
1

An Introduction to PVS
Metamodelling with PVS

Richard Paige

Department of Computer Science

University of York, York, U.K.

paige@cs.york.ac.uk

and

Department of Computer Science

York University, Toronto, Canada.

2

PVS: What Is It?

A verification system with
¾ a general-purpose formal specification language,

associated with a theorem prover, model checker, and
related tools (browser, doc. generator).

Freely distributed by SRI, currently on v2.4
¾ Runs on Solaris and Linux, UI based on Emacs and

Tcl/Tk
¾ Used in both academia and industry
¾ Rich specification language, powerful prover, expressive

libraries, wealth of support.
¾ Applications: safety critical systems, hardware,

mathematics, distributed algorithms

3

Overview

¾ Introduction to the PVS specification language

¾ Look-and-feel of the prover.
¾ Some key prover commands.

¾ Several little examples.

¾ Using PVS for
¾ meta-modelling

¾ expressing object-oriented models (particularly BON)

¾ conformance and consistency checking

4

PVS Specification Language

... is an enriched typed �-calculus.

¾ If you’ re comfortable with functional
programming, you’ ll be comfortable with PVS.

¾ Key aspects:
¾ Type constructors for restricting the domain and range

of operations.
¾ Rich expression language.
¾ Parameterized and hierarchical specif ication.

5

Types

Base types: eg., bool, int, nat

Function types, eg., [int -> [bool -> int]]

Enumeration types {a,b,c}

Tuple types [A,B]

Record types [#a:A, b:B #]

Mutually recursive data types (ADTs).

Predicate subtypes:
¾ A: TYPE = {x:B | p(x)}

¾ A: TYPE = (p)

6

More on Types
Lots of predefined subtypes, eg.,

nat: TYPE = { n:int | n >=0 }
subrange(n,m:int): TYPE =

{ i:int | n<=i & i<=m }

Dependent types allow later types to depend on earlier ones.
date:TYPE =

[# month:subrange(1,12),

day:subrange(1,num_of_days(month))

#]

Predicate subtypes are used to constrain domain/range of
operations and to define partial functions.

7

Expressions

¾ Higher-order logic (&, OR, =>, .., FORALL,
EXISTS)

¾ Conditionals
¾ IF c THEN e1 ELSE e2 ENDIF

¾ COND c1->e1, c2->e2, c3->e3 ENDCOND

¾ Record overriding
¾ id WITH [(0):=42,(1):=12]

¾ Recursive functions
fac(n:nat): RECURSIVE nat =
IF n=0 THEN 1 ELSE n*fac(n-1) ENDIF

MEASURE n

¾ Inductive definitions, tables

8

Type Correctness Conditions (TCCs)

¾ PVS must check that the expressions that you write are
well-typed.

fac(n:nat): RECURSIVE nat =

IF n=0 THEN 1 ELSE n*fac(n-1) ENDIF

MEASURE n

Function fac is well-typed if
¾ n/=0 => n-1>=0 (the argument is a nat)
¾ n/=0 => n-1<n (termination).
The type checker (M-x tc) generates type correctness

conditions (TCCs)

9

Example TCCs for factorial

fac_TCC1: OBLIGATION

FORALL (n:nat): n/=0 => n-1 >= 0

fac_TCC2: OBLIGATION

FORALL (n:nat): n/=0 => n-1 < n

10

TCCs (Continued)

Expressions are only considered to be well-typed after all
TCCs have been proven.

- Type checking in PVS is undecidable (because of predicate
subtypes).

+ The PVS prover will automatically discharge most TCCs
that crop up in practice.

Why aren’t there more TCCs in preceding, eg., for
n*fac(n-1) of type nat?

11

Suppressing TCC Generation

The type checker “knows” that
JUDGEMENT *(i,j) HAS_TYPE nat
JUDGEMENT 1 HAS_TYPE posint

Judgements are a means for controlli ng the generation of
TCCs.

Inference is carried out behind-the-scenes.
Judgements can be arbitrarily complex and useful.

JUDGEMENT inverse(f:(bijective?[D,R]))
HAS_TYPE (bijective?[R,D])

JUDGEMENT union(a:(nonempty?), b:set)

HAS_TYPE (nonempty?)

12

Theories

¾ Specifications are built from theories.

¾ Declarations introduce types, variables, constants, formulae, etc.

div: THEORY % natural division
BEGIN
posnat: TYPE = { n:nat | n>0 }
a: VAR nat; b: VAR posnat
below(b): TYPE = { n:nat | n<b }
div(a,b): [nat, below(b)] % tuple

divchar: AXIOM
LET (q,r) = div(a,b) IN a=q*b+r

END div

13

Theories (II)

¾ Theories may be parametric in types, constants,
and functions.

wf_induction[T:TYPE,<:(well_founded?[T])]: THEORY

¾ Theories are hierarchical and can import others.
IMPORTING wf_induction[nat, <]

¾ The built-in prelude and loadable libraries
provide standard specs and proven facts for a
large number of theories.

14

Example: Division Algorithm

euclid: THEORY
BEGIN
div(a:nat, b:nat): RECURSIVE [nat,below(b)] =
IF a<b THEN (0,a)
ELSE LET (q,r)=div(a-b,b) IN (q+1,r)
ENDIF
MEASURE a

END euclid

¾ Type checking (M-x tcp) yields two TCCs
% proved - complete

div_TCC1: OBLIGATION FORALL (a,b:nat)

a>=b IMPLIES a-b>=0;

% unfinished

div_TCC2: OBLIGATION FORALL (a,b:nat)

a>=b IMPLIES a-b<a;

15

Division Algorithm (Corrected)

euclid: THEORY
BEGIN
div(a:nat, b:posnat): RECURSIVE
[nat,below(b)] =
IF a<b THEN (0,a)
ELSE LET (q,r)=div(a-b,b) IN (q+1,r)
ENDIF
MEASURE a

END euclid

¾ Type checking yields
2 TCCs, 2 proved, 0 unproved

which does not necessarily mean div is correct!

16

Division
Alternative Specification

div: THEORY
BEGIN

a: VAR nat ; b: VAR posnat ; q: VAR nat
rem(a,b,q): TYPE =

{ r:below(b) | a=q*b+r }
div(a,b): RECURSIVE

[# q: nat , r: rem(a,b,q) #] =
IF a<b THEN

(# q:=0, r:=a #)
ELSE

LET rec =div(a - b,b) IN
(# q:= rec’q +1, r:= rec’r #)

ENDIF
MEASURE a

END div

17

Division TCCs

div_TCC1: OBLIGATION

FORALL (a,b): a<b IMPLIES a<b AND a=a

div_TCC2: OBLIGATION

FORALL (a,b): a>=b IMPLIES a-b >= 0

div_TCC3: OBLIGATION

FORALL (a,b): a>=b IMPLIES a-b<a

¾ All TCCs are proved automatically by the typechecker.

18

Animation

¾ Instead of doing full verification, functions can
be validated in PVS via execution:
¾ M-x pvs-ground-evaluator

<GndEval > “div(234565123,23123543)”

; cpu time (total) 0 msec user, 0 msec system

==>

(# q:=101, r:= 10167280 #)

¾ Question: is this useful in metamodel validation?

19

Design Elements in the PVS Prover

¾ Heuristic automation for “obvious” cases.

¾ Leave the human free to concentrate on and direct steps
that require real insight.

¾ Sequent calculus presentation
{-1} A
{-2} B
[-3] C
|-----------------
[1] S
{2} T

¾ Intuitive interpretation: A & B & C => S OR T

¾ PVS maintains proof tree of sequents.

20

Interaction

¾ Basic tactics exist to manipulate these sequents.

¾ Propositional rules
¾ (flatten), (split), (lift-if)

¾ Quantifier rules
¾ (skolem), (inst)

¾ Tactic language (try), (then), (repeat) for
defining higher-level proof strategies.

(defstep prop ()

(try (flatten) (prop) (try (split) (prop)
(skip))) ...)

21

Automation

¾ Automate (almost) everything that is decidable!
¾ Propositional calculus (prop), (bddsimp)

¾ Equality reasoning with uninterpreted function symbols

x=y & f(f(f(x))) = f(x) => f(f(f(f(f(y))))) = f(x)

¾ Model checking (model-check)

¾ Automated instantiation and skolemization (skosimp)

¾ Workhorse: (grind)

¾ combination of simplifications, rewriting, propositional reasoning,
decision procedures, quantifier reasoning.

¾ Induction strategies.

22

Prover Infrastructure

¾ Browsing facilities locate and display definitions
and find formulae that reference a name.

¾ Proof replay, stepping, editing.

¾ Graphical display of proof trees.

¾ Lemmas can be proved in any order.

¾ Introduce/modify lemmas on the fly.

¾ Proof chain analysis keeps you honest!

23

Metamodelli ng

¾ A modelling language (eg., BON, UML, OCL) consists
of
¾ a notation (syntax and presentation style)

¾ a metamodel: well -formedness constraints

¾ A metamodel captures the rules that “good” (well-
formed) models in the language must obey.

¾ Examples:
¾ Associations are directed between from a class or cluster to a

class or cluster.

¾ Classes cannot inherit from themselves.

24

Metamodelling

¾ Distinction between well-formedness rules
(semantic/contextual analysis) and syntactic rules
(grammar/tokens) is fuzzy.
¾ 2uworks.org RFP for UML 2.0 includes both abstract

syntax and contextual analysis rules in metamodel.

¾ If a metamodel is viewed as a specification to be
given to tool builders, then this is not
unreasonable.
¾ ...but it can make your metamodel much larger and

thus in need of better structuring mechanisms.

25

Metamodelling with PVS

¾ Using a tool like PVS to express a metamodel
has a number of benefits:
¾ Machine-checkable syntax.
¾ Type checker.
¾ Prover can be used to validate metamodel.
¾ Ground evaluator can be used for testing.
¾ Built-in theories can simplify the process of

expressing the metamodel.

¾ But metamodels are usually expressed in OO
languages ... and PVS is not OO!

26

Typical Metamodel for BON

invariant

disjoint_clusters;

unique_abstraction_names;
no_bidir_agg;
objects_typed;
parameters_named;

ABSTRACTIONSRELATIONSHIPS

abs:SET[..]labels_unique;

covariant(f1,f2:FEATURE):BOOLEAN
closure:SET[INHERITANCE]

inh_wo_cycles;

rels: SET[RELATIONSHIP]
NONE

MODEL

unique_root_class;
single_inst_of_root;

primitives
model_covariance;

27

Abstractions Cluster

contains+:SET[ABSTRACTION]

contains+:SET[ABSTRACTION]class:CLASS

contains+:
SET[ABSTRACTION]

invariant
invariant

contents:SET[..]

DYNAMIC_ABSTRACTION*

CLUSTER+

OBJECT+ OBJECT_CLUSTER+

ABSTRACTION*

invariant
source_is_current

STATIC_ABSTRACTION* contents:SET[..]

rels++:SET[MESSAGE]

contains*:SET[ABSTRACTION]
rels: SET[RELATIONSHIP]

rels++:SET[STATIC_RELATIONSHIP]

no_self_containment
no_self_containment

FEATURESclient_features,
features: SET[..]

add_client_features;
calls_are_queries;
no_name_clashes;
is_deferred_class;
deferred /= root;

deferred /= effective;
valid_class_inv;

feature_unique_names;
valid_static_rels;

invariant
all_names:SET[STRING]
redefined:SET[FEATURE]

external, root : BOOLEAN
deferred, effective, persistent,
super(f:FEATURE):FEATURE
parents: SET[CLASS]
rename_class
renamings:SET[RENAMING]
calls_in_inv:SET[CALL]

ASSERTION
invariant: DOUBLE_STATE_
contains+:SET[ABSTRACTION]

valid_pre_calls;

CLASS+

valid_post_calls;
valid_frames;

inv_consistency;
contract_consistency;

28

Relationships Cluster

STATIC_RELATIONSHIP*

CLIENT_SUPPLIER*

label: STRINGinvariant
source /= target

invariant
source /= target

source++, target++: STATIC_ABSTRACTION source++, target++: DYNAMIC_ABSTRACTION

RELATIONSHIP*

source, target: ABSTRACTION

MESSAGE+

INHERITANCE+

AGGREGATION+ ASSOCIATION+

29

Expressing the BON Metamodel in PVS

¾ Easiest approach: map the BON specification of the
metamodel directly into PVS.

¾ Key questions to answer:
¾ How to represent classes and objects in PVS?
¾ How to represent client-supplier and inheritance?
¾ How to represent the class invariants?
¾ How to represent clusters?
¾ How to represent features of classes?

¾ Answering such questions will let us represent not only
the BON metamodel in PVS, but BON models as well!

¾ Question: how does an instantiated metamodel compare
with a model in PVS for reasoning?

30

Basic Approach

¾ Specify class hierarchies as PVS types and subtypes.
ABSTRACTION: TYPE+
STATICABS, DYNABS: TYPE+ FROM ABSTRACTION
CLUSTER, CLASS: TYPE+ FROM STATICABS

OBJECT, OBJECTCLUSTER: TYPE+ FROM DYNABS

FEATURE: TYPE+
QUERY, COMMAND: TYPE+ FROM FEATURE

¾ Features of BON classes become functions:

deferred_class: [CLASS -> bool]

class_features: [CLASS -> set[FEATURE]]

feature_frame: [FEATURE -> set[QUERY]]

31

What is a BON Model?

¾ A BON model, in PVS, is just a record.

MODEL: TYPE+ =

[# abst:set[ABS], rels: set[REL] #]

¾ Note that all abstractions (static and dynamic) are
combined into one set.

¾ Projections from this to produce different views.

32

Clusters and Invariants

¾ Note that the BON metamodel has a number of clusters
(Abstractions and Relationships).

¾ These are mapped to PVS theories.
¾ Is there any need to parameterize these theories?

¾ What about the invariant clauses of classes in the
metamodel?

¾ These can be mapped to PVS axioms.
¾ In general, we’d like to avoid axioms when possible since they

can introduce inconsistency.

¾ Use definitions if possible.

33

Example Axioms

% Inheritance relations cannot be from an abstraction to itself.

% A class cannot be its own parent.

inh_ax: AXIOM

(FORALL (i:INH): not (inh_source(i) = inh_target(i)))

% Clusters cannot contain themselves.

no_nesting_of_clusters: AXIOM

(FORALL (cl:CLUSTER) : not member(cl,cluster_contents(cl)))

% A deferred feature cannot also be effective.

deferred_not_effective: AXIOM

(FORALL (c:CLASS): (FORALL (f:FEATURE):

(NOT (deferred_feature(c,f) IFF effective_feature(c,f)))))

34

Example Axioms (II)

% All feature calls that appear in a precondition obey the

% information hiding model.

valid_precondition_calls: AXIOM

(FORALL (c:CLASS):

(FORALL (f:FEATURE):

member(f, class_features(c)) IMPLIES

(FORALL (call:CALL): member(call, calls_in_pre(f))

IMPLIES

QUERY_pred(f(call)) AND

call_isvalid(f(call)))))

35

Type and Conformance Checking

¾ Running the type checker over the existing
metamodel theories generates approximately 7
TCCs that are automatically proved.

¾ Earlier versions did not type check and revealed
errors and omissions.

¾ What can we now do with the metamodel?
¾ Conformance checking

¾ Extension to view consistency checking.

36

Conformance Checking

¾ Does a BON model satisfy the metamodel constraints?
¾ In practice this is implemented via a constrained GUI and by

suitable algorithms (eg., no cycles in inheritance graph -> cycle
detection algorithm).

¾ In practice and in general it cannot be implemented fully
automatically.

¾ Approach 1: express a BON model in PVS and check
that it satisfies the axioms.
¾ If it does not, counterexamples will be generated, though

sometimes they will be difficult to interpret.

¾ Approach 2: express that a BON model cannot exist,
and show that fails to satisfy an axiom. (Often easier.)

37

Example

invariant
c.m

B

A

?

!

a.h and a.b.w

.....

C

NONE

a

b

c

m:BOOLEAN

w:BOOLEAN
C

A

h:BOOLEAN

38

PVS Theory
info2: THEORY

BEGIN

IMPORTING metamodel

a, b, c: VAR CLASS

h, w, m: VAR QUERY

ea, eb, ec: VAR ENTITY

xm: VAR MODEL

call1, call2, call_anon: VAR DIRECT_CALL

call3: VAR CHAINED_CALL

test_info_hiding: CONJECTURE

(NOT (EXISTS (xm:MODEL): EXISTS (a,b,c: CLASS):

EXISTS (h,w,m: QUERY): (EXISTS (ea,eb,ec:ENTITY):

EXISTS (call1, call2, call_anon: DIRECT_CALL):

EXISTS (call3: CHAINED_CALL):

member(c, accessors(h)) AND member(a,accessors(w)) AND

empty?(accessors(m)) AND call_entity(call2)=ec AND

call_entity(call2) = ec AND call_entity(call_anon)=eb AND

call_entity(call3) = ea AND member(call1,calls_in_pre(m)) AND

member(call3, calls_in_pre(m)) AND
member(call_anon,calls_in_pre(m)) AND

member(call2, calls_in_inv(b)))))

END info2

39

View Consistency

¾ BON provides two views of systems:
¾ static (architectural) view, represented using class diagrams and

contracts.

¾ dynamic (message-passing) view, represented using collaboration
diagrams

¾ The views may be constructed separately and thus may
be inconsistent.

¾ Examples:
¾ object in dynamic view has no class in static view

¾ message in dynamic view is not enabled (precondition of routine
in static view is not true)

40

BON Dynamic Diagrams

41

Extension of Metamodel

¾ In general, checking view consistency will require
theorem proving support.
¾ Key check: prove that message i in the dynamic view has its

precondition enabled by preceding messages 1,..,i-1

¾ Effectively we want to show that for a collaboration
diagram cd with sequence of calls cd.calls,

∀i:2,..,cd.calls.length •∃ cd.occurs•
(init; cd.calls(1).spec ; .. ; cd.calls(i-1).spec

⇒ cd.calls(i).pre)

42

Expression in PVS

¾ ... is non-trivial.

¾ Need the following:
¾ formalization of specifications (pre- and poststate) as

new PVS type SPECTYPE

¾ formalization of sequencing ;

¾ formalization of specification state

¾ Add extra functions to the metamodel:
¾ projection of static and dynamic views

¾ sequence of routine calls in dynamic view

43

Specifications and Routines

¾ Each routine is formalized as a SPECTYPE.

SPECTYPE: TYPE+ =

[# old_state: set[ENTITY], new_state: set[ENTITY],

value: [set[ENTITY], set[ENTITY] -> bool] #]

¾ Given a routine and its pre/poststate we can produce a
SPECTYPE using function

spec: [ROUTINE, set[ENTITY], set[ENTITY] -> SPECTYPE]

¾ Axiom needed to combine pre/postcondition of the
routine into a single predicate.

44

Additional Infrastructure

¾ Two functions are needed:
¾ seqspecs: the sequential composition of two SPECTYPEs

¾ seqspecsn: lifted version of seqspecs to finite sequences

seqspecs(s1,s2:SPECTYPE): SPECTYPE =

(# old_state := old_state(s1),

new_state := new_state(s2),

value := (LAMBDA (o:{p1:set[ENTITY] | p1=old_state(s1)}),

(n:{p2:set[ENTITY] | p2=new_state(s2)}):

(EXISTS (i: set[ENTITY]):

value(s1)(o,i) AND value(s2)(i,n)))

#)

45

View Consistency Axiom

views_consistent_ax2: AXIOM

(FORALL (mod1:MODEL): FORALL (c:CLASS):

(FORALL (i:{j:nat|0<j & j<length(calls_model(mod1))}):

LET

loc_spec:SPECTYPE =

seq(spec(init(mod1)(c),oldstate(init(mod1)(c)),

newstate(init(mod1)(c)),

(seqspecsn(convert(sequence_model(mod1)^(0,i-1))))

IN

(value(loc_spec)(old_state(loc_spec),new_state(loc_spec))
IMPLIES

feature_pre(calls_model(mod1)(i),

oldstate(calls_model(mod1)(i),
object_class(msg_target(sequence_model(mod1)(i))))))))

46

Just Off the Press...

¾ ... there is a small example of a consistency
checking attempt in PVS in

R. Paige, J. Ostroff , P. Brooke, “Theorem Proving
Support for View Consistency Checking”,
submitted to L’Objet, July 2002. (Draft available
from the authors.)

