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We describe BON-CASE, an extensible tool for the BON modelling language.
The tool’s support for formal techniques – in particular, for formal specifica-
tion of contracts and frames, as a platform for verification of Eiffel code, for
lightweight integration with existing reasoning tools (such as type checkers, the-
orem provers, and static assertion checkers), and its extensible architecture –
is discussed. We present the infrastructure provided with the tool, and support
being added to the tool for reverse engineering and the single model principle,
as well as for checking the consistency of static and dynamic views of a system.

1 INTRODUCTION

Tool support for building high-integrity software systems is of increasing importance, es-
pecially given the size and complexity of typical industrial-scale applications, e.g., aircraft
navigation or engine control systems. In this domain, tools are of particular importance
for supportingtestingof applications, forgenerating codeautomatically from abstract
models of system properties, and forreasoningabout correctness and robustness of mod-
els and implementations of systems.

The first two characteristics – testing and code generation – are supported by ex-
isting CASE tools for object-oriented modelling languages, e.g., Rational Rose (though
admittedly, many CASE tools are limited to generation of code stubs from models). The
last characteristic – reasoning about models of systems – is well-supported by automated
theorem provers such as PVS [16], model checkers such as SMV, and static assertion
checkers such as ESC/Java [4] and the JML toolset [12]. In general, however, there is
limited support for all three elements in existing tools. One example of this is the U2B
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macro package [24], which translates UML models in Rational Rose to B abstract ma-
chines [1], thus enabling the use of B tools for reasoning indirectly about UML models.
This package aims at adding formal techniques to UML-based development, although in
doing so it introduces an impedance mismatch between UML’s object-oriented models
and B’s abstract machines. A different approach is offered by the USE tool [22], which
provides a simulator for OCL constraints applied to UML models; it does not provide
support for the production of executable code.

In this paper, we present and discuss the design and characteristics of the BON-CASE
tool. BON-CASE is a CASE tool supporting the BON object-oriented modelling lan-
guage [25], and which is designed to beextensiblefor the purposes of supporting formal
techniques, particularly reasoning via lightweight integration with existing analytic tools,
such as theorem provers and static checkers. It differs from related work by its implemen-
tation in an open-source tool framework, its design-for-extensibility, and its emphasis on
supporting existing formal techniques, rather than addition of formality to semi-formal
modelling languages. As such, the tool’s design emphasizes the following elements.

• Support for formal specification.The tool supports pre- and postconditions of rou-
tines, as well as class invariants, written using the BON assertion language, a dialect
of first-order predicate logic. The tool provides the infrastructure for supporting au-
tomatic verification and reasoning via integration with existing tools.

• Extensible code generation template.To allow a variety of tool-supported reasoning
mechanisms to be applied to BON models, a code generation template provides an
abstract interface to the code generation process. Reasoning tools can be integrated
with BON-CASE by implementing the template.

• Single model principle.BON supports the single model principle [15], which states
that consistent software development deliverables should be ensured. We discuss
the principle more precisely in Section2, and discuss ongoing work towards com-
pleting and furthering its support in BON-CASE in Section5.

• Partially validated metamodel.BON-CASE provides a metamodel component, im-
plementing the well-formedness constraints on BON models. The metamodel has
been through a partial formal validation process using the PVS theorem prover [18].
This is discussed further in Section4 and Section6.

The paper provides an overview of the features of BON-CASE, its design, and its
extensible support for formal reasoning. It also provides a detailed discussion on ongoing
work on consistency checking of the different views of a system that can be represented
in BON (in Section6).

BON versus UML

The Unified Modelling Language (UML) [3] is a standard language for describing sys-
tems. UML is founded on the use of disparate, independently constructed views of a sys-
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tem, including: the static view, describing the classes and class relationships that make up
the system; the dynamic view, depicting the objects, collaborations, and messages that are
sent between objects; the behavioural view, where state charts are used to describe how an
individual object reacts to a message; the use case view, which depicts system behaviour
from an external, user-oriented perspective; and the physical view, showing relationships
between software and hardware components.

UML, while not designed exclusively for use in modelling high-integrity systems, can
be tailored for such systems. This could entail using its constraint language, OCL [26],
as well as providing restrictions on the different diagrams to be used, in order to establish
consistency of views.

It is beyond the scope of this paper to provide a detailed comparison of BON and
UML. We refer the reader to [17], which contrasts the two languages for the purposes of
building high-integrity systems. An important question to address, however, is why we
chose to support BON in our CASE tool instead of UML.

One answer comes from the intended domain of application. BON has been designed
from the start to support formal specification techniques, which have proven to be use-
ful, if not essential, in designing such systems.Design-by-contract, the use of which
is inherent with BON, is applied throughout the BON process for capturing constraints
on conceptual models of the problem domain, and for capturing constraints on designs.
UML permits use of design-by-contract, via OCL, but the constraint language is only
loosely integrated with the graphical modelling language, and supporting processes for
the language do not always make use of OCL. As well, there are syntactic and semantic
complications with using OCL (e.g., with respect to automated type checking, the use of
flattened collections, etc., some of which are intended to be resolved with OCL 2.0 [14]).
Thus, we say that BON supports and emphasizes the use of formal specification, while
UML permitsthe use of formal specification techniques.

A second reason for using BON instead of UML in this domain is its support for the
single model principle [15]. The principle will be discussed in more detail shortly, but the
main impact of it is that it supports checking the consistency of deliverables – i.e., models,
code, and testing documentation – produced during development. Consistent deliverables
are essential when building high-integrity systems.

2 OVERVIEW OF BON

BON, due to Wald̀en and Nerson [25], is an object-oriented method possessing a rec-
ommended development process as well as graphical and textual languages for specify-
ing object-oriented systems. It emphasizes the use of formal specifications of classes.
The language provides mechanisms for specifying classes and objects, their relationships
and interactions, and assertions, written in first-order predicate logic, for specifying the
behaviour of routines and invariants of classes. BON is syntactically and semantically
compatible with Eiffel: it is designed so that BON class diagrams can be seamlessly and
directly mapped [13] to Eiffel programs, providing that assertions are suitably refined and
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implemented in the Eiffel assertion language. As well, BON is designed to be automat-
ically reversible from Eiffel programs. It has been used successfully with a number of
other languages, such as Smalltalk and Java.

The fundamental construct in BON is the class. A class has a name, an optional class
invariant, and zero or more features. A feature may be anattribute, a query – which
returns a value and does not change the system state – or acommand, which changes
system state but returns nothing. In [25], attributes are treated as parameterless queries
without assertions; we distinguish attributes for efficiency reasons, and to make it easier
to generate code (particularly JML and Java; see Sections 3 and 5). Fig.1 contains an
example of a BON model for the interface of a classCITIZEN .

Figure 1: ClassCITIZEN

Preconditions and postconditions of features are indicated using? and!, respectively.
We have modified the syntax for expressing feature parameters to use Eiffel’s notation.
As well, we have introduced a notion of a frame – the∆ or modifiable clause – to BON
class interfaces. The∆ clause specifies a bunch of attributes that may be changed by
the feature; attributes not appearing in a frame cannot be changed. The class invariant
specifies properties that must be true before and after any client-side call to a feature of
the class.

BON class diagrams consist of one or more classes organized inclusters(drawn as
dashed rounded rectangles that may include classes and other clusters). Classes and clus-
ters interact via two general kinds of relationships. The relationships are drawn in Fig.2
(the updated syntax for aggregation, also supported by EiffelStudio, is depicted in this
diagram, and is supported by BON-CASE).

• Inheritance: Inheritance defines a subtyping relationship between a child and one
or more parents. It is drawn from classCHILD to classANCESTOR in Fig. 2.
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• Client-supplier: there are two client-supplier relationships, association (drawn be-
tweenANCESTOR andSUPPLIER1) and aggregation (drawn betweenCHILD
andSUPPLIER2). Both relationships are directed from aclient to asupplier.

Figure 2: Notation for inheritance, association, and aggregation

BON also provides notation for dynamic diagrams, showing the messages passed be-
tween objects, in a manner akin to UML’s collaboration diagram. Fig.3 shows an exam-
ple, generated using BON-CASE. Numbers that annotate messages are cross-referenced
to a scenario box, detailing the purpose of the message. Messages in dynamic diagrams
are visual representations of feature calls.

Figure 3: BON dynamic diagram
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Single model principle

UML provides five views of a system; these views are each depicted with separate dia-
grams. Thismultiple modelapproach can lead to inconsistency: information presented in
one diagram may contradict information in another diagram. For example, a collabora-
tion diagram might show an object of typeDATABASE receiving a messageenable(n)
under the conditionn ≥ 0, whereas a class diagram of the same system might show that
DATABASE cannot receiveenable(n) messages, or that it can only receive such a mes-
sage under the contrary condition thatn < 0. Such inconsistencies must be identified and
resolved when using UML before the system is implemented and delivered. Some will
be captured by the UML metamodel and tools which implement the metamodel, but not
all inconsistencies can be caught in this way. The inconsistent guards as described above
would not be prevented by an implementation of the metamodel, since to do so would
require a theorem to be proven.

BON supports thesingle model principle. The design of BON-CASE provides the
infrastructure to implement the principle; work is ongoing on completing this implemen-
tation. A full discussion of the principle is beyond the scope of this paper; the report [15]
explains it in detail. The basic idea is as follows. As with multiple model approach, lan-
guages and methods that support the single model principle also support multiple views
of the system. However, the principle aims to ensure consistency of views either by au-
tomatic construction or by rigorous analysis. A language that follows the single model
principle has several characteristics. It isseamlessand reversible, in that its modelling
abstractions can be used throughout the development process and models can be pro-
duced automatically from code. It iswide-spectrum, applicable to analysis, design, and
implementation. It providesconceptual integrity: it uses a small number of powerful de-
scriptions that work together to help describe the software product, and it provides one
good way to describe every construct of interest. Finally, it provides mechanisms for
automatically establishing or checking the consistency of views. The desirability of hav-
ing a modelling language that satisfies these characteristics when building high-integrity
systems has been argued in detail in [15]. Essentially, the argument is that following
the principle provides greater assurance and support for building products and having the
document deliverables remain consistent.

We discuss existing and planned support for the single model principle in BON-CASE
in detail in the sequel.

3 OVERVIEW OF BON-CASE

BON-CASE is an open-source CASE tool for BON. Its design emphasizes the support
of formal specification, via preconditions, postconditions, and class invariants, as well
asformal reasoning and analysis, via integration with existing formal methods tools. It
is intended to help support rigorous object-oriented analysis and design, particularly for
high-integrity systems with substantial robustness and reliability requirements. In this
section, we provide an overview of the tool and its features, focusing on its support for
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formal techniques. In successive sections, we describe its design (aimed at making it
straightforward to integrate BON-CASE with a variety of formal analysis tools) and its
existing support for reasoning.

Diagrams and user interface

BON-CASE supports the two main types of BON diagrams:class diagramsanddynamic
diagrams(also known as collaboration diagrams). It also supportsuse case diagrams,
adopted from UML. Use case diagrams can be applied in several ways, e.g., asrough
sketchesand as abstractions of dynamic diagrams. This is discussed further in Section 3.4.

Fig. 4 shows a screenshot of the main user interface for BON-CASE. The tool pro-
vides a typical CASE tool framework implemented in a model-view-controller style. In
the left-most view is detailed the contents of aproject. A project may include several di-
agrams, including static diagrams, use case diagrams, and dynamic diagrams. There may
be several instances of each diagram type, though only one instance of each type may be
active for editing. New instances may be added at any time. A project may also include
supporting documents, e.g., a to-do list, mockups, test plans. Supporting documents may
be text files or JPEG or GIF images. The right-hand view contains details of the currently
active project element in the left-hand view.

Figure 4: Main user interface for BON-CASE
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In Fig.4, a static diagram is currently active in the right frame, and a use case diagram
has just been selected in the left frame. The right frame depicts the compressed BON
view of each class, i.e., an ellipse. Clusters (collections of classes and other clusters) are
also drawn in a compressed form. All BON relationships are supported by the tool, and
relationships can be drawn between classes and clusters. All the typical drawing facilities
of CASE tools are supported, e.g., resizing, moving, labelling edges, edge remapping.

Diagrams can include notes, informal comments about the diagram. The note icon
on the tool bar is used to add new notes. Existing notes can be edited simply by double-
clicking on the note. This will spawn a copy of the Jext editor [9], which can then be used
to enter the text to be contained within the note. A similar mechanism can be used to add
Eiffel code to classes. TheBON Classmenu item provides an option to add Eiffel code
to any BON class. Selecting this option will again spawn a copy of Jext, which provides
Eiffel syntax highlighting.

Class specifications

Each class in BON may contain a specification, detailing the attributes, queries, and com-
mands possessed by the class, as well as assertions (e.g., pre- and postconditions and class
invariants). This information is included in the BONclass interface, and it can be added
to a class in BON-CASE by using the edit specification facilities. The full BON assertion
language, as defined in [25], is supported for writing assertions. These assertions will be
used by code generators when automatically producing Eiffel or Java code from the BON
diagrams. The full BON assertion language (and thus, class interfaces) are not supported
in EiffelStudio.

A novelty with BON-CASE is that it can depict BON class interfaces, both by them-
selves, and also in static diagrams. For example, in Fig4, the classVEHICLE could be
replaced by its class interface (by using the toggle details feature of the Selection menu).
Fig. 1 showed an example of a class interface produced using BON-CASE.

Dynamic diagrams

BON-CASE provides support for BON’s dynamic (collaboration) diagrams, depicting
objects and the messages sent between them. An example of a dynamic diagram created
using BON-CASE was shown in Fig.3. Single and multiple-receiver messages can be de-
picted, as can concurrent messages, e.g., in a multi-threaded application. A scenario box
will automatically be generated by BON-CASE, documenting the messages that are sent
and their order. Consistency between dynamic diagrams and class diagrams is discussed
in the sequel.
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Use case diagrams

BON-CASE supports a subset of use case diagrams as described in UML [3]. It supports
actors, use cases, and basic dependencies between use cases, i.e.,includesandextends
relationships. An example of a use case diagram created with BON-CASE is in Fig.5.

Figure 5: Use case diagram produced using BON-CASE

Documentation generation

A critical feature of any CASE tool is its support for generating browsable, understand-
able documentation for a project, its models, and their relationships. BON-CASE will
automatically produce a suite of browsable HTML files containing the different diagrams
associated with a project. Each project will have an index HTML file generated for it,
containing links to documentation for each diagram in the project. This is illustrated by
Fig. 6.

The documentation is accessible via any browser, and is presented in two frames in
a way that attempts to be consistent with the BON-CASE tool interface. Clicking on an
item in the left frame brings up the item’s details in the right-most frame, in much the
same way as BON-CASE.

Both compressed and detailed views of classes are available (theC next to the name
of each class in Fig.6 is a link to Eiffel source code for the class).
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Figure 6: Documentation produced using BON-CASE.

Code generation

BON-CASE currently supports the generation of code in Eiffel, Java, textual BON, and
JML. We discuss JML generation in Section5, as it provides a link with formal speci-
fication and analysis techniques. The generation of Eiffel from BON is straightforward,
except with respect to contracts: some BON contracts – e.g., those that make use of quan-
tifiers over infinite domains – are not executable. The code generator for Eiffel will still
produce code for these non-executable expressions. It will be left to the developer to re-
fine such assertions so that they can be executed. We are currently experimenting with
Eiffel agents to assist in this process.

The code generator for Java places certain restrictions on which elements of BON can
be translated to their semantic equivalents in Java. For example, aggregation in BON has
no equivalent in Java; the relationship is mapped to a field in Java. Multiple inheritance
in BON cannot be directly translated into Java, except in the case where all parent classes
are deferred (i.e., are semantically equivalent to Java interfaces). BON-CASE will attempt
to generate Java code, but if the BON static diagram includes multiple inheritance, code
generation will fail. We are exploring further proposed mechanisms for mapping multiple
inheritance into Java.

The Java code generator will translate BON assertions into iContract [11] assertions.
iContract is a preprocessor for Java that provides design-by-contract features, such as
pre/postconditions and class invariants. Since these assertions are embedded as comments
in the generated Java code, the code is compliant with all existing Java compilers as well
as the iContract preprocessor.
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4 DESIGN AND IMPLEMENTATION OF THE TOOL

BON-CASE is implemented in JFC/Swing, atop the GEF graph drawing framework [7]. It
makes use of the Jext editor for writing notes and Eiffel code. The CASE tool implements
a substantial portion of the BON metamodel, which was formally specified and partly
validated in [20]. The exact list of metamodel constraints that are implemented can be
found in [10]. Some constraints are implemented within the tool’s user interface, others
as separate routines in a metamodel component that are applied to a BON model as a
whole as a model is updated and changed.

The abstract architecture of the tool is shown in Fig.7. The main components of the
tool are the diagram editor, the BON parser (which generates abstract syntax trees), the
code generator (which is an abstract interface that is implemented by specialised code gen-
erators for target languages) and the metamodel, which encapsulates the well-formedness
constraints on BON models.

Figure 7: Architecture of the BON-CASE tool

A key component of the tool is its code generation engine. The design of the code
generator makes use of the Template pattern [6]; it abstracts the code generation process
from concrete implementations of abstract syntax tree walkers. Thus, it is straightfor-
ward to add new code generators to the tool without affecting the other subsystems. The
architecture of the code generator package is shown in Fig.8. The abstract interface to
the code generator defines the process of code generation: that BON classes, interfaces,
associations, inheritance, etc., must all be translated in some order. Implementations of
this interface provide specific translations in concrete languages. Adding a new code
generator resolves to implementing the code generation interface.

The code generation interface provides a lightweight mechanism to loosely integrate
BON-CASE with a variety of formal reasoning tools. It should be contrasted with fil-
ters as supported in EiffelStudio. Filters are a user-level and syntax-based mechanism for
mapping BON into different languages. Our approach requires changing the implemen-
tation to add a new code generator, but is more flexible and general, e.g., in supporting
semantic checking during translation. In the next section, we discuss one implemented
integration, via the Java Modelling Language (JML) [12], and its supporting tools.
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Figure 8: The code generator cluster

5 SUPPORT FOR REASONING

A key requirement in the development of BON-CASE was to provide a framework by
which to support formal techniques, particularly specification and reasoning. Formal
specification techniques are provided directly by BON. Reasoning techniques are cur-
rently provided via integration of BON-CASE with the Java Modelling Language toolset
(JML) [12]. This integration is currently implemented via a code generator that translates
BON static diagrams into JML specifications.

JML

The Java Modelling Language, JML, is a behavioural interface specification language tai-
lored to Java [12]. It is an ASCII-based specification language that can be used to specify
Java modules. It can be used as a stand-alone specification language, capturing constraints
on methods, classes, and interfaces. It can also be used in combination with Java, allow-
ing contracts to be embedded as comments within Java code as an aid to verification and
debugging. Fig.9 provides an example of an abstract class specification in pure JML: the
unbounded stack.

Abstract values of stack objects are specified by the model (specification-only) data
field contents . The initially clause provides initialisation forcontents . The
class invariant specifies properties that must hold true in each visible state. JML dis-
tinguishes between reference equality (equals , used in the postcondition ofpop ) and
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public abstract class UnboundedStack {

/*@ public model JMLObjectSequence contents
@ initially contents != null && contents.isEmpty();
@*/

//@ public invariant: contents != null

public abstract void pop();
/*@ public_normal_behavior

@ requires !contents.isEmpty();
@ modifiable contents;
@ ensures contents.equals(\old(contents.trailer()));
@*/

public abstract void push(Object x);
/*@ public_normal_behavior

@ modifiable contents;
@ ensures contents.equals(\old(contents.insertFront(x)));
@*/

public abstract Object top();
/*@ public_normal_behavior

@ requires !contents.isEmpty();
@ ensures \result == contents.first();
@*/

}

Figure 9: JML specification of an unbounded stack

value equality (==, used intop ). The remaining JML constructs used in Fig.9 are sim-
ilar to those provided with BON. JML also provides a number of constructs, useful for
specifying Java modules, that are not provided with BON, such asdepend clauses(for ex-
pressing field dependencies),history constraints, andexceptions, which are particularly
critical for specifying Java programs.

Several tools have been developed for JML, including a JML type checker, a JML
run-time assertion checker, and a documentation generator [12]. The run-time checker
is currently limited to checking preconditions of methods and whether a class invariant
holds at run-time. JML is also partially supported by the Extended Static Checker (ESC)
[4] (the syntax of ESC/Java is very similar to JML), and by the LOOP tool [2], a special-
purpose compiler. The output of LOOP is a set of logical theories for the theorem provers
PVS and Isabelle, which can thereafter be fed to the provers in order to reason about the
JML models.
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Translating BON to JML

A translation from BON to JML is defined in [10]. The translation are defined in terms
of the BON metamodel: elements in the metamodel are mapped to constructs in the
JML context-free grammar. This maps directly to the Template pattern used in the code
generator component of BON-CASE, thus simplifying implementation. The fundamen-
tals of this translation are straightforward: BON classes are mapped to JML interfaces;
queries are mapped topure (side-effect free) JML methods; commands and attributes
are mapped to JML procedures and fields. BON assertions are mapped to their JML
equivalents. Associations are mapped to JML fields, and inheritance to JML’sextends .
And redefined features in BON are translated into overridden methods in JML. Compli-
cations arise with translating the following BON constructs. In most cases, we have had
to compromise preserving semantics in order to allow the BON models to be translated
and reasoned about. We also note that many of these complications will arise in mapping
BON models to languages other than JML (particularly Java), and in creating profiles for
UML.

• Multiple inheritance.JML is a specification language for Java, and as such it does
not support multiple implementation inheritance. However, a BON class contains
no feature implementations, only pre- and postconditions. As well JML interfaces –
unlike Java – can include attributes. Thus, if each BON class is translated to a JML
interface, then multiple inheritance in BON can be translated to multiple interface
inheritance in JML, which is supported.

• Aggregation.JML does not support aggregation (part-of) relationships. This BON
relationship is translated to a field with the additional invariant clausefield 6= null
in the client. This is not a semantics-preserving translation (since it allows multiple
clients to share supplier parts - thus, it is more akin to aggregation in UML [3]), but
it is as close as we can currently get with JML.

• Generic types.JML does not support generic types, and so the BON-CASE tool will
not translate these constructs correctly. However, it will translate the classSET [G ]
in to JML’s JMLObjectSet , which supports heterogeneous sets of objects. We
anticipate changes being made to JML with the advent of Java 1.5, which will
support generic types.

• Covariant redefinition. In BON, features can be covariantly redefined in child
classes. JML, like Java, is no-variant. But JML does support overloading of meth-
ods based on signatures. Thus, covariantly redefined features in BON are translated
in to overloaded methods. This compromise allows the diagram to be translated and
reasoned about, but it does not correctly support dynamic dispatch.

• Information hiding.JML supports only public, private, and protected features. If a
BON feature is not private, then it is translated to a public feature in JML. Selective
exports as in BON cannot be expressed in JML.
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BON-CASE provides a code generator for JML, which implements the translation
rules suggested above. The JML code generator works by first internally generating
an abstract syntax tree for a BON model. The JML code generator then walks the ab-
stract syntax tree and emits JML code. A number of examples of JML specifications can
be found in [10]; these automatically generated specifications have been processed and
checked by the JML checker. The processing carried out has been syntax and type check-
ing, primarily, although we have annotated the generated JML specifications with Java
code in order to carry out run-time assertion checking with the JML tool suite as well.
Type errors discovered by the JML checker have been assessed and used to manually cor-
rect the BON specifications. Thus, we have been able to use the JML checker to analyze
our BON specifications, as well as to give us greater assurance that the translation from
BON to JML has been implemented correctly.

Currently, the JML tool suite provides a run-time assertion checker, a type checker,
and a documentation generator. Ongoing work on JML, in collaboration with the LOOP
project and the ESC/Java project, has focused on developing more sophisticated tool sup-
port. In particular, work is proceeding on the use of automated theorem provers – partic-
ularly Isabelle and PVS – for reasoning about JML specifications. This is being carried
out under the auspices of the LOOP project, based on their translation of a subset of Java
in to PVS and Isabelle theories. We envision making use of this work for reasoning about
specifications generated automatically from BON-CASE as well.

Extension of formal reasoning techniques

Extension of BON-CASE to alternative mechanisms of reasoning resolves to implement-
ing the template for code generation. This defines a translation that will produce an em-
bedding of a BON specification in an alternative formalism. This means providing a small
set of classes that define how BON concepts – e.g., classes, associations, inheritance, at-
tributes – are to be represented in the alternative formalism. We are currently working on
the definition of translators from BON to Object-Z [23], B machines [1], and PVS, with
the PVS translation the furthest along in development.

In [19], a refinement calculus for Eiffel was presented. This calculus lets a developer
take a BON class with pre/postconditions, and refine it to an Eiffel class, while producing
a proof that the Eiffel program satisfies the BON specification. This provides a mecha-
nism for formally verifying Eiffel programs. A set of proof obligations are defined that
would need to be discharged in order to verify that an Eiffel program satisfies a BON
specification. We aim to provide support for this process with BON-CASE. Support will
be partially provided by the aforementioned code generator for PVS. We envision the
proof obligations that arise during a refinement process to be automatically translated in
to PVS conjectures, and thereafter the PVS system can be used to automatically or semi-
automatically discharge them, or to provide counterexamples. The proof obligations in
[19] have been designed, in particular, to lend themselves to automation via PVS.

VOL 1, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 91



BON-CASE: AN EXTENSIBLE CASE TOOL FOR FORMAL SPECIFICATION AND REASONING

6 ONGOING WORK, THE SINGLE MODEL PRINCIPLE,
AND VIEW CONSISTENCY

The single model principle (hereafter abbreviated asSMP) was discussed in some detail
earlier. We are attempting to implement the principle within the framework of BON-
CASE. This poses a number of research challenges and complexities, and work on sup-
porting the principle should be considered as ongoing. We now discuss some of these
challenges, while at the same time discuss ongoing and future work with BON-CASE.

Reverse engineering

A critical element of the SMP is the need to keep code and models consistent. We aim at
supporting this in part by providing forward generation of code from models, and reverse
engineering of models from code. The former is implemented in the tool, and an alpha
release of the tool that implements reverse engineering of BON models from Eiffel code
has recently been made available.

Generation of alternative views

Another key element of the SMP is that different views of a system should be consistent
by construction, or tools and algorithms should be provided by which consistency can be
checked. It may be desirable to support further views of a system via automatic genera-
tion, beyond those provided currently with BON-CASE. For example, it may be desirable
to provide a finite state machine view in order to depict how an object reacts to a message
appearing in a dynamic diagram. We are currently exploring the forward generation of
state machines from BON static and dynamic diagrams, focusing on the use of pre- and
postconditions to drive the translation. This will likely follow the work of Graham on
SOMA [8].

Consistency checking

The previous sub-section discussed the provision of new views of a system via automatic
generation, guaranteeing consistency. It is also desirable to be able to check the consis-
tency of existing views. The BON metamodel, currently implemented in BON-CASE,
provides a number of rules for guaranteeing that static and dynamic diagrams are consis-
tent. However, the metamodel implementation cannot check all elements of consistency.
Consider a static diagram containing a number of classes with pre- and postconditions,
and a dynamic diagram depicting a number of messages. A message in BON represents
a feature call; thus, for a message to be valid, the receiving object must provide a cor-
responding feature, and it must be accessible to the client that is sending the message.
However, the precondition of the feature being invokedmust be truewhen the message
is sent; otherwise the message is illegal. The precondition can only be true providing
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that previous messages that have been sent have left the system in a state satisfying the
precondition.

This last type of consistency constraint is not present in the BON metamodel imple-
mented in BON-CASE. To check that a precondition of a feature is enabled requires
theorem proving technology in its full generality. In [21], a necessary and sufficient
condition for static and dynamic diagram consistency (where static diagrams include
pre/postconditions) is presented, and it is shown how to prove that the condition holds
using the PVS theorem prover [16]. This latter work shows how to prove the consistency
of a suite of static and dynamic diagrams by generating a collection of PVS theories.

7 CONCLUSIONS

We have given an overview of the functionality and design of BON-CASE, an extensible
and powerful CASE tool for producing BON models and for supporting formal reasoning
about such models. In particular, BON-CASE currently supports a lightweight integration
of BON with JML, so as to effect use of JML’s formal techniques and tools for reasoning.
In integrating BON-CASE with JML, we encountered a number of challenges, which will
arise when integrating the tool with further formal techniques. The key problem that we
encountered with providing formal reasoning techniques for BON was in precisely defin-
ing the translation from BON to JML. Two points are worth noting about such translations,
since these issues will arise when integrating new formal techniques with BON-CASE.

• It is typically difficult to define complete translations between specification lan-
guages that are also semantics-preserving, because of the differences in expressive-
ness of the languages. A semantics-preserving translation may be definable on a
subset of a language (as is the case with mapping BON to JML). By presenting the
translation systematically and exhaustively, we can provide greater confidence that
the translation is actually sound. It is also advantageous if we can make use of tools,
e.g., checkers, simulators, and theorem provers, to help validate the translation by
analyzing its results.

• A useful language translation will be:

– semantics preservingon a not necessarily strict subset of the source language

– refinement preserving[5]. That is, if in a source language a specificationA
can be implemented by a specificationB , then the translation ofA should be
implemented by the translation ofB as well. The translation of BON to JML
preserves refinement at the level of methods of classes.

– structure preserving: the architectural style of a specification in the source
language should be preserved in the translation. The translation of BON to
JML is structure preserving.

A limitation with BON-CASE and its support for formal reasoning is the inability to
reverse the translation, i.e., to take modified JML specifications and reverse engineer a
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BON specification from it. Currently, changes in JML specifications have to be manually
inserted into the original BON specification. We are currently defining a reverse mapping,
from JML to BON, and plan to implement it once the reverse engineering of BON models
from Eiffel programs is stable. In terms of further support for formal techniques, we are
also aiming to extend the tool with further target languages, e.g., Object-Z documents
expressed in XML. The latter, in particular, should be straightforward to implement since
the CASE tool already supports generation of XML. As well, we are considering how
to apply this work to UML. Because the BON-CASE tool provides a separate package
implementing presentation style, and a further package for implementing the metamodel,
it should be possible to produce a version of the tool applicable to UML modelling –
or which can generate UML diagrams as a view of the BON models – and automatic
generation of JML specifications, as well.
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