
From Z to BON/Eiffel

Richard F. Paige and Jonathan S. Ostroff
Department of Computer Science, York University

Toronto, Ontario M3J 1P3, Canada.
paige,jonathan @cs.yorku.ca

Abstract

It is shown how to make a transition from the Z formal
notation [3] to the Business Object Notation (BON) [4]. It
is demonstrated that BON has the expressive power of Z,
with the additional advantages of object-orientation and a
supporting seamless development method. The transition is
illustrated for some widely used Z constructs. The trans-
lation lays the groundwork for a semi-automated tool for
extracting classes from Z specifications.

1. Introduction

The Z formal specification notation [3], with a rich col-
lection of concepts based on typed set theory, is receiving
growing attention. One noted limitation with Z is that it can
be hard to relate specifications to implementations. Tech-
niques have been developed for Z to bridge the gap be-
tween specification and implementation—for example, via
translation to a wide-spectrum language, or by embedding
a small programming language in Z—but these approaches
suffer from problems.

A bridge to an executable language must still be made.
If an object-oriented implementation is desired, the
transition from Z will be all the more complex.

The notations used in bridging the gap may be inac-
cessible to practitioners, and likely will be weakly sup-
ported by industrial strength software tools.

With these limitations in mind, we are interested in show-
ing the feasibility of bridging the gap from Z to implemen-
tations without all of the problems inherent in previous ap-
proaches. In particular, we want to link Z with BON [4],
which is part of a seamless development method that can re-
sult in Eiffel programs, thus providing the ability to develop
object-oriented programs from Z specifications.

As an auxiliary goal, we also aim to show that BON
has the expressive capabilities of Z with the advantages of
object-orientation and a seamless development method.

Finally, the transition from Z to BON lays the ground-
work for a semi-automated tool for objectifying Z, by ex-
tracting class specifications from Z specifications.

The link between Z and BON is based on defining trans-
lations between the notations. We illustrate the principle
by giving translations for some widely used Z constructs in
Section 3. Further details are in [2].

Because Z is not an object-oriented notation, the map-
ping from Z to BON must produce classes. This is done
by, effectively, following a standard Z style of specification,
which encompasses first specifying system state, and then
operations that use the state.

2. Overview of BON

We assume some familiarity with Z; the standard Z ref-
erence is [3]. We summarize some key BON concepts here.

BON is a simple graphical and textual notation for spec-
ifying and describing object-oriented systems. It provides
mechanisms for specifying inheritance and client-supplier
relationships between classes, and has a collection of tech-
niques for expressing dynamic relationships. The notation
also includes a predicative assertion language for specifying
preconditions and postconditions of class features.

BON is supported by a rich set of tools [1], and is de-
signed to work seamlessly with the Eiffel programming lan-
guage. An implication of this is that in BON specifications
the Eiffel class libraries can be used.

Here is an example of a BON specification of a class
CITIZEN (BON also has an equivalent graphical syntax; we
use the textual notation in this short paper for conciseness).
The class has four attributes, a BOOLEAN query single,
and a state-changing command divorce. require clauses are
preconditions, and ensure clauses are postconditions. Post-
conditions can refer to the value of an expression when the
feature was called by prefixing the expression with the key-
word old. Classes may also have invariants, which are pred-
icates that must be maintained by all visible routines. Visi-
bility of features is expressed by annotating feature clauses
with lists of permitted client classes.



class CITIZEN feature NONE

name sex age VALUE

spouse CITIZEN

feature ANY

single BOOLEAN ensure Result spouse Void end

divorce

require not single

ensure single and old spouse single end

end

3. Translating Z to BON

We now outline a semi-automatable scheme for translat-
ing a Z specification into a BON specification. A practical
difficulty with the translation is that Z is not object-oriented,
unlike BON. In the translation, we must therefore produce
classes from collections of related Z schemas. The rela-
tionship that we use is that if operation schemas share state
schemas, then the translated operations and shared variables
should belong to the same class.

In translating Z to BON, there are three significant Z
concepts that we have to be able to translate: the Z toolkit,
which includes basic types, constructors, and operators; Z
state schemas, which are used to specify the data of a sys-
tem; and Z operation schemas, which specify system op-
erations. We illustrate the translation from Z to BON by
example. Further details are available in [2].

3.1. Translating Z toolkit features

The Z toolkit is rich and substantial. We will not attempt
to write down a complete translation into BON, but will il-
lustrate a general approach by example.

A useful Z toolkit construct is the function type. Con-
sider the state schema BirthdayBook, below.

BirthdayBook
known NAME
birthday NAME DATE

known dom birthday

birthday is a partial function from domain NAME to range
DATE (where NAME and DATE are declared sets which can
be translated into BON deferred classes). Partial functions
can be extended, restricted, and applied to arguments. There
is no equivalent to function types in BON, so we must for-
mulate one using BON’s assertion language.

To represent Z function types, we first represent tuples
using the generic BON class PAIR parameterized by two
types F and G.

class PAIR F G feature first F second G end

We introduce a generic class FUNC, shown in Figure 1,
which is a translation of the Z function type (the inherited
query has in Figure 1 is set membership). FUNC inher-
its from class SET; a function is-a set of ordered pairs. In
translating the full toolkit, a class would be produced for
each construct.

Other toolkit features can be translated in a similar man-
ner. We envision producing an object-oriented BON library
that expresses the concepts of the Z toolkit.

3.2. Translating Z state schemas

A Z state schema describes the data that are to be used in
a system. Here is an example for translating the schema
BirthdayBook introduced in Section 3.1. BirthdayBook
can be translated into the following BON class (visibility
clauses may also be added).

class BIRTHDAY BOOK feature

known SET NAME

birthday FUNC NAME DATE

invariant known birthday domain

end

The general translation from a state schema to a BON class
is as follows. Let S be the following schema.

S a T ak Tk P

(The Ti are Z types, and P is a predicate on prestate.) S
is translated to the following textual BON class, under the
assumption that the types T Tk can be translated into
BON types or classes.

class S feature a T ak Tk invariant P end

where P in the class invariant of S is a syntactic translation
of the Z predicate P into BON’s predicate notation.

A state schema can include others (by writing the name
of a schema in its declaration part). Such hierarchies can be
flattened by substituting the body of the included schema
for all occurrences of its name. Schema inclusion can be
translated by first flattening the hierarchies. An alternative
approach is to treat inclusion as a has-a relationship, and
to translate each state schema as a separate class, ignoring
inclusion. The schema inclusion can then be translated to a
client-supplier relationship [4], where the included schema
is a supplier to the including schema. The latter approach
can preserve some of the structure of the Z specification.



class FUNC D R inherit SET PAIR D R feature

domain SET D ensure Result d D p PAIR D R p first d has p end

select d D R d

require p PAIR D R p first d has p

ensure p PAIR D R p first d has p Result p second

end

override d D r R

ensure q p PAIR D R has p p first d p second r p first d p second r has q

end

invariant d D r r R select d r select d r r r

end

Figure 1. A BON function type class

3.3. Translating Z operation schemas

An operation schema represents some operation that the
system can perform. Typically, an operation schema in-
cludes a state schema, and may modify the system state in
some way. Here is an example. An operation given in the
birthday book example in [3] is AddBirthday, which adds a
new name and date to the birthday book.

AddBirthday
BirthdayBook

n NAME d DATE

n known
birthday birthday n d

The schema includes (via convention) schema
BirthdayBook. The means include two versions of
BirthdayBook, one with all variables unprimed, and the
other with all variables annotated with primes. n and d
are inputs to the operation. The operation establishes a final
state where birthday has been extended (via the override
operation ) to include the mapping from n to d .

Translating an operation schema requires transforming
the schema to a routine of a class. This class is the result of
translating a state schema that is affected by the operation.
In the example, BirthdayBook is changed by AddBirthday,
thus operation schema AddBirthday is translated into a com-
mand of class BIRTHDAY BOOK.

AddBirthday name NAME date DATE

require name known

ensure birthday old birthday override name date

end

It is possible that two or more operation schemas can in-
clude some of the same state schemas. When translating

these schemas, we have to decide to which class the oper-
ations should belong. A simple syntactic algorithm can be
used, based on the occurrence of a state schema in an op-
eration schema. This algorithm would form the basis of a
semi-automated tool that maps Z into BON.

The algorithm parses a Z specification consisting of an
arbitrary number of schemas. If two operation schemas in-
clude some or all of the same state schemas, then the oper-
ations as well as the attributes of the state schemas should
belong to the same class. The translator or the algorithm
can decide the name of this class; the algorithm might sim-
ply choose the name of the first included state schema. This
simple approach may lose some of the structure of the Z
specification. Therefore, it should be used to give an ap-
proximation to a class design which can be further refined
by developers to include hierarchical information.

The general translation from an operation schema into a
feature is as follows. Let Op be an operation schema, and
let S be one or more state schemas with variables w. Let T
be zero or more state schemas that Op can use, but cannot
change (expressed using the convention).

Op S T i I o O P

The operation has inputs i and produces o . The state com-
ponents of S and T will be mapped to attributes of a class.
The schema Op will then be translated to a feature of the
same class that takes the following form.

Op i I O

require w o P

ensure P old w w w w Result o

end

The require clause is the precondition of the operation
schema Op. Existential quantification over the poststate re-
veals only those terms that constrain the precondition in P.



The ensure clause is the property of the operation schema,
but with Z’s primed-unprimed notation rewritten to BON’s
old notation. The ensure clause uses the Z substitution no-
tation: P a b means “substitute a for b in P”. Substitution
is left-associative. Thus, old w is first substituted for w in
P, and then w is substituted for w .

If either schema inputs or outputs are omitted, then they
are omitted from the BON translation. If o is missing, then
Op is a command, and the last substitution involving Result
can be dropped. An operation that has both a inclusion
and outputs corresponds to an operation that is both func-
tion and procedure. BON does not allow features with side-
effects, so we cannot translate such schemas directly. In-
stead, we can make the operation results attributes of the
class to which the translated command belongs.

Z operations can be specified by parts, using the schema
calculus. To translate such composed operation schemas,
we can flatten the compositions. This feature of Z is most
frequently used to specify error conditions of operations.
As we shall discuss later, this feature can be viewed as at
odds with BON’s design-by-contract.

3.4. Example: The Birthday Book

The Birthday Book example [3] is a well-known and
standard problem for explaining the use of Z. A BON trans-
lation of the Z birthday book specification is given below as
a single class, BIRTHDAY BOOK.

class BIRTHDAY BOOK creation InitBirthdayBook feature

known SET NAME birthday FUNC NAME DATE

AddBirthday name NAME date DATE is

require name known

ensure birthday old birthday override name date

end

FindBirthday name NAME DATE

require name known

ensure Result birthday select name

end

Remind today DATE SET NAME

ensure Result n NAME birthday select n today

end

InitBirthdayBook ensure known empty end

invariant known birthday domain

end

Class BIRTHDAY BOOK can be used to create as many
instances of the BIRTHDAY BOOK as needed. Schema
BirthdayBook can also be used as a type, but to create mul-
tiple BirthdayBooks in Z, a set of BirthdayBooks must be
specified, and BirthdayBook operations would have to be

promoted [3] to manipulate this set. A data refinement of
this class, as well as an Eiffel implementation, can be found
in [2].

4. Discussion and Conclusions

We have outlined how Z specifiers can make a transi-
tion to object-oriented specifications via a mapping into
BON. This transition integrates Z with a seamless develop-
ment method, and can be used to suggest an object-oriented
design for Z specifications. It provides a basis for semi-
automatable tool that implements a mapping from Z to
BON. An implementation of such a tool would be able to
make use of the existing Eiffel environment.

The translation from Z to BON can suggest a disciplined
way of using Z that is easy to map into BON. The transla-
tion suggests that each operation schema should represent a
query or a command, and that commands should change the
attributes of one state schema. By using Z in such a manner,
the mapping into BON can be simplified.

The approach does have limitations. Translation of the
schema calculus—and in particular, schema inclusion—
may require unfolding of operations or inclusions before
translation. It would be preferable to attempt to derive class
structure from a Z specification, and to use inheritance to
reduce the size of the resulting classes.

The integration of Z with BON bypasses a standard spec-
ification step: making Z operations total by applying the Z
schema calculus. This is defensive specification that is ob-
viated by design-by-contract. Z developers who are used to
producing total operations may find it difficult to transition
to BON. However, experience with Z in practice has shown
that specifiers can be confused by the schema calculus. So
by transitioning to BON, we could make Z more attractive
to these developers.

In combining Z with BON, we have removed several of
the noted limitations with Z, while acquiring the advantages
of a seamless development method. Future work will ex-
plore the transition in larger case studies, as well as an im-
plementation of the translation.

References

[1] B. Meyer. Object Oriented Software Construction. Prentice
Hall, 1997.

[2] R. Paige and J. Ostroff. From Z to BON/Eiffel. Technical
Report TR-98-05, York University, July 1998.

[3] J. Spivey. The Z Notation: A Reference Manual. Prentice
Hall, 1992.

[4] K. Walden and J.-M. Nerson. Seamless Object Oriented Soft-
ware Architecture. Prentice Hall, 1995.


