�(�"�& 	jY �;�\ / "�(�"�& e �� �!�f � a gi� %$&�]$' / "�(�"$& 	[Y %$&�] / "�(�"$& e �� �!if � a gi�_�(�;�!$& 	[Y e `�������k�� e 	jl 5if 	m/ &�" *8����������� 2onp5�f Y �;�\ / "�(�"�& e �� �!�f � a g�q�gi�e % 	jl 5$r 	s/ &�" *8����������� 2onp5$r Y %�&�] / "�(�"�& e �� �!�f � a g�q�gh	4 &�(�"�!���&�'�5���& e �� �!�f � g������`���� V 4 &�(�"�!���&�'�5$ / " e �� �!�f � � % g�gtZ$g�g�g�g�g

The K�uSQSv@w@O@x axiom states that for a routine the prestate and poststate of a spe-
cification are that of the routine, and the value of the specification is a function from
pre and poststate to a boolean, where the boolean is true if and only if the precondition
implies the postcondition (we omit the time variable from the PVS translation, but it
is trivial to include).

54 L’objet – 8/2002. LMO’2002

The generic class SEQUENCE
�
G � is defined in [MEY 92]; it represents a pack-

aged, indexable data structure of arbitrary but finite length. Here is an excerpt of its
interface. item returns the specified item in the sequence, while head and tail return
the first element and all but the first element in the sequence, respectively. subseq � t �
returns true iff t is a subsequence of the current object, while precedes � g � � g � � is true
iff element g � occurs before g � in the sequence. In producing the PVS formalization
of SEQUENCE, we use the built-in theory of finite sequences.

class SEQUENCE
�
G � feature

size � INTEGER
item � i � INTEGER � � G
tail � SEQUENCE

�
G �

head � G
subseq � t � SEQUENCE

�
G � � � BOOLEAN

precedes � g � � g � � G � � BOOLEAN
invariant size ���
end

Informally, a message appearing in a collaboration diagram corresponds to a routine
call invoked on one or more target objects. More formally, a message in a collabora-
tion diagram consists of a source and a target, a routine (which is the implementation
of the message) and a message number. In general, the source and target may be
sets of objects, but for simplicity we consider only the case where a message is sent
from and to a single object. Recursive rules are given in [WAL 95] for unrolling mes-
sages applied to clusters; the extension of the PVS specification to sets of objects is
straightforward and is effectively a “lifting” operation.

class MESSAGE feature
source � target � OBJECT
routine � ROUTINE
number � INTEGER

invariant number ���
end

The PVS specification of messages is straightforward and can be found in [PAI 02a].
Specifying collaboration diagrams requires extending the metamodel specification
from [PAI 01b]. Particularly, the class MODEL must be extended. A model consists of
a set of abstractions (which may be clusters, objects, classes, and object clusters) and a
set of relationships. To this class, we add, via inheritance, several private features that
will be used to produce all abstractions and relationships that make up collaboration
diagrams (multiple collaboration diagrams are permitted in our formalisation).

As discussed earlier, BON obeys the single model principle [PAI 02b], in that a
unique model of a system exists from which different views can be generated. In this
way, consistency of views is guaranteed by construction. Thus, in the metamodel for
BON, there is a unique class, MODEL, defining the well-formedness constraints on
models. Features of this class can be used to generate views. New views can be added

Support for View Consistency Checking 55

by inheriting from MODEL and adding new features. It is not within the spirit of BON
to add new views by adding new subclasses of MODEL, e.g., DYNAMIC MODEL,
etc., as this can easily introduce inconsistency between views.

The existing class MODEL includes all features and constraints necessary to model
collaboration diagrams. However, it is inconvenient to use for validating the consist-
ency of class diagrams and collaboration diagrams directly. Thus, for convenience,
we restructure MODEL slightly using inheritance, and introduce several new features
for checking the consistency of class diagrams and collaboration diagrams. In partic-
ular, we add a feature occurs, representing the set of objects appearing in a model;
init, an initial message that is sent in the collaboration diagram; the features sequence
and calls representing, respectively, the sequence of messages and the sequence of
routine calls appearing in a collaboration diagram (the latter is a projection of the
former), a scenario box (a free-form block of text describing what is represented by
the messages), and queries for producing the collaboration diagram view and the class
diagram view from the single model. As well, invariant clauses are added to the ex-
tension of MODEL; further clauses will be added shortly for checking the consistency
of the views. Here is the interface of EXTENDED MODEL. Note that all additional
features, with the exception of those for generating new views, are private.

class EXTENDED MODEL inherit MODEL
feature { NONE}

occurs � SET
�
OBJECT �

sequence � SEQUENCE
�
MESSAGE �

scenario box � TEXT
init � BOOLEAN
calls � SEQUENCE

�
ROUTINE �

feature { ANY}
class diagram � collab diagram � EXTENDED MODEL

invariant
msgs in rels;
calls linked to msgs;
objects in occurs;
occurs � abs;
calls � length � sequence � length

end

The invariant clauses that are named, but not defined above, are as follows. The
clause msgs in rels says that each message in the sequence is also a relationship in
the model.

�
m � sequence � m � rels

56 L’objet – 8/2002. LMO’2002

The clause calls linked to msgs states that call i in sequence calls is the routine asso-
ciated with message i in sequence.

�
i � � � � � � sequence � length � sequence � item � i � � routine � call � item � i �

objects in occurs states that each object in the source or target of a message occurs in
the collaboration diagram.

�
m � sequence � m � source � occurs � m � target � occurs

(Note that these constraints do not specify anything about consistency of views.)

The queries class diagram and collab diagram produce the two views of the model.
These are defined as follows, and are simple projection operations.

class diagram � EXTENDED MODEL
ensure Result � abs � �

a � abs � a � STATIC ABS �
Result � rels � �

r � rels � r � STATIC REL �

collab diagram � EXTENDED MODEL
ensure Result � abs � �

a � abs � a � DYNAMIC ABS �
Result � rels � �

r � rels � r � MESSAGE �
To express EXTENDED MODEL in PVS, a new subtype could then be introduced

(representing the type of extended models), and then each new routine and constraint
in the BON class could be mapped to a PVS function. However, a new PVS subtype is
not strictly needed, since PVS does not provide the object-oriented structuring facilit-
ies of BON; in other words, metamodel extension is not restricted to use of inheritance.
Thus, adding new functions or attributes to the PVS specification is in fact easier than
adding new features to classes in BON. The translation process is as follows. We
introduce new functions (that operate on variables of type �����BA
) representing the
additional features that we require.

 9�� &�a�" / '�#�%$'�)$ �\�&�; 	 *��$��k���` ,�.0/ &�" *j�������W�� 2�2/ &���!�&�%�a�&�'�)$ �\�&�; 	�*�����k���`-,�.=4 #�% / &�� *8��� V�V ����� 2�2a�(�;�; / '�)$ �\�&�; 	 *�����k���`-,�.=4 #�% / &�� *8������������� 2�2

The invariant clauses in EXTENDED MODEL will each be mapped to PVS ax-
ioms. Here is an example, stating that calls is a projection of sequence (the other
axioms are straightforward translations of the BON constraints).

a�(�;�; / '�;�#�%��$&�\�'�(�c 	���d$�����e ��������`�` e)� �\$f 	8�$��k���`$g 	e ��������`�` e # 	jl���	 %$(�"@n ��� ;�&�%�1�"�� e / &���!$&�%�a�&�'�)$ �\�&�; e)$ �\$f g�g�q$gh	�� �!�"$#�%$&�'�)$& /�/ (�1�& e / &���!$&�%�a�&�'�)$ �\�&�; e)� �\$f g e # g�g�Y a�(�;�; / '�)� �\�&�; e)� �\$f g e # g�g�g

Support for View Consistency Checking 57

To formalize the routines class diagram and collab diagram, we introduce two
new functions, vJGBHBH O��LwJI��
O����DO	� and v@H@OSKBK@w@I
�
O����PO�� . The specifications of each
are similar, so we present only the PVS specification of collab diagram here.

a� �;�;�(9 '�\�#�(�1���(�) e)$ �\$f 	[����k���`�gh	L�$��k���`3Ye Z (9�/ " 	jY�l \�(k���� ' ��� V np)�&�) 9 &�� e \�(� (9�/ " e)� �\$f g�g qh��$&�; / 	jY�l) 	[��� V�V ����� np)$&�) 9 &�� e) � ��&�; / e)$ �\�f g�g:q�Z$g

Consistency between views will be specified as four invariant clauses belonging
to the class EXTENDED MODEL. For each clause, a PVS formulation is provided
when it cannot be found in [PAI 01b]. (In the following, we use dd to stand for
collab diagram and cd for class diagram, respectively.)

1) Each object appearing in the collaboration diagram has a corresponding class
in the class diagram.

�
o � dd � occurs �� c � cd � abs � c � type � CLASS � o � class � c

(Note that cd � abs, defined in [PAI 01b], is the set of abstractions appearing in the
class diagram.)

2) Each message in the collaboration diagram has a corresponding routine call,
and that call is permitted based on the list of accessors provided with each routine.

. msg / dd sequence 0 . o / msg source 0 o class / msg routine accessors

3) Each routine appearing in a message must actually belong to the target class
of the message (i.e., routines that are called must exist). This will be checked by the
compiler/CASE tool and as such we do not specify it here. However, it is captured in
the full specification of the BON metamodel referenced in [PAI 01b]. The constraint in
[PAI 01b] is more general in that it checks all features (including attributes) to ensure
that they exist. This ensures that if a message is sent from one object to another, there
is a link between the two objects.

4) The constraint in 2) establishes that each message in a collaboration diagram
corresponds to a routine call. The routines that are called must be enabled (i.e., their
preconditions must be true) for the collaboration diagram to be consistent with a class
diagram. A precondition can only be true if the sequence of previous calls to routines
established a system state that satisfies the precondition. To check this, an initial state,
init, must be provided (by the developer). The following condition must be true.

init 	 dd � calls � item � � � � pre

i.e., the developer-supplied initial state, specified as a predicate), must imply the pre-
condition of the first element in the sequence of calls in the collaboration diagram. init
corresponds to the specification of a constructor of the root class in the system, where
the specification includes relevant clauses from the invariant of the root class and the

58 L’objet – 8/2002. LMO’2002

postcondition of the constructor (constructors cannot have preconditions).

For a call i � � in a collaboration diagram to be enabled, the preceding sequence
of calls � � � � � i � � must produce a state satisfying the precondition of call i. We can
obtain this state by first sequentially composing the specifications of init and calls
� � � � � i � � . This results in a double-state predicate (i.e., in the user-supplied initial
state and in the post-state of call i � �). We then project out the post-state and check
that the result satisfies the pre-state of call i. Formally:

�
i � � � � � � dd � calls � length �
� dd � occurs �
� init � � dd � calls � item � � � � spec � � � � � � � dd � calls � item � i � � � � spec �
	
dd � calls � item � i � � pre

(The definition of sequential composition for specifications P and Q on state s is:

P � � Q
�� � s

� � P
�
s � � s

� � � Q
�
old s � � s

� �
where s

�
is an intermediate state, i.e., for every sequential composition, there is an

implicit existential quantification that needs to be instantiated and simplified.)

Expressing constraint 4) in PVS is challenging. The first part, enabling the first
message in the collaboration diagram, can be done as follows. init is translated to a
function mapping a model and a class (the root class) to a boolean. The enabling of
the first message is formalised as an axiom.

#�%�#�" 	�*�����k���` �^W�`�� V�V ,�.�9 � �;32
_$#�&�] / '�a� �% / # / "�&�%�"�'�(�c$f 	U��d$�����e ��������`�` e)� �\$f 	8�$��k���`$g 	X��������`�` e a 	[W�`�� V�V g 	`����

;� �a�' / 5$&�a 	 V ���W��������Y e / 5$&�a e #�%�#�" e)$ �\$f g e a gi� �;�\ / "$(�"�& e #�%�#�" e)� �\$f g e a g�gi�%$&�] / "$(�"�& e #�%�#�" e)� �\$f g e a g�g�g ���
_�(�;�!$& e ;� �a�' / 5$&�a g e �;�\�' / "�(�"�& e ;� �a�' / 5$&�a gi� %$&�]�' / "�(�"�& e ;� �a�' / 5$&�a g�g<�����`���� V4 &�(�"�!���&�'�5���& e a�(�;�; / '�)$ �\�&�; e)$ �\$f g e�� gi� �;�\ / "�(�"�& e a�(�;�; / '�)$ �\�&�; e)$ �\$f g e�� gi� 9�� &�a�"�'�a�;�(/�/ e) / 1�'�"$(���1�&�" e / &���!�&�%�a�&�'�)$ �\�&�; e)$ �\$f g e�� g�g�g�g�g<g

A local variable is declared, constructing a specification for the initialising predic-
ate � R ��M . Then, it is stated that the initial state must imply the prestate of the first
message.

The second part is more challenging. The complexity lies in formalizing the defin-
ition of sequential composition: an explicit specification of the state of a routine is
required so as to capture the frame of each specification, and to be able to define an
intermediate state. Sequential composition P � � Q can be formalized in PVS as follows,
using function KJQ	�LK�uSQSv K . It takes as argument two variables of type >@?BADC@EBFB?BA and
returns a >@?BABC EBFB?BA result, representing the sequential composition of the arguments.

/ &�� / 5$&�a / e / f � / r 	 V ���W��������gh	 V ���W��������Ye Z �;�\�' / "�(�"$& 	[Y �;�\�' / "�(�"�& e / f gi�

Support for View Consistency Checking 59

%$&�]$' / "�(�"$& 	[Y %$&�]�' / "�(�"�& e / r gi�_�(�;�!$& 	[Y e `�������k�� e 	ml 5�f 	m/ &�" *8����������� 2 nX5�f Y �;�\�' / "�(�"�& e / f g�q�gi�e % 	ml 5$r 	m/ &�" *8����������� 2 nX5$r Y %$&�]�' / "�(�"�& e / r g�q�gh	e ��d$� V � V e # 	b/ &�" *[����������� 2 gh	 _�(�;�!$& e / f g e � # g ����k _$(�;�!$& e / r g e # � % g�g�gZ�g

KJQ �LK uSQSvBK must be lifted to apply to a finite sequence of specifications in order
to formalize constraint 4). This is expressed as recursive function KJQ �SK�uSQSvBK R . A
� A � >���� A must be provided in order to generate proof obligations for ensuring termin-
ation of recursive calls.

/ &�� / 5�&�a / % e / &��$f 	ml�4
	84 #�% / &�� * V ���W������� 2Jn[;�&�%�1�"�� e 4�g�.�Y f q�g 	P����W���� V ����� V ���W��������Y��� ;�&�%�1�"�� e / &��$f g�Y f �	�����-/ &���f e�� g��` V ��� ;�&�%$1�"�� e / &��$f g�Y r �	����� / &�� / 5$&�a / e / &��$f e�� g � / &��$f e f g�g��` V � / &�� / 5$&�a / e / &��$f e � gi� / &�� / 5$&�a / % e�
 e / &��$f � e f � ;�&�%�1�"�� e / &��$f g�g�g�g�g+����k��������� V �����e `�������k�� e / &��$f 	jl�4
	84 #�% / &�� * V ���W������� 2@n8;�&�%�1�"�� e 4�g�.�Y f q�g 	 ;�&�%�1�"�� e / &��$f g�g

To complete the PVS formalization of constraint 4), it is helpful to define a func-
tion to convert a sequence of messages into a finite sequence of >@?BABC EBFB?BA s. This
function, vJGJR�DQ��BM , extracts the routines from the messages and produces specifica-
tions from them, by repeated application of function K�uSQSv . Its details can be found in
[PAI 02a].

Now the remaining view consistency constraint can be formally expressed in PVS.

_$#�&�] / '�a� �% / # / "�&�%�"�'�(�c�r 	U��d$�����e ��������`�` e)$ �\$f 	8����k���`$gh	X�$������`�` e a 	[W�`�� V�V gh	e ��������`�` e # 	jl���	 %$(�"@n � ����� ��� ;�&�%�1�"�� e a�(�;�; / '�)$ �\�&�; e)� �\$f g�g�q�gh	`����
;� �a�' / 5$&�a 	 V ���W��������Y/ &�� e / 5$&�a e #�%�#�" e)$ �\�f g e a g � �;�\ / "�(�"�& e #�%�#�" e)$ �\$f g e a g�gi�%$&�] / "�(�"�& e #�%�#�" e)$ �\$f g e a g�gi�e / &�� / 5$&�a / % e a� �%�_�&���" e / &���!�&�%�a�&�'�)$ �\�&�; e)$ �\$f g
 e�� � # , f g�g�g�g���e _�(�;�!$& e ;� �a�' / 5�&�a g e �;�\�' / "$(�"�& e ;� �a�' / 5�&�a gi� %�&�]�' / "$(�"�& e ;� �a�' / 5$&�a g�g<�����`$��� V4 &�(�"�!���&�'�5���& e a�(�;�; / '�)$ �\�&�; e)$ �\$f g e # gi� �;�\ / "�(�"�& e a�(�;�; / '�)$ �\�&�; e)$ �\$f g e # gi� 9�� &�a�"�'�a�;�(/�/ e) / 1�'�"$(���1�&�" e / &���!�&�%�a�&�'�)$ �\�&�; e)$ �\$f g e # g�g�g�g�g�g�g�g

The structure of this axiom is similar to the axiom establishing that the first mes-
sage is enabled by the initial state. This axiom first declares a local variable, H GPv@wPK�uSQPv ,
which is the result of sequentially composing the first i specifications in messages in
the model. This specification must then imply the precondition of the routine of mes-
sage i � � in the model.

In order to use the theories in carrying out view consistency checking, it is ne-
cessary to parse and typecheck the theories using PVS. When we carried out this
semi-automatic process, it revealed to us several errors and omissions in the PVS the-
ories. One such example was in the formulation of KJQ �LK uSQSvBK�R , wherein an erroneous

60 L’objet – 8/2002. LMO’2002

� A � >���� A was initially provided; an unprovable type check condition was generated.
Further omissions were discovered when attempting to prove view consistency con-
jectures; this is briefly discussed in the next section.

The correctness of the translation of BON constraints to PVS axioms and types
has not been proven. In general, proving the correctness of translations for large,
full-featured languages is extremely difficult. We view our PVS specification of the
metamodel as a mechanism by which the translation can be tested. We can write
conjectures about properties that we would like the metamodel to have, and can use the
PVS system to prove or disprove the conjectures. This will give us greater confidence
in the correctness of the metamodel and the translation.

4. Using the PVS Theories

To use the PVS theories for proving view consistency, a BON model can be spe-
cified as a PVS conjecture, following the approach presented in [PAI 01b]. These
conjectures effectively posit that the model can exist. They must therefore satisfy the
consistency constraints as specified in the metamodel. PVS can then be used to import
the view consistency axiom as above, and one can then attempt to prove or disprove
that the axiom is satisfied by the models.

In general, it is typically easier to attempt to prove that a model does not satify the
view consistency constraint. This is because it means that the BON models can be
expressed as a non-existence conjecture, thus allowing automatic skolemization to be
used in simplifying the conjecture.

This approach is demonstrated by a small example. Consider the two BON views
presented in Fig. 5. The class diagram depicts two classes connected by a client-
supplier relationship, whereas the collaboration diagram shows three messages sent
between objects. It is assumed that object B is initialised to a state where i ��� and set
s is empty. To check the consistency of these views, the two models must be expressed
as PVS conjectures, following the approach in [PAI 01b].

g(x:INTEGER)
require
ensure

s.size>=0

s.size>0

f
require
ensure

i>2

s.includes(x)

1: b.f
B

2: g(5)

3: a.h

A

i:INTEGER
s:SET[INTEGER]

B

a

b

A

ensure

d:INTEGER

true
d=old d+1

require
h

Figure 5. Two views of a BON system

Support for View Consistency Checking 61

A snapshot of the PVS specification of Fig. 5 is shown below. The transformation
from BON to the PVS conjecture �pvJw Q@xPO	�PuLH Q is mechanical and could be automated.
To validate the conjecture (and to show that the BON model can exist and satisfies the
view consistency constraint), the conjecture must first be simplified using �iK��PGDH Q������
and ���PH O@MBMDQJR	� . Then, ��H Q	���UO
� is used to import the view consistency axioms. A
succession of � �PQJuLH OPvJQ�� , ��OSK KJQ��BM�� , and ��QJx uSOJRPI�� instructions are made to sim-
plify the conjecture and to replace functions with their definitions. Then � ��� �hRPI� can
be used to discharge the remaining PVS subgoals that arise.

_$a�'�&�c�(�)�5$;�& 	X�	��������������$���
����$�����������)$&�"�(�)� �\�&�;
�����
"�& / "�'�_$a 	+W��������W��������e ����� e ��d$� V � V e (�[9J	[W�`�� V�V gh	��d�� V � V e (� �[9 	j�������W���gh	��d�� V � V e (�"� 9N�j9 "� �(j� V�V ��W�gh	��d�� V � V e)�f �)$r �)�� 	8��� V�V ������gh	��d�� V � V e 9�4�� (�1 � (� 	8�$������������gh	��d�� V � V e /�9�4�� /�9 1 � / (� 	 V ���W��������gh	��d�� V � V e &�# � & /h� &�\ � �;�\�'�&�# � �;�\�'�& / � �;�\�'�&�\ � 5$(���(�)�'�c 	8������������g 	��d�� V � V e c�) 	8����k���`$gh	;�&�%�1�"�� e a�(�;�; / '�)$ �\�&�; e c�) g�g�Y � ����k;�&�%�1�"�� e / &���!$&�%�a�&�'�)� �\�&�; e c�) g�g�Y � ����k)$&�) 9 &�� e (� � 9 � &�a�" / '�)$ �\�&�; e c�) g�gb����k)$&�) 9 &�� e 9 � 9�� &�a�" / '�)� �\�&�; e c�) g�g<����k
)$&�) 9 &�� e (� (9�/ " e c�) g�g<����k)$&�) 9 &�� e 9N� (9�/ " e c�) g�g<����k 9 � &�a�"�'�a�;�(/�/ e (� g�Y (����k 9 � &�a�"�'�a�;�(/�/ e 9 g�Y�9�����k)$&�) 9 &�� e (�"� 9N� ��&�; / e c�) g�gt����k)$&�) 9 &�� e 9 "� �(� ��&�; / e c�) g�g<����k)$&�) 9 &�� e)�f � ��&�; / e c�) g�gt����k)$&�) 9 &�� e)$r � ��&�; / e c�) g�g ����k)�&�) 9 &�� e)�� � �$&�; / e c�) g�gt����k�� �!�"$#�%$&�'�)$& /�/ (�1�& e)if g�Y�9�4�����k �� �!�"�#�%$&�'�)�& /�/ (�1�& e)$r g�Y�9 1 ����k �$ �!�"$#�%�&�'�)$& /�/ (�1�& e)�� g�Y (� ����k)$&�) 9 &�� e �;�\�'�&�# � �;�\ / "�(�"�& e 9�4��[9ig�gb����k)$&�) 9 &�� e �;�\�'�& /h� �;�\ / "�(�"�& e 9�4��[9�g�gb����k)$&�) 9 &�� e �;�\�'�&�# � �;�\ / "�(�"�& e 9 1 �[9ig�gb����k)$&�) 9 &�� e �;�\�'�& /h� �;�\ / "�(�"�& e 9 1 �[9�g�g����k)$&�) 9 &�� e 5$(���(�)�'�c � �;�\ / "�(�"$& e 9 1 �j9�g�g<����k)$&�) 9 &�� e �;�\�'�&�\ � �;�\ / "�(�"�& e (� � (g�gb����k)$&�) 9 &�� e &�# � %$&�] / "�(�"$& e 9�4��j9�g�g<����k)�&�) 9 &�� e & / � %�&�] / "�(�"�& e 9�4N�[9�g�g<����k)$&�) 9 &�� e &�# � %$&�] / "�(�"$& e 9 1 �j9�g�g<����k)�&�) 9 &�� e & / � %�&�] / "�(�"�& e 9 1 �[9�g�g<����k)$&�) 9 &�� e 5$(���(�)�'�c � %$&�] / "�(�"$& e 9 1 �j9�g�g7����k)$&�) 9 &�� e &�\ � %$&�] / "�(�"$& e (� � (g�g<����k4 &�(�"�!���&�'�5���& e 9�4�� �;�\ / "�(�"$& e 9�4��j9�g�g�Y e &�_�(�;�'�# e �;�\�'�&�# g�. r g^����k4 &�(�"�!���&�'�5$ / " e 9�4�� �;�\ / "�(�"�& e 9�4N�[9�gi� %�&�] / "�(�"�& e 9�4N�[9�g�g�Y e %$ �%$&�)�5�"���� e &�_�(�;�' / e & /�g�g�g^����k4 &�(�"�!���&�'�5���& e 9 1 � �;�\ / "�(�"$& e 9 1 �j9�g�g�Y e %$ �%$&�)�5�"���� e &�_�(�;�' / e �;�\�'�& /�g�g7��� &�)�5�"���� e &�_�(�;�' / e �;�\�'�& /�g�g�gt����k4 &�(�"�!���&�'�5$ / " e 9 1 � �;�\ / "�(�"�& e 9 1 �[9�gi� %�&�] / "�(�"�& e 9 1 �[9�g�g�Y e)$&�) 9 &�� e &�_�(�;�'�# e 5$(��$(�)$'�c gi� &�_�(�;�' / e & /�g�g�g+����k4 &�(�"�!���&�'�5���& e (� � �;�\ / "�(�"$& e (� � (g�g�Y e "���!$& gb����k4 &�(�"�!���&�'�5$ / " e (� � �;�\ / "�(�"�& e (� � (gi� %�&�] / "�(�"�& e (� � (g�g�Y e &�_�(�;�'�# e &�\ g�Y &�_�(�;�'�# e �;�\�'�&�\ g�� f g+����ka�(�;�; / '�)� �\�&�; e c�) g e�� g�Y�9�4�����k a�(�;�; / '�)$ �\�&�; e c�) g e f g�Y�9 1 ����k a�(�;�; / '�)� �\�&�; e c�) g e r g�Y (� ����k/ &���!$&�%�a�&�'�)$ �\�&�; e c�) g e�� g�Y)�f ����k / &���!$&�%�a�&�'�)$ �\�&�; e c�) g e f g�Y)$r ����k / &���!$&�%�a�&�'�)$ �\�&�; e c�) g e r g�Y)�� ����k/�9�4�Y�/ 5$&�a e 9�4�� �;�\ / "$(�"�& e 9�4��[9�gi� %$&�] / "$(�"�& e 9�4��[9�g�g7����k/�9 1 Y�/ 5$&�a e 9 1 � �;�\ / "$(�"�& e 9 1 �[9�gi� %$&�] / "$(�"�& e 9 1 �[9�g�g7����k/ (� Y�/ 5$&�a e (� � �;�\ / "$(�"�& e (� � (gi� %$&�] / "$(�"�& e (� �[9�g�g7����k
#�%�#�" e c�) � �;�\ / "�(�"�& e 9 1 �[9�g�g�Y e &�_$(�;�'�# e �;�\�'�&�# g�Y��<����k &�)�5�"���� e &�_�(�;�' / e �;�\�'�& /�g�g�g�g�g����k _�a�'�&�c�(�)�5$;�&

We have carried out case studies in using the theories to prove view consistency
using the above approach. Initial attempts at proving view consistency revealed er-
rors and omissions in the PVS theories. One example was with the formalisation of
the second part of constraint 4) (which aims to show that a sequence of calls in a

62 L’objet – 8/2002. LMO’2002

collaboration diagram enables successive calls). The initial formulation omitted the
initialisation from the formalisation, and the PVS prover provided a counter-example
that led us to conclude that consistency could not be proved.

5. Related Work and Conclusions

The introduction of the UML has spurred recent research on consistency check-
ing, but the topic has been of previous interest in a number of problem domains. Zave
and Jackson [ZAV 93] presented a framework for composing specifications via con-
junction, with the aim of supporting multi-paradigm specification. Specifications are
transformed in to a common semantic domain (in [ZAV 93], they use one-sorted first
order logic, but different semantic domains can be chosen) and thereafter combined.
They pay particular attention to constructing translations to the common semantic do-
main so that specifications can be easily and usefully composed, e.g., so as to make
consistency as straightforward as possible to establish. The authors’ goal is not spe-
cifically consistency checking of views, but suggestions and recommendations as to
how to use the approach to make consistency checking easier to carry out are provided.
They do not specifically focus on the OO realm, and do not explicitly consider tool
support. They recognize the problem of semantic fragmentation, i.e., providing a non-
standard semantics to commonly used languages, and the problems with formalizing
semi-formal notations.

Finkelstein et al. [FIN 94] focus specifically on the problem of detecting incon-
sistency when combining descriptions of systems from multiple viewpoints. Their
work emphasizes that inconsistency is not always undesirable, and that in fact it may
provide important information to developers, e.g., related to misunderstandings or
confusion with respect to requirements. Thus, their logical framework aims to support
developers in identifying inconsistencies and specifying actions to carry out on their
identification. Consistency checking is carried out by producing a logical database of
formulae describing separate views, as well as further formulae specifying environ-
mental information, e.g., relationships between views. Consistency or inconsistency
checking can be carried out using automated theorem provers. This work is related to
that carried out at the workshop [EAS 01], where tools and theories for working with
inconsistent descriptions of system requirements are presented.

The ADORA project [GLI 01] presents an alternative to UML for OO modelling,
wherein all information related to a system is integrated into one coherent model. In
this latter regard, it is similar to the single model principle described in [PAI 02b].
The integrated model allows consistency constraints to be defined between views. A
language and tool for supporting these constraints is discussed in [SCH 98]. Some of
the constraints that are checked by this tool are also captured in the UML metamodel,
and as such are checked by UML-compliant CASE tools.

Tsiolakis [TSI 01] focuses specifically on consistency checking with the UML,
primarily, consistency checks relating class diagrams, sequence diagrams, and state

Support for View Consistency Checking 63

charts. Diagrams are annotated with additional information relating the separate views,
and attributed graph grammars are used as a theoretical underpinning to carry out the
consistency checking.

Krishnan [KRI 00] presents work most similar to our own. He presents a PVS
framework for consistency checking of UML diagrams, focusing on class diagrams,
interaction diagrams, and statecharts (though also including use-case diagrams and
others). The PVS theories developed aim at allowing consistency to be checked even
when diagrams are partial or incomplete. Using the PVS theories to prove consistency
involves the user providing a valid trace for execution of the system. Interestingly, the
proof strategies and techniques used in Krishnan’s approach closely mimic the ones
that we discussed in the previous section. However, Krishnan’s theories do not include
OCL constraints and contracts, though the work could be extended to include them.
Krishnan’s approach also appears to require more user intervention to generate PVS
conjectures about the existence or non-existence of BON models.

Our current focus is on implementing the consistency checking described in this
paper. Many of the rules are currently built in to the metamodel implementation
provided with the tool. The architecture of the tool makes it straightforward to add new
rules to the metamodel, or to replace the metamodel entirely with a new set of rules.
Some of the consistency checking cannot be carried out automatically or implemented
in the metamodel, e.g., checking that the sequence of messages appearing in a collab-
oration diagram is allowable, based on contracts. The checks will be sent to the PVS
theorem prover and discharged automatically where possible. The paper [PAI 01b]
describes how we have successfully used PVS for semi-automatically proving that
models satisfy the BON metamodel; the same approach can be used for consistency
checking between views. As well, we are currently exploring the use of automated
verification technology, particularly FDR, for carrying out the sequencing consistency
checks. This will also be very useful for consistency checking of test drivers against
collaboration diagrams, since we can effectively represent this as a constraint to be
checked on traces.

The metamodel extension presents a specification of a consistency relation for
collaboration diagrams and class diagrams. We might prefer to have an algorithmic
description of the consistency checking process; however, we view an algorithmic de-
scription as an implementation of the consistency relation above. The paper [PAI 02a]
outlines algorithms for implementing these specifications in a tool.

6. References

[BEC 99] BECK K., Extreme Programming Explained, AWL, 1999.

[BOO 99] BOOCH G., RUMBAUGH J., JACOBSON, I., The UML Reference Guide, Addison-
Wesley, 1999.

[BRI 01] BRIAND L., LABICHE, Y., “A UML-Based Approach to System Testing”, Proc.
UML 2001, LNCS 2185, Springer-Verlag, 2001.

64 L’objet – 8/2002. LMO’2002

[CLA 02] CLARK T., EVANS A., KENT, S., “Engineering Modelling Languages: a Precise
Meta-modelling Approach”, Proc. FASE 2002, LNCS 2306, Springer-Verlag, 2002.

[EAS 01] EASTERBROOK S., CHECHIK M., Proc. Second International Workshop on Living
with Inconsistency, co-located with ICSE’01, Toronto, Canada, May 2001.

[GLI 01] GLINZ M., BERNER S., JOOS S., RYSER J., SCHETT N., XIA Y., “The AD-
ORA Approach to Object-Oriented Modeling of Software”, Proc. CAiSE’01, LNCS 2068,
Springer, June 2001.

[FIN 94] FINKELSTEIN A., GABBAY D., HUNTER A., KRAMER J., NUSEIBEH B., “Incon-
sistency Handling in Multi-Perspective Specification” IEEE Trans. Software Engineering
20(8), August 1994.

[KRI 00] KRISHNAN P., “Consistency Checks for UML”, Proc. APSEC 2000, IEEE Press,
December 2000.

[MEY 92] MEYER B., Eiffel - The Language, Prentice-Hall, 1992.

[MEY 97] MEYER B., Object-Oriented Software Construction (Second Edition), Prentice-
Hall, 1997.

[OMG 00] OMG CONSORTIUM, UML 1.4 Documentation, 2000. Available at www.omg.org.

[OWR 01] OWRE S., SHANKAR N., RUSHBY J., STRINGER-CALVERT, D., PVS System
Guide 2.4, CSL, SRI International, November 2001.

[PAI 01a] PAIGE R., KAMINSKAYA L., “A Tool-Supported Integration of BON and JML”,
Technical Report CS-TR-2001-04, York University, July 2001.

[PAI 99] PAIGE R., OSTROFF J., “Developing BON as an industrial-strength formal method”,
Proc. World Congress on Formal Methods, LNCS 1709, Springer-Verlag, September 1999.

[PAI 01b] PAIGE R., OSTROFF J., “Metamodelling and conformance checking with PVS”,
Proc. Fundamental Aspects of Software Engineering 2001, LNCS 2029, Springer-Verlag,
April 2001.

[PAI 01c] PAIGE R., OSTROFF J., “The Single Model Principle (Extended Abstract)”, Proc.
Requirements Engineering 2001, IEEE Press, August 2001.

[PAI 01d] PAIGE R., OSTROFF J., “A Proposal for a UML-Based Method for Developing
Reliable Systems”, Proc. Workshop on Precise UML-Based Methods, GI Series 7, Lecture
Notes in Informatics, German Society, October 2001.

[PAI 02a] PAIGE R., OSTROFF J., BROOKE P., “Checking the Consistency of Class and Col-
laboration Diagrams using PVS”, Proc. Rigorous Object-Oriented Methods 4 (ROOM4),
British Computer Society, March 2002.

[PAI 02b] PAIGE R., OSTROFF J., “The Single Model Principle”, Journal of Object Techno-
logy 1(5):63-81, November/December 2002.

[SCH 98] SCHETT N., A Notation for Integrity Constraints in ADORA Models - Concept and
Implementation (in German). Diplomathesis, University of Zurich, 1998.

[TSI 01] TSIOLAKIS A., Semantic Analysis and Consistency Checking of UML Sequence Dia-
grams. Diplomarbeit, TU-Berlin, TR 2001-06, April 2001.

[WAL 95] WALDEN K., NERSON J.-M., Seamless Object-Oriented Software Architecture,
Prentice-Hall, 1995.

[ZAV 93] ZAVE P., JACKSON M., “Conjunction as Composition”, ACM Transactions on Soft-
ware Engineering and Methodology 2(4), October 1993.

