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Abstract

A class of priority algorithms that capture reasonable greedy-like algorithms was intro-

duced by Borodin, Nielson, and Rackoff [7]. Later, Borodin,Cashman, and Magen [4]

introduced the stack algorithms, advocating that they capture reasonable primal-dual and

local-ratio algorithms. In this thesis, someNP -hard graph optimization problems - Maxi-

mum Acyclic Subgraph (MAS) problem and Minimum Steiner Tree(MST) problem - are

studied in priority and stack models. First, a2 − 1
k

priority lower bound in the edge model

is shown for the MAS problem. Secondly, a4
3

priority lower bound in the edge model is

presented for the MST problem, improving the result of Davisand Impagliazzo [10]. Mak-

ing variations on input instances and the stack model, we show a2 − 2
k

stack lower bound

improving the4
3

stack lower bound in Borodin, Cashman, and Magen [4].
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1 Introduction

1.1 Motivation

Many known efficient algorithms for computational problemscan be classified into a few

algorithm paradigms: greedy algorithms, divide-and-conquer, dynamic programming, lin-

ear programming and backtracking algorithms. An approach to evaluating different algo-

rithm paradigms is to show approximability of a specific computational problem in each

paradigm. A necessary component of such evaluation is to formalize a precise model for

each algorithm paradigm.

Using the precise model, one can compare different algorithm paradigms. For a partic-

ular optimization problem, it may be the case that it can be proved that greedy algorithms

captured by a specific model cannot be approximated beyond a certain ratio whereas al-

gorithms within another model can. This provides not only the theoretical separation of

these models but also practical guides to designing algorithms by ruling out possibilities.

Moreover, the formal model gives us a better understanding of the structure of the com-

putational problem at hand. Using the model, one can joyfully wander between lower and

upper bound. When one is to explore a lower bound of a particular computational prob-
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lem, the understanding of the structure of the problem can bedeepened. On the other

hand, when one studies an upper bound side one can devise/modify an algorithm using the

gained understanding of the problem structure. This oscillating journey with the problem

may continue until the gap between the upper bound and the lower bound is closed. At last,

varying the model deepens one’s understanding of what is important in the model.

Because of its simplicity and efficiency on many computational problems, the greedy al-

gorithm paradigm is one of most important tool in designing algorithms. The terminology,

Greedy, appears in the paper of Jack Edmonds [11]. The classical matroid and greedoids,

studied during 1970s and 1980s, are limited in which algorithms they capture and deal

only with optimal algorithms. Recently, Borodin, Nielsen and Rackoff, [7], introduced a

model calledpriority algorithms which captures any reasonable greedy or greedy-like al-

gorithms. Along with the idea of an optimal solution these algorithms provide the idea of

an approximation algorithm.

The primal-dual and local ratio approaches for approximation algorithms are also two

fundamental algorithm design paradigms. These two approaches usually encompass the

greedy approach. That is, if one can prove arbitrary large competitive ratio in priority

algorithm framework, one can hope to find a better approximation ratio using a more pow-

erful algorithm paradigm such as primal-dual and local ratio design paradigms. These two

paradigms have successfully tackled many computational problems and, for many of those

problems, they currently hold the best approximation ratio. The paper of Allan Borodin,

David Cashman, and Avner Magen, [4], starts to explore how much better these approaches

can do. They formalized a formal computational model that captures both the primal-dual
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and the local ratio approaches. This model is called astack algorithm. In this thesis, the

class of priority algorithms and stack algorithms are studied in the context ofNP -hard

graph optimization problems.

1.2 Related Work

The priority algorithm model has the same decision characteristic as the on-line model.

In both models, the irrevocable decisions are made on an input item based on its local

information. However, a priority algorithm can order the input items, whereas an on-line

algorithm processes input items in an order that an adversary presents. Hence, it is the

ordering power that makes lower bound gap between these two models. Borodin, Nielson,

and Rackoff [7] defines two types of priority algorithms - fixed priority algorithm and

adaptive priority algorithm. In fixed priority the input order is initially specified by an

algorithm and won’t change throughout the game between an algorithm and an adversary.

On the other hand, in an adaptive priority algorithm, algorithm can change the order based

on the data items that it has processed so far. Clearly, the on-line algorithm is a special

case of fixed priority algorithms and a fixed priority algorithm is a special case of adaptive

priority algorithms.

Borodin, Nielson, and Rackoff [7] proved some upper and lower bound results for var-

ious scheduling problems. They separated the class of adaptive priority algorithm from

the class of fixed priority algorithm for the interval scheduling problem on identical ma-

chines. They also made a separation between the class of deterministic and randomized
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priority algorithms for the interval scheduling with arbitrary profits: they proved∆ lower

bound in adaptive priority framework whereas a fixed priority algorithm with randomness

can achieve(log ∆)-approximation. Here,∆ represents the ratio of the maximum to the

minimum unit profit.

Shortly after, Angelopoulous and Borodin [2] proved that noadaptive algorithm can

achieve an approximation ratio better thanΩ (log n). This bound is tight since there is an

(log n)-approximation algorithm which falls in the class of adaptive priority algorithm.

They also found4
3

lower bound in adaptive priority framework for the uniform metric

facility location problem.

Davis and Impagliazzo [10] modeled priority algorithms where input items are not in-

dependent. They separated the class of adaptive priority algorithms from the class of fixed

priority algorithms for the shortest path problem: fixed priority algorithms cannot solve

the problem with any approximation ratio whereas the adaptive priority can solve the prob-

lem optimally. In addition, they separated the class of adaptive priority algorithms from

the memoryless priority algorithms for the weighted independent set problem on 2-regular

graphs.

Borodin, Boyar, and Larsen [6] further extended priority algorithms for other graph op-

timization problems such as maximum independent set problem, unweighted vertex cover

problem, and graph colouring problem. They presented a acceptance-first model and ad-

vocated that any memoryless algorithm for accept/reject problems can be simulated by the

model. Horn [13] presented revocable acceptance priority model when a priority algo-

rithm has the power to withdraw decisions on accepted items among the ones that has been

4



processed so far.

Borodin, Cashman, and Magen presented a model calledstack algorithm that captures

primal-dual schema and local ratio algorithms. They provedΩ (log n) inapproximability

result for the set cover problem, a4
3

inapproximability for minimum Steiner tree and a 0.913

inapproximability for interval scheduling problems. Theyadvocated that stack algorithm

with the corresponding LP input representation can show an inapproximability results for

a suggested LP relaxation.

In recent work, Alekhnovich, Borodin, Buresh-Openheim, Impagliazzo, Magen, and

Pitassi [1] proposed a decision-tree based model, BT algorithm, that captures properties of

backtracking algorithms and simple dynamic programming algorithms. In this model, each

node of the tree contains the input items processed so far anddecisions on them. The width

of a tree is not fixed since some branches are pruned off if the decision of the item conflicts

with some constraints of a problem. This model allows us to think of a trade-off between

the performance guarantee of the solution and the width of it. The width of a tree is defined

as a maximum number of vertices among all depth levels. For example, 2-approximation is

possible with 2-width of BT algorithm for knapsack problem whereas, in [1], the width of

an optimal adaptive BT algorithm is at least
(

n/2
n/4

)

= Ω
(

2n/2/
√

n
)

. They also proved upper

and lower bounds in the BT model for satisfiability and interval scheduling problems.

1.3 Summary and Organization of Thesis

This thesis is organized and summarized follows.
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• In Chapter 2, we present the formal definition of priority algorithms. We also show

how priority algorithms can be seen in context of a combinatorial game between an

adversary and an algorithm.

• In Chapter 3, we show that no adaptive priority algorithm in the edge model can

achieve2 − 1
k

approximation for Maximum Acyclic Subgraph (MAS) problem.

• In Chapter 4, lower bounds for the Minimum Steiner Tree (MST)problem are pre-

sented for some combinations of possible variations to either the input instances or to

the computation model. These results are summarized in Table 1.1. Each column of

the table corresponds to way in the model may be varied. AY in a column means that

the variation considered is the one that makes solving the MST problem easier for an

algorithm, correspondingly making it harder to prove a lower bound, and making the

optimal competitive ratio possibly lower.

Davis and Impagliazzo [10] gave the first priority lower bound for this problem,

giving a competitive ratio ofR = ALG
OPT

= 5
4
, whereALG represents the cost of

an algorithm’s solution andOPT represents the cost of an optimal solution. See

Theorem 2.

A quick exploration of the limits of their technique gives their result can easily be

improved to an arbitrarily high competitive ratio, but thisrequires giving the algo-

rithm instances where the triangle inequality does not hold. See Theorem 4. The first

column (△) of our table indicates whether the result assumes the triangle inequality.

All the other results does.
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Thm Sec △ FW n CG Stack R Bound

2 [10] Y N N Y N 5
4

4 4.3 N Y Y Y Y ∞

3 4.3 Y Y N Y N 4
3

5 4.4 Y Y Y/N Y N 1 + O( 1
k
)?

Open Y N Y Y N ?

6 4.4 Y Y Y N/N N ∞

7 [4] Y Y Y N/N Y 4
3

8 4.4 Y Y Y N/Y Y 2 − 2
k

Table 1.1: Summary of the known results and results presented in this paper for the MST

problem:△ stands for triangle inequality; FW stands for fixed weight onedges; CG stands

for complete graphs;n is the size of the connected instances; andR is a competitive ratio.

See Section 4.2 for clearer definitions. AY means easier for an algorithm and harder for an

adversary, resulting in a potentially lower competitive ratio.
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Playing with their cases, we managed to improve their lower bound to 4
3
. See The-

orem 3. Besides getting a slightly better bound, an interesting thing is that unlike

Davis and Impagliazzo’s proof, ours assumes that the edge weights are fixed and

known to an algorithm. This assumption greatly simplifies the proof. The second

column (FW) of our table indicates whether the edges are fixed.

A concern we had about the result of Davis and Impagliazzo is that it only considers

graphs with at most four vertices. With this counter example, they concluded that the

algorithm cannot achieveR = ALG
OPT

≤ 5
4
. However, because the lower bound does

not consider arbitrarily large graphs, it does not prove that this error is multiplicative.

Hence, their result does not rule out the possibility thatALG ≤ 1 ·OPT +c for some

constantc depending on the maximum weight in the graph but not on the number of

vertices in it. Whethern is bounded, is indicated in the third column variation that

we consider of the table. Note thatY in this column indicates that the instance is

not only arbitrarily large but also its size, the number of vertices, is known to the

algorithm, whileY/N indicates that the instance large but unknown size.

Given these ideas, our next goal was to prove a lower bound with fixed weights

and arbitrarily largen. However, it turns out that this gives too much power to the

algorithm. Instead, we conjecture that there is an algorithm with competitive ratio

1 + O( 1
n
). This is not a reasonable algorithm. It plays tricks to learnthe input

instance and then uses its unbounded computational power togive a near optimal

solution. See Theorem 5.
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Given this result that the algorithm unfairly uses the fact that the edge weights are

fixed, we tried hard to prove a lower bound with arbitrarily largen by varying the

weights. See the fifth row in the table. We were unable to do this. This is still an

interesting open problem.

The result of Davis and Impagliazzo assumes that the input instance explicitly pro-

vides the edge weight for every possible pairs of vertices (except possibly those be-

tween Steiner vertices). With this requirement, the only way to change the size of the

instance is to change the number of vertices. At first, we wereunder the impression

that we had to do the same. Later, Borodin reassured us that itwas acceptable to

instead consider incomplete graphs as input instances. Thealgorithm is not allowed

directly ask for and learn the edges that are not explicitly mentioned in the instance.

Our fourth column (CG) indicates whether acomplete graph is required. N/N in-

dicates Borodin’s initial model in which the algorithm is not allowed to include the

implicit edges in the MST problem, whileN/Y indicates our new model in which the

algorithm is allowed. The reason for this differentiation is that if a priority algorithm

is not allowed to include the implicit edges, then we were able to show arbitrarily

high competitive ratio. See Theorem 6. This differentiation appears not to be an

issue in thestack model in which Borodin intended it.

Borodin, Cashman, Magen [4] strengthened the priority model by defining a stack

model in which an algorithm does not need to commit to an edge when it first sees

it, but instead pushes the edge on a stack with the possibility that the edge will get

9



rejected when it is popped. Borodin et. al. advocate that this stack model captures

reasonable primal-dual schema and local-ratio algorithms. They proved a4
3

stack

lower bound in this model. See Theorem 7. We improve this result to 2 − 2
k
. See

Theorem 8.

• Finally, in chapter 5, we summarize our results and suggest some possible directions

for the future work.
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2 Preliminaries

In this chapter some definitions and properties for prioritymodel are shown in section 2.1.

Then, the game between algorithm and adversary is describedin section 2.2.

2.1 Greedy and Priority Algorithms

According to many undergraduate textbooks, a greedy algorithm chooses and irrevocably

commits or rejects to one of objects in the set of the objects specified in the input instance

because, according to some simple criteria, it seems to be the best locally. With these char-

acteristics, Borodin, Nielsen, and Rackoff [7] introducedthe class, priority algorithms,

which capture any reasonable greedy algorithm.

An instance to a priority algorithm consists of a set of data items. LetT be the type

of a data item. It could be a vertex, an edge, an interval, or some other object. A priority

algorithm chooses a decisiond on each data itemai ∈ I, whered is a choice from set of

options,Σ. This choice set,Σ, varies from problem to problem, however, we deal only

with Σ = {accept, reject} in this paper. A solution for an instance is a set of tuple,

{(ai, di)|ai ∈ I}. For example, for MAX3SAT problem, the priority algorithm assigns 0

(false) or 1 (true) to each variablexi ∈ I. Therefore,Σ = {0, 1} andT is defined in context

11



of boolean variables.

When the instance of a problem is a graph G, either avertex modelor edge modelcan

be used. The data items in the vertex model correspond to the vertices of the instance graph.

More specifically, the data items contain certain information about the vertex in question.

Depending on the specifics of the model, this information might include a vertex name, a

weight, a list of edge names, and/or a list of neighbours. On the other hand, data items in

anedge modelare the edges in a given graph. Again depending on the model, these could

contain the names of the two endpoints of an edge, weights of vertices, an edge label, an

edge weight, and/or degrees of endpoints. Note that provinga priority lower bound is more

difficult when the data items provide more information to thealgorithm.

Two classes of priority algorithms are defined in [7], depending on whether or not the

ordering of data items is fixed. Afixed priority algorithm orders the data items once at

the start. On the other hand, anadaptivepriority algorithm may reorder the unprocessed

data items after it processes each data item. Therefore, thefixed priority algorithm is a

special case of the adaptive priority algorithm. Moreover,because the on-line algorithm

makes decision on the data item without ever ordering the data items, the on-line algorithm

is a special case of a fixed priority algorithm. The algorithmic descriptions are shown in

Algorithm 1 and Algorithm 2.

12



Algorithm 1 Fixed Priority Algorithm
Input: I = {a1, . . . , an}

Output: S = {(ai, di)| 1 ≤ i ≤ n}

1: Choose an orderingΠ on all possible data items.

2: Sort the data items,{a1, . . . , an}, based on the chosen order.

3: for i = 1 to n do

4: Make an irrevocable decisiondπi
about data itemaπi

.

5: Update the solution:S = S ∪ {(aπi
, dπi

)}.

6: end for

7: OutputS = {(ai, di)| 1 ≤ i ≤ n}.

Algorithm 2 Adaptive Priority Algorithm
Input: I = {a1, . . . , an}

Output: S = {(ai, di)| 1 ≤ i ≤ n}

for i = 1 to n do

2: Assume the data items{aπ1
, aπ2

, . . . , aπi−1
} have been seen and processed. Based

on the data items seen so far, choose a possible new orderingΠ on all possible data

items. Letaπi
be the next data item according to this new order.

Make an irrevocable decisiondπi
about the data itemaπi

.

4: Update the solution:S = S ∪ {(aπi
, dπi

)}.

end for

6: OutputS = {(ai, di)| 1 ≤ i ≤ n}.
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2.2 Priority Lower Bound via Combinatorial Game Between an Algo-

rithm and an Adversary

In this section, a game between an adversary and an algorithmis described.

It is far too hard to prove bounds on the computational powersof an algorithm. Hence,

we avoid this problem by assuming that the algorithm has an unbounded computational

power. The priority lower bound scheme described in this section is information theo-

retic. Just like with lower bounds for on-line algorithms, we would like to assume that an

algorithm does not “know” about any unprocessed item in detail.

Unlike, on-line algorithms, however, a priority algorithmhas some knowledge and con-

trol over the unprocessed data items because it gets to have them be sorted. For example,

if the algorithm has sorted data items based on the weight of data items and has been given

itemai−1 with weight 10, then the algorithm knows that any later item has a weight greater

or equal to 10.

At the beginning of theith iteration of the game, the algorithm has been given the par-

tial instancePIi−1 = 〈a1, a2, . . . , ai−1〉 and has committed to the partial solutionPSi−1 =

〈d1, d2, . . . , di−1〉. The adversary has chosen the setPi−1 of the data items from which fu-

ture data items are chosen. More formally, the actual input instance will beI = {a1, a2, . . . ,

ai−1, ai, . . . , an}, wherea, . . . , ai−1 are as stated in the partial solutionPIi−1, ai+1, . . . , an

are from the restricted set of unseen data itemsPi−1 andn ≥ i−1 is the yet unknown num-

ber of items in the instance. The loop invariant that the adversary maintains is that given

any instanceI of this form the algorithm would have seen the partial instance PIi−1 =

14



〈a1, . . . , ai−1〉, committed to the decisionsPSi−1 = 〈d1, . . . , di−1〉, and know nothing

about the future items except that they come fromPi−1.

The adversary initializes the game by narrowing down the entire universe of possible

data items toP0. At the same time,PI0 andPS0 are defined to be empty sets since the

algorithm has done nothing at this stage.

During theith iteration,Pi, PIi, andPSi that maintain this loop invariant are chosen

as follows. The algorithm being adaptive is allowed to reorder the data items inPi−1. The

adversary promises that he will make whichever data itemak ∈ Pi−1 is the algorithm’s

favorite beaπi
. Note that we don’t really care about the complete order since we only

care about which data item will beaπi
. Hence, the game is simplified by allowing the

algorithm to chooseaπi
from Pi−1 and make a decisiondi onaπi

. Knowingaπi
anddπi

, the

adversary is allowed to narrow downPi−1 to Pi by removing some data items (including

aπi
) that would make the algorithm’s task “easy”. This endsith iteration and opens(i+1)th

iteration of the game, that is, the algorithm has seen〈aπ1
, aπ2

, . . . , aπi
〉 and made decisions

〈d1, . . . , di〉 on them and knows the future items are fromPi.

Generally, the adversary is allowed to dynamically choose how many data items there

will be in the actual instance. Hence, the adversary has the power at the beginning of the

ith iteration to declare that the game ends. Then, the actual instance isI = PIi−1 ∪ Pi−1

and by the loop invariantS = PSi−1 would be the algorithm’s solution. The adversary

wins if I is a valid instance andS is not an optimal solution for it. If there is an adaptive

priority algorithm for this problem then such an algorithm is able to win the game against

any adversary. The contrapositive is that if we can show an adversarial strategy for this

15



Figure 2.1: The description of theith round of the game

game then there is no adaptive algorithm for this problem .
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3 Maximum Acyclic Subgraph problem

As a warm up, we will prove a relatively easy adaptive priority lower bound. The problem

considered is Maximum Acyclic Subgraph (MAS) problem. An instance of the problem is

a simple directed graphG = (V, E). The problem is to find a maximum sized subset of

the edges that is acyclic. Two 2-approximation algorithms are known and are described in

Vazirani [16] and in Berger and Shor [3]. The first of these algorithms can be interpreted

as a priority algorithm that keeps two solution sets: the algorithm arbitrarily orders the

vertices; the algorithm then puts the forward edges in the first solution set and puts the

backward edges in the second solution set. When all edges areprocessed, the algorithm

returns either the set of forward edges or the set of backwardedges, depending on which

set has greater cardinality. Clearly, both of these two solutions are acyclic. One of the two

sets must have at least|E(G)|/2 edges. Hence, the value achieved by the algorithm,ALG,

is at least|E(G)|/2, which is at leastOPT/2, giving the ratioR = OPT
ALG

= 2.

The problem with the above algorithm is that it does not commit to accepting or reject-

ing an edge until it has seen all the edges. Borodin et. al. [1]extended the definition of

the priority algorithm to allow it to keep some polynomial number of solutions in parallel:

the extended model is called thebacktracking model. The number of parallel solutions that
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the above algorithm needs is 2. Can we design a priority algorithm that keeps only one

solution for the MAS problem? This question is answered in [3]. Their algorithm first

arbitrarily orders the vertices. Then, for each vertexv in the chosen order, it considers

all incident edges tov that have not been considered before. Of these, it accepts either

all incoming edges or all outgoing edges, depending on whichhas greater cardinality and

rejects the others. After the algorithm processes all vertices, it returns the set of accepted

edges as its solution. Note that this solution is acyclic as follows. Consider any cycleC

in the graph. Letv denote the first vertex in the cycle that the algorithm considers. Let

〈u, v〉 and〈v, w〉 be the edges in the cycle coming into and leavingv. Becausev is the first

edge considered in the cycle, neither of these edges has beenconsidered yet. Hence, when

the algorithm reject either all ofv’s unprocessed incoming edges or all ofv’s unprocessed

outgoing edges, either〈u, v〉 or 〈v, w〉 will be rejected. Either way this breaks the cycle.

Because this is true for every cycle in the graph the solutionproduced by the algorithm is

valid. With the similar reason described for the first algorithm in [16], it is easily shown

that the performance guarantee by this algorithm is at leasthalf of the optimal solution.

Their algorithm can be fit in as either a vertex or an edge model. Fitting into the vertex

model, the data item is a vertex with a list of its neighbours.One difference from the usual

vertex model is that the decisions are made on the edges. Denotedeg−(u) to be the number

of directed edges coming intou anddeg−(u) to be the number of directed edges going out

from u. Fitting in the edge model, the data item is an edge〈u, v〉 with the in-degree ofu

and out-degree ofu, namely(u, v, deg−(u), deg+(u)). Since the algorithm remembers all

accepted items and deleted items, when it considers a data item (u, v, deg−(u), deg+(u)),
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it will make a decision based on the comparison ofdeg−(u)−x anddeg+(u)− y, wherex

is the number of either accepted or rejected incoming edges to u so far andy is the number

of either accepted or rejected outgoing edges fromu so far. Ifdeg−(u)− x ≥ deg+(u)− y

is the case, the algorithm rejects the considered data item.Subsequently, using its ordering

power, it rejects all remaining unseen outgoing edges fromu and then accepts all remain-

ing unseen incoming edges tou. Otherwise, the algorithm accepts the data item and all

remaining unseen outgoing edges fromu and rejects all remaining unseen incoming edges

to u.

We tried, but failed to prove a matching lower bound of 2 both in the vertex model and

in the edge model with degrees. These remain open problems. We did however manage to

prove a lower bound in the edge model where the degrees are notincluded.

Theorem 1. No adaptive priority algorithm in the edge model can achieve better than 2− 1
k

approximation for the MAS problem.

Proof. A data item, a directed edge, is represented as an ordered pair 〈u, v〉, whereu is

the tail andv is the head. The set of decisions isΣ = {accepted, rejected}. Initially,

an adversary narrows down the entire universe of possible data items down toP0, which

consists of the edges in a(k + 1)-complete graph. Because of the symmetry in the set of

edgesP0, we can assume without loss of generality that the algorithmprocesses the edge

〈1, 2〉 first. This edge has been made bold in Figure 3.1.

• Case 1:If the algorithm accepts the edge〈1, 2〉, then, the adversary reducesP0 down

to P1 as shown in Figure 3.1. In fact, the adversary declares at this point that this is
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the final input instance. For eachj ∈ [3, 4, . . . , k + 1], the algorithm can either take

the edge〈2, j〉 or the edge〈j, 1〉 but not both. Otherwise, this will create a cycle with

the edge〈1, 2〉 already committed to. The optimal solution on the other handcan

take both〈2, j〉 and〈j, 1〉 for eachj ∈ [3, 4, . . . , k + 1] and take〈2, 1〉. This gives

that the value of the algorithm’s solution is at mostk whereas the cost of the optimal

solution is2k − 1. Hence, the approximation ratio isR = OPT
ALG = 2k−1

k
= 2 − 1

k
.

Figure 3.1: A possible adversarial setP1 ⊆ P0 based on the algorithm’s first choice.

• Case 2:If the algorithm rejects the bold edge〈1, 2〉, the adversary reducesP0 to P1

by deleting all edges inP0 except the single edge〈1, 2〉 just rejected by the algorithm.

The approximation ratio is thenR = 1
0
≈ ∞.

Based on the two cases, no priority algorithm can ever achieve2− 1
k

performance guarantee.

The complement of the MAS problem is the Minimum Feedback Arc-set (MFA) prob-

lem. The instance of the problem is a simple directed graphG = (V, E). The problem

is to remove the minimum number of edges that leaves the remaining graph as acyclic.

Let us briefly mention thatno adaptive priority algorithm in the edge model can solve the

MFA problem with any approximation ratio. The proof is very similar to that of the MAS
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problem except that the value of the solution is the number ofedges deleted, which is the

number of edges in the graph minus the number kept. In case one, R = ALG
OPT

= k
1

= k and,

in case two,R = 1
0
≈ ∞.
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4 Minimum Steiner Tree (MST) Problem

We study Minimum Steiner Tree (MST) Problem in priority and stack algorithm frame-

works. In Section 4.1, specifications, applications, and definitions of the problem are stated.

In Section 4.2, some modeling issues are discussed such as triangle inequality, complete

graph instances, the size of the connected graph instances,and fixed edge weights. In Sec-

tion 4.3, we prove an arbitrary high and a4
3

priority lower bound for the MST problem

under different variations. In Section 4.4, with another variation of the model, we conjec-

ture a strange upper bound,1+O( 1
k
). We in turn show that an arbitrary high priority lower

bound can be achieved under the model appeared in Borodin, Cashman, and Magen [4].

Finally, we prove a2 − 2
k

stack lower bound improving the result4
3

lower bound in [4].

4.1 Basis for the MST problem

An instance of the MST problem consists of a graphG = (V, E), a nonnegative real-valued

costc : E −→ R+ on the edges and a setN ⊆ V of terminal vertices. A treeT of G

is called aSteiner tree if it spans all the terminal vertices ofG. The problem is to find a

Steiner treeT whose cost
∑

ij∈E(T )

c(ij) is minimum.

The problem has practical applications: routing VLSI layout; the design of communica-

22



tion networks; accounting and billing for the use of telephone networks; and the phylogeny

problem in biology. Unfortunately, the problem isNP-hard, therefore, it is likely that any

algorithm for finding a minimal Steiner tree is inefficient. Hence, designing an approxima-

tion algorithm, which has a polynomial running time, seems agood and profitable direction

for this problem. The best approximation algorithm appearsin Robins and Zelikovsky [15]

and achieves 1.55 performance guarantee. However, it neither fits into a priority model nor

a stack model. The best known priority algorithm, shown in Vazirani [16], achieves the

2-approximation ratio for the metric MST problem, simply byrunning the minimum span-

ning tree algorithm on the induced subgraph of the terminal vertices in the given instance

graph. Clearly, this algorithm being fixed priority greedy,fits into the priority model.

Before we go further, several terms need to be defined. The Steiner verticesV \ N are

calledSteinervertices. An edgee = (u, v) is calledSteiner edgeif u is a Steiner vertex

andv is a terminal vertex, or vice versa. An edgee = (tg, tg+1) is called aterminal edge

if the two endpoints,t1 and t2, are both terminal vertices. Aquasi-bipartitegraphQ is

a bipartite graph with some edges between terminal vertices. A completequasi-bipartite

graph denoted byQK,H is a complete bipartite graphGK,H where terminal vertices inK

form clique. We denotek-star for k Steiner edges incident to the same Steiner vertex. At

last, we denotew(e) for the weight of an edgee.
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4.2 Issues on Variations of Instances and Model

Section 1.3 outlined a number of variations in the MST problem and the model. These

variations are described in more detail here.

Triangle Inequality (∆): With unconstrained edge weights, we will prove thatno adap-

tive priority algorithm can solve this version of the MST problem with any approx-

imation ratio. Hence, we consider the metric version of the MST problem which

requires the triangle inequality to hold, namelyw((u, v)) ≤ w((u, w)) + w((w, v)).

Fixed Edge Weights vs. Varying Edge Weights (FW): Our second variation is whether

the adversary is allowed to vary the weights on the edges or must fix them. The

motivation of the latter is that having the adversary changethe weight of unseen

edges complicates the proof. In fact, one needs to be carefulabout how one models

this. The adversary cannot change these weights arbitrarily. The algorithm may have

some very complex criteria that it uses to sort the data items. If the weights change

even slightly, the total order may change, changing which data item the algorithm

would have seen first. Instead, this is modeled by the adversary placing multiple data

items〈u, v, w(u, v)〉 between the same two vertices〈u, v〉 in the setPi of possible

future data items, each with distinct edge weightsw(u, v). The adversary can throw

out any copies of an edge〈u, v〉 that have weightsw(u, v) that he does not want to

give the algorithm. Then when algorithm sorts possible dataitems inPi, it states

which of these edge〈u, v, w(u, v)〉 it wants next. When the adversary gives the

algorithm this edge, it needs to immediately delete fromPi+1 any additional copies
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of this same edge〈u, v〉 that have different weights. This ensures that the actual input

instance only has at most one edge between any pair of vertices.

Davis and Impagliazzo [10] proved a5
4

priority lower bound with the varying edge

weight approach. See Theorem 2. In Section 4.3, we improve this to 4
3

but with the

fixed edge weights approach. In Theorem 5, however, we see that in general, having

fixed weights gives too much power to the algorithm.

Not Known but Fixed Instance Size vs. Arbitrary but Known Instance Sizen : Our t-

hird variation is whether the lower bound is proved with a fixed instance size (having

some small number of vertices) without giving the algorithmthe instance size or

whether a stronger result can be proved in the following two ways: first, it is stronger

because it applies to arbitrarily large graphs; secondly, it is stronger because it gives

the size information to the algorithm.

For many computational problems, the size difference is notcrucial because we can

achieve the same lower bound by creating a final instance, consisting of multiple

copies from the class of small instances. However, this causes the generated instance

graph to be disconnected. For the MST problem, the graph needs to be connected.

This is why we had this concern about Davis and Impagliazzo’sresult. Because it

only considers graphs with at most four vertices, it is not clear whether this proves

the multiplicative constantALG
OPT

≤ 5
4

or only an additive oneALG ≤ 1 · OPT + c

for some constantc depending on the maximum weight in the graph but not on the

number of vertices in it. In fact, Theorem 5 shows how the latter is the case when
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edge weights are fixed.

Providing the size of instances at the beginning restricts the adversarial reduction

strategies fromPi−1 to Pi because it cannot delete all the edges incident to a vertex

u. Hence, this variation favours for an upper bound. In Section 4.4, we prove a

priority and a stack lower bound letting the algorithm “know” the instance size.

Incomplete vs. Complete Instances:Our fourth variation is whether the input instance

must be a complete graph or not. If yes, then there must be an explicit data item

in the instance, providing the weight between every possible pair of vertices (expect

those between Steiner vertices). If no, edges that are not explicitly mentioned in the

instance have weights imposed by the triangle inequality, (i.e. the weight of a missing

edge(u, v) is the length of the shortest path fromu to v amongst the included edges).

Allowing a non-complete instance expands the set of possible input instances and,

therefore, gives more power to the adversary. It gives the adversary complete power

to restrict the setPi of possible future edges from the current setPi−1 as defined

in the section 2.2. We call thisthe adversary deleting edges. In contrast, for the

complete graph model, the adversary is not able to delete edges an arbitrary way.

When restricting the data item setPi from Pi−1 , it still has the power to delete an

edge(u, v), but, in order to keep the final instance graph complete, it must either

delete all the edges incident to the vertexu or all those incident tov. Although such

a stepPi ⊆ Pi−1 is really a reduction in the set of edges, we call thisthe adversary

deleting the vertex u (or v).
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4.3 A 4

3
Priority Lower Bound

In this section, we prove the arbitrary large priority lowerbound and the4
3

priority lower

bound. Davis and Impagliazzo [10] proved the first priority lower bound for the MST prob-

lem, whereR = 5
4
. See Theorem 2. A quick exploration of the limits of their technique

gives their result can easily be improved to an arbitrarily high competitive ratio, but this

requires giving the algorithm instances where the triangleinequality does not hold. See

Theorem 4. Playing with their cases further, we managed to improve their lower bound to

4
3
. Another small improvement of our result is that we do it in the model in which each

edge weight in an instance is fixed. This strengthens the result because the algorithm has

more knowledge and the adversary has less power. In addition, the fixed weight variation

significantly simplifies the proof.

Theorem 2. (Davis and Impagliazzo [10]) No adaptive priority algorithm in the edge

model can achieve better than 5
4

approximation for the MST problem with the following

variations.

△ Fixed Weight n Complete Graph Stack R Bound

Y N N Y N 5
4

Theorem 3. No adaptive priority algorithm in an edge model can achieve better than 4
3

approximation for the MST problem with the following variations.

△ Fixed Weight n Complete Graph Stack R Bound

Y Y N Y N 4
3
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Proof. The adversary initially constructs a setP0, consisting of the edges within the com-

plete quasi-bipartite graphQ3,1 shown on the left of Figure 4.1.

Figure 4.1: The left is an initial adversarial setP0 and the bold edge is assumed to be

considered first by the algorithm. The right is the second adversarial setP1 ⊆ P0, reduced

from P0 by the adversary. The squared vertices are terminals and thecircled vertices are

Steiners.

• Case 1:Since the three Steiner edges are identical initially, without loss of generality,

assume that it considers considers the edgeaπ1
= (r1, s1), made in bold in Figure 4.1.

– Case 1.1:If the algorithm accepts the edge, the adversary responds byremov-

ing all the remaining edges as shown on the right of Figure 4.1. The remaining

graph will be the final input instance. It is a complete graph as promised. The

algorithm should not have taken the bold edge. The approximation ratio is

R = ALG
OPT

= 1
0
≈ ∞.

– Case 1.2:If the algorithm rejects the bold edge, the adversary gives the entire

graph as the instance shown in Figure 4.2. Again this is complete. No matter

what future decisions are made, the best cost for the algorithm is 4 whereas the

optimal cost is by taking the three Steiner edges. Therefore, the approximation
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ratio isR = 4
3
.

Figure 4.2: A possible adversarial setP1 (the right graph) reduced fromP0 (the left graph)

by the adversary.

• Case 2:We now consider the second case where the algorithm takes a terminal edge.

Since three terminal edges are identical, without loss of generality, we assume that

the algorithm considers the edgeaπ1
= (r1, r2) made the bold in Figure 4.3.

– Case 2.1:If the algorithm accepts the edge, the adversary does nothing. No

matter what future decisions are made, the best cost for the algorithm is 4

whereas the optimal cost is just 3 using the three Steiner edges. The approxi-

mation ratio is yetR = 4
3
.

– Case 2.2:If the algorithm rejects the edge, the adversary removes allthe re-

maining edges as shown in Figure 4.4. In this case, the algorithm even fails to

find a valid Steiner tree.

Based on the two cases, the best competitive ratioR that the algorithm can achieve is

4
3
.
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Figure 4.3: A possible adversarial setP1 (the right graph) reduced fromP0 (the left graph)

by the adversary when the algorithm decides to accept the bold terminal edge.

Figure 4.4: A possible adversarial setP1 (the right graph) reduced fromP0 (the left graph)

by the adversary when the algorithm decides to reject the bold terminal edge.

The reader may wonder if one can get a better lower bound by having much bigger

weights on the terminal edges. This is the case, however, it violates the triangle inequality.

We demonstrate this with the following theorem.

Theorem 4. If we do not need to satisfy the triangle inequality then we can obtain an

arbitrarily large lower bound. No adaptive priority algorithm in the edge model can solve

the MST problem with any approximation ratio with the following variations.

△ Fixed Weight n Complete Graph Stack R Bound

N Y N Y N ∞

30



Proof. The graph being considered is simply a triangle with two terminal verticiest1 andt2

and one Steiner vertexs. The two Steiner edges still have weight one, but now we increase

the weight of the terminal edge tor. This graph isP0.

• Case 1:Since the two steiner edges are symmetric, assume(t1, s) is considered by

an algorithm.

– Case 1.1:If the algorithm accepts the edge, the adversary removes theother

two edges. The cost of the algorithm’s solution is one whereas the cost of the

optimal solution is zero because if the instance contains only one isolated termi-

nal vertex, then the solution requires no edges. Hence, the ratio 1
0

is arbitrarily

large.

– Case 1.2:If the algorithm rejects the edge, the adversary does nothing. Having,

rejected one of the Steiner edges, the algorithm is forced totake the terminal

edge with weightr. The optimal solution still is1 + 1. This gives the ratioR is

r
2
, which becomes arbitrarily large as the weightr increases.

• Case 2:Algorithm consider the edgee3.

– Case 2.1:If the algorithm accepts the edge, the adversary does nothing. The

ratio is arbitrarily large as in Case 1.2.

– Case 2.2: If the algorithm rejects the edge, the adversary removes thetwo

Steiner edges (and the Steiner vertices). Having rejected the only edge in the

input instance, the algorithm fails to come up with a valid solution.

Based on the two cases, the competitive ratioR is arbitrarily large.
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With this motivation, we return now to graphs with the triangle inequality. A concern

with our above4
3

result and Davis and Impagliazzo [10]’s5
4

result is that only small graphs,

instances with at most four vertices, are considered. Because the lower bound does not

consider arbitrarily large graphs, it does not prove that this error is multiplicative. Hence,

these results do not rule out the possibilityR ≤ 1 ·OPT +c for some constantc, depending

on the maximum weight in the graph but not on the number of vertices in it. This motivates

us to want to prove a lower bound with fixed weights, arbitrarily largen, and a complete

graph.

4.4 A 2 − 2

k
Stack Lower Bound

Proving a lower bound with arbitrarily largen turned out to be harder than we expected.

In line with what we did in Section 4.3, we first try to prove theresult using fixed edge

weights. However, it turns out that this gives too much powerto the algorithm. At the end

of this section we outline a strange and unfair algorithm that uses tricks to learn the input

instance and then uses its unbounded computational power toobtain what we conjecture to

be a near optimal solution.

Conjecture 5. A priority algorithm in the edge model can achieve a 1+O( 1
k
) upper bound

for the MST problem with the following variations.

△ Fixed Weight n Complete Graph Stack R Bound

Y Y Y/N Y N 1 + O( 1
k
)
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The Y/N variation for n means that the instance size is arbitrarily large but the exact size

is not known to the algorithm.

This conjecture forced us to attempt to prove a lower bound byvarying the weights. How-

ever, we were unsuccessful. See the discussion about this inSection 4.2. This remains as

an interesting open problem. See Chapter 5.

Borodin, Cashman, and Magen [4] get around the problems of having fixed weights

in an arbitrarily large graph by considering incomplete graphs. We follow their lead. In

this model, some edges are not includedexplicitly in the input instance and, therefore, an

algorithm cannot make decision on them. The edges not included will be calledimplicit

edges. Their weights, as dictated by the triangle inequality, will be the length of the shortest

explicit path from one of the edge’s endpoint to the other.

We, however, found that before thestack is introduced, this model has a small glitch

making it too favorable for a lower bound. Even if the information about the size of the

instances and the weights on edges are provided, an arbitrarily large competitive ratio can

be still obtained for the priority model.

Theorem 6. If the priority algorithm is not allowed to accept or reject the implicit edges

then we can prove an arbitrarily large lower bound.

△ Fixed Weight n Complete Graph Stack R Bound

Y Y Y N/N N ∞

The N/N variation for Complete Graph means that implicit edges cannot be accepted or

rejected.
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This result is proved after the proof the the main result for this section. Though this glitch

goes away when the stack is introduced, the glitch still motivated us to vary the model yet

one more time. In this new version, the algorithm can accept or reject an implicit edge

(u, v) any time. This decision however will have to be made without explicitly learning the

weight of the edge. This weight can be implied from the transitive closure of the explicit

edges, once their weights are learned. The key thing that such an algorithm cannot do is

to initially learn aboutu andv by saying “Give me the most expensive implicit edge and I

will reject it.” Note that this is exactly what the1 + O( 1
k
) algorithm of Conjecture 5 does.

Using this model, we were able to prove a2 − 2
k

priority lower bound. We, however, will

not present this result because we were able to prove anotherthat subsumes it.

Borodin, Cashman, and Magen [4] define a new model referred toas theadaptive

stack model. They advocate that their model captures reasonable primal-dual algorithms

and local-ratio algorithms. The weakness of the adaptive priority model is that the al-

gorithm must make an irrevocable decision on the chosen dataitem, that is,di ∈
∑

=

{accept, reject}. The stack model gives the algorithm a second phase in which it can reject

previously “accepted” data items.

Theadaptive stack modelallows the algorithm to have two phases. The first phase is

the same as the adaptive priority algorithms except that thestack algorithm has a stack and

a choice setΣ = {reject, stack}. The rejected data items are permanently discarded by the

algorithm. Instead of accepting a data item, the data items for whichdi = stack are pushed

on the top of the stack. These data items are reconsidered in the second phase.

The data items that are placed in the stack are processed during the second phase, which
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is called thepop phase. Each data item is popped in the reverse of the processed order in

the first phase. Each time an item is popped, the algorithmis forced to discard it if the data

items that have been previously been popped and accepted together with those remaining

in the stack create a feasible solution. Otherwise, the popped itemis forced to be included

in the algorithm’s solution.

Note that the stack model is carefully designed to give the algorithm no control over

the second phase. Giving the algorithm this control would allow it to solve even the halting

problem in linear time. Recall that, as explained in Section2.2, the algorithm has unlimited

computational power. The only hope for the lower bound is to limit the information the

algorithm has before it is forced to make an irrevocable decision. If the algorithm had

control over the second phase, then it could read all of the data items during the first phase

and push them all onto the stack. Then, knowing the entire input instance, it can use its

unlimited power to compute the optimal solution. During thesecond phase, it could simply

accept and reject the data items corresponding to this solution.

Using trick of incomplete graphs and fixed edge weights, Borodin, Cashman, and Ma-

gen [4] were able to prove a4
3

lower bound within this stack model.

Theorem 7. [4] No stack algorithm in the edge model achieves better than 4
3

lower bound

for the MST problem with the following variations.

△ Fixed Weight n Complete Graph Stack R Bound

Y Y Y N/N Y 4
3

We were able to tighten their result from4
3

to the tight competitive ratio2 − 2
k
.
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Theorem 8. No adaptive stack algorithm in the edge model achieves better than 2 − 2
k

approximation for the MST problem with the following variations.

△ Fixed Weight n Complete Graph Stack R Bound

Y Y Y N/Y Y 2 − 2
k

Proof. Recall that, in the stack model, a popped item is forced to be discarded if the data

items that have been previously popped and accepted together with those remaining in

the stack create a feasible solution. Hence, our goal is to force the algorithm to stack an

expensive solution followed by a cheap solution. When the cheap solution is popped, it is

forcefully discarded because there is still a feasible solution, namely the expensive solution,

on the stack. Later, on the other hand, the expensive solution will be kept because there is

either no more valid solution left on the stack or no previously accepted solution.

A valid solution for the MST problem consists of a set of terminal and Steiner edges that

connect the terminal vertices together. Wanting such a solution to be pushed on the stack,

the adversary will monitor how well the edges stacked by the algorithm so far connect the

terminal vertices. To do this, the adversary partitions theterminal vertices into components

that are connected via the stacked edges. Note thatk − c “edges” are needed to connect

k terminal vertices intoc components. (For example, ifc = k thenk − c = 0 edges are

needed to keep thek terminal ink isolated components, while ifc = 1, thenk − 1 edges

are needed to connect them all together.)

Wanting this solution on the stack to be expensive, the adversary wants it to cost the

algorithm at least 2 for each “edge” connecting two terminalvertices. There are four types

of such connecting “edges”. The first type of “edge” is simplya terminal edge〈tg, tg′〉,
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which as required costs 2. The second type of “edge” consistsof two Steiner edges〈tg, sq〉

and〈sq, tg′〉, which also costs1 + 1 = 2. The third type of “edge” needs to be avoided

because it is too inexpensive. This consists of ak′-star from one Steiner vertexsj, fanning

out with explicit Steiner edges to somek′ of the terminal vertices. This acts ask′-1 con-

necting “edges” but only costsk′, as explicit Steiner edges only cost 1 each. The adversary

will avoid allowing the algorithm to push such stars onto thestack by making the rest of

unseen edges incident tosj implicit as soon as the algorithm pushes two explicit edges

incident tosj. The final type of “edge” involves the algorithm accepting animplicit Steiner

edge. However, these edges cost 3. We will letr, b, andb′ denote the number of “edges”

of the first, second, and fourth type. The loop invariant maintains thatr + b + b′ ≥ k − c

which reconfirms that the number of these “edges” is at least thek − c needed to connect

the terminal vertices intoc connected components. Having enough intuition, we are now

ready to prove the theorem.

There will bek terminal vertices andh ≥ k Steiner vertices for some constanta.

These informations are known to an algorithm. Each explicitSteiner edge has weight 1.

Each implicit Steiner edge has weight 3. And, each terminal edge will be always explicit

and will have weight 2. An adversary initially constructsP0 narrowing down the universe

of all possible data items to include all possible terminal edges and all possible explicit

Steiner edges〈tg, sj, 1〉 for each terminal vertextg and each Steiner vertexsj . If, later,

the adversary deletes〈tg, sj, 1〉 from Pi, then the deleted explicit edge becomes an implicit

edge. The initial adversarial setP0 is shown in Figure 4.5.

Recall thatPi−1 is the set of edges that the adversary still considers to be part of the
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Figure 4.5: A possible situation at the beginning of theith iteration.

input instance. We call a stacked edgenecessary if it does not create a cycle with previously

stacked edges. Otherwise, it is called anunnecessary edge. In order to prove the theorem,

we first prove that the adversary is able to maintain the following loop invariants.

LI1: EitherS1 or S2 applies to each Steiner vertexs in Pi−1.

S1: At most one necessary explicit Steiner edge incident tos has been stacked by

the algorithm.

S2: Exactly two necessary explicit Steiner edges are incidentto s and each of the

rest of edges incident tos has either been rejected, stacked as unnecessary edge,

or removed by the adversary causing it to be implicit.

LI2: A relationr + b + b′ ≥ k − c holds. (Ther denotes the number of necessary stacked

terminal edges. Theb denotes the number of Steiner vertices ofS2 type. Theb′

denotes the number of accepted necessary implicit Steiner edges. And,C1, . . . , Cc are
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partitions of thek terminal vertices into connected components where two terminal

verticestg andtg′ are connected if the stacked terminal and Steiner edges forma path

between them. Thec denotes the number of these components.

We prove the loop invariants are maintained as follows. Initially, no edge has been seen.

Therefore,S1 applies to all Steiner vertices, andr = b = b′ = 0 andc = k, which results

in r + b + b′ ≥ k − c. Therefore, the base case clearly holds.

Now assume that the loop invariants hold at the beginning ofith iteration. The Fig-

ure 4.6 depicts a possible adversarial setPi−1.

Figure 4.6: A possible situation at the beginning of theith iteration.

Imagine that an algorithm considers an edge. No matter what type it is if it is rejected

by the algorithm nothing changes. Hence, we consider only acceptance cases.

• Case 1:The algorithm stacks a necessary terminal edgeaπi
= (tg, t

′

g). The adver-

sary, in turn, does nothing, yieldingPi = Pi−1. Sinceaπi
is a terminal edge, it does
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not affectS1 or S2. The c decreases by one,r increases by one, andb and b′ are

unchanged. Hence, the relationr + b + b′ ≥ k − c still holds.

• Case 2: The algorithm stacks the explicit Steiner edgeaπi
= (tg, sj), which is the

first stacked edge incident tosj. The adversary does nothing, yieldingPi = Pi−1.

Because there was an unseen explicit Steiner edge incident to sj , sj must have been

of typeS1 and must remain of typeS1. Henceb is unchanged. Because this new edge

is the first stacked edge incident tosj , it cannot create a cycle and hence is necessary.

Also, it cannot merge two connected components and hencec is also unchanged. In

addition,r andb′ are unchanged. Therefore, the relationr + b + b′ ≥ k − 1 holds.

• Case 3:The algorithm stacks the second necessary and explicit Steiner edgeaπi
=

(tg, sj) incident to Steiner vertexsj . The adversary, in turn, removes the rest of

the unseen edges incident tosj , yieldingPi ⊂ Pi−1. These removed edges become

implicit edges. Moreover,S2 now applies tosj instead ofS1, increasingb by one.

Sinceaπi
is necessary, it does not create a cycle with previously stacked edges and

hencec decreases by 1. Ther andb′ are unchanged. The relationr + b + b′ ≥ k − c

is true.

• Case 4:The algorithm considers an edge which creates a cycle with stacked edges.

By definition, such an edge is called unnecessary. Whether the algorithm decide to

stack or to reject it, the adversary does nothing, yieldingPi = Pi−1. Noteb does not

change because the definition ofS1 andS2 considers only necessary edges. Thec

does not change because the new edge creates a cycle. Ther or b′ may increase by
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one. Hence, the relationr + b + b′ ≥ k − c still holds.

• Case 5:The algorithm stacks a necessary implicit Steiner edge(tg′ , sj) without actu-

ally seeing it. If this edge is still inPi−1 then the adversary can be kind by informing

the algorithm that actually this edge is explicit in the actual input instance. It is just

that the algorithm has not yet read this part of the input. This case can be handled by

Case 2, 3, or 4. If the edge being accepted is not inPi−1, the adversary kindly informs

the algorithm that this is in fact an implicit edge and its weight is 3. In latter case,

the adversary in turn does nothing, yieldingPi = Pi−1. Since the edge is implicit, it

does not affectS1 vertices. Thec decreases by one,b′ increases by one, andr andb

are unchanged. Hence, the relation is still true.

Based on the five cases above, we conclude that the loop invariants are maintained.

Whenc becomes one, the adversary knows that the terminal verticesare connected by

the stacked edges into one component. Hence, he knows that there is an expensive solution

pushed on the stack. The adversary at this point stops this first phase of the game. He

declares to the algorithm that the actual input instance consists of the edges seen by the

algorithm so far together with all the edges remaining inPi. The next task is to prove that

this instance contains a cheap optimal solution. The first step to accomplish this is to note

that at mostk − 1 Steiner vertices of typeS2 definitely connect thek terminal vertices into

one component and hence, we know that the number of such Steiner vertices cannot exceed

this number. Because there arek Steiner vertices, the loop invariant ensures us that there

is at least one Steiner vertex remaining of typeS1. All the edges incident to such a vertex
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have not ever been deleted fromPi and hence all appear explicitly in the input. This forms

ak-star which in itself is an optimal solution of weightk.

At the end of this first stage of the game, the algorithm still must make decisions about

the remaining data items in the input instance (which according to the adversary will be

those edges remaining inPi). The algorithm may decide to stack them or decide to reject

them. It does not actually matter to the adversary, because either way these edges will be

rejected at the very beginning of the pop stage of the algorithm. The reason for this is that

the adversary was careful that there is an expensive solution previously pushed on the stack

and hence these remaining edges inPi are not needed.

As the rest of the pop stage of the algorithm proceeds, we needto prove which of the

algorithm’s stacked edges get forcefully accepted and which get forcefully rejected. This

happens in reverse of the pushed order. Any edge labeled as unnecessary will be rejected

when it is popped. It formed a cycle with the edges already pushed on the stack when it got

pushed on and hence it will form the same cycle with the edges still on the stack when it is

popped. The one necessary Steiner edge incident to a Steinervertex of typeS1 will also be

rejected. All other edges incident to this Steiner vertex either was initially rejected and not

stacked or has already been popped and rejected by the pop stage. Hence, this edge is not

a part of a remaining solution. What will get forcefully accepted when popped will be the

“edges” forming the expensive solution. As they got stackedby the algorithm these were

needed to merge the connected components of the terminal vertices together and hence are

all needed for the solution. By definition,r denotes the number of these necessary stacked

terminal edges,b denotes the number of Steiner vertices ofS2 type, and theb′ denotes the

42



Figure 4.7: Two possible final instances of the newly defined game. The optimal solution

is thek-star incident tosh. Since there is another valid solution stacked beneath thek-star,

the algorithm cannot accept thek-star.

number of accepted necessary implicit Steiner edges. Each terminal edge has weight 2.

There are two Steiner edges incident to each Steiner vertex of type S2, each with weight

1. Each implicit Steiner edges incident has weight 3. Hence the cost of this popped and

accepted solution is2 · r + (1 + 1) · b + 3 · b′ ≥ 2(r + b + b′) which by the loop invariant

is at least2(k − c) and by the termination condition is2(k − 1). Above we showed how

the cost of the optimal solution is onlyk. Hence, we can summarize the competitive ratio
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to beR = ALG
OPT

≥ 2(k−1)
k

= 2 − 2
k
.

Before we close this section, two issues are discussed: 1) what problems arise when the

implicit edges cannot be accepted and 2) what problems arisewhen all the edges in the

complete graph must be explicit and the edge weights are fixed.

Proof of Theorem 6. Not allowing the implicit edges to be accepted was referredabove

as a glitch. When the model has a stack, this does not seem to bean issue. However,

without a stack and without this ability, we can prove an arbitrarily large lower bound.

The main changes to the proof of Theorem 8 is that all the terminal edges are implicit

and hence can’t be accepted. (Which many may say is unfair.) Not being able to accept

implicit edges, the algorithm must find a solution using onlySteiner edges, ideally the

optimal solution consisting of thek-star. The second change to the proof is that the number

h of Steiner vertices will be increased to be much larger thank. To find thek-star it must

consider each of these Steiner vertices, accepting one of their incident edges. Because the

algorithm does not have a stack, we no longer need that these initial accepted edges form a

valid solution. Hence, as soon as the algorithm accept one Steiner edge incident tosj , the

adversary deletes the rest of unseen edges incident tosj. This causes the degree ofsj in the

actual input instance to be one. Accepting this one edge tosj was a costly mistake for the

algorithm because this edge goes no where. The game terminates when the algorithm has

done this for all but one of the Steiner vertices. Then the adversary allows the algorithm to

accept thek-star incident to the remaining Steiner vertex. Hence, the competitive ratio is
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R = ALG
OPT

= (h−1)+k
k

which can be arbitrarily large by makingh arbitrary large.

Having many Steiner vertices is not a problem when algorithmis allowed to accept the

terminal edges, because it can get a competitive ratio of 2 simply by finding a minimum

spanning tree on the terminal edges.

Not allowing the algorithm to accept or reject the implicit edges does not seem to be

a problem when the algorithm has a stack, because all of theseSteiner edges that lead no

where will get rejected when they are popped off the stack.

We now consider what problems arise when all the edges in the complete graph must

be explicit and the edge weights are fixed.

Proof Sketch for Conjecture 5 Above we conjectured that a priority algorithm in the edge

model can achieve a1 + O( 1
k
) upper bound for the MST problem in this case. Before

discussing how this algorithm might work for a general inputinstance, let us see how

an algorithm can trivially find the optimalk-star in the input instance used in the proof

of Theorem 8. Suppose that the algorithm does not know eitherthe number of terminal

or Steiner vertices and does not know the weights of specific edges, but does know that

the terminal edges have weight 2 and that Steiner edges either have weight 1 or 3. The

algorithm with this information will start by asking for andrejecting all edges with weight

3. After doing this, it completely knows the input instance.If as in Theorem 8 one of

the Steiner vertices is the root of a star with edges of weight1 to each of the terminal

vertices, then the algorithm will know which Steiner vertexsj this is because it is the one

for which no incident edges have been rejected. Even if the optimal solution is not so
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obvious because it is some complex subset of the terminal edges and the Steiner edges of

weight 1, the algorithm can uses its unbounded computational power to obtain the optimal

solution. A difficulty arises if the input instance has edgeswith many different weights

and if the optimal solution contains a few of the more expensive weighted edges. The

algorithm would not want to learn the what the graph is by asking for and rejecting the

expensive edges only to learn that some of these rejected edges are needed for the optimal

solution. However, to learn that a vertex is in the input instance, the algorithm only needs

to see one edge incident to it. This can be the edge’s most expensive incident edge. An

algorithm certainly is able to ask for and reject the most expensive edge incident to each

vertex. One has to be a little careful the one does not disconnect the graph. But that aside,

we conjecture that there exists and nearly optimal solutionnot containing any of these

rejected edges. The algorithm uses its unbounded computational power to find such a near

optimal solution.
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5 Summary and Future Directions

This chapter summarizes the results and states open problems. Modeling the priority al-

gorithm and the stack algorithm is a recent achievement. Many NP -hard optimization

problems still remain open to be formalized. The MAS problemand the MST problem are

in the class MAX-SNP which is defined in Papadimitriou and Yannakakis [14], therefore,

no polynomial-time algorithm achieves1 + ǫ approximation ratio unlessP = NP .

We proved a2 − 2
k

priority lower bound for the Maximum Acyclic Subgraph problem

in the edge model. We also showed that the Minimum Feedback Arc-set problem has no

priority algorithm that achieves any approximation ratio.It is worth noting that the com-

plement problem of a particular one is harder in context of greedy or greedy-like algorithm

paradigms.

For the MST problem, we started by improving the5
4

priority lower bound of Davis

and Impagliazzo [10] to4
3

for the MST problem when the graph is small and the edge

weights are known. See Section 4.3. We were unable to generalize this lower bound for

an arbitrarily large graphs. In fact, we conjecture that if the weights on edges are known

then there is a1 + O( 1
k
) upper bound. On the other hand, we were able to prove a2 − 2

k

lower bound by weakening the result by considering incomplete graphs. This result was
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strengthened by extending it to the stack model of Borodin, Cashman, and Magen [4]. See

Section 4.4.

Though our2 − 2
k

lower bound for the Maximum Acyclic Subgraph problem matches

the competitive ratio of 2 achieved by the upper bound, thereis a disconnection. Our lower

bound is within the edge model that does not let the algorithmhave degree information,

while the upper bound requires such degree information. It is open to prove the same lower

bound either in the vertex model or in the edge model in which the data items have vertex

degree and the edge information. It is also possible that a lower bound higher than 2 could

be proved when the algorithm does not have this degree information. See below table.

Upper Bound Lower Bound

Edge Model without degree ? 2

Edge Model with degree 2 ?

Vertex Model 2 ?

For the Minimum Steiner Tree problem, it is completely open to prove a lower bound

when the input instance is arbitrarily large and the graph iscomplete. We have seen that this

would required varying the edge weights. This will ensure that the error of the algorithm’s

solution is indeed multiplicative as size of the instance grows.

In general, one can continue the oscillating journey between an upper and lower bound

by tightening the gap or strengthening the model.
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