
Formalising Eiffel References and Expanded Types in
PVS

Richard Paige1, Jonathan Ostroff2, and Phillip Brooke3

1 Department of Computer Science, University of York, UK.paige@cs.york.ac.uk
2 Department of Computer Science, York University, Canada.jonathan@cs.yorku.ca

3 School of Computing, University of Plymouth, UK.philb@soc.plym.ac.uk

Abstract. Ongoing work is described in which a theory of Eiffel reference and
expanded (composite) types is formalised. The theory is expressed in the PVS
specification language, thus enabling the use of the PVS theorem prover and
model checker to semi-automatically prove properties about Eiffel structures and
programs. The theory is being used as the basis for automated support for the
Eiffel Refinement Calculus.

1 Introduction

There is a definite need to be able to formally reason aboutmodelsof object-oriented
(OO) systems, e.g., as written in UML, in order to be able to analyse requirements
and verify and validate design alternatives. Such techniques can let us discover er-
rors, omissions, and ambiguities early in the system development process. Equally, it
is vitally important to be able to reason formally about object-orientedprograms, writ-
ten in industrial-strength OO programming languages such as Java, C++, Eiffel, and
Smalltalk. This is challenging for a number of reasons:

– Industrial-strength OO languages are typically very large, with numerous features
that are not easily formalised, and for which formal reasoning can be difficult, such
as pointers, deep loop exits, dynamic dispatch, and aggregate types.

– Industrial-strength OO languages are invariably complex, with sophisticated type
systems that enable efficient execution and programming, but which are not neces-
sarily designed for formal reasoning.

– Industrial-strength OO programs are usually very large, thus presenting a need for
monotonic and compositional reasoning.

Despite these obvious difficulties, the need for reasoning about industrial-strength
OO programs and programming languages remains: if engineers are to adopt reasoning
techniques and tools, these mechanisms must support the languages and techniques that
are applied in practice.

There is ongoing work on supporting reasoning about OO programs. Some of this
focuses on defining new precise OO specification languages that can be translated into
more widely used programming languages such as Java and C++. Perfect Developer
[Es00] is an example of this, supporting formal OO specification, theorem proving,
and code generation; it requires learning a new specification language, but thereafter

can generate code in a number of widely used languages, such as C++. The work of
Cavalcanti et al [CN00] has produced awp semantics for a subset of typical OO pro-
gramming features; this semantics can thereafter be used to define a refinement calculus
for transforming OO specifications into programs.

Other work has tackled the complexities of reasoning about OO programming lan-
guages head on. The LOOP project [BJ01] has focused on producing theories for the
PVS system [CO95] that allow reasoning about Java programs; this should be contrasted
with our work which is intended to support reasoning about specifications and trans-
forming specifications into executable programs. The Extended Static Checker [LN00]
provides a lightweight approach to verifying Java programs via source code annota-
tion and alint -like tool interface that detects many typical OO programming bugs at
compile time, e.g., null reference access.

This paper reports on ongoing work on formalising a theory of reference and ex-
panded types in the Eiffel programming language [Mey92]. A set of axioms expressing
this theory was proposed in [PO03]. Meyer also has ongoing work on formalising parts
of the Eiffel language using Hoare triples [Mey03]. This paper extends [PO03] by show-
ing how the axioms can be formalised in the PVS language; the PVS theorem prover,
model checker, and ground evaluator can thereafter be used to semi-automatically rea-
son about and simulate specifications of Eiffel programs. Immediate applications of the
PVS theory would be to support reasoning about aliasing in Eiffel, and about particu-
larly complicated interactions between Eiffel reference types and expanded types. The
PVS theories produced form the basis for automated support for the Eiffel Refinement
Calculus [PO03].

We commence with a brief introduction to Eiffel and PVS, and attempt to provide
some justification for combining the use of these two technologies in the calculus.

1.1 Eiffel

Eiffel is an object-oriented programming language and method [Mey97]; it provides
constructs typical of the object-oriented paradigm, including classes, objects, inheri-
tance, associations, composite (“expanded”) types, generic types, polymorphism and
dynamic binding, and automatic memory management.

However, Eiffel is not just a programming language — it also includes the notion
of a contractto specify the duties of clients and suppliers. A valid Eiffel program may
consist only of contracts – that is, it may possess no program code whatsoever – or it
may be a combination of contract and code. or code only. It is in part because of its
support for contracts that we have chosen Eiffel as the target language for the refine-
ment calculus referenced in [PO03], and as the specification language to be partially
formalised in PVS.

A short example of an Eiffel class is shown in Fig. 1. The classCITIZEN inherits
from PERSON (thus defining a subtyping relationship). It provides several attributes,
e.g.,spouse, children which are of reference type (in other words,spouse refers to an
object of typeCITIZEN); these features are publicly accessible (i.e., are exported to
ANY client). Attributes are by default of reference type; a reference attribute either
points at an object on the heap, or isVoid . The class provides one expanded attribute,
blood type. Expanded attributes are also known as composite attributes; they are not

references, and memory is allocated for expanded attributes when memory is allocated
for the enclosing object.

The remaining features of the class are routines, i.e., functions (likesingle, which
returnstrue iff the citizen has no spouse) and procedures (likedivorce, which changes
the state of the object). These routines may have preconditions (require clauses) and
postconditions (ensure clauses), but no implementations. Routines may also have a
modifiesclause, which specifies those entities that may be changed by the routine – i.e.,
the frameof the routine. The purpose of the Eiffel Refinement Calculus is to transform
such contracts into immediately executable Eiffel code, with a guarantee that the code
is consistent with the contract. Finally, the class has an invariant, specifying properties
that must be true of all objects of the class at stable points in time, i.e., before any valid
client call on the object. While we have used predicate logic in specifying the invariant
of CITIZEN , it should be observed that Eiffel does not support this exact syntax. It
does possess a notion ofagent that can be used to simulate quantifiers like the ones
used in the example.

classCITIZEN inherit PERSON
feature{ANY }

spouse : CITIZEN
children, parents : SET [CITIZEN]
blood type : expanded BLOOD TYPE
single : BOOLEAN is

ensureResult = (spouse = Void)
feature{BIG GOVERNMENT}

marry · · ·
have child · · ·
divorce is

modifies single, spouse
require ¬ single
ensuresingle ∧ (old spouse).single

invariant
single ∨ spouse.spouse = Current ;
parents.count ≤ 2;
∀ c ∈ children • ∃ p ∈ c.parents • p = Current

end

Fig. 1.Eiffel Class Interface

Other facilities offered by Eiffel, but not demonstrated here, include generic (pa-
rameterised) types, dynamic dispatch, multiple inheritance, static typing, and agents
(function objects). We refer the reader to [Mey92] for full details.

1.1.1 Reference and Expanded Types in EiffelEiffel is a novel language in that
it supports both user-defined reference variables andexpandedvariables. A reference
variable may be attached to an object at run-time; thus, it is effectively a (safe) pointer

to a memory location. The pointer is “safe” in the sense that its address cannot be
taken (easily), and pointer arithmetic cannot be applied to it. To use a reference vari-
able requires two steps: declaration of the variable, and allocation/attachment of an
object to the variable. This mechanism is somewhat cumbersome and inefficient for
basic datatypes, such as integers. Thus, a shortcut is provided wherein a declaration of
a variablei of type INTEGER associatesi directly with a storage location. This is
roughly equivalent to stack allocation of memory in languages such as C and Pascal.
Basic types, such as integers, are by default allocated in this way, but Eiffel provides a
generalised mechanism by which any variable can be directly associated with a storage
location; such variables are declared to be of expanded type. This allows programmers
to avoid using reference mechanisms where they deem it appropriate; this should be
contrasted with Java, which does not support a similar user-defined notion of expanded
type. Interesting compatibility issues arise when using reference and expanded variables
together in expressions and, particularly, assignment statements.

1.2 PVS

The PVS system [CO95] combines an expressive specification language with an in-
teractive theorem prover and proof checker. The specification language is founded on
classical typed higher-order logic with typical base typesbool , nat , int , real , etc.
It also provides function constructors of the form[A->B] . The type system of PVS is
augmented with dependent types, abstract data types, and predicate subtypes, the last
of which is a distinguishing characteristic of the specification language. The subtype
{x:A|P(x)} consists of those elements of typeA that satisfy the predicateP. The
presence of predicate subtypes means that type checking of PVS specifications is un-
decidable in general, and thus requires use of the PVS theorem prover. Thus, the type
checker generates proof obligations (calledtype correctness conditions (TCCs)in those
cases where type conflicts cannot be resolved automatically. Frequently, large numbers
of TCCs are discharged automatically by special stategies.

The PVS system has been used successfully in industrial projects, particularly for
protocol and microprocessor verification. It is widely considered to be one of the most
powerful theorem provers in use today. It is because of the power of the theorem prover,
the expressiveness of its specification language, and the wealth of PVS libraries and
expertise available in the research community, that we have targeted it as the means for
providing automated support for the refinement calculus.

2 Overview of the Theory of Eiffel Reference Types

The paper [PO03] proposes a refinement calculus for Eiffel, which allows specifica-
tions – written in a pre- and postcondition style, using Eiffel’s built-in support for such
facilities – to be refined directly to Eiffel programs. The calculus is built atop Hehner’s
predicative programming theory [Heh03]. The calculus was produced by formalising
the precisely stated semantics of Eiffel statements given in [Mey92] using Hoare logic.
At the basis of this formalisation is a theory of Eiffel reference types, based on so-called

entity groups, which are the equivalence classes induced by the reference equality op-
erator in Eiffel. This theory is used in formalising assignment statements, objectcreate
statements, and method calls. The theory, and its axioms, are based on careful analysis
of the partial formalisation of Eiffel’s semantics given in [Mey92].

We summarise elements of the theory here. Eiffel programs are made up of a number
of classes, each of which possessroutines; a routine is either a query (which returns
a result without side effects) or a command (which changes the state of an invoking
object). Routines may declare entities (variables) as local variables; entities may also
be introduced as attributes of a class. Classes themselves are connected via associations
and inheritance relationships.

Given routiner of classC , we letr .ρ denote the set of reference entities that could
appear in the routine body (including attributes ofC , arguments and local variables of
r , and syntactically legal dots and multi-dots expressions). If routiner is a query then
Result ∈ r .ρ becauseResult is a predefined local variable of the query. Each entity
in r .ρ is potentially the subject of a creation instruction either directly in the body ofr
itself, or in a routine called byr .

Associated with each entitye ∈ r .ρ there is a correspondingentity groupwhich we
denote bye. Before the first creation statement in the body ofr , the group is an empty
set. After acreate e instruction,e = {e}, and this entity group is used to keep track
of all reference entities inr .ρ that point to the same object ase. We letr .π denote all
entity groups of routiner , and we require that these groups be disjoint (this equivalence
relation will be formalized in the sequel).

The boolean expressionequal(e1, e2) is used for object equality. It can be defined
recursively, provided that its occurrence in a program is syntactically legal; the formal-
isation is in [PO03]. An axiom is also needed that asserts that reference equality is at
least as strong as object equality:

e1 r= e2 → equal(e1, e2) (1)

The remaining axioms defining entity groups are as follows. Consider a routiner
with bunch of entity groupsr .π:

∀ ei , ej ∈ r .π • ei = ej ∨ ei ∩ ej = ∅ (2)

Axiom (2) states that two entity groups are either disjoint or identical. Only reference
entities are subject to aliasing, and hence only reference entities have associated groups.
Thus ife1 ande2 point to the same object, then they are in the same group.

∀ e ∈ r .π • (∀ e1, e2 ∈ e • e1 r= e2) (3)

Axiom (3) states that if two entities are in the same entity group, they refer to the same
object.

∀ e ∈ r .π • ∀ e1, e2 ∈ e • e1 = e2 (4)

(4) asserts that if two entities are in the same group, then the group can be referred to in
expressions by either name.

∀ e ∈ r .π • ∀ e ∈ e • e 6= Void (5)

∀ e ∈ r .ρ • (∀ e ′ ∈ r .π • e 6∈ e ′) ≡ e = Void (6)

∀ e ∈ r .ρ • (e = Void) ≡ (e = ∅) (7)

Axiom (5) states that any entity in an group is attached to an object, and thus cannot be
Void . Axiom (6) states that if an entitye is in no group, then it isVoid . This is the state
an entity is in after declaration, or after an assignmente := Void . Axiom (7) equates
aVoid reference with an empty entity group. It is perhaps not clear why entity groups
have been used to formalise reference types in Eiffel, as opposed to obvious approaches,
e.g., formalising a memory model with memory locations, pointers, and objects. One
issue with the latter approach is that it can lead to long expressions (typically stating
what values are stored in what memory locations) appearing in refinement steps. We
desire to make the refinement calculus useful for carrying out refinement steps by hand
and with automated assistance. Long expressions do not arise with entity groups, as they
effectively let developers express only those entities that are of interest in a refinement
step. Certainly, when using PVS it would be reasonable to specify an Eiffel memory
model, and to define entity groups in terms of that memory model. In formulating the
Eiffel memory model, we would envision using an approach similar to that for the
Extended Static Checker for Java [LN00]. We are considering this approach in revisions
to our theories, but for now are simply formalising the axioms directly so as to make it
easier to validate and check our PVS formulation of the Eiffel refinement calculus.

The notion of entity groups can be used to define the semantics of instructions that
use reference types in Eiffel such as thecreatestatement, assignment and feature call.
Thecreate e instruction creates a new object and attaches it to entitye; any previous
reference or attachment via entitye is lost; however, any other entities that referred to
the object originally attached toe remain. This continued attachment is established by
the previous axioms, specifically (4) and (5). The semantics ofcreate e is given in
Definition 1.

Definition 1. [Entity creation semantics]Given a reference entitye, the instruction
create e is defined as

modifies e, t
ensure e = {e} ∧ default(e)

wheret represents the global clock (it is used in refining specifications to loops or
recursive programs). Thedefault(e) clause asserts that each attributee.a is set to its
default value on creation as described in [Mey97] (e.g., ifa is a BOOLEAN it is
set to false, if it’s a reference it is set toVoid etc.). If the classe.type has a creation
routiner (whose purpose is to establish the class invariant), then we must execute this
routine after the creation statement, i.e.,create e; e.r .

The type-compatible reference assignment statemente1 := e2 changes entitye1
to refer to the same object as entitye2. Definition 2 provides the semantics for the
reference assignment (i.e., assigning references to references), leaving assignments in-
volving both references and expanded types for the sequel.

Definition 2. [Reference assignment semantics]Supposee1 ande2 are references
and their declared types are compatible according to [Mey97], so thate2 can be as-
signed toe1. Thene1 := e2 is defined as

modifies e1, t
ensure e1 = e2

We now present the meaning of procedure calls, to illustrate how the theory can be
applied to feature calls; query calls are formalised in [PO03]. Definition 3 provides the
meaning of a targeted command calle1.c(e2), wheree1 ande2 are reference entities
andc is a command of classSUPPLIER. The meaning of this call is supplied by the
precondition and postcondition ofc, targeted to the entitiese1 ande2 (in the definition,8
applied to any expression refers to the value of the expression evaluated in the prestate).

Definition 3. [Targeted command call]The call e1.c(e2) for commandc(x1 :
TYPE), which changes entities contained inc.modifies, and which is in a class hav-
ing attributea, means

modifies c.modifies[a := e1.a, x1.a := e2.a]
require e1 6= Void ;

c.pre[x1 := e2, a := e1.a,Current := e1]
ensure c.post [8a := 8e1.a, 8Current := 8e1,

x1 := e2, a := e1.a,Current := e1];
e2 = 8e2

Local variables can be introduced to deal with more complicated, and potentially mul-
tiple, arguments.

Such statements, e.g., assignment statements and command calls, can be introduced
during refinement, and thus it is possible to check that routine implementations are
consistent with the pre- and postconditions specified in class interfaces.

2.1 Expanded types

We have not yet discussed the effect of assigning an expanded object to a reference,
and vice versa. The interplay between expanded (composite) types and reference types
is somewhat complicated by the fact that Eiffel allows user-defined expanded types,
and thus the semantics of the assignment statement needs to be generalised in order
to allow interactions between the two kinds of variables. The table in Fig. 2 suggests

e1 expanded ande2 reference e1 reference ande2 expanded
e1 := e2 equivalent toe1.copy(e2) e1 := e2 equivalent toe1 := clone(e2)

modifiest , e1 modifiest , e1
require e2 6= Void require true
ensureequal(e1, e2) ensuree1 = {e1} ∧ equal(e1, e2)

Fig. 2.Hybrid assignments

how to extend our approach to handle them, leaving a full treatment (e.g., expanded
parameters) for later work.

Thus, full formalisation of expanded types will require formalisation of Eiffel’s
copy andclone statements. This can be carried out using the notion of entity groups
described previously.

3 PVS Formulation

The axiomatisation of Eiffel reference types presented in the previous section is suffi-
cient and useful for manual reasoning; examples in [PO03] demonstrate its efficacy. We
are currently formalising the axioms and definitions in the PVS specification language,
so that we can use particularly the PVS prover to reason about references automatically.
In this section, we briefly outline progress that has been made on the formalisation.

The PVS theory includes four main sections:

– declarations of basic types for entities, entity groups, and primitive types;
– declaration of primitive functions for entity comparison, identifying different kinds

of entities (i.e., basic types versus reference types), as well as conversions of Eiffel
basic types into PVS types;

– the axioms from Section 2;
– Definitions ofcreate, reference assignment, feature calls, and hybrid assignments

involving expanded and reference types.

To use the theory, programmersimport it in a theory that defines PVS translations
of programmer-defined classes. The PVS translations define new types, functions, and
axioms that constrain the programmer classes. This is discussed further in the sequel.

3.1 Declarations of basic types and functions

Fundamental types must be declared in PVS for Eiffel entities (i.e., variables), entity
groups, and entity groups associated with routines.

ENTITY: TYPE+
ENTITY_GROUP: TYPE+ = set[ENTITY]
SET_GROUP: TYPE+ = set[ENTITY_GROUP]
ROUTINE: TYPE+
QUERY, COMMAND: TYPE+ FROM ROUTINE

Each new class introduced in an Eiffel program (not including basic/primitive types)
will introduce a new PVS type holding attributes. These PVS types all are subtypes of
pre-declared PVS typeOBJECT. This type is declared primarily for generality: to be
able to define functions that apply to all classes. Note that basic/primitive Eiffel types
are subtypes ofOBJECT.

OBJECT: TYPE+
EIFFEL_TYPE: TYPE+ FROM OBJECT
EIF_INT, EIF_REAL, EIF_CHAR: TYPE+ FROM EIFFEL_TYPE

Useful functions can now be declared. In particular, we will need to know whether
an entity is attached to an object, whether two entities have the same declared/static
type, whether two entities are reference (or object) equal, etc. Finally, we need to define
functions to implement the entity groups from the previous section, i.e.,r .ρ andr .π.

isvoid: [ENTITY -> bool]
deref: [ENTITY -> OBJECT]
sametype: [ENTITY, ENTITY -> bool]
ref_equal: [ENTITY, ENTITY -> bool]
obj_equal: [ENTITY, ENTITY -> bool]
routine_entities: [ROUTINE -> set[ENTITY]]
pi: [ROUTINE -> SET_GROUP]
ep_from_entity: [ENTITY -> ENTITY_GROUP]
pre: [ROUTINE, ENTITY, ENTITY -> bool]
post: [ROUTINE, ENTITY, ENTITY, ENTITY -> bool]
frame: [ROUTINE -> bool]

We will also need to provide conversions from Eiffel built-in types, such as integers
and characters, to their PVS equivalents. In this sense, we need to implement a PVS em-
bedding of Eiffel primitives. Since PVS provides a conversion facility, this is relatively
straightforward.

int_c: [EIF_INT -> int]
real_c : [EIF_REAL -> real]
char_c : [EIF_CHAR -> char]

CONVERSION int_c, real_c, char_c

3.2 PVS specification of entity group axioms

The axioms from Section 2 can now be expressed in PVS, based on the functions and
basic types previously declared. We present several axioms to illustrate the process.
First, the axiom that states that reference equality is stronger than object equality. This
is a direct transliteration of the ERC axiom.

ax2: AXIOM
(FORALL (em, en: ENTITY):

ref_equal(em,en) IMPLIES obj_equal(em,en))

More complex is the axiom that states that entity groups associated with routines
are either equal or they do not intersect.

ax3: AXIOM
(FORALL (r:ROUTINE):

(FORALL (ei,ej:ENTITY_GROUP):
member(ei, pi(r)) AND member(ej, pi(r)) IMPLIES

((ei=ej) OR (empty?(intersection(ei,ej))))))

Two final examples demonstrate PVS specifications of: the axiom that states that
entities in the same entity group refer to the same entity; and, an entity in an entity
group must be non-Void .

ax5: AXIOM
(FORALL (r:ROUTINE): (FORALL (ei:ENTITY_GROUP):

(FORALL (em,en: ENTITY):
(member(ei,pi(r)) AND member(em,ei) AND member(en,ei)) IMPLIES
ep_from_entity(em)=ep_from_entity(en))))

ax6: AXIOM
(FORALL (r:ROUTINE): (FORALL (em:ENTITY):

(member(ei,pi(r)) AND member(em,ei)) IMPLIES NOT isvoid(em))))

Based on these axioms, and the functions declared in the previous subsection, ref-
erence and object equality can be defined as well.

3.3 PVS definitions of operations

We can now specify some of the fundamental Eiffel instructions in PVS, particularly
those that manipulate reference types. As two examples, we show how to specify Eif-
fel’s createstatement, and reference assignment.

Eiffel’s creation and initialisation statement has the formcreate e, wheree is an
entity that may or may not be attached to an object. It is formulated in PVS as follows.

create: [ENTITY -> bool] =
(LAMBDA (em: ENTITY): ep_from_entity(em)= singleton(em) AND default(em))

default is a function that, given an entity, returnstrue iff the entity has been ini-
tialised to its default value. The default value depends on the type of the object attached
to the entity (but typically it is made up of default values for the attributes of the object
- e.g., 0 for integers,true for booleans,Void for references).

Reference assignment of the forme := e1 is formalised as follows.ref_assign
returnstrue iff the two argument entities are reference equal. In other words,e := e1
is represented in PVS as the function callref equal(em, en) - we are representing the
effectof the assignment in PVS.

ref_assign: [ENTITY, ENTITY -> bool] = (LAMBDA (em,en:ENTITY): ref_equal(em,en))

3.4 Feature calls

The fundamental construct in any object-oriented program is the targetted feature call,
which has the formo.f (a), whereo is an entity/variable – the target – that is attached
to an object,f is a function or procedure, anda is a set of arguments. Targetted proce-
dure calls are statements, and can thus be sequentially composed with other typically
programming constructs, such as assignments, loops, and selections. Targetted function
calls return values, and as such can be used as r-values in assignment statements, in
guards, as arguments, or in pre- and postconditions. We show how to formalise Eiffel
targetted function and procedure calls in PVS, starting with the function calle2.q(e3).
This call might appear in an assertion, and as such it is important to formalise it sep-
arately from any statement in which it can be used. Its PVS formulation is as follows.
To start with, we declare a PVS functioneval which returns an entity when applied
to a function, target, and set of arguments; the return type should be constrained to be
that of the Eiffel function. This PVS function is thenimplicitly defined in the axiom
eval_ax , which defines what it means to callq with targete2 and argumente3. The
axiom assumes that functions to obtain the precondition and postcondition of a routine
are available, respectively, aspre andpost .

eval:[ROUTINE, ENTITY, ENTITY -> ENTITY]

eval_ax: AXIOM
(FORALL (em,en:ENTITY): FORALL (r:ROUTINE):

(pre(r,em,en) AND NOT isvoid(em) IMPLIES post(r,em,en,eval(em,en,r))))

To use the above axiom, one makes use of the functioneval . For example, to
define the meaning of the assigned query calle1 := e2.q(e3), one would make use of
the following PVS function.

acq:[QUERY, ENTITY, ENTITY, ENTITY -> bool] =
(LAMBDA (q:QUERY,e1:ENTITY,e2:ENTITY,e3:ENTITY):

(NOT isvoid(e2) and reference(e1) AND
reference(e2) and compatible(e1,result_type(q))) IMPLIES e1 = eval(e2,e3,q))

Finally, we formalise the targetted procedure calle1.c(e2) in PVS. We first assume
that the frame of each procedure can and has been specified by the programmer, and is
available via the functionframe . The call can then be formalised as follows.

tcq:[COMMAND, ENTITY, ENTITY, ENTITY, ENTITY -> bool] =
(LAMBDA (c:COMMAND,e1:ENTITY, e2:ENTITY,

old_e1:ENTITY, old_e2:ENTITY):
(NOT isvoid(e1) AND pre(c,old_e1,e2)) IMPLIES
(post(c,e1,e2,old_e1) AND e2=old_e2 AND frame(c))))

Notice that the call introduces both old and new variables, i.e., pre- and poststate.

3.5 Expanded types

Based on the axioms and functions defined previously, it is now possible to formalise
hybrid assignment statements, involving both expanded and reference types. For exam-
ple, consider the assignment statemente1 := e2, wheree1 is an expanded type ande2
is a reference type. In Eiffel, the meaning of this statement is identical to the instruc-
tion e1.copy(e2). In other words, an attribute-by-attribute copy is made of the object
attached toe2, stored ine1. We can thus formalise this instruction by partly formalising
the Eiffel featurecopy , as follows1.

copy: [ENTITY, ENTITY -> bool] =
(LAMBDA (e1, e2: ENTITY):

(reference(e2) AND NOT reference(e1) AND
NOT isvoid(e2)) IMPLIES (obj_equal(e1,deref(e2)))

3.6 Using the theory

The above suite of functions, declarations, definitions, and axioms is part of the PVS
theory of Eiffel reference types. It is intended to be used in PVS translations of Eiffel
specifications2. Thus, an Eiffel program will be translated into a set of PVS theories –
one per class – where each theory imports the above PVS theory of reference types.
Each Eiffel class is translated into a PVS record, declaring the class’s attributes and
types. For example, a classC with attributesx : INTEGER and c : C (i.e., one
expanded attribute and one reference) will be mapped to the PVS type

C: TYPE+ FROM OBJECT =
[# x: EIF_INT, c: ENTITY #]

C_ax: AXIOM
(FORALL (varc:C): EXISTS (oc:C):

NOT isvoid(c(varc)) IMPLIES deref(c(varc)) = oc)

The axiom states that wheneverc is attached to an object, it must be attached to an
object of typeC .

Translations of routines (as PVS functions) and their contracts can be carried out in
much the same way, though details remain to be worked out. We have concentrated so
far on fixing the details of the theory of reference types in PVS, since the formalisation
of classes and contracts depends on it.

A challenge with using the theory will be in proving that sequential compositions
of routine calls that appear in method bodies satisfy a contract. This is challenging be-
cause intermediate state needs to be introduced. However, the formalisation of sequen-
tial composition in [Heh03] deals with this problem by treating sequential composition
as relational composition, thus hiding the intermediate state using an existential quanti-
fier. We expect that we can use this approach in PVS.

1 copy is not fully formalised on its domain; it is defined only on domains where the l-value is
expanded and the r-value reference.

2 An Eiffel specification includes contracts, but not implementations, of classes – i.e., no routine
bodies.

4 Discussion and Conclusions

The PVS theory defined above is accepted by the PVS system, and typechecks. Work
is continuing on using the theory to carry out examples of reasoning, particularly for
refinement. Current work is focusing on completing the aliasing example in [PO03] in
full detail in PVS. So far, use of PVS has helped us detect omissions – particularly in
terms of the types used in expressions – in our semi-formal axiomatisation of entity
groups: PVS forces us to be explicit about types, and this helped to reveal errors.

Additional work is considering alternative PVS formalisations of the refinement
calculus (particularly, using an explicit model of Eiffel memory, with entity groups
being a derived notion). We are also automating the generation of PVS theories from
Eiffel. A basic PVS theory, capturing entity groups, will be imported by any generated
theory; the generated theory will define records to capture the attributes and pre- and
postconditions associated with routines of classes.

References

[BJ01] J. van den Berg and B. Jacobs.: The LOOP compiler for Java and JML. InProc. TACAS
2001, Lecture Notes in Computer Science 2031, Springer-Verlag, 2001.

[CN00] A. Cavalcanti and D. Naumann.: A weakest-precondition semantics for refinement
object-oriented programs.IEEE Trans. Software Engineering26(8), 2000.

[CO95] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas.: A Tutorial Introduction to PVS,
in Proc. WIFT ‘95,Springer-Verlag, 1995.

[DL98] D.L. Detlefs, K.R.M. Leino, G. Nelson, and J.B. Saxe.: Extended Static Checking. SRC
Research Report 159, December 1998.

[DL01] K. Dhara and G. Leavens.: Mutation, Aliasing, Viewpoints, Modular Reasoning, and
Weak Behavioral Subtyping. Technical Report #01-02, Department of Computer Science,
Iowa State University, March 2001.

[Es00] Escher Technologies, Inc.: Getting Started With Perfect, available from
www.eschertech.com , 2000.

[Heh03] E.C.R. Hehner.:A Practical Theory of Programming (Second Edition), Springer-Verlag,
2003.

[LN00] K.R.M. Leino, G. Nelson, and J.B. Saxe.: ESC/Java User’s Manual. Technical Note
2000-002, Compaq Systems Research Center, October 2000.

[Mey92] B. Meyer.:Eiffel: the Language, Prentice-Hall, 1992.
[Mey97] B. Meyer.:Object-Oriented Software Construction(Second Edition), Prentice-Hall,

1997.
[Mey00] B. Meyer.: Agents, iterators, and introspection. ISE Inc. Technical Paper, 2000.
[Mey03] B. Meyer.: Proving program pointer properties, draft last revised February 2003.
[PO03] R. Paige and J. Ostroff.:ERC: an Object-Oriented Refinement Calculus for Eiffel, under

review, 2003. Draft available at www.cs.yorku.ca/techreports/2001.

