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Abstract

In this work, we study time/space tradeoffs for function composition. We prove asymptot-
ically optimal lower bounds for function composition in the setting of nondeterministic read
once branching programs, for the syntactic model as well as the stronger semantic model of
read-once nondeterministic computation. We prove that such branching programs for solving
the tree evaluation problem over an alphabet of size k requires size roughly kΩ(h), i.e space
Ω(h log k). Our lower bound nearly matches the natural upper bound which follows the best
strategy for black-white pebbling the underlying tree. While previous superpolynomial lower
bounds have been proven for read-once nondeterministic branching programs (for both the
syntactic as well as the semantic models), we give the first lower bounds for iterated function
composition, and in these models our lower bounds are near optimal.
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1



1 Introduction
One of the most promising approaches to proving major separations in complexity theory is to
understand the complexity of function composition. Given two Boolean functions, f : {0, 1}m →
{0, 1} and g : {0, 1}n → {0, 1}, their composition is the function f ◦ g : {0, 1}mn → {0, 1}
defined by

(f ◦ g)(x1, . . . , xm) = f(g(x1), . . . , g(xm)).

The complexity of function composition is one of the most tantalizing and basic problems in com-
plexity theory, and has been studied in a variety of models. There is essentially no general setting
where function composition can be computed with substantially less resources than first comput-
ing each instance of g, followed by computing f on the outputs of the g’s. Indeed, lower bounds
for function composition are known to resolve several longstanding open problems in complexity
theory.

The most famous conjecture about function composition in complexity theory is the Karchmer-
Raz-Wigderson (KRW) conjecture [26], which asserts that the minimum depth of a circuit (of fan-
in 2) that computes f ◦ g (over AND, OR and NOT gates) is the minimum depth of computing f
plus the minimum depth of computing g. That is,

D(f ◦ g) = Θ(D(f) +D(g)).

Karchmer, Raz and Wigderson show that repeated applications of this conjecture implies super-
logarithmic lower bounds on the depth complexity of an explicit function, thus resolving a major
open problem in complexity theory (separating P from NC1). In particular, The tree evaluation
problem defines iterated function composition with parameters d and h as follows. The input is an
ordered d-ary binary tree of depth h + 1. Each of the dh leaf nodes of the tree is labelled with an
input bit, and each non-leaf node of the tree is labelled by a 2d Boolean vector, which is the truth
table of a Boolean function from {0, 1}d → {0, 1}. This induces a 0/1 value for each intermediate
node in the tree in the natural way: for a node v with corresponding function fv, we label v with
fv applied to bits that label the children of v. The output is the value of the root node. The
basic idea is to apply h = O(log n/ log log n) compositions of a random d = log n-ary function
f : {0, 1}logn → {0, 1} to obtain a new function over O(n2) bits that is computable in polynomial
time but that requires depth Ω(log2 n) (ignoring lower order terms). Raz and McKenzie resolved
the function composition in the monotone case, thus separating monotone P from monotoneNC1.

In communication complexity, lower bounds for function composition have been extremely
successful for solving many open problems. Lifting Theorems in communication complexity show
how to reduce lower bounds in query complexity to lower bounds in communication complex-
ity via function composition. Raz and McKenzie’s lower bound for function composition in the
monotone setting [34] (in hindsight) is now viewed as a general lifting theorem for deterministic
communication complexity; subsequent lifting theorems have been proven for many other models
of computation [8, 20–22, 38]. These theorems have had simplified and unified many results, and
in addition have led to the resolution of important open problems in areas such as game theory,
proof complexity, extension complexity, and communication complexity [7, 11, 19, 27, 29].

The complexity of function composition for space-bounded computation has also been studied
since the 1960’s. The classical result of Nečiporuk [32] proves Ω(n2/ log2 n) size lower bounds
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for deterministic branching programs for iterated function composition. Subsequently, Pudlak
observed that Nečiporuk’s method can be extended to prove Ω(n3/2/ log n) size lower bounds
for nondeterministic branching programs. 1 These classical results are still the best unrestricted
branching program size lower bounds known, and it is a longstanding open problem to break this
barrier.

In this work, we study time/space tradeoffs for function composition. We prove asymptoti-
cally optimal lower bounds for function composition in the setting of nondeterministic read once
branching programs, for the syntactic model as well as the stronger semantic model of read-once
nondeterministic computation. We prove that such branching programs for solving the tree evalua-
tion problem over an alphabet of size k requires size roughly kΩ(h), i.e space Ω(h log k). Our lower
bound nearly matches the natural upper bound which follows the best strategy for black-white
pebbling the underlying tree. While previous superpolynomial lower bounds have been proven
for read-once nondeterministic branching programs (for both the syntactic as well as the semantic
models), we give the first lower bounds for iterated function composition, and in these models our
lower bounds are near optimal.

1.1 History and Related Work
1.1.1 Function Composition and Direct Sum Conjectures

Raz and McKenzie proved the KRW conjecture in the context of monotone circuit depth [34]. In
an attempt to prove the KRW conjecture in the non-monotone case, Karchmer, Raz and Wigder-
son proposed an intermediate conjecture, known as the universal relation composition conjecture.
This intermediate conjecture was proven by Edmonds et.al [14] using novel information-theoretic
techniques. More recently some important steps have been taken towards replacing the universal
relation by a function using information complexity [18] and communication complexity tech-
niques [13]. Dinur and Meir’s lower bound [13] also gives an alternate proof of the cubic formula
size lower bounds for the function f ◦ g where g is the parity function. (This bound was originally
proven by Håstad [35] and more recently by Tal [36].)

1.1.2 Time-Space Tradeoffs

In the uniform setting, time-space tradeoffs for SAT were achieved in a series of papers [15–17,30].
Fortnow-Lipton-Viglas-Van Melkebeek [17] shows that any algorithm for SAT running in space
no(1) requires time at least Ω(nφ−ε) where φ is the golden ratio ((

√
5+1)/2) and ε > 0. Subsequent

works [12, 37] improved the time lower bound to greater than n1.759.
The state of the art time/space tradeoffs for branching programs were proven in the remarkable

papers by Ajtai [1] and Beame-et-al [3]. In the first paper, Ajtai exhibited a polynomial-time com-
putable Boolean function such that any sub-exponential size deterministic branching program re-
quires superlinear length. This result was significantly improved and extended by Beame-et-al who
showed that any sub-exponential size randomized branching program requires length Ω(n logn

log logn
).

1While Nečiporuk’s result is not usually stated this way, it can be seen as a lower bound for function composition.
We present this alternative proof in section B in the Appendix.
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Lower bounds for nondeterministic branching programs have been more difficult to obtain.
Length-restricted nondeterministic branching programs come in two flavors: syntactic and seman-
tic. A length l syntactic model requires that every path in the branching program has length at most
l, and similarly a read-c syntactic model requires that every path in the branching program reads
every variable at most c times. In the less restricted semantic model, the read-c requirement is only
for consistent accepting paths from the source to the 1-node; that is, accepting paths along which
no two tests xi = d1 and xi = d2, d1 6= d2 are made. Thus for a nondeterministic read-c semantic
branching program, the overall length of the program can be unbounded.

Note that any syntactic read-once branching program is also a semantic read-once branching
program, but the the opposite direction does not hold. In fact, Jukna [24] proved that semantic
read-once branching programs are exponentially more powerful than syntactic read-once branching
programs, via the “Exact Perfect Matching”(EPM) problem. The input is a (Boolean) matrix A,
and A is accepted if and only if every row and column of A has exactly one 1 and rest of the
entries are 0’s i.e if it’s a permutation matrix. Jukna gave a polynomial-size semantic read-once
branching program for EPM, while it was known that syntactic read-once branching programs
require exponential size [25, 28].

Lower bounds for syntactic read-c (nondeterministic) branching programs have been known
for some time [5,33]. However, for semantic nondeterministic branching programs, even for read-
once, no lower bounds are known for polynomial time computable functions for the boolean, k = 2
case. Nevertheless exponential lower bounds for semantic read-c (nondeterministic) k-way branch-
ing programs, where k ≥ 23c+10 where shown by Jukna [23]. More recently [9] obtain exponential
size lower bounds for semantic read-once nondeterministic branching programs for k = 3, leaving
only the boolean case open. Liu [31] proved near optimal size lower bounds for deterministic read
once branching programs for function composition.

The rest of the paper is organized as follows. In Section 2 we give the formal definitions,
present the natural upper bound and state our main result. In Section 3 we give the intuition and
proof outline. Sections 4,5 and 6 are devoted to individual parts of the proof.

2 Definitions and Statement of Results
Definition 2.1. Let f : [k]n → {0, 1} be a boolean valued function whose input variables are
x1, . . . , xn where xi ∈ [k]. A k-way nondeterministic branching program for f is an acyclic
directed graph G with a distinguished source node qstart and sink node (the accept node) qaccept.
We refer to the nodes as states. Each non-sink state is labeled with some input variable xi, and
each edge directed out of a state is labelled with a value b ∈ [k] for xi. For each input ~ξ ∈ [k]n, the
branching program accepts ~ξ if and only if there exists at least one path starting at qstart leading to
the accepting state qaccept, and such that all labels along this path are consistent with ~ξ. The size of
a branching program is the number of states in the graph. A nondeterministic branching program
is semantic read-once if for every path from qstart to qaccept that is consistent with some input, each
variable occurs at most once along the path.

Syntactic read-once branching programs are a more restricted model where no path can read a
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variable more than once; in the semantic read-once case, variables may be read more than once,
but each accepting path may only query each variable once.

Definition 2.2. The (ternary) height h tree evaluation problem Tree~F , has an underlying 3-ary tree
of height h with n = 3h−1 leaves. Each leaf is labelled by a corresponding variable in x1, . . . , xn.
(Note that a tree with a single node has height 1.) Each internal node v is labeled with a function
F : [k]3 → [k], where ~F denotes the vector of these functions. The input ~ξ ∈ [k]n gives a value in
[k] to the leaf variables ~x. This induces a value for each internal node in the natural way, and the
output Tree~F (~ξ) is the labeling of the root. In the boolean version, the input ~ξ is accepted if and
only if Tree~F (~ξ) ∈ [k1−ε] where ε ∈ (0, 1) is a parameter.

The most natural way to solve the tree evaluation problem is to evaluate the vertices of the tree,
via a strategy that mimics the optimal black-white pebbling of the underlying tree. In the next
section, we review this upper bound, and show that it corresponds to a nondeterministic semantic
read-once branching program of size Θ(kh+1). Our main result gives a nearly matching lower
bound (when k is sufficiently large compared to h).

Theorem 2.3. For any h, and k sufficiently large (k > 242h) , there exists ε and ~F such that any

k-ary nondeterministic semantic read-once branching program for Tree~F requires size Ω
(

k
log k

)h
We prove the lower bound for the decision version of the tree evaluation problem, with ε chosen

to be 9h
log k

. Secondly, we actually show(See appendix C) that the lower bound holds for almost all
~F , whenever each F is independently chosen to be a random 4-invertible function:

Definition 2.4. A function F : [k]3 → [k] is 4-invertible if whenever the output value and two of
its inputs from {a, b, c} are known, then the third input can be determined up to a set of four values.
That is, for each pair of values (a, b) ∈ [k]2, the mapping F (a, b, ∗) : [k] → [k] is at most 4-to-1,
and likewise for pairs (b, c) and (a, c).

We expect that the lower bound should still hold even if every function in ~F is fixed to be
a particular function with nice properties, although we are not able to prove this at present. In
particular, we conjecture that the lower bound still holds where for every v, Fv(a, b, c) = a3+b3+c3

over the field [k]. On the other hand, if we take an associative function such as Fv(a, b, c) = a3·b3·c3

again over the field [k], then there is a very small branching program, since we can compute the
root value by reading the elements one at a time and remembering the product so far. One thing
that makes proving the lower bound difficult is not being able to properly isolate or take advantage
of the differences between these functions over a finite field. For the rest of the paper, we will refer
to nondeterministic semantic read-once branching programs as simply branching programs.

2.1 Black/White pebbling, A natural upper bound
In order to get some intuition, we first review the matching upper bound. As mentioned earlier,
the upper bound mimics the optimal black/white pebbling strategy for a tree [10]. A black pebble
placement on a node v corresponds to remembering the value in [k] labelling that node, and a white
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2 3 4 5 6

Figure 1: This figure describes a black/white pebbling for a d-ary tree T of height h at d=5. We
start by pebbling the height h-1 subtrees rooted at nodes 2,3 and 4. Then we proceed to the second
half of children and guess the value that subtrees at node 5 and 6 would evaluate to. Now we can
pebble the root node 1 and remove the black pebbles. The white pebble or guess at node 5 can now
be verified and then the same is done subsequently for node 6.

pebble on v corresponds to nondeterministically guessing v’s value (which must later be verified.)
The goal is to start with no pebbles on the tree, and end up with one black pebble on the root (and
no other pebbles). The legal moves in a black/white pebbling game are:

1. A black pebble can be placed at any leaf.

2. If all children of node v are pebbled (black or white), place a black pebble at v and remove
any black pebbles at the children. (When all children are pebbled, a black pebble on a child
of v can be slid to v.)

3. Remove a black pebble at any time.

4. A white pebble can be placed at any node at any time.

5. A white pebble can be removed from v if v is a leaf or if all of v’s children are pebbled.
(When all children but one are pebbled, the white pebble on v can be slid to the unpebbled
child.)

Lemma 2.5. Black pebbling the root of a d-ary tree of height h can be done with (d−1)(h−1)+1
pebbles. With both black and white pebbles, only d1

2
(d− 1)h+ 1e pebbles are needed.

Proof. We will assume that d is odd; the case of d even is similar. With only black pebbles,
recursively pebble d − 1 of the d children of the root. Then use d − 1 pebbles to remember
these values as you use (d − 1)(h − 2) + 1 more pebbles to pebble its dth child for a total of
(d− 1) + (d− 1)(h− 2) + 1 = (d− 1)(h− 1) + 1 pebbles. Then pebble the root.
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Now suppose white pebbles are also allowed (see Figure 1). Recursively pebble 1
2
(d − 1) + 1

of the d children of the root. Then use 1
2
(d − 1) pebbles to remember these values as you use

d1
2
(d− 1)(h− 1) + 1e more pebbles to pebble its next child for a total of 1

2
(d− 1) + 1

2
(d− 1)(h−

1) + 1 = 1
2
(d−1)h+ 1 pebbles. Then use white pebbles to pebble the remaining 1

2
(d−1) children

of the root. Pebble the root and pick up the black pebbles from the children. Replacing the first of
these whites requires 1

2
(d− 1)(h− 1) + 1 in addition to the 1

2
(d− 1) white ones, again for a total

of 1
2
(d − 1)h + 1. Note as a base case, when h = 2 and there is a root with d children, d pebbles

are needed, no matter what the color.

Lemma 2.6. A pebbling procedure with p black or white pebbles (and t time) translates to a
layered nondeterministic branching program with tkp states. If only black pebbles are used, the
branching program is deterministic.

Proof. On input ~ξ the branching program moves through a sequence of states β1, β2, .., βt where
the state βt′ corresponds to the pebbling configuration at time t′. Each layer of the branching
program will have kp states one for each possible assignment of values in [k] to each of the pebbles.
If a black pebble is placed on a leaf during the pebbling procedure, then the branching program
queries this leaf. If all of the children of node v are pebbled, then the branching program knows
their values v1, v2 and v3 and hence can compute the value fv(v1, v2, v3) of the node. Remembering
this new value corresponds to placing a black pebble at v. Removing a black pebble corresponds
to to the branching program forgetting this computed value. If a white pebble is placed at v, then
the branching program nondeterministically guesses the required value for this node. This white
pebble cannot be removed until this value has been verified to be fv(v1, v2, v3) using the values of
its children that were either computed (black pebble) or also guessed (white).

3 Proof Overview
The crux of the argument is a compression argument, showing that from a small branching program
for Tree~F , we can encode ~F with less bits than what is required information theoretically. We first
review the simpler argument where ~F are all invertible functions. (For every F , the value of two
of the inputs and the output value completely determines the value of the third input.) The main
argument (proven in Section 5) shows that given such a branching program, we can find a label
L =< P, vi∗, ~w, xred,i∗, xwhite,i∗, Xred, Xwhite, Sred, Swhite > such that the following properties are
satisfied: 2

(1) P = vh, vh, . . . , v1 is a path in the ternary tree (defining the tree evaluation problem), where
vh is the root of the ternary tree, v1 is a leaf vertex. vi∗ is a special vertex along this path,
where xred,i∗ ∈ Xred and xwhite,i∗ ∈ Xwhite are leaf variables in the subtree rooted at vi∗.

(2) Xred, Xwhite ⊆ {x1, . . . , xn} are (small) disjoint sets of leaf variables.

(3) ~w is an assignment to all of the leaf variables other than those in Xred ∪Xwhite

2We have chosen to use modified descriptions in this overview. We caution the reader that they do not exactly
match their names in the proof.
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(4) Sred ⊂ [k]|Xred| consists of a set of r partial assignments to the variables ofXred such that the
projection of these assignments onto the special variable xred,i∗ gives r distinct assignments.
and similarly Swhite ⊂ [k]|Xwhite| consists of a set of r partial assignments to the variables of
Xwhite such that the projection of these assignments onto the special variable xwhite,i∗ gives
r distinct assignments.

(5) The embedded rectangle of r2 total truth assignments R = (~w, ρ, σ), ρ ∈ Sred, σ ∈ Swhite
are all accepting truth assignments.

Given such a label, we prove two things. Let Fi∗ be the function associated with the special
vertex vi∗ along the path P . First, we show that knowing the label, plus knowing the value of all
functions in ~F other than Fi∗, reveals a lot (roughly O(r2 log k) bits) of information about Fi∗,
the missing function. The idea is roughly as follows. The r2 total assignments in the rectangle R
described in (5) gives rise to r2 associated inputs (ai, bj, ci,j) for Fi∗ where i, j ∈ [r]. These inputs
are obtained by starting with an assignment (~w, ρ, σ) ∈ R to the leaf variables {x1, . . . , xn} and
using the knowledge of ~F , evaluating the assignment bottom-up until we obtain an assignment to
the three children of vi∗. On the other hand, each of the r2 assignments in R also gives constraints
on the allowable outputs of Fi∗ on the inputs (ai, bj, ci,j). The constraints are obtained because we
know that each total assignment in R is an accepting input, and thus the value of the root vertex vh
on any of these inputs must lie in [k1−ε]. Since the functions in ~F are all invertible, this propagates
down the path P , so that for each of the r2 inputs (ai, bj, ci,j) to Fi∗, we have a small set C(i, j) ⊆
[k] of k1−ε values such that Fi∗(ai, bj, ci,j) must lie in C(i, j). Thus, overall, the label plus the
information about all functions in ~F other than Fi∗ reveals (log k − log k1−ε)r2 = O(r2 log k) bits
of information about Fi∗.

Secondly, we show that that the description length of the above label is less than what it should
be – namely, it is much less than the number of bits that it reveals about Fi∗, giving a contradiction.
As is typical in lower bound arguments, the savings is due to the fact that R is an embedded
rectangle. Fixing ~w, R is a product of two sets each of size r. Therefore knowing ~w, these
inputs can be described with an additional 2r log k bits rather than r2 log k bits. (And the other
information in the label does not overwhelm this savings that we achieved.)

We now give a high level overview of how we obtain a label L from a small branching program.
What want to find a path P down the ternary tree and a state q in the branching program such that
the subtrees of the path are sorted, with P taking the middle road. The subtrees hanging off the left
of the path will be called “red” and those hanging off the right will be called “white”. The property
that we require is that for a large set of accepting inputs (we only consider ~F for which the set of
accepted inputs is large) a reasonable number of the leaves in the red subtrees are read before state
q, and a reasonable number of the leaves in the white subtrees are read after state q. We choose
this path greedily, by taking the most popular path (with respect to the set of accepted inputs) that
meets our requirements. From this property, we can obtain an embedded rectangle which is a large
set of accepting inputs where the assignment to all variables outside of Xred and Xwhite is fixed to
~w, and the assignments over the rest of the variables form a large product set Sred × Swhite over
Xred times Xwhite.
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We then clean up the embedded rectangle so that it is square, and so that it is associated with
one specific function Fi∗ that labels a particular vertex vi∗ on the path P . More specifically, we
show that there is one vertex vi∗ along the tree path P that has a red variable xred,i∗ ∈ Xred and a
white variable xwhite,i∗ ∈ Xwhite such that as we run over the r assignments in Sred, xred,i∗ takes
on r distinct values, and similarly for xwhite,i∗. (See Figure 2).

Some complications arise when trying to carry out the above proof outline, making the actual
proof more intricate. First, the compression argument requires that each ~F has a lot of accepting
instances, so we need to show that most random ~F have this property. The more serious compli-
cation is the fact that we cannot easily count over random invertible functions, so instead we use
functions that are almost invertible. More specifically ~F is a vector of 4-invertible functions which
means that for each F ∈ ~F , knowing two of the inputs to F and the output value, there are at most
four consistent values for the third input. We use a novel argument that allows us to count over
4-invertible functions (Section 6). Our compression argument sketched above is then adapted to
handle the the case of 4-invertible functions with a small quantitative loss. Namely when going
down the path P to determine the constraints on the output of Fi∗ on an input (ai, bj, ci,j) ∈ R, the
number of allowable values for Fi∗(ai, bj, ci,j) will be k1−ε at the root vertex, and by 4-invertibility,
we will gain a factor of four for each subsequent function along the path. Since the path height is
very small relative to r this will still give us adequate compression.

4 Most ~F have a lot of accepting instances

Let Syes = {~ξ | Tree~F (~ξ) ∈ [k1−ε]}. That is, Syes is the set of accepting inputs to Tree~F . Let
Bad(~F ) be the event that the size of Syes is significantly smaller than expected – in particular
|SY es| ≤ 1

6kε
· kn. Let F be the uniform distribution over 4-invertible functions, and let ~F be the

uniform distribution over vectors of 4-invertible functions (one for each non-leaf vertex in the tree).
Lemma 4.1 proves that Pr~F [Bad(~F )] is exponentially small, where ~F is sampled from ~F .

Lemma 4.1. For k > 242h and ε = 9h
log k

, Pr~F [Bad(~F )] ≤ 1
10

.

See section A in the Appendix for the proof. The above probability is in fact much smaller but
the above bound suffices for our purpose.

5 Finding an Embedded Rectangle
This section proves that the accepted instances of Tree~F solvable by a small branching program
contain a large embedded rectangle whenever Bad(~F ) does not occur.

Parameters. The number of variables is n = 3h−1 and each variable is from [k]. In what

follows we will fix r = 26h

ε
and ε = 9h

log k
. The lower bound will hold for s ≤

(
k

n26 log k

)h
. For k

sufficiently large (k > 242h), the lower bound is Ω(k/ log k)h.
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Definition 5.1. For π ⊂ {1, . . . , n}, let xπ denote the set of variables {xi | i ∈ π}. An embedded
rectangle [2, 23] is defined by a 5-tuple (πred, πwhite, A,B, ~w), where:

(i) πred, πwhite are disjoint subsets of {1, . . . , n},

(ii) A ⊆ [k]|πred| is a set of assignments to xπred and B ⊆ [k]|πwhite| is a set of assignments to
xπwhite;

(iii) ~w ∈ [k]n−|πred|−|πwhite| is a fixed assignment to the remaining variables.

The assignments defined by the rectangle are all assignments (~α, ~β, ~w) where xπred = ~α, xπwhite =
~β and the rest of the variables are assigned ~w, where ~α ∈ A and ~β ∈ B.

5.1 Finding a rectangle over the leaves
In this section, we prove the following lemma, that shows the existence of a large embedded
rectangle of accepting instances if the branching program solving Tree~F is small.

Lemma 5.2. Let B be a size s nondeterministic, semantic read-once BP over {x1, . . . , xn} solving
Tree~F for some ~F such that ¬Bad(~F ) holds. Let s, r be chosen as above. Then there exists an
embedded rectangle (πred, πwhite, A,B, ~w) such that:

1. |πred| = |πwhite| = h,

2. |A| × |B| ≥ k2h−ε

s23h2
,

3. B accepts all inputs in the embedded rectangle.

In order to prove the above Lemma, we will need the following definitions.

Definition 5.3. Let ~ξ be an accepting input, and let Comp~ξ be an accepting computation path for
~ξ. Since every variable is read exactly once, Comp~ξ defines a permutation Π of {1, . . . , n}. If q is
a state that Comp~ξ passes through at time t ∈ [n], the pair (Π, q) partitions the variables x1, . . . , xn
into two sets, Red(Π, q) = {xi | Π(i) ≤ t} and White(Π, q) = {xj | Π(j) > t}. Intuitively, since
the branching program reads the variables in the order given by Π (on input ~ξ), then Red(Π, q) are
the variables that are read at or before reaching state q, and White(Π, q) are the variables that are
read after reaching state q.

Definition 5.4. A labelled path P down the ternary tree is a sequence of vertices vh, . . . , v1 that
forms a path from the root to a leaf of the ternary input tree. For each vertex vj of height j
along the path, its three subtrees are labelled as follows: one of its subtrees is labelled red and is
referred to asRedtree(vj), another is labelled white and is referred to asWhitetree(vj) and lastly,
Thirdtree(vj) refers to the subtree with root vj−1 that continues along the path P . The root of
Redtree(vj) will be called redchild(vj), the root of Whitetree(vj) will be called whitechild(vj),
and the root of Thirdtree(vj) will be called thirdchild(vj).
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Lemma 5.5. Let ~ξ be an accepting input with computation path Comp~ξ, where the ordering of
variables read along Comp~ξ is given by permutation Π of {1, . . . , n}. Then there exists a state q
and a labelled path P = vh, . . . , v1 in the ternary tree such that for all vj in the path, 2 ≤ j ≤
h Redtree(vj) contains greater than 2j−2 variables in Red(Π, q) and Whitetree(vj) contains
greater than 2j−2 variables in White(Π, q).

Proof. We will prove the above lemma by (downwards) induction on the path length. At step j, 2 ≤
j ≤ h, we will have constructed a labelled partial path vh, vh−1, . . . , vj , an interval [t0(j), t1(j)],
and a partial coloring of the variables such that the following properties hold:

1. All variables xi such that Π(xi) ≤ t0(j) will be Red and all variables xi such that Π(xi) ≥
t1(j) will be White. (The remaining variables that are read between time step t0(j) and t1(j)
are still uncolored.)

2. For each vj′ , j ≤ j′ ≤ h, Redtree(vj′) contains greater than 2j
′−2 red variables, and

Whitetree(vj′) contains greater than 2j
′−2 white variables.

3. The subtree of vj that continues the path, Thirdtree(vj), has at most 2j−2 red variables and
at most 2j−2 white variables.

Initially j = h, the path is empty, t0[h] = 1 and t1[h] = n. Thus the size of the interval
is n = 3h−1 and since no variables have been assigned to be red or white, the above properties
trivially hold. For the inductive step, assume that we have constructed the partial path vh, . . . , vj+1.
By the inductive hypothesis, the tree rooted at vj+1 contains at most 2j−1 red variables and at most
2j−1 white variables. Thus at most one subtree of vj+1 can contain greater than 2j−2 red variables.
If one subtree of vj+1 does contain greater than 2j−2 red variables, then let this be Redtree(vj+1).
Otherwise, increase t0[j + 1] until one of vj+1’s three subtrees contains (for the first time) more
than 2j−2 red variables and let this subtree be Redtree(vj+1). Since each of vj+1’s three subtrees
has 3j−1 leaves and at most 2j−1 white variables, there are at least 3j−1 − 2j−1 ≥ 2j−2 variables
remaining in each subtree that are either uncolored or colored red, and thus the process is well-
defined.

Next we work with the remaining two subtrees of vj+1 in order to define Whitetree(vj+1).
Again by the inductive hypothesis, the tree rooted at vj+1 contains at most 2j−1 white variables,
and thus as most one subtree of the remaining two can contain greater than 2j−2 white variables. If
one is found, then designate it as Whitetree(vj+1), and otherwise, decrease t1[j + 1] until one of
vj+1’s remaining two subtrees contains (for the first time) 2j−2 white variables and designate it as
Whitetree(vj+1). Again since each subtree has 3j−1 leaves and at most 2j−1 red variables, there
are at least 3j−1 − 2j−1 ≥ 2j−2 variables remaining in each of the two subtrees that are uncolored
or colored white and thus the process is well-defined.

Let the remaining subtree of vj+1 be Thirdtree(vj+1) and let the next vertex vj in our path
be thirdchild(vj+1). By construction Thirdtree(vj+1) contains at most 2j−2 red variables and at
most this same number of white variables.

For the base case j = 2, by induction we will have reached a vertex v2 with 3 child vertices,
where at most one is colored red and at most one is colored white and thus the size of the interval
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[t0[2], t1[2]] is between one and three. Increase t0 and then decrease t1 so that v2 has exactly one
red vertex and two white vertices and let q be the state that Comp~ξ passes through as it reads the
red child.

Proof. (of Lemma 5.2) Consider a nondeterministic semantic read-once branching program B for
Tree~F . For each accepting input ~ξ, fix one accepting path Comp~ξ in the branching program. Each
of the n variables must be read in this path exactly once, and thus it defines a permutation Π~ξ of the
n variables. Apply Lemma 5.5 for ~ξ (and corresponding permutation Π~ξ) to obtain an associated
labelled path Pξ and state qξ. Do this for all accepting inputs, and pick the pair P , q that occurs
the most frequently. There are at most s possible values for q and at most 6h−1 possible labelled
paths: n = 3h−1 ending leaves of the path and then for each of the h vertices vh′ along this path,
we specify which of its subtrees are Red and White, for another 2h−1 choices. Let S be those
accepting inputs that give rise to the popular pair P, q. Since there are at least |SY es| > 1

6kε
· kn

accepting inputs, S is of size at least
(

1
6hskε

)
kn.

Next we will select one common red variable in each of the h Red subtrees, and one common
white variable in each of the h White subtrees. Denoting the vertices of P by vh, vh−1, . . . , v1, we
will select the Red and White variables iteratively for j = h, h − 1, . . . , 1 as follows. Starting at
Redtree(vj): for each ~ξ ∈ S, by Lemma 5.5 at least 2j−2 of its 3j−1 variables are red, and thus
there is one variable that is red in at least a 2j−2

3j−1 fraction of S. Choose this variable, and update S to
contain only those inputs in S where this variable is red. (That is, ~ξ ∈ S will stay in S if and only if
the variable is read by Comp~ξ before reaching state q.) Do the same thing for Whitetree(vj). At
the end, we will have selected for each j one variable that is red in Redtree(vj), and one variable
that is white in Whitetree(vj), and a set of inputs S such that all h of the selected red variables
(one per subtree) are read before reaching q and all h of the selected white variables are read after
reaching q. Let πred be vector of h indices corresponding to these h red variables, where πred,j
is the index of the common red variable in Redtree(vj). and let πwhite be the vector of h indices
corresponding to these h white variables, where πwhite,j is the index of the common white variable
in Whitetree(vj). The size of S after this process will be reduced by a factor of

Πj∈[2,...,h]

(
2j−2

3j−1

)2

≥ 2−2h · 1.5−h2 .

Our final pruning of S is to fix a partial assignment, ~w, to the remaining n−2h variables that
have not been identified as red or white. There are kn−2h choices here. Once again choose the most
popular one. Overall, for h ≥ 2 this gives

|S| ≥ 1

kε6h22h1.5h2skn−2h
kn ≥ k2h−ε

s1.5h2+8h
≥ k2h−ε

s23h2
.

Let Sred ⊆ [k]πred be the projection of S onto the coordinates of πred, the red variables and let
Swhite ∈ [k]πwhite be the projection of S onto the coordinates of πwhite, the white variables. Let all
the other variables be set according to the vector ~w. It is clear that this gives an embedded rectangle,
(πred, πwhite, Sred, Swhite, ~w). We want to show that all assignments in the rectangle are accepted
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by B. To see this, consider an assignment ~α~β ~w in the embedded rectangle, where ~α ∈ Sred is
an assignment to xπred , and ~β ∈ Swhite is an assignment to xπwhite , and ~w is an assignment to the
remaining variables. By definition ~α is in the projection of S onto πred, and thus there must be an
assignment ~α~β′ ~w ∈ S. Similarly, there must be an assignment ~α′~β ~w ∈ S. Since these assignments
are in S, the computation paths on each of them goes through q, and all variables xπred are read
before reaching q, and all variables xπwhite are read after q. We want to show that ~α~β ~w is also an
accepting input (in S). To see this, we follow the first half of the computation path of ~α~β′ ~w until
we reach q, and then we follow the second half of the computation path of ~α′~β ~w after q. In this
new spliced computation path, the variables xπred are all read (and have value ~α) prior to reaching
q, and the variables xπwhite are all read after reaching q (and have value ~β), and since all other
variables have the same values on all paths, the new spliced computation path must be consistent
and must be accepting. Therefore the input ~α~β ~w is in S and is an accepting input.

5.2 Refining the Rectangle
In this section, we refine the embedded rectangle given above, so that it will be a square r-by-r
rectangle.

Definition 5.6. Let B be a branching program for Tree~F for some ~F such that ¬Bad(~F ) holds
, and let (πred, πwhite, Sred, Swhite, ~w) be the embedded rectangle guaranteed by Lemma 5.2. We
recall the notation/concepts from the proof of Lemma 5.2:

1. Let P = vh, . . . , v1 be the common labelled path in the ternary tree, where Redtree(vi),
Whitetree(vi) denotes the Red and White subtrees of vi.

2. Let q be the common state in the branching program;

3. Let πred, πwhite be the indices of the red/white variables (h red variables altogether, one per
Red subtree, and h white variables altogether, one per White subtree);

4. For all (accepting) inputs in the rectangle, all of the variables xπred are read before q, and all
variables xπwhite are read after q.

We will now define a special kind of embedded rectangle that isolates a particular vertex v
along the path P (which corresponds to a particular function Fv).

Definition 5.7. Let P = vh, . . . , v1 be the labelled path in the ternary tree, and let r = 26h/ε. Let
vi∗ be a special vertex in the path P , where πred,i∗ is the index of the red variable in Redtree(vi∗),
and πwhite,i∗ is the index of the white variable inWhitetree(vi∗). An embedded rectangle (πred, πwhite, A,B, ~w)
is special for vi∗ if:

1. |A| = |B| = r;

2. The projection of A onto xπred,i∗ has size r, and the projection of B onto xπwhite,i∗ has size r.
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Lemma 5.8. Let B be a size s branching program for Tree~F for some ~F such that ¬Bad(~F )
holds. Then (for our choice of parameters) there is an i∗ ∈ [h] and an embedded rectangle that is
special for vi∗.

Proof. Let B be a size s branching program for Tree~F and let (πred, πwhite, Sred, Swhite, ~w) be the
embedded rectangle guaranteed by Lemma 5.2. For each j ∈ [h], call vj red-good if |Proj(Sred, πred,j)| ≥
r. That is, vj is red-good if Sred projected to the red variable in Redtree(vj) has size at least r.
Similarly, j is white-good if |Proj(Swhite, πwhite,j)| ≥ r.

If there are lred vertices that are red-good, then it is not hard to see that |Sred| ≤ (r −
1)h−lredklred . To see this, every vj that is not red-good can take on at most r − 1 values, and
the red-good ones could take on at most k values. If we similarly define lwhite to be the number of
vertices that are white-good, then similarly we have, |Swhite| ≤ (r − 1)h−lwhiteklwhite .

We want to show that there must exist an i∗ such that vi∗ is both red-good and white-good. If
not, then lred + lwhite ≤ h, and therefore |Sred × Swhite| ≤ (r − 1)hkh < rhkh. But on the other
hand, Lemma 5.2 dictates that |Sred × Swhite| ≥ k2h−ε

s23h2
. This is a contradiction since by our choice

of parameters (r = 26h/ε, ε = 9h/ log k, s ≤
(

k
n26 log k

)h
, n = 3h−1) we have:

k2h−ε

s23h2
≥ k2h−ε

23h2
·
(

326(h−1) log k

k

)h
≥ kh−ε210h2(log k)h

= kh210h2
(

log k

29

)h
since ε=

9h
log k

,

= kh
210h2

29h

(
2h log 9h

εh

)
≥ kh26h2

εh
= rhkh since 4h+log(9h)−9>0, ∀ h≥2

Let i∗ ∈ [h] denote the index such that vertex vi∗ along the path P is both red-good and white-
good. Thus Redtree(vi∗) contains the red variable indexed by πred,i∗, and the projection of Sred
to xπred,i∗ has size at least r. Prune Sred to contain r assignments to xπred , where we have exactly
one assignment for each of the r distinct values for xπred,i∗ . Similarly, Whitetree(vi∗) contains
the white variable indexed by πwhite,i∗, and the projection of Swhite to xπwhite,i∗ has size at least r.
Prune Swhite to contain r assignments to xπwhite , where we have exactly one assignment for each
of the r distinct values for xπwhite,i∗ . Because the pruned sets Sred and Swhite will be important for
our encoding, the following definition describes these sets more explicitly.

Definition 5.9. The (pruned) assignments in Sred consist of r partial assignment to xπred . Each
such assignment gives a distinct value for xπred,i∗ , with the values for the rest of the variables in
xπred being completely determined by these. Let ~αi, i ∈ [r] denote the partial assignments in Sred.
That is, for each i ∈ [r], ~αi = α1

i , . . . α
h
i is a vector of h values given to redchild(vi) for all i ∈ [h].

Viewing the vectors ~αi, i ∈ [r] as an r-by-h matrix, the entries in column i∗ ( ~αi∗) run over the r
distinct values given to xπred . Similarly, Swhite consists of r partial assignments to xπwhite . Let ~βi,
i ∈ [r] denote the partial assignments in Swhite. That is, for each i ∈ [r], ~βi = β1

i , . . . , β
h
i is a

vector of h values given to whitechild(vi) for all i ∈ [h]. Viewed as an r-by-h matrix, the entries
in column i∗ ( ~βi∗) run over the r distinct values given to xπwhite .
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It is clear from our construction that (πred, πwhite, Sred, Swhite, ~w) is an embedded rectangle that
is accepted by B and that is special for vi∗.

6 The Encoding

In this section, ~F is a vector of functions, one function each for each non-leaf vertex of the ternary
tree, where each F in ~F is a 4-invertible function from [k]3 to [k]. Let F denote the uniform
distribution on 4-invertible functions. Let H(F) refer to the entropy of F . Assume that for each
~F where every constituent function is 4-invertible, we have a size s branching program, B~F for
Tree~F .

Our goal is to communicate a random ~F using less bits than is information-theoretically pos-
sible (under the assumption of a small branching program for Tree~F ). If Bad(~F ) is true, then
we simply communicate ~F using the full H(F) bits that describe a uniformly random 4-invertible
function at all the internal nodes of the tree. This requires H( ~F) = (number of internal nodes)×
H(F) bits. If Bad(~F ) is false, using Lemma 5.8, from B~F , we will define a vector of information,
L~F , which we call a label that will allow us to encode ~F with fewer bits than is possible on average
to get a contradiction. The following lemma describes how one can come up with L~F .

Lemma 6.1. Let ~F be such that Bad(~F ) is false, and assume that Tree~F has a small branch-
ing program B~F . Then there exists a vector L~F that can be specified with at most 4hr log k =

O(hr log k) bits such that given ~F−∗ : the knowledge of all functions in ~F except for F∗ at one
special node, L~F can be used to infer r′2 inputs (ai, bj, ci,j) ∈ [k]3, i, j ∈ [r′] in the domain of
function F∗, where r′ = r

4i∗
and i∗ is the height of node of F∗ and corresponding to these inputs

one can infer r′2 sets of outputs C(i, j) ⊂ [k], i, j ∈ [r′], specifying a small set of values such that
F∗(ai, bj, ci,j) ∈ C(i, j). Moreover,

PrF∼F [∀i, j ∈ [r′]F (ai, bj, ci,j) ∈ C(i, j)] ≤ k−
7

9·24h
εr2 .

Proof. By Lemmas 5.2 and 5.8, there is a path P , a vertex vi∗ ∈ P and an embedded rectangle
(πred, πwhite, Sred, Swhite, ~w) that is special for vi∗.

The vector L~F will consist of:

(0) a description of ~w;

(1) a description of the labelled path P ;

(2) the index i∗ of the special vertex along the path;

(3) a vector < ~α1, . . . , ~αr > of r assignments as described in Definition 5.9.

(4) the vector < ~β1, . . . , ~βr > of r assignments as described in Definition 5.9.
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Figure 2: This figure depicts a label L~F associated with a problem instance Tree~F obtained as a conse-
quence of having a small branching program B~F . A label as guaranteed by lemma 6.1 consists of a labelled
path P reaching a leaf node, a special vertex vi∗ along the path and a vector of r values each: ~α and ~β
respectively for the red and white sub trees at each node along the path. (We use blue for white here).

Figure 2 depicts a labelling that is induced by a small branching program. We first check that
the length of L~F is O(hr log k). The length of (0) is n log k = 3h−1 log k. The length of (1) is
h log 6, since there are 6h labelled paths (3h−1 different paths, and 2h choices for the labels). The
length of (2) is log h. The length of (3) is hr log k, and similarly the length of (4) is hr log k. Thus
the total length is at most 4hr log k.

Given the vector L~F , the special function F∗ will be the function associated with the vertex vi∗.
For each i, j ∈ [r], the corresponding input values (ai, bj, ci,j) for F∗ are obtained by a bottom-
up evaluation of the subtree rooted at vi∗ as follows. First, using L~F parts (3) and (4) we extract
values for all red and white children of vertices in the path below vi∗. Secondly, using L~F part
(0) we extract from ~w values for all other leaf vertices of the subtree rooted at vi∗. Now using
the knowledge of all internal functions corresponding to nodes below vi∗ (given in ~F−∗), we can
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A

B

A,B ⊂ [k] |A| = |B| = r′ |{(ai, bj , ci,j)|ai ∈ A, bj ∈ B}| = r′2

Figure 3: A subset in the input domain of Fv∗ with product structure in two coordinates and over
which the possible values taken by Fv∗ has low entropy.

evaluate the subtree rooted at vi∗ in a bottom-up fashion in order to determine the values (ai, bj, ci,j)
for redchild(vi∗), whitechild(vi∗) and thirdchild(vi∗).

Note that when we evaluate redchild(vi∗), whitechild(vi∗) and thirdchild(vi∗) for each pair
of i, j ∈ [r] since all of the functions in ~F are 4-invertible, we are guaranteed that there will be at
least r′ = r

4i∗
distinct values taken by redchild(vi∗) and similarly r′ = r

4i∗
distinct values taken by

whitechild(vi∗) resulting in at least r′2 distinct inputs (ai, bj, ci,j) with i, j ∈ [r′] in the domain of
F∗.

We will now describe how to obtain the sets C(i, j) ⊂ [k], i, j ∈ [r′], using L~F and the
functions ~F−∗. Fix an input (ai, bj, ci,j). We want to determine the set C(i, j) of possible values
for F∗(ai, bj, ci,j). Recall that for each i, j ∈ [r′], we know the value given to all inputs of the
ternary tree. We want to work our way down the path P , starting at the root vertex vh in order
to determine C(i, j). If the functions in ~F were all invertible, then knowing that (ai, bj, ci,j) is a
yes input, this limits the number of possible values of the root vertex to the set C(i, j)h = [k1−ε].
Working down the path, since we know the values of the red child and white child of vh, this in
turn gives us another set of at most k1−ε values, C(i, j)h−1 that vh−1 can have. We continue in this
way down the path until we arrive at a set of at most k1−ε values, C(i, j) that vi∗ can take on.

However we are not working with invertible functions, but instead with 4-invertible functions.
This can be handled by a simple modification of the above argument. Again we start at the root of
the path vh. As before, we know the values associated with the root is the set C(i, j)h = [k1−ε].
At vertex vh′ , we define the set C(i, j)h

′ based on the previous set C(i, j)h
′+1. For a particular

value z ∈ C(i, j)h
′+1, we know the value of redchild(vh′), and whitechild(vh′). This gives us

values z, a, c. By the definition of Fvh′ being 4-invertible, there are at most 4 values of b such that
z = Fvh′ (a, b, c). Thus we know the four possible values of b that can lead to z. Running over all
z’s in C(i, j)h

′+1 defines the set C(i, j)h
′ which has size at most four times the size of C(i, j)h

′+1.
Thus, the size of C(i, j)i∗ is at most 4h−i∗k1−ε. We set C(i, j) equal to C(i, j)i∗.

Let F be the uniform distribution over all 4-invertible functions from [k]3 to [k]. Let E de-
note the event that for every (i, j), F (ai, bj, ci,j) ∈ C(i, j). It is left to show that PrF∼F [E] ≤
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k−
7
9
εr22−4h

. Let F ′ be the uniform distribution over all functions from [k]3 to [k/4]. Lemma 6.2
below shows that PrF∼F [E] ≤ PrF ′∼F ′ [E]. Thus we have:

PrF∼F [E] ≤ PrF ′∼F ′ [E] =

(
|C(i, j)|
k/4

)(r′)2

≤
(
4 · 4h−i∗ · k−ε

)(r/4i∗)2 ≤ k−
7

9·24h
εr2 .

Proof. (of Theorem 2.3) We are now ready to complete the proof of our main theorem. Let ~F be the
uniform distribution over vectors ~F of all 4-invertible functions from [k]3 to [k]. We prove the theo-

rem by showing that if for every ~F , if Tree~F has a size s branching program where s ≤
(

k
n26 log k

)h
,

then the expected number of bits required for encoding an ~F sampled from the distribution ~F is
less than the minimum number of bits required, which is 3h−1H(F), giving us the contradiction.
Given ~F , the encoding is as follows.

(1) If ~F ∈ Bad(~F ), encode each function using H(F) bits, thus using 3h−1H(F) bits over all
the internal functions.

(2) If ~F /∈ Bad(~F ), encode as follows.

(2a) The first part is the description of L~F .

(2b) The second part is an optimal encoding of all of ~F except for F∗.

(2c) The third part is an optimal encoding of F∗. Recall that F∗ is an element from the (uni-
form) distribution (F |E) whereE denotes the event that for every (i, j), F (ai, bj, ci,j) ∈
C(i, j).

Using this encoding, the decoding procedure is as follows. Whenever Bad(~F ) holds, we use
the information in (1) in order to recover ~F . Otherwise, if ¬Bad(~F ) holds3, we proceed as follows.
First we use the label L~F from (2a) in order to determine vi∗. Then we use label L~F from (2a)
along with information about the rest of the functions from (2b) to find the special (r′)2 inputs
(ai, bj, ci,j), i, j ∈ [r′] to the function F∗. We also use the label L~F from (2a) and information from
(2b) to determine the sets C(i, j) ⊂ [k] such that F∗(ai, bj, ci,j) ∈ C(i, j) for all i, j ∈ [r′]. We can
then determine using the information from (2c) the values F∗(ai, bj, ci,j) for all i, j ∈ [r′] (and also
the remaining inputs in [k]3).

We want to compare the savings of this encoding over the optimal one that uses H( ~F) bits. Let
p = PrF∼F [E]. Then 1/p is equal to the number of 4-invertible functions divided by the number
of 4-invertible functions satisfying E. Thus, when ¬Bad(~F ) holds, the savings of our encoding in
bits is log(1/p)− |L~F |, and therefore the overall savings in bits is

(1−pBad)[log(1/p)−|L~F |] ≥ (1−pBad)
[

7
9·24h εr

2 log k − 4hr log k
]

=
[

7
9·24h εr

2 − 4hr
]

(1−pBad) log k

3Astute reader might have observed that inorder to recognize if Bad(~F ) holds or not one needs to convey infor-
mation, albeit just 1 bit. We end up saving a lot more so we ignore it.
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since by Lemma 6.1, |L~F | ≤ 4hr log k and p ≤ k−
7
9
εr22−4h

.
In the expression

[
7

9·24h εr
2 − 4hr

]
, the quadratic dependence on r in the first term whereas

only a linear dependence in the second allows us to choose r = 26h

ε
, large enough so that we make

savings. At r = 26h

ε
,
[

7
9·24h εr

2 − 4hr
]

= r
[

7
9·24h26h − 4h

]
> r ∀h ≥ 1. Also, by Lemma 4.1 we

know pBad ≤ 1
10

and since k ≥ 242h this implies (1− pBad) log k > 1. Thus our savings is greater
than r bits, giving a contradiction.

Lemma 6.2. Let F be the uniform distribution over all 4-invertible functions from [k]3 to [k] and
let F ′ be the uniform distribution over all functions from [k]3 to [k/4]. Fix r2 inputs τi, i ∈ [r2],
and let Ci be a corresponding subset of [k], such that | ∪i Ci| ≤ k/4. E be the event that for all i,
F (τi) ∈ Ci. Then PrF∼F [E] ≤ PrF ′∼F ′ [E].

Proof. Since | ∪i Ci| ≤ k/4, we can assume without loss of generality that all of these values
are in [k/4]. Let Ei denote the event that F (τi) ∈ Ci, and let E<i denote the event that for all
j < i, F (τj) ∈ Cj . Then PrF∼F [E] =

∏
i PrF∼F [Ei | E<i]. We will show that for any i,

PrF∼F [Ei | E<i] ≤ PrF ′∼F ′ [Ei]. Let σ specify the values of F for all tuples except for τi. Then
PrF∼F [Ei | E<i] ≤ maxσPrF∼F [Ei | σ]. That is, the true probability is at most the probability
where we fix all values except for the value of F on τi to the worst possible scenario.

We want to show that this probability only increases when the distribution switches from F to
F ′. But then note that under the distribution F ′, the values σ do not change the probability. Thus
we want to show: PrF∼F [Ei | σ] ≤ PrF ′∼F ′ [Ei | σ] ≤ PrF ′∼F ′ [Ei].

To prove the first inequality, note that σ specifies all but one of the [k]3 inputs to F . We visualize
this as a k-by-k-by-k cube, where all entries (x, y, z) are filled in with a value in [k] except for the
one entry corresponding to τi. We want to get an upper bound on how many values we can choose
for this last entry and still have a 4-invertible function. When choosing this last value, in order
for F to be 4-invertible, we cannot choose one of the at most k/4 values that already appears four
times along the “x” dimension, or one of the at most k/4 values that already appears four times in
the “y” dimension, or k/4 times in the “z” dimension. This rules out at most 3k/4 values, leaving
at least k/4 possible values. Thus there is a set of at least k/4 values that can legally be filled in
for F (τi) (even under the worst possible σ), and because F is uniform on such functions, these
completions all have the same probability. The event Ei is when F (τi) is chosen to be in Ci. This
probability is at most that for the distribution F ′ on all functions from [k]3 to [k/4].

7 Conclusion
It is open to prove lower bounds for function composition for the case of Boolean nondeterministic
semantic read-once branching programs. In fact, it is open to prove lower bounds for the Boolean
case for any explicit function. Another longstanding open problem is to break the Nečiporuk
barrier of n2/ log2 n for deterministic branching programs, and n3/2/ log n for nondeterministic
branching programs. When g is the parity function, this bound is optimal. Lower bounds for f ◦ g
for g equal to the element distinctness function (or even for the majority function) would be a
significant breakthrough.
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A Proofs
Proof of lemma 4.1: For k > 242h and ε = 9h

log k
, Pr~F [Bad(~F )] ≤ 1

10
.

Proof. We will choose a random ~F somewhat indirectly as follows. First, we sample a random
vector ~F ∈ ~F . Secondly, we choose a random permutation Π of the values [k], and let Π(~F ) be
the same as ~F except that the root values have been permuted by Π. (This requires only changing
the outputs of the function at the root.) Note that this distribution on ~F is identical to the uniform
distribution over ~F . It follows that Pr~F [Bad(~F )] = Pr〈~F ,Π〉[Bad(Π(~F ))]. We will consider the

worst case value of ~F in order to bound the above probability. Observe that

Pr
〈~F ,Π〉

[Bad(Π(~F ))] ≤ Max~F Pr
Π

[Bad(Π(~F )) | ~F ].

Fix such a worst case ~F . For this ~F , for each value v ∈ [k] let qv denote the fraction of leaf values
~ξ that give value v at the root. Note

∑
v qv = 1 and Avgv qv = 1

k
.

Because the permutation Π is randomly chosen, Π−1([k1−ε]) is a random subset of [k] of size
k1−ε. Therefore via linearity of expectation,

Exp

(
|Syes|
|{~ξ}|

)
= Exp

 ∑
v∈Π−1([k1−ε])

qv

 =
k1−ε

k
= k−ε.

We want to bound the probability that the size of Syes is significantly smaller than its expected
value of k1−ε. But first, the lemma below proves that 0 ≤ qv ≤ 4h−1

k
.

Lemma A.1. ∀v ∈ [k], qv ≤ 4h−1

k
.

Proof. Fix ~F . Fix all of the leaf values as in ~ξ, except for the left most leaf. Working down from
the root, for any value v at the root one can see that there are at most 4h−1 values in [k] for this
left most leaf that can lead to value v at the root of ~F . This is because each internal function is 4-
invertible and for any fixed value of an internal node, given the value of two of its children(subtree
evaluations) there are at most 4 possible values the other child can take.

We select a uniformly random set of size k1−ε to be mapped to [k1−ε] as follows. Flip a biased
coin for each point ‘v’ in [k] to be selected with probability k−ε. Given a vector of qv describing
the fraction of inputs that map to v, let Qv be a vector of random variables associated with corre-
sponding coin flips with each of them taking value qv with probability k−ε and 0 with the remaining
1− k−ε. The expected number of points selected is k1−ε. The experiment repeats until the number
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of points selected is within some standard deviations say c.k
1−ε
2 of the mean k1−ε. Let’s first ana-

lyze the number of inputs selected corresponding to the points selected in the process without the
size requirement on number of points.

We are interested in the fraction of inputs that get to be Yes inputs as a result of being selected
during the coin flipping process. Let QY es =

∑
vQv. So

E[QY es] =
∑
v

E[Qv] =
∑
v

qvk
−ε = k−ε. (1)

In this experiment Qv are independent (but not necessarily identically distributed) non-negative
random variables. Consequently QY es obeys the following concentration bound [6] around its
mean

Prob [ (E[QY es]−
∑
v

Qv) ≥ t ] ≤ e

(
−t2

2
∑
v E[Q2

v ]

)
(2)

Since by the regularity property from Lemma A.1 we have qv ≤ 4h−1

k
for all v ∈ [k]

∑
v

E[Qv
2] =

∑
v

qv
2k−ε = k−ε

∑
v

qv
2 ≤ k−ε

∑
v

(
4h−1

k

)2

= k−εk ·
(

4h−1

k

)2

=
42h−2

k1+ε

=⇒ Prob [ (E[QY es]−QY es) ≥ t ] ≤ e

(
−t2

2
∑
v E[Q2

v ]

)
≤ e

 −t2

2

(
42h−2

k1+ε

)


= e
−t2k1+ε

2·42h−2

Consequently,

Prob [QY es ≤ E[QY es]− t ] ≤ e
−t2k1+ε

2.42h−2 (3)

Set t = 1
2kε

for the event Bad′ = [QY es ≤ E[QY es]− t ] = [QY es ≤ 1
2kε

].

pBad′ = Prob

[
QY es ≤

1

2kε

]
≤ e

−k1−ε

8.42h−2 (4)

Now consider the following transformed process in which the experiment repeats until number
of points selected is within some fixed deviation g from the mean. Let the set of points be A.
Depending on the count of number of points in A selected, if the count falls below k1−ε a few
more points are uniformly randomly selected from [k] \A to obtain a set of size k1−ε and likewise
if the number is larger than k1−ε the required number of points are uniformly randomly discarded
from the set. Clearly, this process doesn’t discriminate against any point in [k] and so generates a
uniformly random subset of size exactly k1−ε from [k]. Let call this setA′′ , it shall be our final set of
size k1−ε. Let pBad be the probability that that the fraction of inputs associated with the set of points
in A′′ is less than 1

6kε
. For the intermediate set A let U be the event [k1−ε − g ≤ |A| ≤ k1−ε + g].

Then,

Prob [Bad′ | U ] =
Prob(Bad′ ∩ U)

Prob(U)
≤ Prob(Bad′)

Prob(U)
(5)
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Since |A| is binomially distributed with (n, p) = (k, k−ε), seen as a sum of independent non-
negative random variables, for a deviation g ≈ 2k

1−ε
2 we have the following concentration guaran-

teed by (2)

Prob(U) = Prob
[
k1−ε − 2k

1−ε
2 ≤ |A| ≤ k1−ε + 2k

1−ε
2

]
≥ 0.8 (6)

By (4) it follows that Prob(Bad′) ≤ e
−k1−ε

8.42h−2 and together with (6) and (5) this implies

Prob [Bad′ | U ] ≤ 5

4
e
−k1−ε

8.42h−2 (7)

the chance that SAY es is small is exponentially small. Now consider the transformation of A to
A′′. Note that whenever new points are added to A or some points in A are discarded so as
to obtain A′′ i.e a uniformly random choice of a set of exact size k1−ε the change from SAY es
to SA

′′
Y es is at most g.maxv qv. But by regularity property given by Lemma A.1, qv ≤ 4h

k
. So∣∣|SA′′Y es| − |SAY es|

∣∣ ≤ g.4
h

k
≈ k

1−ε
2

4h

k
= 4h

k
1−ε
2 +ε

=
(

4h

k
1−ε
2

)
1
kε
≤ 1

3kε
for k > 242h at ε = 9h

log k
.

The resulting set A′′ will then always have size at least 1
2kε
− 1

3kε
= 1

6kε
whenever QA

Y es >
1

2kε
.

This implies pBad = Prob
[
QA

′′

Y es ≤ 1
6kε

]
≤ Prob

[
QA
Y es ≤ 1

2kε

]
= Prob [Bad′ | U ] and hence

≤ 5
4
e
−k1−ε

8.42h−2 .

For k > 242h and ε = 9h
log k

it can be seen that pBad ≤ 5
4
e
−k1−ε

8.42h−2 ≤ 5
4
(1
e

242h−9h

24h−1 ) ≤ 1
228h
≤ 1

10
,

∀h ≥ 1.

B Nečiporuk via Function Composition
Consider the composition of two boolean functions f : {0, 1}a → 0, 1 and g : {0, 1}b → {0, 1}.
Let f be a hard function in the sense that any non-deterministic branching program computing f
requires size at least 2a/2. Such functions are guaranteed to exist by a simple counting argument.
Fix g to be any function such that it does not take a constant value when all but any one of its b
input bits are set.

Lemma B.1. Any non-deterministic branching program solving f ◦ g has size at least b2a/2.

Proof. Let there be a non-deterministic branching program solving f ◦ g of size s. For each of the
a copies of g in the composition f ◦ g pick the least queried input bit from amongst each group of
b input bits that correspond to a single copy of g, then set all remaining b− 1 variables in this input
group to any value and reconnect the outgoing edges amongst the remaining states appropriately.
The resulting collapsed branching program has size at most s

b
. But recall that g has the property

that fixing b− 1 of its input bits doesn’t make the function a constant. Thus the resulting collapsed
branching program has to have size at least that required for computing f , that is 2a/2. Therefore
the original non-deterministic branching program must have size at least s ≥ b2a/2.
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Let g = ⊕ be the parity function on b bits. The input to f ◦ ⊕ is the description of f , plus a
vector of ab bits (the input to f ◦ ⊕). The input length is 2a + ab. Setting a = log n and b = n

logn
,

the input length is 2n. By the above lemma, the size of a branching program required to solve the
composition f ◦ ⊕ is at least b2a/2 =

(
n

logn

)(
2

logn
2

)
= n3/2

logn
. This lower bound is also known to

be the best achievable by Nečiporuk as shown by Beame and McKenzie in [4].
By essentially similar means an Ω

(
n2

log2 n

)
lower bound can be shown for deterministic branch-

ing programs. Consider deterministic branching programs solving f ◦ g where f is now a hard
function in the sense that any deterministic branching program computing f requires size at least
2a

a
(once again such functions are guaranteed to exist by counting argument). Just as before, fix

g = ⊕ to be the parity function (or any function that is not constant when all but any one of its
input bits are set.) A similar argument shows that any branching program solving f ◦ ⊕ requires
size at least b2a/2. Set a = log n and b = n

logn
to obtain an Ω

(
n2

log2 n

)
lower bound.

C The lower bound holds for most ~F
We now argue that for most vectors of 4-invertible functions ~F , Tree~F does not have a small
branching program. We show that the probability that a uniformly randomly chosen ~F has a small
branching program is at most pBad + 1

2r
≤ 1

227h
. First, let #L = 2|L~F | be the total number of

labels. Recall that |L~F | is the number of bits needed to encode a label and that the number of bits
saved in our alternate encoding from the proof of Theorem 2.3 is (1 − pBad)[log(1/p) − |L~F |] =

(1− pBad) log
(

1
p·#L

)
.

Note that for a uniformly randomly chosen ~F the probability that it has a small branching
program is at most the chance that Bad(~F ) holds plus the chance that Bad(~F ) doesn’t hold and
there exists a label L that is consistent with ~F (in other words a label obtained via lemma 6.1 as a
guaranteed consequence of ~F having a small branching program).

Pr~F [∃ a small BP solving Tree~F ]

≤ Pr~F [Bad(~F ) ∪ [¬Bad(~F ) ∩ ∃ a label L consistent with ~F ]

≤ pBad + Pr~F [¬Bad(~F ) ∩ [∃ a label L that is consistent with ~F ]] (by Union bound)
≤ pBad + Pr~F [∃ a label L that is consistent with ~F ] (since P (A ∩B) ≤ min{P (A), P (B)})
≤ pBad + #L ·maxL Pr~F [ label L is consistent with ~F ] (by Union bound)
≤ pBad + p.#L

We have shown in the proof of theorem 2.3 that the number of bits saved in our alternate encoding
is is at least r. So, (1− pBad) log( 1

p·#L) ≥ r =⇒ 1
p·#L ≥ 2r/(1−pBad) ≥ 2r =⇒ p ·#L ≤ 1

2r
.

Consequently it follows that:
Pr~F [∃ a small BP solving Tree~F ] ≤ pBad + 1

2r

Now note that the proof of Lemma 4.1 (see Appendix A) actually shows that pBad ≤ 2−28h. As a
result, Pr~F [∃ a small BP solving Tree~F ] ≤ 1

228h
+ 1

2r
≤ 1

227h
. (the last inequality follows since

r = 26h

ε
= 26h log k

9h
≥ 26h+2). Thus we can conclude that most vectors of 4-invertible functions in

fact do not have small branching programs.
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