An Introduction to PVS Metamodelling with PVS

Richard Paige Department of Computer Science University of York, York, U.K. <u>paige@cs.york.ac.uk</u>

and

Department of Computer Science York University, Toronto, Canada.

PVS: What Is It?

A verification system with

a general-purpose formal specification language, associated with a *theorem prover, model checker*, and related tools (browser, doc. generator).

Freely distributed by SRI, currently on v2.4

- Runs on Solaris and Linux, UI based on Emacs and Tcl/Tk
- Used in both academia and industry
- Rich specification language, powerful prover, expressive libraries, wealth of support.
- Applications: safety critical systems, hardware, mathematics, distributed algorithms

Overview

- Introduction to the PVS specification language
- ➢ Look-and-feel of the prover.
 - Some key prover commands.
- > Several little examples.
- ➢ Using PVS for
 - meta-modelling
 - expressing object-oriented models (particularly BON)
 - conformance and consistency checking

PVS Specification Language

... is an enriched typed λ -calculus.

If you're comfortable with functional programming, you'll be comfortable with PVS.

> Key aspects:

- Type constructors for restricting the domain and range of operations.
- Rich expression language.
- > Parameterized and hierarchical specification.

Types

> A: TYPE =
$$(p)$$

More on Types

```
Lots of predefined subtypes, eg.,
```

```
nat: TYPE = { n:int | n >=0 }
subrange(n,m:int): TYPE =
{ i:int | n<=i & i<=m }</pre>
```

```
Dependent types allow later types to depend on earlier ones.
```

```
date:TYPE =
```

```
[# month:subrange(1,12),
```

```
day:subrange(1,num_of_days(month))
```

#]

Predicate subtypes are used to constrain domain/range of operations and to define partial functions.

Expressions

- Higher-order logic (&, OR, =>, ..., FORALL, EXISTS)
- Conditionals
 - > IF c THEN e1 ELSE e2 ENDIF
 - > COND c1->e1, c2->e2, c3->e3 ENDCOND
- Record overriding
 - id WITH [(0):=42,(1):=12]
- Recursive functions
- fac(n:nat): RECURSIVE nat =
 - IF n=0 THEN 1 ELSE n*fac(n-1) ENDIF MEASURE n
- Inductive definitions, tables 7

Type Correctness Conditions (TCCs)

- PVS must check that the expressions that you write are well-typed.
- fac(n:nat): RECURSIVE nat =

IF n=0 THEN 1 ELSE n*fac(n-1) ENDIF

MEASURE n

Function **fac** is well-typed if

 \rightarrow n/=0 => n-1>=0 (the argument is a nat)

 \rightarrow n/=0 => n-1<n (termination).

The type checker (M-x tc) generates type correctness conditions (TCCs)

Example TCCs for factorial

fac_TCC1: OBLIGATION FORALL (n:nat): n/=0 => n-1 >= 0

fac_TCC2: OBLIGATION FORALL (n:nat): n/=0 => n-1 < n</pre>

TCCs (Continued)

Expressions are only considered to be well-typed after all TCCs have been proven.

- Type checking in PVS is *undecidable* (because of predicate subtypes).
- + The PVS prover will automatically discharge most TCCs that crop up in practice.

Why aren't there more TCCs in preceding, eg., for **n*fac(n-1)** of type **nat**?

Suppressing TCC Generation

The type checker "knows" that

JUDGEMENT *(i,j) HAS_TYPE nat

JUDGEMENT 1 HAS_TYPE posint

Judgements are a means for controlling the generation of TCCs.

Inference is carried out behind-the-scenes.

Judgements can be arbitrarily complex and useful.

```
JUDGEMENT inverse(f:(bijective?[D,R]))
HAS_TYPE (bijective?[R,D])
JUDGEMENT union(a:(nonempty?), b:set)
HAS_TYPE (nonempty?)
11
```

Theories

- Specifications are built from *theories*.
- > Declarations introduce types, variables, constants, formulae, etc.

```
div: THEORY % natural division
BEGIN
posnat: TYPE = { n:nat | n>0 }
a: VAR nat; b: VAR posnat
below(b): TYPE = { n:nat | n<b }
div(a,b): [ nat, below(b) ] % tuple
divchar: AXIOM
LET (q,r) = div(a,b) IN a=q*b+r
END div</pre>
```

Theories (II)

- Theories may be parametric in types, constants, and functions.
- wf_induction[T:TYPE,<:(well_founded?[T])]: THEORY</pre>
- Theories are hierarchical and can import others.
 IMPORTING wf_induction[nat, <]</p>
- The built-in prelude and loadable libraries provide standard specs and proven facts for a large number of theories.

Example: Division Algorithm

```
euclid: THEORY
BEGIN
  div(a:nat, b:nat): RECURSIVE [nat,below(b)] =
    IF a<b THEN (0,a)
    ELSE LET (q,r)=div(a-b,b) IN (q+1,r)
    ENDIF
    MEASURE a
END euclid
  Type checking (M-x tcp) yields two TCCs
% proved - complete
div_TCC1: OBLIGATION FORALL (a,b:nat)
   a>=b IMPLIES a-b>=0;
% unfinished
div TCC2: OBLIGATION FORALL (a,b:nat)
   a>=b IMPLIES a-b<a;
```

Division Algorithm (Corrected)

```
euclid: THEORY
BEGIN
  div(a:nat, b:posnat): RECURSIVE
   [nat,below(b)] =
    IF a<b THEN (0,a)
    ELSE LET (q,r)=div(a-b,b) IN (q+1,r)
    ENDIF
    MEASURE a
END euclid
> Type checking yields
     2 TCCs, 2 proved, 0 unproved
which does not necessarily mean div is correct!
```

Division Alternative Specification

```
div: THEORY
BEGIN
  a: VAR nat; b: VAR posnat; q: VAR nat
  rem(a,b,q): TYPE =
    { r:below(b) | a=q*b+r }
  div(a,b): RECURSIVE
    [# q:nat, r: rem(a,b,q) #] =
    IF a<b THEN
      (# q:=0, r:=a #)
    ELSE
      LET rec=div(a-b,b) IN
        (# q:=rec'q+1, r:=rec'r #)
    ENDIF
    MEASURE a
END div
```

Division TCCs

- div_TCC1: OBLIGATION
 FORALL (a,b): a<b IMPLIES a<b AND a=a</pre>
- div_TCC2: OBLIGATION
 FORALL (a,b): a>=b IMPLIES a-b >= 0
- div_TCC3: OBLIGATION
 FORALL (a,b): a>=b IMPLIES a-b<a/pre>
- > All TCCs are proved automatically by the typechecker.

Animation

- Instead of doing full verification, functions can be validated in PVS via execution:
 - M-x pvs-ground-evaluator

```
<GndEval> "div(234565123,23123543)"
; cpu time (total) 0 msec user, 0 msec system
==>
```

- (# q:=101, r:= 10167280 #)
- Question: is this useful in metamodel validation?

Design Elements in the PVS Prover

- ➢ Heuristic automation for "obvious" cases.
- Leave the human free to concentrate on and direct steps that require real insight.
- Sequent calculus presentation

$\{-1\}$	A			
{-1} {-2}	В			
[-3]	C			
		 -		
[1]	S			
{2}	Т			
T	•	 _	 	

- Intuitive interpretation: A & B & C => S OR T
- > PVS maintains proof tree of sequents.

Interaction

- > Basic tactics exist to manipulate these sequents.
- Propositional rules
 - > (flatten), (split), (lift-if)
- > Quantifier rules
 - > (skolem), (inst)
- Tactic language (try), (then), (repeat) for defining higher-level proof strategies.

```
(defstep prop ()
```

```
(try (flatten) (prop) (try (split) (prop)
(skip))) ...)
```

Automation

- Automate (almost) everything that is decidable!
- Propositional calculus (prop), (bddsimp)
- Equality reasoning with uninterpreted function symbols

x=y & f(f(f(x))) = f(x) => f(f(f(f(f(y))))) = f(x)

- Model checking (model-check)
- Automated instantiation and skolemization (skosimp)
- Workhorse: (grind)
 - combination of simplifications, rewriting, propositional reasoning, decision procedures, quantifier reasoning.
- Induction strategies.

Prover Infrastructure

- Browsing facilities locate and display definitions and find formulae that reference a name.
- > Proof replay, stepping, editing.
- ➢ Graphical display of proof trees.
- Lemmas can be proved in any order.
- > Introduce/modify lemmas on the fly.
- Proof chain analysis keeps you honest!

Metamodelling

- A modelling language (eg., BON, UML, OCL) consists of
 - > a notation (syntax and presentation style)
 - > a metamodel: well-formedness constraints
- A metamodel captures the rules that "good" (wellformed) models in the language must obey.

> Examples:

- Associations are directed between from a class or cluster to a class or cluster.
- Classes cannot inherit from themselves.

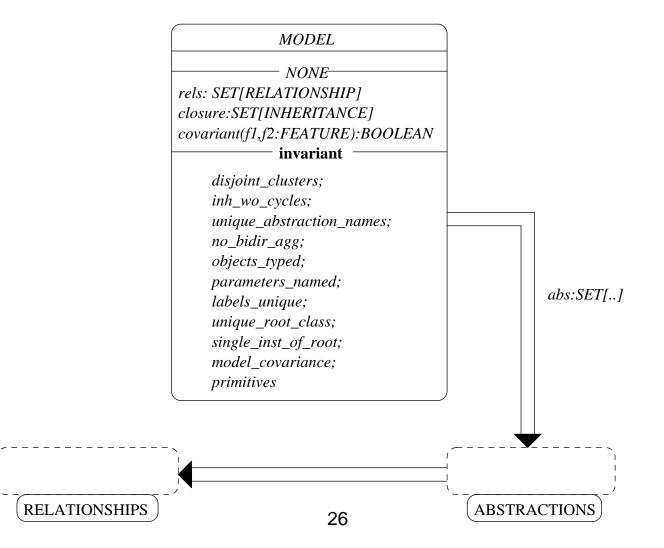
Metamodelling

- Distinction between well-formedness rules (semantic/contextual analysis) and syntactic rules (grammar/tokens) is fuzzy.
 - 2uworks.org RFP for UML 2.0 includes both abstract syntax and contextual analysis rules in metamodel.
- If a metamodel is viewed as a specification to be given to tool builders, then this is not unreasonable.
 - ...but it can make your metamodel much larger and thus in need of better structuring mechanisms.

Metamodelling with PVS

- Using a tool like PVS to express a metamodel has a number of benefits:
 - Machine-checkable syntax.
 - > Type checker.
 - Prover can be used to validate metamodel.
 - Ground evaluator can be used for testing.
 - Built-in theories can simplify the process of expressing the metamodel.
- But metamodels are usually expressed in OO languages ... and PVS is not OO!

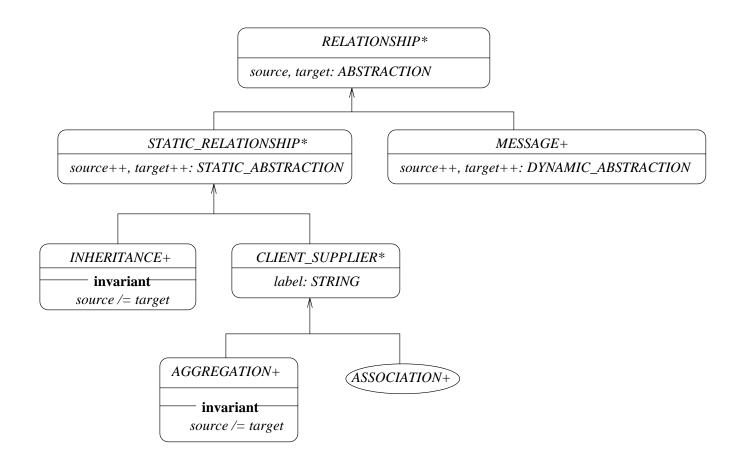
Typical Metamodel for BON



Abstractions Cluster



Relationships Cluster



Expressing the BON Metamodel in PVS

- Easiest approach: map the BON specification of the metamodel directly into PVS.
- ➢ Key questions to answer:
 - How to represent classes and objects in PVS?
 - How to represent client-supplier and inheritance?
 - How to represent the class invariants?
 - ➢ How to represent clusters?
 - How to represent features of classes?
- Answering such questions will let us represent not only the BON metamodel in PVS, but BON models as well!
- Question: how does an instantiated metamodel compare with a model in PVS for reasoning?

Basic Approach

Specify class hierarchies as PVS types and subtypes.

ABSTRACTION: TYPE+ STATICABS, DYNABS: TYPE+ FROM ABSTRACTION CLUSTER, CLASS: TYPE+ FROM STATICABS

OBJECT, OBJECTCLUSTER: TYPE+ FROM DYNABS

FEATURE: TYPE+ QUERY, COMMAND: TYPE+ FROM FEATURE

Features of BON classes become functions:

deferred_class: [CLASS -> bool]
class_features: [CLASS -> set[FEATURE]]
feature_frame: [FEATURE -> set[QUERY]]

What is a BON Model?

> A BON model, in PVS, is just a record.

```
MODEL: TYPE+ =
  [# abst:set[ABS], rels: set[REL] #]
```

- Note that all abstractions (static and dynamic) are combined into one set.
- Projections from this to produce different views.

Clusters and Invariants

- Note that the BON metamodel has a number of clusters (Abstractions and Relationships).
- > These are mapped to PVS theories.
 - *Is there any need to parameterize these theories?*
- What about the invariant clauses of classes in the metamodel?
- > These can be mapped to PVS axioms.
 - In general, we'd like to avoid axioms when possible since they can introduce inconsistency.
 - > Use definitions if possible.

Example Axioms

% Inheritance relations cannot be from an abstraction to itself.
% A class cannot be its own parent.

inh_ax: AXIOM
(FORALL (i:INH): not (inh_source(i) = inh_target(i)))

% Clusters cannot contain themselves.

```
no_nesting_of_clusters: AXIOM
(FORALL (cl:CLUSTER) : not member(cl,cluster_contents(cl)))
```

% A deferred feature cannot also be effective.

```
deferred_not_effective: AXIOM
(FORALL (c:CLASS): (FORALL (f:FEATURE):
     (NOT (deferred_feature(c,f) IFF effective_feature(c,f)))))
```

Example Axioms (II)

% All feature calls that appear in a precondition obey the

% information hiding model.

```
valid_precondition_calls: AXIOM
(FORALL (c:CLASS):
  (FORALL (f:FEATURE):
    member(f, class_features(c)) IMPLIES
    (FORALL (call:CALL): member(call, calls_in_pre(f))
    IMPLIES
    QUERY_pred(f(call)) AND
    call_isvalid(f(call)))))
```

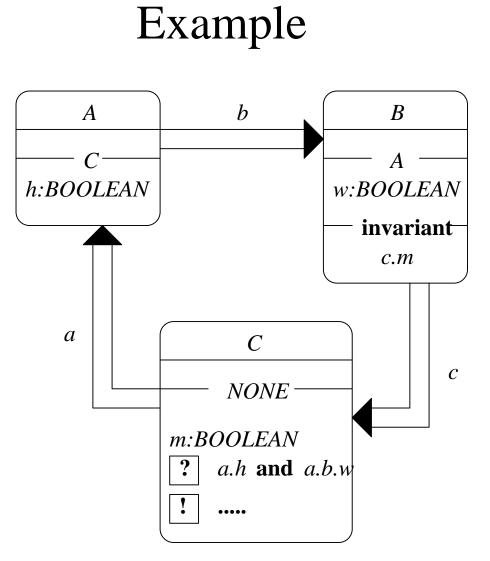
Type and Conformance Checking

- Running the type checker over the existing metamodel theories generates approximately 7 TCCs that are automatically proved.
- Earlier versions did not type check and revealed errors and omissions.
- What can we now do with the metamodel?
 - Conformance checking
 - > Extension to view consistency checking.

Conformance Checking

> Does a BON model satisfy the metamodel constraints?

- In practice this is implemented via a constrained GUI and by suitable algorithms (eg., no cycles in inheritance graph -> cycle detection algorithm).
- In practice and *in general* it cannot be implemented fully automatically.
- Approach 1: express a BON model in PVS and check that it satisfies the axioms.
 - If it does not, counterexamples will be generated, though sometimes they will be difficult to interpret.
- Approach 2: express that a BON model cannot exist, and show that fails to satisfy an axiom. (Often easier.)



PVS Theory

info2: THEORY

BEGIN

IMPORTING metamodel

a, b, c: VAR CLASS

h, w, m: VAR QUERY

ea, eb, ec: VAR ENTITY

xm: VAR MODEL

call1, call2, call_anon: VAR DIRECT_CALL

```
call3: VAR CHAINED_CALL
```

```
test_info_hiding: CONJECTURE
(NOT (EXISTS (xm:MODEL): EXISTS (a,b,c: CLASS):
EXISTS (h,w,m: QUERY): (EXISTS (ea,eb,ec:ENTITY):
EXISTS (call1, call2, call_anon: DIRECT_CALL):
EXISTS (call3: CHAINED_CALL):
member(c, accessors(h)) AND member(a,accessors(w)) AND
empty?(accessors(m)) AND call_entity(call2)=ec AND
call_entity(call2) = ec AND call_entity(call_anon)=eb AND
call_entity(call3) = ea AND member(call1,calls_in_pre(m)) AND
member(call3, calls_in_pre(m)) AND
member(call_anon,calls_in_pre(m)) AND
member(call2, calls_in_inv(b)))))
END info2
```

View Consistency

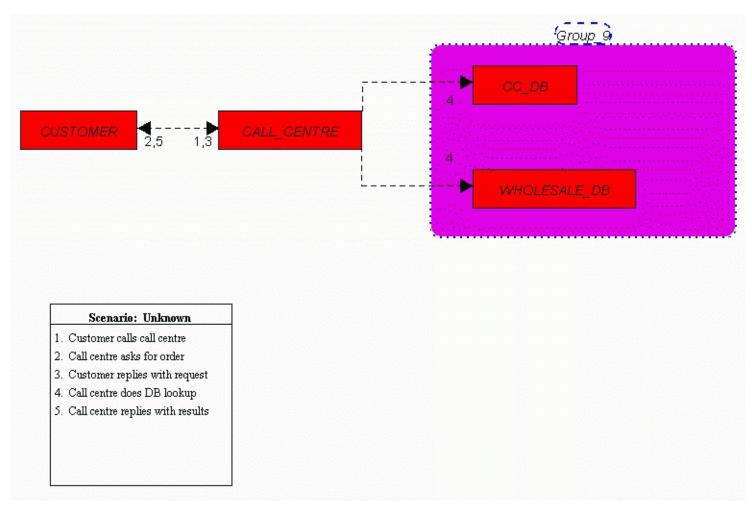
> BON provides two views of systems:

- static (architectural) view, represented using class diagrams and contracts.
- *dynamic* (message-passing) view, represented using collaboration diagrams
- The views may be constructed separately and thus may be inconsistent.

> Examples:

- object in dynamic view has no class in static view
- message in dynamic view is not enabled (precondition of routine in static view is not *true*)

BON Dynamic Diagrams



Extension of Metamodel

- In general, checking view consistency will require theorem proving support.
 - Key check: prove that message *i* in the dynamic view has its precondition enabled by preceding messages 1,...,*i*-1
- Effectively we want to show that for a collaboration diagram *cd* with sequence of calls *cd.calls*,

 $\forall i:2,..,cd.calls.length \bullet \exists cd.occurs \bullet$ (init; cd.calls(1).spec; ..; cd.calls(i-1).spec $\Rightarrow cd.calls(i).pre$)

Expression in PVS

- ➤ ... is non-trivial.
- > Need the following:
 - formalization of specifications (pre- and poststate) as new PVS type SPECTYPE
 - Formalization of sequencing ;
 - Formalization of specification state
- > Add extra functions to the metamodel:
 - projection of static and dynamic views
 - sequence of routine calls in dynamic view

Specifications and Routines

> Each routine is formalized as a SPECTYPE.

SPECTYPE: TYPE+ =
 [# old_state: set[ENTITY], new_state: set[ENTITY],
 value: [set[ENTITY], set[ENTITY] -> bool] #]

Given a routine and its pre/poststate we can produce a SPECTYPE using function

spec: [ROUTINE, set[ENTITY], set[ENTITY] -> SPECTYPE]

Axiom needed to combine pre/postcondition of the routine into a single predicate.

Additional Infrastructure

> Two functions are needed:

seqspecs: the sequential composition of two **SPECTYPE**s

seqspecsn: lifted version of **seqspecs** to finite sequences

View Consistency Axiom

```
views consistent ax2: AXIOM
(FORALL (mod1:MODEL): FORALL (c:CLASS):
  (FORALL (i:{j:nat|0<j & j<length(calls_model(mod1))}):
  LET
  loc spec:SPECTYPE =
    seq(spec(init(mod1)(c),oldstate(init(mod1)(c)),
             newstate(init(mod1)(c)),
        (seqspecsn(convert(sequence model(mod1)^(0,i-1))))
  IN
  (value(loc spec)(old state(loc spec), new state(loc spec))
    IMPLIES
  feature pre(calls model(mod1)(i),
              oldstate(calls model(mod1)(i),
    object class(msg target(sequence model(mod1)(i))))))))
```

Just Off the Press...

- ... there is a small example of a consistency checking attempt in PVS in
- R. Paige, J. Ostroff, P. Brooke, "Theorem Proving Support for View Consistency Checking", submitted to *L'Objet*, July 2002. (Draft available from the authors.)