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Abstract

We prove exponential lower bounds on the size of semantic read-once 3-ary nondeterministic
branching programs. Prior to our result the best that was known was for D-ary branching
programs with |D| ≥ 213.

1 Introduction

A major question in complexity theory is whether polynomial-time is the same as log-space or
nondeterministic log-space. One approach to this problem is to study time/space tradeoffs for
problems in P . For example, for natural problems in P , does the addition of a space restriction
prevent a polynomial time solution? In the uniform setting, time-space tradeoffs for SAT were
achieved in a series of papers [6, 13, 7]. The best current result shows that any algorithm for SAT
running in space no(1) requires time at least Ω(nφ−ε) where φ is the golden ratio ((

√
5− 1)/2) and

ε > 0.
In the nonuniform setting, the standard model for studying time/space tradeoffs is the branching

program. In this model, a program for computing a function f(x1, . . . , xn) (where the variables take
values from a finite domain D) is represented by a directed acyclic graph with a unique source node
called the start node. Each nonsink node is labelled by a variable and the edges out of a node
correspond to the possible values of the variable. Each sink node is labelled by an output value.
For Boolean functions, there is one sink node called the accept node, and all other sink nodes are
rejecting nodes. Executing the program on an input corresponds to following a path from the start
node, using the values of the input variables to determine which edges to follow. The output of the
program is the value labeling the sink node reached. A D-ary branching program is deterministic
if each non-sink node has exactly D edges, one for every value in D.

The length of a branching program is the number of edges in the longest path. It is clear that
length of a branching program can be seen as a measure of computation time. The size of a branch-
ing program is the number of nodes in the program. For a boolean function fn, let BP (fn) denote
the minimal size of a branching program computing fn. The space complexity S(fn) of non-uniform
Turing machine computing fn and BF (fn) are tightly related, S(fn) = O(log(max {BP (fn), n}))
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and BP (fn) = 2O(max {S(fn),logn}) [5, 15]. This motivates the study of branching program size
lower bounds. In particular, size lower bounds on length restricted branching programs translate
to time/space tradeoffs.

The state of the art time/space tradeoffs for branching programs were proven in the remark-
able papers by Ajtai [1] and Beame-et-al [3]. In the first paper, Ajtai exhibited a polynomial-time
computable Boolean function such that any subexponential size deterministic branching program re-
quires superlinear length. This result was significantly improved and extended by Beame-et-al who
showed that any subexponential size randomized branching program requires length Ω(n logn

log logn).
Lower bounds for nondeterministic branching programs have been more difficult to obtain. In

this model, there can be several arcs (or no arcs) out of a node with the same value for the variable
associated with the node. An input is accepted if there exists at least one path consistent with the
input from the source to a 1-node. A nondeterministic branching program computes a function f
if its accepted inputs are exactly equal to f−1(1). From here on, we shall restrict our attention to
non-deterministic branching programs.

Length-restricted nondeterministic branching programs come in two flavors: syntactic and se-
mantic. A length l syntactic model requires that every path in the branching program has length
l, and similarly a read-k syntactic model requires that every path in the branching program reads
every variable at most k times. In the less restricted semantic model, the requirement is only for
consistent source to sink paths; that is, paths along which no two tests xi = d1 and xi = d2, d1 6= d2

are made. This is equivalent to requiring that for every accepting path, each variable is read at
most k times. Thus for a nondeterminsitic read-k semantic branching program, the overall length
of the program can be unbounded.

Note that any syntactic read-once branching program is also a semantic read-once branching
program, but the the opposite direction does not hold. In fact, Jukna [8] proved that semantic
read-once branching programs are exponentially more powerful than semantic read-once branching
programs, via the “Exact Perfect Matching”(EPM) problem. The input is a (Boolean) matrix A,
and A is accepted if and only if every row and column of A has exactly one 1 and rest of the
entries are 0’s i.e if its a permutation matrix. Jukna gave a polynomial-size semantic read-once
branching program for EPM, while it was known that syntactic read-once branching programs
require exponential size [12, 11].

Lower bounds for syntactic read-k (nondeterministic) branching programs have been known for
some time [14, 4]. However, for semantic nondeterministic branching programs, even for read-once,
no lower bounds are known for polynomial time computable functions for the |D| = 2 case. The
best lower bound known prior to our work is an exponential lower bound for semantic read-once
(nondeterministic) |D|-way branching programs, where |D| = 213 [9]. In fact this lower bound
actually holds more generally for semantic read-k but where |D| = 23k+10.

Jukna obtains his result by showing that any time restricted semantic branching program of
small size has a large rectangle in f−1(1). He uses the explicit function of computing the char-
acteristic function of a linear code having minimum distance m + 1 defined over GF (q). Given a
parity matrix Y ,the function g(Y, x) = 1 iff x is a codeword. Since codewords in a linear code of
minimum distance m + 1 can only have an m-rectangle of size 1 he argues that a time restricted
branching program of length kn computing g requires a size of 2Ω(n/k24k). This exponential lower
bound can be obtained whenever D is sufficiently large in comparison to k, |D| = q ≥ 23k+10.

Jukna’s result is an improvement from exponential lower bounds with a domain requirement of
22ck obtained in [2]. Beame et.al [2] obtain their result by characterizing the function computed
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by a time restricted branching programs of small size as a union of shallow decision forests where
the size of the union depends on the size of the branching program. Each shallow forest is then
shown to be representable by a collection of small number of βn-pseudo-rectangles in f−1(1).
(Pseudo-rectangles are a generalization of what we call embedded rectangles later). This gives a
representation of the branching program as a union of small(in the size ‘s’) number of βn-pseudo-
rectangles. Now, if for some function f the maximum size of a βn-pseudo-rectangle is |D|(1−ψf (β))n

and the number of yes-instances |f−1(1)| ≥ |D|(1−η(f))n then the number of βn-pseudo-rectangles
will be at least |D|(ψf (β)−η(f))n. This yields an exponential lower bound on s for sufficiently large
|D| whenever (ψf (β)− η(f)) is bounded away from 0 by some ε > 0. They then exhibit an explicit
function with this property. Their function QFM : GF (qn) → {0, 1} is based on quadratic forms
using a modified Generalized Fourier Transform matrix. They show that there exists a constant

c > 0 such that for all k and ε ∈ (0, 1), if D ≥ 22
c
ε k then a non-deterministic BP of length kn

computing QFM needs size at least S = 2n log1−ε |D|. For the specific case of k = 1, it can be shown
that if their analysis of maximum size of βn-pseudo-rectangles in QFM is tight, a domain size of
at least |D| ≥ 264 is needed.

Our main result is an exponential lower bound on the size of semantic read-once nondeterministic
branching programs for a polynomial time decision problem f for 3-ary inputs. Similar in spirit to
these previous results [9, 2] we show that a small sized semantic read once branching program is
bound to have a large rectangle in f−1(1). However in addition, we show that one can always find
a balanced rectangle in f−1(1) of size r2 where r is some large constant (?) . A balanced rectangle
is one which is reasonably close to being a square.

The particular polynomial time decision problem we use to prove the lower bound is: to decide
if a polynomial over a finite field K evaluates to a value less than a certain threshold at a given
input. The input is a pair (u, x) where u is the description of a degree d−1 polynomial over [K] and
x ∈ [K] and we want to accept if and only if u(x) < K1−δ. We actually prove a stronger theorem:
with high probability over all polynomials u, any nondeterministic semantic read-once branching
program for what we shall call Polyu requires exponential size. That is, even if the branching
program knows the polynomial u, for a typical u it cannot efficiently do polynomial evaluation.
The main properties of polynomials over finite fields we are using are polynomial interpolation,
and lemma 7, which might be interpreted to mean something like: the spread of values of a typical
random polynomial of degree d over a field K is roughly close to being uniform over K, provided
K is sufficiently large.

Continuing with the above observation (?), since the number of balanced rectangles of a certain
size d = r2 is small and since each one of them can be a rectangle in f−1(1) for a relatively small
number of degree d polynomials over K as a consequence of polynomial interpolation, we argue
that there must be a polynomial with no balanced rectangle in f−1(1) and hence the branching
program computing it should be large. A key idea of this argument is that for a balanced rectangle
the sum of the lengths of the rectangle can be at most a small fraction of its area.

By a simple padding argument, we can modify our problem Polyu and actually achieve the
lower bound for domain size 2 + ε for arbitrarily small ε > 0. In this model, we can define the
problem to have N = n+M variables, M = Θ(N) of them with domain size 3 and the rest, with
domain size 2, do not affect the output.
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2 Definitions

Throughout this article, D denotes a finite set. For finite set N , DN is the set of maps from N to
D. An element of N is called a variable index or simply an index. We normally take N to be [n]
for some integer n, and write DN for D[n]. If A ⊆ N , a point σ ∈ DA is a partial input on A. For
a partial input σ, fixed(σ) denotes the index set A on which it is defined and unfixed(σ) denote
the set N − A. If σ and π are partial inputs with fixed(σ) ∩ fixed(π) = ∅, then σπ denote the
partial input on fixed(σ) ∪ fixed(π) that agrees with σ on fixed(σ) and with π on fixed(π).

For x ∈ DN and A ⊆ N , the projection xA of x onto A is the partial input on A that agrees
with x. For S ⊆ DN , SA = {xA | x ∈ S}.

2.1 Nondeterministic Read-Once Semantic Branching Programs

Let f : DN → {0, 1} be a boolean function whose input is given in |D|-ary. Let the input variables
be x1, . . . , xn where xi ∈ D for all i ≤ n. A |D|-way nondeterministic branching program (for f) is
an acyclic directed graph G with a distinguished source node qstart and a distinguished sink node
(the accept node) qaccept. We refer to nodes as states. Each non-sink state is labelled with some
input variable xi, and each edge directed out of a state is labelled with some value b ∈ D for xi. For
each Z ∈ DN , the branching program accepts Z if and only if there exists at least one (directed)
path starting at the qstart and leading to the accepting state qaccept, and such that all labels along
this path are consistent with Z. The size of a branching program is the number states (i.e. nodes)
in the graph.

A branching program is semantic read-k if for every path from qstart to qaccept that is consistent
with some input, each variable occurs at most k times along the path. For the read-once case, a
semantic branching program allows variables to be read more than once, but each accepting path
may only query each variable once.

2.2 Polynomial Evaluation Problem

Our hard computational problem is the polynomial evaluation problem, Poly, with parameters
K, d, δ, where 0 < δ < 1. The input is a pair (u, Z) where u ∈ [K]d specifies a degree d − 1
polynomial over the field [K] (K a prime power), and Z ∈ [K] specifies a field value. Poly(u, Z) = 1
if and only if the polynomial specified by u on input Z evaluates to a number less than K1−δ. (We
compare two field elements by comparing them using the natural ordering on ternary strings.)

We will work with |D|-ary branching programs (with |D| prime), and let K = |D|N . The input
will be given as a vector in D(d+1)N . The first dN coordinates specifies u and the last N coordinates
specifies Z. Thus the total input length is (d+ 1)N . In the remainder of the paper, |D| = 3, and
thus the parameters of Poly are d, δ,N . Both d and δ will be fixed constants. Let Polyu denote
the polynomial evaluation problem with parameters d, δ, n where the polynomial u is fixed.

2.3 Rectangles and Embedded Rectangles

We use the same definitions and conventions as in [3].
A product U × V is called a (combinatorial) rectangle. If A ⊆ N is an index subset and

Y ⊆ DA and Z ⊆ DN−A, then the product set Y × Z is naturally identified with the subset
R = {σρ | σ ∈ Y, ρ ∈ Z} of DN , and a set of this form is called a rectangle in DN .
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An embedded rectangle R in DN is a triple (πred, πwhite, C) where πred, πwhite are disjoint subsets
of N , and C ⊆ DN satisfies: (i) The projection CN−πred−πwhite consists of a single partial input w,
(ii) if τ1 ∈ Cπred and τ2 ∈ Cπwhite , then the point τ1τ2w ∈ C. C is called the body of R. The sets
πred, πwhite are called the feet of the rectangle; the sets Cπred and Cπwhite are the legs, and w is the
spine. We can also specify an embedded rectangle by its feet, legs and spine: (πred, πwhite, A,B,w)
where πred, πwhite are the feet, A = Cπred , B = Cπwhite are the legs, and w is the spine.

We will sometimes refer to A as the red side of the rectangle and to B as the white side of the
rectangle. The size of the rectangle is |A| · |B|, and the dimension of the rectangle is mr-by-mw

where mr = |πred| and mw = |πwhite|.

3 Lower Bound for |D| = 3

Theorem 1 There exists constants d, δ such that for sufficiently large n, for a random u, with
probability greater than 1/4, any 3-ary nondeterministic semantic read-once branching program for
Polyu requires size at least 2Ω(n).

Corollary 2 There exists constants d, δ such that for sufficiently large n, any 3-ary nondetermin-
istic semantic read-once branching program for Poly with parameters d, δ, n requires size at least
2Ω(n).

Overview of Proof Call a degree d− 1 polynomial “good” if the fraction of accepting instances
is roughly what you would expect from a random function; that is, if the fraction of yes instances
is at least 1

2K
−δ. Lemma 7 shows that at least half of all degree d− 1 polynomials are good.

The main lemma (Lemma 3) shows that for all good polynomials, we can associate with every
size s = 2o(n) branching program, P, an mr-by-mw embedded rectangle RP of size r2, where r will
be a large constant, and mr and mw will be roughly equal, and will each be a constant fraction of
n. For simplicity of calculations for now, assume that mr = mw = m. The rectangle will have the
property that P accepts every input in RP ; in other words, RP is a 1-rectangle of P. Choosing
d = r2, each rectangle of size r2 can be a 1-rectangle for very few degree d − 1 polynomials – at
most a |D|−nδr2 fraction of all degree d − 1 polynomials. (This is Lemma 6.) Secondly, the total
number of such rectangles is fairly small – of size roughly |D|O(rm) (Lemma 5). The key point is
that the number of rectangles is roughly |D|2rm – the exponent grows linearly in r. (More precisely
it grows linearly in the sum of the lengths of the sides of the rectangle). But on the other hand, the
probability that a degree d = r2 polynomial takes on values less than K1−δ within the rectangle
is roughly |D|−mr2 – that is, the exponent grows quadratically with r. Because |D|−nδr2 |D|O(rn) is
less than 1/4, this implies that many good degree d − 1 polynomials have no size r2 1-rectangle,
thus proving the theorem.

Note that we set our parameters so that the area of the rectangle RP is at least the degree d
of the polynomial u. (Thus r2 ≥ d.) A crucial point in the above argument is that the sum of the
lengths of the sides of RP must be at most a fraction of its area. This requires that the rectangle is
reasonably close to being square. We put extra effort into making sure that the rectangle is square
(without compromising too much of its size in order to make it square). This enables us to achieve
domain size 3; a somewhat simpler argument achieves domain size 5.

Lemma 3 (Main Lemma) Let u be a degree d − 1 polynomial over [K] such that the fraction of
inputs that map to [K1−δ] is at least 1

2K
−δ. Suppose that the following inequalities are satisfied
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for our parameters: (1) mw = 2mr = γn; (2) |D|mr ≥ |D|mw(1/2 − 2γ)mw ; (3) r ≤ 1/4(1/2 −
γ)mr |D|mr−δN/s. Then if P is a |D|-way nondeterministic semantic read-once branching program
of size s for Polyu with parameters d = r2, δ, n then there is an mr-by-mw embedded rectangle
R = (πred, πwhite, A,B,w) such that every input in R is accepted by P, and where |A|, |B| = r

Proof: Let u be a degree d − 1 polynomial such that the density of 1’s is at least 1
2K
−δ, and

consider a size s nondeterministic semantic read-once branching program, P for Polyu. Let S0

be the set of inputs that are accepted by P; since P is assumed to be correct for all inputs for
u, |S0| ≥ 1

2K
−δ|D|n. For each accepting instance I ∈ S0, fix one accepting path, pI , in the

branching program. Each of the n variables must be read along this path at most once and thus
each accepting instance I has an associated permutation πI of the n variables. (It is possible that
some input variables are not read in pI . We place all such variables at the beginning of πI , as
though though they were read first.) Designate state qI as the state in pI which occurs just after
the first half of the variables in πI . Now define q to be the most common designated state (over all
accepting inputs I ∈ S0), and let S1 ⊆ S0 denote the corresponding set of inputs whose designated
state is q. Thus for each input I in S1, there is an accepting path pI that passes through state q.
Because P has size s, it follows that

|S1| ≥ |S0|/s ≥
1

2
K−δ|D|n/s =

1

2
|D|−δn|D|n/s (1)

We now want to pick two subsets of coordinates πred ⊆ N and πwhite ⊆ N , of size mr and
mw respectively, and a set S∗ ⊆ S1 of inputs with the property that for every input I ∈ S∗, and
associated accepting path pI , not only does it pass through state q, but every coordinate in πred
is read before state q (or not read at all), and every coordinate in πwhite read at or after state
q (or not read at all). We will first pick πred greedily. For each I ∈ S1, at most n/2 of the n
coordinates in pI occur in πI before reaching state q, and thus there is some coordinate i such
that for at least half of the inputs I ∈ S1, i occurs in πI before reaching state q. After choosing
the first coordinate, there are at least |S1|/2 inputs remaining. Continue greedily until we pick mr

coordinates, πred, always choosing the most popular coordinate that occurs in πI before reaching
state q. By averaging, when the ith coordinate, i ≤ mr < γn is chosen, the fraction of inputs that
remain is at least (n/2−i)

(n−i) ≥
(n/2−γn)
(n−γn) ≥

(n/2−γn)
n = (1/2− γ). Let S2 ⊆ S1 denote the set of inputs

such that all coordinates in πred are read before reaching q (or not read at all). It follows that

|S2| ≥ (1/2− γ)mr |S1| (2)

By assumption (3) in the statement of the Lemma, we have

r ≤ 1/4(1/2− γ)mr |D|mr−δn/s (3)

Then from (1), (2), and (3) we have

|S2| ≥ 2r|D|n−mr (4)

For each w ∈ DN−πred , the average number of extensions of w in S2 is 2r. We want to prune
S2 such that every w ∈ DN−πred has at least r extensions. To do this, define S3 ⊆ S2, where we
remove all inputs (w, ∗) from S2 such that w has less than r extensions in S2. Since we delete at
most r|D|n−mr elements from S2, and |S2| ≥ 2r|D|n−mr , it follows that
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|S3| ≥ r|D|n−mr (5)

Next we will choose mw coordinates, πwhite in the same greedy fashion, and let S4 denote the set
of all inputs in S3 such that all coordinates in πwhite are read after reaching q. Again by averaging,

|S4| ≥ (1/2− 2γ)mw |S3| (6)

We will express S4 as the disjoint union of sets Rw: choose a value w for the coordinates outside
of πred ∪ πwhite. The corresponding set Rw ⊆ S4 consists of all inputs (α,w, β) such that α is an
assignment to the variables in πred, β is an assignment to the variables in πwhite, and (α,w, β) ∈ S4.

Claim 4 For each w: (i) Rw is an embedded rectangle and (ii) as long as Rw is not empty, the
size of the red side is at least r.

Proof: We will first show that Rw is an embedded rectangle. Let Sred ⊆ Dπred be the projection
of Rw onto the coordinates of πred and let Swhite ∈ Dπwhite be the projection of Rw onto the
coordinates of πwhite. Setting A = Sred, B = Swhite and w = w, we claim that Rw is equal to the
embedded rectangle defined by (πred, πwhite, A,B,w). To see this, consider x, x′ ∈ A and y, y′ ∈ B
such that xyw ∈ Rw, and x′y′w ∈ Rw. Let I be the input corresponding to xyw and let pI be the
corresponding path going thru state q. Note that in pI the x-variables are all read prior to reaching
q, and the y-variables are read after reaching q, and there is some split of the w variables into
w1, w2 where the w1 variables are read prior to q and the w2 variables are read after q. Similarly,
let I ′ be the input corresponding to x′y′w and let pI′ be the corresponding path. There is now
a possibly different split of w into w′1, w′2, so x′, w′1 are read before q and y′, w′2 are read after q.
We claim that xy′w ∈ Rw: consider the path (x,w1) (the first half of pI) and (y′, w′2) (the second
half of pI′). This path must be consistent since w1 and w′2 are consistent and x, y′ are on disjoint
variables. Thus there is an input consistent with this path; it is an accepting path going through
q and consistent with w; the variables in πred are all read before q, and the variables in πwhite are
all read after q. Thus it is in Rw. An analogous argument shows that x′yw ∈ Rw. Thus Rw is an
embedded rectangle.

Secondly we will show (ii) for each Rw ⊆ S4, the size of the red side is at least r. (That is,
|A| ≥ r.) Consider a nonempty rectangle Rw with red side A, white side B and stem w. Recall
that the inputs in S3 consist of a partial input w+ ∈ DN−πred together with a set A ⊆ Dπred such
that |A| ≥ r. We obtain S4 from S3 by selecting mw coordinates from N − πred, one at a time,
choosing each coordinate greedily, where a coordinate is chosen if it is read after state q in the
most inputs. Consider a block of inputs (A,w+) ∈ S3. If some input (α,w+) ∈ (A,w+) survives,
then all coordinates in πwhite that were chosen must all be read after state q on input (α,w+).
But this means that for every input (α′, w+) ∈ (A,w+), all coordinates in πwhite are also read
after q. (Otherwise, some coordinate would be read twice along this accepting input, violating the
read-once condition.) Thus, either the entire block (A,w+) is in S4, or the entire block is removed
from S4.

Now let Rw = (πred, πwhite, A,B,w) ⊆ S4 be a nonempty rectangle, w ∈ DN−πred−πwhite . Rw is
obtained by taking the union of (nonempty) blocks (A′, w+) ∈ S4, w+ ∈ DN−πwhite . Since as we
argued above, for each such block, |A′| ≥ r, it follows that |A| ≥ r as well.
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Let ravg denote the average size of the white side of the rectangle over all rectangles Rw ⊆ S4

It is easy to see that |D|n−mwravg ≥ r|D|n−mr(1/2 − 2γ)mw . Setting ravg = r, we get |D|mr ≥
|D|mw(1/2 − 2γ)mw . Thus we can pick some setting w∗ to the remaining n −mr −mw uncolored
coordinates (the coordinates that are not in πred or πwhite) such that the white side of the rectangle
Rw∗ has size at least ravg = r. Let S∗ equal Rw∗ . By construction, both the red side of S∗ = Rw∗

and the white side of Rw∗ have size at least r. Prune S∗ so that each has size exactly r, thus
completing the proof of the lemma.

Lemma 5 Let R be the set of all mr-by-mw embedded rectangles over DN such that |A| = |B| = r,

where mw = γn and mr = mw/2. Then |R| ≤ (e/γ)
3
2
mw |D|

3
2
rmw+mw/γ

Proof: The number of choices for πred, the coordinates of A, is
(
n
mr

)
. Given πred, we choose

r vectors from the |D|mr possible values for the elements of A. Thus the total number of pos-
sible sets A is at most

(
n
mr

)
|D|rmr . Similarly the number of choices for the set B is at most(

n
mw

)
|D|rmw . The number of choices for w ∈ DN−πred−πwhite is |D|n−mr−mw . Thus |R| is at most(

n
mr

)(
n
mw

)
|D|rmr |D|rmw |D|n−

3
2
mw . Using the inequality

(
n
k

)
≤ ( enk )k we conclude the number of

choices for |R| is at most (en/mw)mw(2en/mw)
1
2
mw |D|n−

3
2
mw |D|

3
2
rmw ≤ (e/γ)

3
2
mw |D|mw/γ+ 3

2
rmw

Lemma 6 Define the predicate Good(R, u) to be true if for every input Z in the rectangle R, the
polynomial u on input Z is less than K1−δ (i.e. Polyu(Z) is true). Then for all embedded rectangles
R of size d, Pru[Good(R, u)] ≤ p where p = |D|−δnd.

Proof: Assume Good(R, u). Then the branching program accepts all instances in R. Suppose
that |R| = d and let B′ ∈ [K1−δ]d specify a vector of d accepting values. Let GoodB′(R, u) to be the
event that for all Z ∈ R, Fu(Z) = B′(Z). Then Pru[Good(R, u)] = K(1−δ)d · Pru[GoodB′(R, u)].

To bound Pru[GoodB′(R, u)], suppose that it is true that ∀Z ∈ R, Fu(Z) =
∑

i≤d uiZ
i = B′(Z).

Note that this fixes the output of the degree d−1 polynomial for d values of Z. By interpolation, this
uniquely determines the polynomial, u′. Thus, Pru[GoodB′(R, u)] = Pru[u = u′] = K−d = |D|−nd.
Overall, Pru[Good(R, u)] ≤ K(1−δ)d|D|−nd = |D|n(1−δ)d|D|−nd = |D|−δnd. This completes the
proof of Lemma 6.

Lemma 7 For any given τ ∈ (0, 1), for fixed parameters d ≥ 2, δ and for sufficiently large K, with
probability over u greater than 1/2, Polyu(δ) accepts at least a fraction τK−δ of all the inputs.

Proof: Consider the Boolean random variable ax which takes the value polyu,δ(x) over randomly
sampled u ∈ [K]d+1. Let N =

∑
x∈K ax. At a given u, N(u) denotes the number of elements in the

domain [K] that get mapped to a value less than K1−δ. One can show that the random variables
ax are d−wise independent. For our lemma it suffices to show that ax are pairwise independent.
Let Polyvalu(x1) = k1 denote the event that the degree d polynomial obtained from a uniformly
randomly sampled coefficient vector u ∈ [K]d+1 evaluates to k1 at x1 ∈ K. For every x1, k1 ∈ [K],
for any arbitrary choice of all coefficients but the constant term in u there is exactly one value
of the constant term such that Polyvalu(x1) = k1, and thus Pru(Polyvalu(x1) = k1) = 1

K . Now
consider the joint event Q = {Polyvalu(x1) = k1 ∧ Polyvalu(x2) = k2}, where x1 6= x2. Make an
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arbitrary choice of the first d− 1 coordinates in u leaving u1, the coefficient of the linear term and
u0 the constant term. We get a system of two equations in two variables corresponding to the event
Q.

cx1 + u1x1 + u0 = k1

cx2 + u1x2 + u0 = k2

where cx1 , cx2 are the respective constants from partial evaluation. Since x1 6= x2 there is a unique
solution for the pair (u1, u2) and hence a unique completion of u. So the probability of Q,

Pr({Polyvalu(x1) = k1 ∧ Polyvalu(x2) = k2}) =
1

K2

This proves the pairwise independence of the events Polyvalu(x1) = k1 and Polyvalu(x2) = k2

when x1 6= x2. The pairwise independence of ax1 and ax2 follows from this since Pru(ax1 = 1) =
Pr[∨k∈[K1−δ]Polyvalu(x1) = k].

Now by linearity of expectation,

Eu[N ] =
∑

x∈K Eu[ax] = K · Pru(Polyvalu(x) < K1−δ) = K ·K−δ = K1−δ

We shall show that for most u (at least half of them), N(u) is close to K−δ. The variance σ2 can
be computed as follows.

Eu[(N − Eu[N ])2] = Eu[N2]− (Eu[N ])2 = Eu[
∑
x

a2
x +

∑
x 6=y

axay]−K2(1−δ)

= Eu[
∑
x

ax +
∑
x 6=y

axay]−K2(1−δ)

= K1−δ +
∑
x 6=y

Eu[ax]Eu[ay]−K2(1−δ)

(by pairwise independence)

= K1−δ +K(K − 1)K−2δ −K2(1−δ)

= K1−δ +K2−2δ −K1−2δ −K2−2δ

= K1−δ −K1−2δ

By Chebycheff’s inequality, ∀η > 0 we have Pru(|N − Eu(N)| ≥ ησ) < 1
η2

=⇒

Pru(|N −K1−δ| ≥ η(K1−δ −K1−2δ)
1
2 ) <

1

η2

=⇒ Pru(|N −K1−δ| ≥ ηK
(1−δ)

2 ) <
1

η2

Pru{K1−δ − ηK
(1−δ)

2 ≤ N ≤ K1−δ + ηK
(1−δ)

2 } ≥ 1− 1

η2

For any given τ ∈ (0, 1), η > 0 for a sufficiently large K we have that K1−δ − ηK
1−δ
2 > τK1−δ.

So given any τ ∈ (0, 1) for η =
√

2 for a sufficiently large K we have Pru(N ≥ τK1−δ) ≥ 1
2 . This

completes the proof of the lemma.
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We are now ready to complete the proof of the theorem. Call a polynomial u “good” if Polyu
accepts at least a 1

2K
−δ fraction of all inputs. By Lemma 7 with τ = 1

2 , we know that at least
half of all u’s are good. For each good u, Lemma 3 tells us that any small branching program for
Polyu implies that there exists an m-rectangle of size r2 that is accepted (assuming that conditions
(1), (2), and (3) are satisfied).

On the other hand, Lemmas 5 and 6 together tell us that at most a p|R| fraction of degree d−1
polynomials u have such monochromatic m-rectangles of size r2. Suppose we can choose a setting
of the parameters so that p|R| < 1/4. Then this implies that at least 1/4 of all good polynomials
cannot have small branching programs, and thus the theorem is proven.

It is left to show that we can set the parameters such that p|R| < 1/4, and properties (1),
(2), and (2) of Lemma 3 are satisfied. We will set the parameters as follows: |D| = 3, mw =
2mr = γn, γ = .01, δ = γ/300, r = 3000, and d = r2. To achieve p|R| < 1/4, we require

|D|δmwr2/γ−mw/γ−
3
2
rmw > 4(e/γ)

3
2
mw . Using |D| = 3 and factoring out mw, it is sufficient if we

have 3δr
2/γ−1/γ− 3

2
r > 4(e/γ)

3
2 . With our choice of parameters, this is satisfied for r ≥ 3000.

For Lemma 3, we also require assumptions (2) and (3). First for (2): |D|mr ≥ |D|mw(1/2 −
2γ)mw . For |D| = 3 and mw = 2mr, this is satisfied. For (3) we require: r ≤ 1/4(1/2 −
γ)mr |D|mr−δn/s = 1/4(1/2 − γ)mr |D|mr(1−2δ/γ)/s. For |D| = 3, γ = .01, δ = γ/300, we have
(1/2 − γ)|D|(1−2δ/γ) ≥ 1.45 and thus it suffices to show r ≤ 1/4(1.45)mr/s. This holds for our
choice r = 3000 when s ≤ 2cmr = 2cn/(2γ) for some c > 0 and sufficiently large n.

4 Conclusion

We have proved an exponential lower bound on the size of non-deterministic semantic read once
branching programs computing a polynomial time computable function f : Dn → {0, 1} when
|D| = 3. Our contribution is that we bring down the size of the domain required to achieve this.
Prior to our result the best that was known was for D-ary branching programs with |D| ≥ 213.
The explicit function f for which we show the lower bound is the decision problem of determining
whether a certain degree d polynomial over a finite field K evaluates to a value less than a certain
threshold at a given input. However, interestingly the case where D is boolean {0, 1} still remains
open and no non-trivial lower bounds are known for binary non-deterministic semantic read once
branching programs [10].
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