
TCP is Competitive Against a Limited AdversaryThis research was

supported in part by grants from NSERC and CITO.

Jeff Edmonds

Computer Science Department

York University, Toronto, Canada

jeff@cs.yorku.ca Suprakash Datta

Computer Science Department

York University, Toronto, Canada

datta@cs.yorku.ca Patrick Dymond

Computer Science Department

York University, Toronto, Canada

patrick@cs.yorku.ca

Abstract

While the well-known Transport Control Protocol (TCP) is a de facto standard for reliable
communication on the Internet, and performs well in practice, the question “how good is the
TCP/IP congestion control algorithm?” is not completely resolved. In this paper, we provide
some answers to this question using the competitive analysis framework. First, we prove that
for networks with a single bottleneck (or point of congestion), TCP is competitive to the optimal
global algorithm in minimizing the user-perceived latency or flow time of the sessions. Specifically,
we show that with O(1) times as much bandwidth and O(1) extra time per job, TCP is O(1)-
competitive against an optimal global algorithm. We motivate the need for allowing TCP to have
extra resources by observing that existing lower bounds for non-clairvoyant scheduling algorithms
imply that no online, distributed, non-clairvoyant algorithm can be competitive with an optimal
offline algorithm if both algorithms were given the same resources. Second, we show that TCP is
fair by proving that it converges quickly to allocations where every session gets its fair share of
network bandwidth.

1 Introduction

Most of the traffic on the Internet today is generated by applications which use the transport control
protocol (TCP). According to one study [?], 95% of the bytes and 90% of the packets sent over the
Internet use TCP. Since TCP is a large and complex protocol that solves several different problems, in-
cluding reliable data transfer, flow control, congestion control, and fair allocation of network resources.
Most of the research efforts towards evaluating the quality of TCP has concentrated on evaluating
(either empirically or analytically) the value of some performance metric. In this paper we take a
different approach towards the problem, and evaluate the performance of TCP using the traditional
competitive analysis framework [?]. Thus, we compare the performance of TCP (which is an online
algorithm) with that of an optimal offline algorithm. In this paper, we study the performance of TCP
on single-bottleneck networks, i.e., in a network where there is a single point of congestion. We prove
that (a simplified version of) TCP satisfies the transmission requests of all users in an efficient and

1

fair way. We show that existing lower bounds from non-clairvoyant scheduling theory imply that
no online, distributed, non-clairvoyant algorithm can be competitive with an all-powerful adversary.
This suggests that the power of the adversary should be limited to level the playing field. The most
popular approach for doing this is to explicitly limit the adversary in some way, e.g., by limiting its
freedom in choosing its inputs. In this paper, we use an alternative approach that has been utilized
very successfully in scheduling theory [?, ?, ?], viz., giving the online algorithm strictly more resources
compared to the adversary. Using this approach, we first prove that TCP performs competitively
against any all-powerful adversary if it is given a constant times more bandwidth and either (a) some
extra time, or (b) we assume that no job is smaller than a certain size. Second, we study the fairness
properties of TCP and prove that TCP converges quickly to allocations where every session gets its
fair share of network bandwidth.

An interesting byproduct of our paper is that it emphasizes and exploits a very natural connection
between the TCP congestion control algorithm and the theory of online algorithms and non-clairvoyant
scheduling. This provides a new theoretical approach for analyzing TCP variants and exploring pa-
rameter settings under different network assumptions.

This paper is organized as follows. Section 2 describes the our simplified model of TCP. Section 3
describes how TCP can be viewed as a scheduling algorithm, and introduces the scheduling model.
Section 4 surveys the literature on the performance analysis of TCP and results from scheduling theory
relevant to this paper. Section 5 presents the main results of the paper.

2 The TCP congestion control algorithm

While TCP solves several problems, this paper focuses on the congestion control (prevention, detection,
and reaction to congestion in the network) algorithm of TCP. TCP runs at every sender/receiver in a
distributed manner. There is no communication between different sessions. In this paper (as in most
papers in the literature), we model only the basic algorithmic strategy used by TCP. This strategy
(commonly referred to as additive-increase-multiplicative-decrease or AIMD) is very simple: at every
step, each source is allowed to increase its sending rate by an additive constant α. When it detects
congestion, the TCP algorithm requires the sender to cut its sending rate by a multiplicative constant
β. In this paper, we refer to this action as an adjustment.

Detection of network congestion is a difficult task, since no support from switches and routers is
assumed (TCP does not receive any messages from the switches or routers that packets pass through
en route to their destinations. Congestion can only be inferred (perhaps incorrectly) from end-to-end
observations. TCP sends acknowledgments to the sender for every packet that reaches its destination,
and infers congestion from the late arrival or non-arrival of acknowledgments.

We emphasize that in reality, TCP uses windows of packet sequence numbers and a “self-clocking”
mechanism instead of actual transmission rates. TCP also has many other details that we do not
model in this paper. The reader is referred to the books by Kurose [?] and Stevens [?] for more
information on the protocol.

Our model of the TCP congestion control algorithm is as follows. The sender of each job Ji

uses TCP to determine the rate bT
i (t) at which it transmits its job Ji (Throughout the paper, we

use the superscript T to denote that this bandwidth was allocated by TCP). This sender has no
knowledge about the other jobs; it starts with bT

i (t) = 0, and increases its transmission rate linearly
at a constant rate of ∂bT

i (t)/∂t = α (typically α = 1) until it infers that the bottleneck has reached
capacity (from non-acknowledgment of some packet). At this point, the sender cuts its own rate bT

i (t)
by a multiplicative factor of β (typically β = 1

2). We call this an adjustment point. After each such

2

adjustment, the sender resumes increasing the rate linearly at a rate of α. When the total transmission
rate through the bottleneck exceeds its capacity, the bottleneck “loses” randomly-selected data beyond
this capacity. For simplicity, we will assume that there is a fixed delay of δ between when a bottleneck
loses some transmission and when the senders learn about it.

3 TCP viewed as a scheduling algorithm

We model the transmission of a file of data through a network as the flow of a fluid that can be allocated
a variable bandwidth/transmission rate. Similarly, we model the execution of a fully parallelizable job
that can be allocated a variable (real) number of processors. Within these abstractions, the problem of
scheduling bandwidth to a number of transmission sessions is identical to that of scheduling a number
of processors to a set of parallelizable jobs. The latter problem has a rich history of results [?, ?, ?, ?].
This paper applies and extends those results to the former problem.

3.1 The scheduling problem

We assume that there is a single bottleneck in our network1 which causes all data losses. In reality
this bottleneck may be a link or a router. We assume that the bottleneck has a maximum capacity
B; if data arrives at a rate higher than B, the excess data is lost. The input consists of a set of jobs
(or sessions) J = {Ji}. Each job Ji is defined by its arrival time ai and its length (or size) li.

A scheduling algorithm ALGs must schedule the transmission of the jobs at speed s (i.e. with s
times the resources given to the all-powerful adversary). At each time t, the algorithm allocates bA

i (t)
bandwidth to job Ji passing through it. Since the bottleneck has capacity sB,

∑

i∈Jt
bA
i (t) ≤ sB. A job

of length li completes at time cA
i if the algorithm allocates enough bandwidth so that

∫ cA
i

ai
bA
i (t)dt = li.

We use the flow time L(ALGs) of a scheduling algorithm ALGs as a measure of its performance.
The flow time [?, ?, ?, ?] is the average time between the arrival time and completion time of a
job, i.e. Avgi∈J [cA

i − ai]. This measure is sometimes called the user-perceived latency in the Systems
literature. As mentioned before, we measure the performance of an algorithm by its competitive ratio
which is defined as the ratio of the flow time of ALGs to the flow time of the optimal algorithm for
the worst set of jobs, i.e., maxJ

L(ALGs(J))
L(OPT1(J)) . In this paper, we allow algorithm ALGs to have some

extra time D(J) as well. In this case, the competitive ratio is defined as maxJ
L(ALGs(J))

L(OPT1(J)+D(J)) . We
emphasize that the subscript for the optimal algorithm OPT is used to remind the reader that the
optimal algorithm is given less resources than the online algorithm.

Any algorithm that solves the preceding scheduling problem must be an online algorithm [?] (since
it must allocate its bandwidth as jobs arrive, without knowledge of future arrivals), non-clairvoyant
[?, ?, ?] (it only knows when a job arrives and when it completes, but does not know the amount of work
remaining or the parallelizability of the jobs) and distributed (the sender of a job has no knowledge of
the other jobs or even the maximum bandwidth of the bottlenecks). It only receives limited feedback
about his own transmission loss due to bottleneck overflow. While it is known that the Shortest-
Remaining-Work-First is the optimal scheduling algorithm for this problem when all the jobs are fully
parallelizable, neither non-clairvoyant nor distributed scheduling algorithms have enough information
to execute the Shortest-Remaining-Work-First algorithm. The optimal scheduler, in contrast, knows
everything about all jobs. Equivalently, we can assume that the optimal scheduler is the adversary
that chooses the worst-case input which is good for itself and bad for the online algorithm.

1For preliminary results on the general case (multiple bottlenecks), please see the manuscript [?]

3

4 Related work and our results

As we have mentioned before, most of the existing analyses of TCP attempt to evaluate explicitly
some performance metric after making some probabilistic assumptions on the inputs. In contrast,
competitive analysis makes no assumptions about inputs and provides worst-case results. We survey
relevant previous work in both areas in the following two subsections. Then, we turn to relevant
work on the fairness of the TCP congestion control algorithm. Relevant work from the theory of
non-clairvoyant scheduling algorithms are surveyed next. The final subsection presents our results.

4.1 Probabilistic analysis of TCP congestion control

Many papers study the efficiency of TCP by evaluating its throughput. Most of these make the
simplifying assumption that every packet gets dropped with probability p independent of all other
packet drops. Under this assumption, several papers [?, ?] show that for low values of p, TCP
throughput is proportional to 1/

√
p. The same result was proved in [?] for more elaborate models of

TCP. [?] showed that throughput decreases faster (roughly proportional to 1/p) at higher values of p.
All these papers assume constant round-trip times. Misra and Ott [?] incorporated state-dependent
packet loss probabilities into their model and studied the stationary distribution of the congestion
window.

Kelly et al [?, ?] consider multibottleneck models but constant round-trip times. Using control-
theoretic methods, they prove that a simplified version of the TCP congestion control algorithm is
stable – i.e., it converges to a stable equilibrium point which results in fair allocations of the bottleneck
capacities. Johari and Tan [?] and Massoulie [?] study the effect of variable round-trip times on stability
and show that stability is achieved even under this assumption. It is worth noting that all these papers
deal with rates instead of windows of sequence numbers.

4.2 Competitive analysis of TCP congestion control

The problem of analyzing TCP congestion control using competitive analysis was suggested by Karp
et al. [?], who attempted to find theoretical reasons for the empirically observed superiority of TCP
to most of the proposed alternatives. In their model, a TCP session attempts to guess a threshold u
(intuitively the ideal transmission rate for the session), and the network (modeled as an adversary)
imposes a cost c(x, u) on the session where x is the current guess of the session. They assume u to be
a positive integer and that the algorithm knows an upper bound n on u. They also consider a dynamic
version of the problem where the threshold u can change over time and study ways in which the power
of the adversary can be limited in changing the threshold u. Recently, Arora et al [?] studied the same
model and proposed an optimal randomized algorithm for the same problem.

4.3 Fairness of TCP congestion control

Chiu and Jain [?] studied fairness and efficiency of the additive-increase-multiplicative-decrease rate
adjustment algorithm from a control-theoretic standpoint. The main result of their paper is that as
long as no jobs arrive or complete, TCP converges towards fair allocations (they show that the global
measure (

∑

i∈J bT
i (t))2/(n

∑

i∈J (bT
i (t))2) converges to 1). Subsequently, several papers (e.g., [?, ?])

studied fairness issues in TCP.

4

4.4 Previous Scheduling Results

Kalyanasundaram and Pruhs [?] present a simple non-clairvoyant algorithm Balance and prove that for
every set of jobs it performs within a factor of s

s−1 = 1+ 1
ǫ of the optimal schedule as long as it is given

s = 1 + ǫ times the speed. Such an algorithm is said to be a O(1)-speed O(1)-competitive algorithm.
Equi-partition (EQUI) is a simple, natural and fair scheduling algorithm that is used extensively in
practice. It allocates an equal (potentially non-integer) number of processors to each unfinished job.
Edmonds [?, ?] proves that EQUI is competitive as long as it is given s = 2 + ǫ times the speed.
Rather surprisingly, EQUI is competitive even for jobs with phases of different “natural” speed-up
curves, e.g., fully parallelizable Γ(x) = x and sequential Γ(x) = 1 work. Motwani et al. [?] prove that
for every deterministic non-clairvoyant scheduler, there is a set of n jobs on which the scheduler does
a factor of Ω(n1/3) worse than the optimal schedule. For EQUI, this ratio is Ω(n

log n). It is likely this
lower bound holds for all distributed schedulers.

4.5 Our Results

In this paper, we view TCP as a very simple and natural online, non-clairvoyant and distributed
scheduling algorithm. We show that (our simplified version of) TCP is competitive against an optimal
offline scheduler, provided we limit the power of the adversary.

Chiu et al [?] proved that if no jobs come in or leave, TCP converges quickly to EQUI with (1+β
2)B

total bandwidth. In this paper, we extend their results and allow jobs to arrive and leave over time.
Under these assumptions, TCP takes longer to converge to EQUI. For periods of time after the arrival
or the completion of jobs, some jobs may not be given their fair share of the bandwidth. Therefore,
the algorithm may no longer be competitive, especially if these starved jobs are short.

Our first result, (in Section 5.2), proves that for TCP with s = O(1) extra bandwidth and D(J)

extra time, L(TCPs(J))
L(OPT1(J))+D(J) = O(1).2 Here D(J) is some extra time which can be crudely upper

bounded by O
(

|J |(1−β)B
α

)

, where |J | is the number of jobs in J . Intuitively, this captures the fact

that TCP needs O(1) extra time per job to be competitive. We will defer the actual definition of D(J)
to Section 5.2 for simplicity of exposition, where we will show that D(J) is typically much smaller
than this upper bound. Our second result, (in Section 5.3), shows that TCP converges quickly to the
allocations produced by EQUI. In particular, it bounds the total time that a job is not getting its fair
share to being at most a few adjustment periods at the beginning and the end of each job. The length
of an adjustment period is at most O(1−β

α
B

n(t)) when there are n(t) jobs in the system, because it only

takes this much time for n(t) jobs increasing their individual bandwidth at a rate of α to increase the
total bandwidth from the decreased total of (1− β)B back to the bottleneck’s capacity B. We expect
that this will typically be a small fraction of the job’s total life.

Our results can be interpreted as follows. First, TCP is O(1)-competitive if that the adversary
is limited in the manner described before and all sessions are of a certain minimum length. In the
presence of short sessions, the competitive ratio may not be a constant, in keeping with the intuition
that EQUI (and of course OPT) may finish small jobs much faster than TCP. To our knowledge, this
is the first result on the competitiveness of the TCP congestion control algorithm (we note that the
results of Dooly et al [?] were for a different problem, even though it concerned TCP and involved
competitive analysis). Another interesting aspect of our work is that we prove our results by comparing
TCP to EQUI instead of the optimal algorithm. In our model, EQUI captures precisely the notion

2We point out that an equivalent form of our result is L(TCPs(J))−D(J)
L(OPT1(J))

= O(1). However, this version is less

meaningful if L(TCPs(J)) ≤ D(J).

5

of fairness used by TCP,3 and this allows us to prove fairness properties as a byproduct. It is worth
pointing out that our fairness results are subsumed by similar results proved for multi-bottleneck
networks in [?, ?, ?, ?].

Finally, our results hold for any constant α, β satisfying α > 0 and 0 ≤ β < 1. we can quantify
some of the tradeoffs involved in choosing the parameters α and β. For lack of space, we defer this
discussion to Section B in the Appendix.

5 Fairness and efficiency of TCP

Due to space limitations, we will prove our results for the case δ = 0, corresponding to the assumption
that senders receive instantaneous feedback when bottleneck capacity is exceeded. In the full version,
we prove our results for δ > 0. The Appendix also contains some results for δ > 0.

5.1 Lower bounds for non-clairvoyant schedulers

TCP, being on-line, non-clairvoyant, and distributed, is not always able to compete against an optimal
scheduler. We motivate the need to give TCP a constant times extra bandwidth and some extra time
to adjust by showing that lower bounds for non-clairvoyant schedulers imply lower bounds for TCP.

Motwani et al. [?] prove that for every deterministic non-clairvoyant scheduler (of which TCP is an
example), the competitive ratio is Ω(n1/3). Thus TCP needs at least a constant factor more resources
than the optimal algorithm in order to be competitive.

For EQUI, the competitive ratio is known to be Ω(n
log n). Kalyanasundaram and Pruhs [?] prove

that even with speed s = 2 − ǫ, EQUI has competitive ratio of Ω(nǫ). It is only with speed s = 2 + ǫ,
that Edmonds [?] proves that EQUI is O(1)-competitive. Since EQUI has more information than
TCP, it is reasonable to expect that TCP also needs a speed s satisfying s ≥ 2 + ǫ.

5.2 Extra bandwidth and adjustment time

Ideally one would like to show that TCP, even though it is on-line, non-clairvoyant, and distributed,
always has a competitive user perceived latency (or flow time). However, this is not true. We will
prove that TCP is competitive if it is given more resources than the optimal algorithm. The extra
resources are a constant times more bandwidth and either some extra time (equal to a constant number
of adjustment periods per job). The latter is unnecessary if all the jobs live for at least a constant
number of adjustment periods.

We prove our results by comparing TCP to EQUI, which we already know is competitive if it has a
constant factor more bandwidth than the optimal. We now describe the intuitive reasons for the extra
powers needed by TCP in order to be perform as well with EQUI (and thus be competitive). Since no
sender in our model knows about the other senders, it takes a while for the system to adjust to jobs
arriving and completing. In contrast, EQUI adjusts its allocations instantly. We prove that despite
this, TCP converges towards EQUI exponentially fast for each job. We show that at all adjustment
points, at least q periods after a job arrives, the bandwidth allocated by TCP to the job is at least a
factor of 1 − βq of that allocated by EQUI (see Theorem 5.3). We will choose some constant q and
compensate TCP for this remaining gap by giving it an extra factor of 1

1−βq bandwidth.
Further, because TCP is a distributed algorithm, it is difficult for the algorithm to continually

utilize all of the available bandwidth. For the AIMD algorithm, the total bandwidth used varies

3We remind the reader that TCP congestion control uses windows of sequence numbers and not rates. Therefore, two
sessions may have the same window sizes but use different bandwidths if they have different roundtrip times.

6

linearly between βB and B, where B is the capacity bandwidth of the bottleneck. Therefore, TCP
utilizes on average only β+1

2 of the available bandwidth. It follows that TCP needs a factor of 2
β+1

extra bandwidth to compete with any non-distributed algorithm.
Finally, an extra (1 + 1

q) factor is required to compensate for the effect of other jobs arriving and

completing. Combining all of these factors, TCP needs to be given a factor of s = (2+ǫ)(1
1−βq)(2

β+1)(1+
1
q) more bandwidth than the optimal scheduler is given.

In order for TCP to be competitive we must also either give each job the extra time of a constant
number of adjustment periods to adjust or require all the jobs to live at least a constant number
of adjustment periods. An adjustment period is the period between consecutive adjustment points.
Lemma B.1 shows that the length of an adjustment period is (1−β)B

αnT (t)
, where nT (t) denotes the (average)

number jobs alive under TCP during the period4. Adjustment periods may vary in length, and so we
make precise the notion of “the time of a constant number of adjustment periods” below.

When a job first arrives, EQUI allocates it a fair share of the bandwidth. The optimal scheduler
may allocate all the bandwidth to the job with the shortest remaining work in order to complete it
quickly. In contrast, TCP forces the new job to start with a transmission rate of zero. Nevertheless,
a job’s allocation converges exponentially quickly to that given by EQUI. In particular a job needs to
wait q complete adjustment periods for its rate to be at least a factor of 1 − βq of that of EQUI.

ai
τ
j+1

τ
j+2

τj τ
j+3

of session i

time −>

bandwidth

Da

D
qa

/q

τ c
im

τ
m+1

D
qc

/q

Dc

τ
j+q

Figure 1: The time of a constant number of adjustment periods per jobs.

More formally, consider a set of jobs (TCP requests) J = {Ji}. Let τj, j = 0, . . . be the times of
the adjustment points. Let ja

i denote the index of the first adjustment time τ(ja
i
) after job Ji arrives,

i.e. ja
i

def
= minj{j | τj ≥ ai}. (See Figure 1.) Let Da

i denote the length of the first q complete adjustment

periods of job i, i.e., Da
i

def
= τ(ja

i
+q) − ai.

A job may not get its fair share of the bandwidth in the last adjustment period when the multi-
plicative constant β is close to zero. With this setting, all jobs drastically decrease their transmission
rate when the bottleneck reaches capacity. If a job completes shortly after this adjustment, it does
not have a reasonable allotment of bandwidth during this last fractional adjustment period. Let jc

i

denote the index of the last adjustment time τ(jc
i
) before job Ji completes, i.e. jc

i
def
= maxj{j | τj ≤ cT

i }.
Let Dc

i denote the fractional time of this last adjustment period, i.e. Dc
i

def
= cT

i − τ(jc
i
).

4The length of an adjustment period is upper bounded by a (possibly large) constant, viz., (1−β)B
α

. We express this
length in terms of n

T (t) to demonstrate that the length is much smaller if there is a number of jobs or sessions in progress.

7

Even when a job is neither arriving nor completing, we will see that having other jobs arrive or
complete may temporarily cause a job to receive less than its fair allotment of bandwidth. We will have
these other jobs “pay” for this. Let Dqa

i and Dqc
i denote q times the complete length of the first and last

adjustment periods that job Ji is in, namely, let Dqa
i

def
= q ·(τ(ja

i
)−τ(ja

i
−1)) and Dqc

i
def
= q ·(τ(jc

i
+1)−τ(jc

i
)).

Summing up, let D(J)
def
=

∑

i∈J (Da
i + Dc

i + Dqa
i + Dqc

i) denote the sum of these times over all
jobs. Note that this is O(q) adjustment periods per job. Our main result states that if TCP is given

the constant factor s more bandwidth and D(J) extra time to adjust, then L(TCPs(J))
L(OPT1(J))+D(J) = O(1).

Equivalently we could write L(TCPs(J))−D(J)
L(OPT1(J)) = O(1).

Note that in keeping with [?], our theorems are proved for general jobs – we allow each job Ji

to have an arbitrary number of phases and each phase to have an arbitrary nondecreasing sublinear
speedup function Γi,k(b), representing the rate at which work is executed for phase k of job i when
allocated b processors. Thus, our results hold even if each transmission request came with a specified
upper and lower bound on the rate at which the data could be transmitted or received.

Theorem 5.1 Let α > 0, β ∈ [0, 1), δ ≥ 0, q ≥ 1 be an integer, s = (2 + ǫ)(1
1−βq)(2

β+1)(1 + 1
q), and

J be any set of jobs in which each phase of each job can have an arbitrary sublinear-nondecreasing
speedup function. Let D(J) be the length of O(q) adjustment periods per job, with each adjustment

period being of length (1−β)B
αnT (t)

+ (1− β)δ. For any non-fully parallelizable phase job, give TCPs(J) the

speedup function 4β+4
5β+3Γi,k(b) whenever OPT1(J) is given Γi,k(b). Alternatively, give the same speedup

functions, but change the factor of (2
β+1) within s to 1

β (which is reasonable unless β is close to zero.)

Then L(TCPs(J))
L(OPT1(J))+D(J) = O

(

1 + 1
ǫ

)

.

Alternatively, we could require all jobs to live at least a constant number of adjustment periods. In
this case, the extra time to adjust is not needed because if each job lives for O(q) adjustment periods,

then D(J)
def
=

∑

i∈J O(q) adjustment periods ≤ O(
∑

i∈J cT
i − ai)

def
= O(L(TCPs(J))).

Corollary 5.2 Let q ≥ 1 be an integer, s = (2 + ǫ)(1
1−βq)(2

β+1)(1 + 1
q), and J be any set of jobs in

which each job lives for O(q) adjustment periods. Then L(TCPs(J))
L(OPT1(J)) = O

(

1 + 1
ǫ

)

.

5.3 TCP converges to EQUI

We prove that TCP converges to EQUI by comparing what TCP and EQUI would allocate on a
job-by-job, moment-by-moment basis as jobs arrive and complete.

First, we prove that at all adjustment points, at least q periods after a job arrives, the bandwidth
allocated by TCP to the job is at least a factor of (1−βq) of what EQUI would allocate given the same
speed. Interestingly, at this point a job could still have a constant fraction of the total bandwidth,
βqB, which might be considerably more than its share sB

nT (t)
. We must wait O(log n + q) phases until

we are sure that TCP allocates no more than a factor (1 + βq) of what EQUI would allocate.

Theorem 5.3 Let q ≥ 1 be an integer, s be any value, and J be any set of jobs. For each job Ji and
for all times t = τja

i
+q+j, j ≥ 0, bT

i (t) ≥ (1− βq) sB
nT (t)

, where bT
i (t) denotes the bandwidth allocated by

TCPs(J) to job Ji at time t and nT (t) denotes the number jobs alive at this time. On the other hand,
at all times t ≥ τja

i
+log(n)/ log(1/β)+q, bT

i (t) ≤ (1 + βq) sB
nT (t)

.

The proof of this theorem is given in the Appendix.
While it may seem from Theorem 5.3 if we give TCP 2

β+1 times as much bandwidth, all jobs
get their fair share of the bandwidth, this does not hold, due to the arrivals and departures of other

8

jobs. For example, when jobs complete, it takes TCP some time to allocate the freed bandwidth. In
contrast, EQUI would instantly reallocate the freed bandwidth to the existing jobs. We now bound
the amount of time during which such a discrepancy occurs. We will define Less(J) to be the total
time over which TCPs allocates a job less bandwidth than EQUI2+ǫ would allocate, and prove that
this is at most O(q) adjustment periods per job, i.e. Less(J) ≤ D(J).

More formally, for each job Ji and each adjustment period [τj, τj+1], we say that the job during
this period receives less allocation than EQUI2+ǫ would give if the job’s average transmission rate
during this phase is less under TCPs(J) than it would be under EQUI2+ǫ, i.e. Avgt∈[τj ,τj+1]b

T
i (t) <

Avgt∈[τj ,τj+1]
(2+ǫ)B
nT (t)

. We consider the average over the phase, in order to compensate for the fact that

TCP decreases and increases the transmission rates each phase.
Let Lessi denote the sum of the lengths of all the adjustment periods during the life of job Ji

for which the job receives less. Let Less(J)
def
=

∑

i∈J Lessi denote the total time over which a job is
allocated less than its share.

Theorem 5.4 Let q ≥ 1 be an integer, s = (2+ ǫ)(1
1−βq)(2

β+1)(1+ 1
q), and J be any set of jobs. Then

Less(J) ≤ D(J).

We refer the reader to the Appendix for a proof of this theorem when the jobs are fully paral-
lelizable. In the full version, we show how we can extend this result to hold for arbitrary sublinear-
nondecreasing speedup functions.

5.4 Proof of the competitiveness of TCP

In this section, we prove Theorem 5.1, i.e., TCPs is competitive when given both extra bandwidth
and extra time to adjust. This is done by proving that it is competitive against EQUI2+ǫ which we
already know is competitive against the optimal scheduler OPT1.
Proof of Theorem 5.1: Given any job set J , we construct another set of jobs J ′ and follow the
following proof “outline”.

L(TCPs(J))

L(OPT1(J)) + D(J)
≤

L(EQUI(2+ǫ)(J ′))

L(OPT1(J ′
par)) + L(OPT1(J ′

seq))
= O

(

1 +
1

ǫ

)

The first inequality to prove is L(TCPs(J)) = L(TCPs(J ′)) ≤ L(EQUI2+ǫ(J ′)). The set of jobs
J ′ is designed specifically so that TCPs(J) and TCPs(J ′) are identical computations yet TCPs(J ′)
always has completed at least as much as EQUI2+ǫ(J) on every job. By definition, TCPs(J) allocates
more bandwidth to jobs then EQUI2+ǫ would allocate in all adjustment periods except for those during
which the job receives less. J ′ is designed to be exactly the same as J except that the work completed
during these less adjustment periods is deleted and replaced with a sequential phase lasting the length
of the period. Sequential phases have speedup functions , namely Γ(b) = 1. No scheduler can get
ahead on a sequential phase of a job, because no matter how much resource (here the resource is the
bandwidth and not processors), the phase gets completed at a fixed rate. By design, the computation
times do not change from TCPs(J) to TCPs(J ′) and hence L(TCPs(J)) = L(TCPs(J ′)). Lemma 5.1
below formally proves that TCPs(J ′) is never behind EQUI2+ǫ(J) on any job and hence its user-
perceived latency (flow time) is competitive, i.e. L(TCPs(J ′)) ≤ L(EQUI2+ǫ(J ′)). This gives the first
inequality required in the above proof outline.

By definition, J ′
seq and J ′

par contain respectively only the sequential and the non-sequential phases
of jobs in J ′. The inequality L(OPT1(J)) ≥ L(OPT1(J ′

par)) holds since J has more work than J ′
par.

The last inequality to prove is D(J) ≥ Less(J) = L(OPT1(J ′
seq)). L(OPT1(J ′

seq)), by definition,
is the flow time of this set of purely sequential jobs under the optimal scheduler. Independent of the

9

bandwidth allocated, this is simply the sum of the sequential work in each job. By design this is the
total time that TCPs(J) allocates a job less bandwidth than EQUI2+ǫ would allocate during a phase,
which by definition is Less(J). Hence, L(OPT1(J ′

seq)) = Less(J). Finally, Theorem 5.4 proves that
Less(J) ≤ D(J). This completes all the inequalities required in the proof outline above.

Lemma 5.1 L(TCPs(J ′)) ≤ L(EQUI2+ǫ(J ′)).

Proof of Lemma 5.1: TCPs(J ′) allocates more bandwidth to the non-sequential phases than
EQUI2+ǫ would allocate. We must now prove that this is also more than EQUI2+ǫ(J ′) actually does
allocate. We prove by induction on t that at each point in time TCPs(J ′) has completed at least
as much work on each job as EQUI2+ǫ(J ′)), i.e., L(TCPs(J ′)) ≤ L(EQUI2+ǫ(J ′)). Note that this
also bounds the number of jobs active at time t, i.e. nT (t) ≤ nE

t . Consider the next time instance.
If the next phase of a job in J ′ is non-sequential then it must be completed under TCPs(J ′) during

an adjustment period during which the job does not receive less allocation than (2+ǫ)B
nT (t)

that EQUI2+ǫ

would give in the same circumstances. By the induction hypothesis, nT (t) ≤ nE
t and hence the job

does not receives less allocation than (2+ǫ)B
nE

t

, which is what EQUI2+ǫ(J ′) does allocate. On the other

hand, if the next phase of a job is sequential, the job completes at the same fixed rate, irrespective of
how much bandwidth is allocated to the job. Hence, we conclude that TCPs(J ′) completes at least
as much work on each job as EQUI2+ǫ(J ′)) for the next ∂t time. This completes the inductive proof.

The last inequality in Theorem 5.1 follows directly from the competitiveness of EQUI, which was
proved in the following theorem in [?] and improved slightly [?] in order to be used here. Also, [?] allows
the optimal scheduler to complete the fully parallelizable work independently from the sequential work.

Theorem 5.5 ([?]) Let J be any set of jobs in which each phase of each job can have an arbitrary

sublinear-nondecreasing speedup function.
L(EQUI(2+ǫ)(J))

2L(OPT1(J)) ≤ L(EQUI(2+ǫ)(J))

L(OPT1(Jpar))+L(OPT1(Jseq)) ≤ O(1 + 1
ǫ),

where Jpar and Jseq contain respectively only the non-sequential and the sequential phases of the jobs
J .

A Proofs of theorems

We re-state and prove Theorem 5.3.

Theorem 1 Let q ≥ 1 be an integer, s be any value, and J be any set of jobs. For each job Ji and
for all times t = τja

i
+q+j, j ≥ 0, bT

i (t) ≥ (1− βq) sB
nT (t)

, where bT
i (t) denotes the bandwidth allocated by

TCPs(J) to job Ji at time t and nT (t) denotes the number jobs alive at this time. On the other hand,
at all times t ≥ τja

i
+log(n)/ log(1/β)+q, bT

i (t) ≤ (1 + βq) sB
nT (t)

.

Note that sB
nT (t)

is the amount that EQUIs would allocate to the job were it in this situation.

However, it may not be the amount sB
nE

t

that EQUIs(J) does allocate at this time within its computation

on the set of jobs J , because with different bandwidth allocations jobs may complete at different times
under TCPs(J) and EQUIs(J) and hence the number of jobs nT (t) and nE

t alive under them at time
t may be different. We use EQUIs vs EQUIs(J) to differentiate between “would” and “does”.
Proof of Theorem 5.3: Fix some job Ji. We will classify each unit of bandwidth allocation as either
being adjusted or unadjusted depending on whether the bandwidth is allocated fairly from this job’s

10

Ji’s perspective. We prove that the amount of adjusted bandwidth converges exponentially to being
all the bandwidth and then prove that our job Ji is allocated a fair share of the adjusted bandwidth.

When the job Ji first arrives it is initially allocated no bandwidth. Hence, it considers all bandwidth
allocation to be unadjusted. When at a rate of α each job is allocated more bandwidth, this new
bandwidth allocation is considered to be adjusted.

At adjustment points, we assume that both the job’s adjusted and unadjusted bandwidth allo-
cations are decreased by this factor β. At job Ji’s first adjustment point, τja

i
, the total unadjusted

bandwidth in the system is at most sB, this being the capacity of the bottleneck. At each adjustment
point, every job decreases its unadjusted bandwidth by a factor β and never increases its unadjusted
bandwidth again. Hence, at the time of job Ji’s (q+1)st adjustment point, τja

i
+q, the total unadjusted

bandwidth in the system is at most βqsB. At points of adjustment, the total bandwidth of any kind
in the system is exactly the capacity sB of the bottleneck. It follows that at time τja

i
+q the total

adjusted bandwidth in the system is at least (1 − βq)sB.
When job Ji first arrives at time ai, no job has any adjusted bandwidth. At each point in time,

each job alive increases its adjusted bandwidth at the same rate α and hence they continue to have
the same amount. Jobs that arrive after our job Ji may have less adjusted bandwidth than Ji and jobs
that complete release all of their bandwidth, but these events only make it better for Ji. The point is
that Ji has at least as much adjusted bandwidth as any other job. It follows that at time τja

i
+q, the

amount of adjusted bandwidth that Ji has is bT
i (t) ≥ (1 − βq) sB

nT (t)
.

We consider two strategies for dealing with a time delay of δ before the senders adjust. The
above proof assumes the first strategy, namely that in which each sender decreases its transmission
rate to the fraction β of its current rate of sending data independent of how much of the data is
being lost. Now consider the second strategy, in which each sender decreases its transmission rate
to a fraction β of the current rate that data passes through the bottleneck without being dropped.
Here the rate at which a sender loses data affects its next adjusted transmission rate. Define the
transmission that is being lost as being neither unadjusted nor adjusted so that during the δ delay
the total amounts of unadjusted and adjusted bandwidth stay fixed. However, during this time, the
adjusted bandwidth gets shifted from the jobs/senders with more than their share to those with less.
Though the bottleneck is at capacity, each sender continues to increase its transmission rate. This
is considered adjusted bandwidth. Simultaneously the bottleneck increases the rate that the sender’s
transmission is lost, which decreases the adjusted bandwidth. The bottleneck is assumed to drop each
packet with a fixed probability. Hence, a sender’s rate of transmission loss is proportional to its current
transmission rate. Hence, senders with less than their share of bandwidth lose less. This effect only
helps to ensure that our job/sender Ji has at least its share of the adjusted bandwidth and helps to
speed up the overall rate of convergence to EQUI.

For completeness, we will now give an upper bound on the bandwidth that an individual job might
be allocated. Suppose that initially a particular job has all sB of the bandwidth. After q adjustments,
the job still has βqsB of the bandwidth. However, after log(n)

log(1/β) +q adjustment phases, the unadjusted

bandwidth has decreased to at most βq sB
nT (t)

. Hence, bT
i (t) ≤ (1 + βq) sB

nT (t)
.)

We re-state and prove Theorem 5.4.

Theorem 2 Let q ≥ 1 be an integer, s = (2 + ǫ)(1
1−βq)(2

β+1)(1 + 1
q), and J be any set of jobs. Then

Less(J) ≤ D(J).

Proof of Theorem 5.4: Under TCPs(J), a job may be allocated less than its fair share of the
bandwidth at any point during its life. We classify these times into three types based on whether
they occur when the job first arrives, in the middle of its life, or as it is completing. Let Lessa

i denote

11

the amount of time t ∈ [ai, τ(ja
i
+q)] within job Ji’s first q adjustment phases that it is allocated less

than (2+ǫ)B
nT (t)

(on average over the adjustment period). Let Lessm
i denote the same within the middle

of its life, t ∈ [τ(ja
i
+q), τ(jc

i
)]. Finally, let Lessc

i denote the same within the job’s last adjustment phase,
t ∈ [τ(jc

i
), ci]. Clearly, Lessi = Lessa

i + Lessm
i + Lessc

i .

Recall that D(J) =
∑

i∈J (Da
i +Dc

i +Dqa
i +Dqc

i). Simply by definition, Lessa
i ≤ Da

i and Lessc
i ≤ Dc

i ,
because these are the times of the first q and the last one adjustment phases during which job Ji is
alive. What remains in proving Less(J) ≤ D(J) is to prove that

∑

i∈J Lessm
i ≤ ∑

i∈J (Dqa
i + Dqc

i).
This will not be proved on a job-by-job basis but on an adjustment phase-by-adjustment phase basis
with the jobs that are arriving and completing “paying” for the jobs that are not.

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

��������������������
��������������������
��������������������

��������������������
��������������������
��������������������

��
��

��

����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������

��

�������
�������
�������
�������

������

������������������

��������

������������

������
������
������

������
������
������

τ
j+1

τ
j

jobs arriving

jobs completing

jobs passing through

Figure 2: nc
j , na

j , and np
j denotes the number of jobs that respectively complete, arrive, and pass

through the adjustment period [τj, τj+1].

Consider some adjustment period at time [τj , τj+1]. Let nc
j denote the number of jobs that are

active at the beginning of this period and which complete during it, na
j the number that arrive during

it and are active at the end of it, and np
j the number that pass through the entire period. We ignore

the jobs that arrive and complete within the period. (See Figure 2.) We will consider two cases.
Case 1: nc

j + na
j ≥ 1

qnp
j .

The only jobs that can contribute to
∑

i∈J Lessm
i are the np

j jobs that are passing through the phase,
because contributing jobs must be in the middle of their lives. These jobs may not contribute anything
either because they are allocated sufficient bandwidth or because they are not actually in the middle
of their lives. However, the most that they can contribute is the full length of this adjustment period.

The nc
j + na

j jobs that either complete or arrive during this adjustment period each contribute q
times the full length of this adjustment period to

∑

i∈J (Dqa
i + Dqc

i).
It follows that the contribution of this adjustment period to

∑

i∈J Lessm
i is at most np

j · (τj+1− τj),
which because of the case assumption is at most q(nc

j+na
j)·(τj+1−τj), which is at most the contribution

of this adjustment period to
∑

i∈J (Dqa
i + Dqc

i).
Case 2: nc

j + na
j < 1

qnp
j or more specifically nc

j < 1
qnp

j and na
j < 1

qnp
j .

For this case, we will prove that this adjustment period contributes nothing to
∑

i∈J Lessm
i , because

all the jobs that are past their first q adjustment phases are allocated on average at least (2+ǫ)B
nT (t)

during

this adjustment period [τj, τj+1]. Consider any such job Ji.
By definition, we know that the number of jobs alive at the beginning of the phase is nT

τj
= nc

j +np
j .

Hence, by Theorem 5.3 we know that immediately before this beginning adjustment point t = τj, job Ji

12

is allocated at least (1− βq) sB
nc

j
+np

j

bandwidth. However, being an adjustment point, the job decreases

its transmission rate by a factor of β. Hence the rate at the beginning of the phase is β(1− βq) sB
nc

j
+np

j

.

By the assumption of the claim, this is at least β(1− βq) sB
1
q
np

j
+np

j

= β(1− βq)(1
1+1/q)sB

np
j

. Similarly, the

number of jobs alive at the end of the phase is nT
τj+1

= np
j + na

j and hence at this time the bandwidth

Ji is allocated is at least (1 − βq) sB
np

j
+na

j

≥ (1 − βq)(1
1+1/q)sB

np
j

. During the phase, the allocation to

job Ji is increased linearly. Hence, the average (effective) transmission rate for the job during this
phase is the average of these beginning and the ending rates. This average is (β+1

2)(1− βq)(1
1+1/q)sB

np
j

.

Because s is set to (2
β+1)(1

1−βq)(1 + 1
q)(2 + ǫ), this average transmission rate is at least (2+ǫ)B

np
j

. (Note

that having a δ time delay while the bottleneck stays at capacity only helps this average.)
We must now bound what EQUI2+ǫ would allocate jobs. We know that for each point in time t

during this phase, the number of jobs nT (t) alive is at least np
j , because by definition this is the number

that passes through the phase. It follows that that this average rate (2+ǫ)B
np

j

that TCPs(J) allocates

job Ji is at least the amount (2+ǫ)B
nT (t)

that EQUI2+ǫ would allocate at any point in time t ∈ [τj , τj+1]

during the adjustment period. Hence job Ji does not receive less during this phase and hence this
adjustment period contributes nothing to

∑

i∈J Lessm
i .

From these two cases, we can conclude that
∑

i∈J Lessm
i ≤

∑

i∈J (Dqa
i + Dqc

i) and hence that
Less(J) ≤ D(J).

B Tradeoffs with settings of the TCP parameters α and β

We will now describe the tradeoffs involved in choosing the parameters α and β. The key effects are as
follows. Setting the multiplicative constant β is a tradeoff between TCP’s utilization of the bandwidth
and the rate of the convergence of TCP to EQUI. These effects are reflected in Theorem 5.1 by the
extra speed s = (2+ ǫ)(1

1−βq)(2
β+1)(1+ 1

q) and the extra time D(J) = O((1−β)B
αnT (t)

+ δ) required by TCP

to be competitive. Setting the additive constant α is a trade off between the amount of packet loss
and the rate of the convergence.

The following lemma derives the dependence of the length of an adjustment period on α and
β. Large adjustment periods decrease the frequency of adjustments, but short adjustment periods
decrease the time D(J) that jobs must wait until they gets their fair allocation of bandwidth.

Lemma B.1 The length of an adjustment period is |τj+1 − τj | = (1−β)B
αnT (t)

+ (1 − β)δ, where nT (t)

denotes the (average) number jobs alive under TCP during the period.

Proof of Lemma B.1: At the point in time when the bottleneck reaches capacity, the total
bandwidth allocated to jobs is clearly the bottleneck’s capacity B. If there is a delay of δ in time before
the senders detect packet loss, then during this time each sender continues to increase its transmission
rate at the additive rate of α. The total transmission rate after this delay will be B + αnT (t)δ.

We consider two strategies that TCP might take at this point. The first strategy is for the sender
to decrease its transmission rate to the fraction β of its current rate of sending data. Doing this would
decrease the total transmission rate to β(B + αnT (t)δ). (It is problematic if this delay δ is so big
that this adjusted rate is still bigger than the capacity B of the bottleneck.) The second strategy
is to decrease its transmission rate to a fraction β of the current rate that data passes through the
bottleneck without getting dropped. Doing this would decrease the total transmission rate to only
βB. (Here there is no limit on how large the delay δ can be.)

13

With either strategy, the total bandwidth allocated continues to increase at a rate of αnT (t). The

time required for the total to increase again to B is B−β(B+αnT (t)δ)
αnT (t)

in the first strategy and only B−βB
αnT (t)

in the second. The total length of the adjustment period is this plus the δ delay time, which is either
|τj+1 − τj| = (1−β)B

αnT (t)
+ (1 − β)δ or |τj+1 − τj| = (1−β)B

αnT (t)
+ δ.

Lemma B.2 The scheduling algorithm TCP becomes precisely the scheduling algorithm EQUI in the
limit as β → 1, α → ∞, and δ = 0.

Proof of Lemma B.2: With α increased towards infinity, TCP converges instantly to EQUI. This
instantly-converging TCP still decreases its bandwidth allocation by a factor of β each adjustment
point for an average total bandwidth utilization of β+1

2 B. Increasing the multiplicative constant β
towards 1 increases this utilized bandwidth towards the full B.

Lemma B.3 For the extreme parameter settings β → 1, α → ∞, and δ = 0, when TCP is pre-
cisely EQUI, our new Theorem 5.1, which bounds the competitiveness of TCP, is tight with the old
Theorem 5.5, which bounds the competitiveness of EQUI.

Proof of Lemma B.3: By setting q = 1
(1−β)2 and increasing β to one, the extra bandwidth

s = (2+ǫ)(1
1−βq)(2

β+1)(1+ 1
q) required in Theorem 5.1 goes to s = (2+ǫ) in the limit. This is precisely

the extra speed that EQUI needs. The extra time D(J) is O(q) adjustment periods per job, which is

w = O(q · (1−β)B
αnT (t)

). By setting α = q and increasing β to one, this goes to zero in the limit. Finally,

the required change 4β+4
5β+3Γi,k(b) in the speedup function and/or the new factor of 1

β within s both

disappear with β = 1.

Lemma B.4 If one sender has a longer delay δ before adjusting than other senders, then the rate at
which it sends data will be the same, but it will experience less packet loss than the other senders.

Proof of Lemma B.4: The sender with the longer delay δ uses the same parameters α and β as
the other senders and has the same time |τj+1 − τj| between adjustments. Hence, the rate that it
transmits will increase and decrease in the same way, except shifted forward in time. This will mean
that this sender is having its peak transmission rate at a latter point in time after the other have
already decreased their rates. It follows that this sender will have less packet loss.

14

