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Abstract

A class of priority algorithms that capture reasonable dydée algorithms was intro-
duced by Borodin, Nielson, and Rackoff [7]. Later, Borodgshman, and Magen [4]
introduced the stack algorithms, advocating that theyuapteasonable primal-dual and
local-ratio algorithms. In this thesis, som&P-hard graph optimization problems - Maxi-
mum Acyclic Subgraph (MAS) problem and Minimum Steiner T¢(®EST) problem - are
studied in priority and stack models. First a % priority lower bound in the edge model
is shown for the MAS problem. Secondly,%q)riority lower bound in the edge model is
presented for the MST problem, improving the result of David Impagliazzo [10]. Mak-
ing variations on input instances and the stack model, wes stib— % stack lower bound

improving the% stack lower bound in Borodin, Cashman, and Magen [4].
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1 Introduction

1.1 Motivation

Many known efficient algorithms for computational problecas be classified into a few
algorithm paradigms: greedy algorithms, divide-and-a@rgdynamic programming, lin-
ear programming and backtracking algorithms. An approaavaluating different algo-
rithm paradigms is to show approximability of a specific catigional problem in each
paradigm. A necessary component of such evaluation is todlize a precise model for
each algorithm paradigm.

Using the precise model, one can compare different algantaradigms. For a partic-
ular optimization problem, it may be the case that it can logu that greedy algorithms
captured by a specific model cannot be approximated beyowrdtart ratio whereas al-
gorithms within another model can. This provides not onky theoretical separation of
these models but also practical guides to designing algostby ruling out possibilities.
Moreover, the formal model gives us a better understandirigeostructure of the com-
putational problem at hand. Using the model, one can joyfulinder between lower and

upper bound. When one is to explore a lower bound of a paati@dmputational prob-



lem, the understanding of the structure of the problem caddspened. On the other
hand, when one studies an upper bound side one can devisg/modlgorithm using the
gained understanding of the problem structure. This @diilj journey with the problem
may continue until the gap between the upper bound and ther loeund is closed. At last,
varying the model deepens one’s understanding of what isiitapt in the model.

Because of its simplicity and efficiency on many computatl@noblems, the greedy al-
gorithm paradigm is one of most important tool in designilggpathms. The terminology,
Greedy, appears in the paper of Jack Edmonds [11]. The classicabidand greedoids,
studied during 1970s and 1980s, are limited in which alporg they capture and deal
only with optimal algorithms. Recently, Borodin, NielsemdaRackoff, [7], introduced a
model calledpriority algorithms which captures any reasonable greedy or greedy-like al-
gorithms. Along with the idea of an optimal solution thesgoaithms provide the idea of
an approximation algorithm.

The primal-dual and local ratio approaches for approxiomaéilgorithms are also two
fundamental algorithm design paradigms. These two appesaasually encompass the
greedy approach. That is, if one can prove arbitrary largapaiitive ratio in priority
algorithm framework, one can hope to find a better approxonattio using a more pow-
erful algorithm paradigm such as primal-dual and locabrdgsign paradigms. These two
paradigms have successfully tackled many computatioodl@ms and, for many of those
problems, they currently hold the best approximation ralibe paper of Allan Borodin,
David Cashman, and Avner Magen, [4], starts to explore howimietter these approaches
can do. They formalized a formal computational model thatwas both the primal-dual
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and the local ratio approaches. This model is callstbak algorithm In this thesis, the
class of priority algorithms and stack algorithms are stddn the context ofV P-hard

graph optimization problems.

1.2 Related Work

The priority algorithm model has the same decision chariatie as the on-line model.
In both models, the irrevocable decisions are made on art itgma based on its local
information. However, a priority algorithm can order th@iun items, whereas an on-line
algorithm processes input items in an order that an adyepasents. Hence, it is the
ordering power that makes lower bound gap between these twielsy Borodin, Nielson,
and Rackoff [7] defines two types of priority algorithms - fikeriority algorithm and
adaptive priority algorithm. In fixed priority the input aedis initially specified by an
algorithm and won’t change throughout the game betweenguorittim and an adversary.
On the other hand, in an adaptive priority algorithm, altijoni can change the order based
on the data items that it has processed so far. Clearly, tHmemlgorithm is a special
case of fixed priority algorithms and a fixed priority algbrit is a special case of adaptive
priority algorithms.

Borodin, Nielson, and Rackoff [7] proved some upper and ldveeind results for var-
ious scheduling problems. They separated the class of isdaptority algorithm from
the class of fixed priority algorithm for the interval schédg problem on identical ma-

chines. They also made a separation between the class ofimd@ttic and randomized



priority algorithms for the interval scheduling with amaity profits: they proved\ lower
bound in adaptive priority framework whereas a fixed pnoalgorithm with randomness
can achievdlog A)-approximation. HereA represents the ratio of the maximum to the
minimum unit profit.

Shortly after, Angelopoulous and Borodin [2] proved thatataptive algorithm can
achieve an approximation ratio better tharilog n). This bound is tight since there is an
(logn)-approximation algorithm which falls in the class of adegtpriority algorithm.
They also found% lower bound in adaptive priority framework for the uniformetric
facility location problem.

Davis and Impagliazzo [10] modeled priority algorithms wdaput items are not in-
dependent. They separated the class of adaptive priogtyitims from the class of fixed
priority algorithms for the shortest path problem: fixedopity algorithms cannot solve
the problem with any approximation ratio whereas the adagtiiority can solve the prob-
lem optimally. In addition, they separated the class of &depriority algorithms from
the memoryless priority algorithms for the weighted indegent set problem on 2-regular
graphs.

Borodin, Boyar, and Larsen [6] further extended priorityaithms for other graph op-
timization problems such as maximum independent set prghl@weighted vertex cover
problem, and graph colouring problem. They presented gptancee-first model and ad-
vocated that any memoryless algorithm for accept/rejeattlpms can be simulated by the
model. Horn [13] presented revocable acceptance priorigeghwhen a priority algo-
rithm has the power to withdraw decisions on accepted itenwg the ones that has been

4



processed so far.

Borodin, Cashman, and Magen presented a model cstthekl algorithm that captures
primal-dual schema and local ratio algorithms. They prodtbg ») inapproximability
result for the set cover problemganapproximability for minimum Steiner tree and a 0.913
inapproximability for interval scheduling problems. Thagvocated that stack algorithm
with the corresponding LP input representation can showapgroximability results for
a suggested LP relaxation.

In recent work, Alekhnovich, Borodin, Buresh-Openheimpégliazzo, Magen, and
Pitassi [1] proposed a decision-tree based model, BT algorithat captures properties of
backtracking algorithms and simple dynamic programmiggiadhms. In this model, each
node of the tree contains the input items processed so fateisions on them. The width
of a tree is not fixed since some branches are pruned off ifebisidhn of the item conflicts
with some constraints of a problem. This model allows us iakibf a trade-off between
the performance guarantee of the solution and the width #hié width of a tree is defined
as a maximum number of vertices among all depth levels. Famele, 2-approximation is
possible with 2-width of BT algorithm for knapsack problerhaveas, in [1], the width of
an optimal adaptive BT algorithm is at Iez(géi) = Q (2"/2/\/n). They also proved upper

and lower bounds in the BT model for satisfiability and ing¢ischeduling problems.

1.3 Summary and Organization of Thesis

This thesis is organized and summarized follows.



¢ In Chapter 2, we present the formal definition of priorityaithms. We also show
how priority algorithms can be seen in context of a combinatgame between an

adversary and an algorithm.

¢ In Chapter 3, we show that no adaptive priority algorithmhe £dge model can

achieve2 — % approximation for Maximum Acyclic Subgraph (MAS) problem.

e In Chapter 4, lower bounds for the Minimum Steiner Tree (MBifdblem are pre-
sented for some combinations of possible variations t@ettie input instances or to
the computation model. These results are summarized ire Tabl Each column of
the table corresponds to way in the model may be variedinrfa column means that
the variation considered is the one that makes solving th&é pt8Sblem easier for an
algorithm, correspondingly making it harder to prove a lolxeund, and making the

optimal competitive ratio possibly lower.

Davis and Impagliazzo [10] gave the first priority lower bdufor this problem,
giving a competitive ratio ofR = 5% = 2, where ALG represents the cost of

an algorithm’s solution and PT" represents the cost of an optimal solution. See

Theorem 2.

A quick exploration of the limits of their technique givesthresult can easily be
improved to an arbitrarily high competitive ratio, but theqjuires giving the algo-
rithm instances where the triangle inequality does not.h8&k Theorem 4. The first
column (A) of our table indicates whether the result assumes thegleanequality.

All the other results does.



Thm | Sec| A | FW | n CG | Stack| R Bound

2 |[MO]|Y| N|N| Y| N

ot

3 43 |Y | Y N Y N

[SSIN

5 | 44|Y | Y [YN| Y | N [1+0(})?

Open Y | N Y Y N ?
6 44 1Y | Y Y | N/N N 00
7 4 Y| Y Y | N/N Y %
8 44 Y | Y Y | N/Y Y 2 — %

Table 1.1: Summary of the known results and results predentthis paper for the MST
problem: A stands for triangle inequality; FW stands for fixed weighedges; CG stands
for complete graphs; is the size of the connected instances; &is$ a competitive ratio.
See Section 4.2 for clearer definitionsYAneans easier for an algorithm and harder for an

adversary, resulting in a potentially lower competitiveaa



Playing with their cases, we managed to improve their loveemiol to%. See The-
orem 3. Besides getting a slightly better bound, an interg@shing is that unlike
Davis and Impagliazzo’s proof, ours assumes that the edgghtgeare fixed and
known to an algorithm. This assumption greatly simplifies gnoof. The second

column (FW) of our table indicates whether the edges are fixed

A concern we had about the result of Davis and ImpagliazZoaisit only considers
graphs with at most four vertices. With this counter examgbley concluded that the
algorithm cannot achievR = % < 3 However, because the lower bound does
not consider arbitrarily large graphs, it does not provétiia error is multiplicative.
Hence, their result does not rule out the possibility thaty < 1-OPT + ¢ for some
constant depending on the maximum weight in the graph but not on thebeurof
vertices in it. Whether, is bounded, is indicated in the third column variation that
we consider of the table. Note th#tin this column indicates that the instance is

not only arbitrarily large but also its size, the number oftiees, is known to the

algorithm, whileY/N indicates that the instance large but unknown size.

Given these ideas, our next goal was to prove a lower bourtdl fixéd weights
and arbitrarily larger. However, it turns out that this gives too much power to the
algorithm. Instead, we conjecture that there is an algoritith competitive ratio
1+ O(%). This is not a reasonable algorithm. It plays tricks to letr@ input
instance and then uses its unbounded computational powgveoa near optimal

solution. See Theorem 5.



Given this result that the algorithm unfairly uses the fhetttthe edge weights are
fixed, we tried hard to prove a lower bound with arbitrarilyglan by varying the
weights. See the fifth row in the table. We were unable to da thhis is still an

interesting open problem.

The result of Davis and Impagliazzo assumes that the ingténmte explicitly pro-
vides the edge weight for every possible pairs of verticgsggt possibly those be-
tween Steiner vertices). With this requirement, the only weechange the size of the
instance is to change the number of vertices. At first, we wader the impression
that we had to do the same. Later, Borodin reassured us thatsitacceptable to
instead consider incomplete graphs as input instancesal§jbethm is not allowed
directly ask for and learn the edges that are not explicintioned in the instance.
Our fourth column (CG) indicates whethercamplete graph is required. N/N in-
dicates Borodin’s initial model in which the algorithm istradlowed to include the
implicit edges in the MST problem, whild/Y indicates our new model in which the
algorithm is allowed. The reason for this differentiatigrihat if a priority algorithm
is not allowed to include the implicit edges, then we weresdblshow arbitrarily
high competitive ratio. See Theorem 6. This differentiatappears not to be an

issue in thestack model in which Borodin intended it.

Borodin, Cashman, Magen [4] strengthened the priority rhbgledefining a stack
model in which an algorithm does not need to commit to an edgenwit first sees

it, but instead pushes the edge on a stack with the posgithbt the edge will get



rejected when it is popped. Borodin et. al. advocate thatstack model captures
reasonable primal-dual schema and local-ratio algorithitsey proved a% stack
lower bound in this model. See Theorem 7. We improve thislrési2 — % See

Theorem 8.

e Finally, in chapter 5, we summarize our results and suggesespossible directions

for the future work.
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2 Preliminaries

In this chapter some definitions and properties for priantydel are shown in section 2.1.

Then, the game between algorithm and adversary is desaritsedtion 2.2.

2.1 Greedy and Priority Algorithms

According to many undergraduate textbooks, a greedy algorchooses and irrevocably
commits or rejects to one of objects in the set of the objgmsified in the input instance
because, according to some simple criteria, it seems toedeet$t locally. With these char-
acteristics, Borodin, Nielsen, and Rackoff [7] introdudkd class, priority algorithms,
which capture any reasonable greedy algorithm.

An instance to a priority algorithm consists of a set of d&ans. Letl" be the type
of a data item. It could be a vertex, an edge, an interval, oresother object. A priority
algorithm chooses a decisianon each data item; € I, whered is a choice from set of
options,X. This choice set}, varies from problem to problem, however, we deal only
with X = {accept, reject} in this paper. A solution for an instance is a set of tuple,
{(a;,d;)|a; € 1}. For example, for MAX3SAT problem, the priority algorithrssagns 0

(false) or 1 (true) to each variable € 1. Therefore}: = {0, 1} andT is defined in context

11



of boolean variables.

When the instance of a problem is a graph G, eithegréex modebr edge modetan
be used. The data items in the vertex model correspond tettiees of the instance graph.
More specifically, the data items contain certain inforimatbout the vertex in question.
Depending on the specifics of the model, this informationhhigclude a vertex name, a
weight, a list of edge names, and/or a list of neighbours. @mother hand, data items in
anedge modeére the edges in a given graph. Again depending on the mbesk tcould
contain the names of the two endpoints of an edge, weightertites, an edge label, an
edge weight, and/or degrees of endpoints. Note that prapriprity lower bound is more
difficult when the data items provide more information to hgorithm.

Two classes of priority algorithms are defined in [7], depegan whether or not the
ordering of data items is fixed. Axed priority algorithm orders the data items once at
the start. On the other hand, adaptivepriority algorithm may reorder the unprocessed
data items after it processes each data item. Therefordixt priority algorithm is a
special case of the adaptive priority algorithm. Moreobagause the on-line algorithm
makes decision on the data item without ever ordering theeitirhs, the on-line algorithm
is a special case of a fixed priority algorithm. The algoriihehescriptions are shown in

Algorithm 1 and Algorithm 2.

12



Algorithm 1 Fixed Priority Algorithm
Input: I ={ay,...,a,}

Output: S = {(a;,d;)| 1 <i<n}

1: Choose an ordering on all possible data items.

N

. Sort the data itemday, . . ., a, }, based on the chosen order.
3: for i =1tondo

4:  Make an irrevocable decisiafy, about data item.,.

5. Update the solutionS = S U {(ax,, dx,)}-

6: end for

~

. OutputS = {(ai,di)| 1 S 1 S n}

Algorithm 2 Adaptive Priority Algorithm
Input: 7 ={a,...,a,}

Output: S = {(a;,d;)| 1 <i<n}
for i = 1ton do
2:  Assume the data itemi,,, a,,, ..., ar,_, } have been seen and processed. Based
on the data items seen so far, choose a possible new ordéngall possible data
items. Leta,, be the next data item according to this new order.
Make an irrevocable decisiafy, about the data item,,.
4:  Update the solutionS = S U {(ax,,d,)}-
end for

6: OUtpUtS = {(ai,di)| 1 S 1 S n}

13



2.2 Priority Lower Bound via Combinatorial Game Between an Ago-

rithm and an Adversary

In this section, a game between an adversary and an algasttescribed.

It is far too hard to prove bounds on the computational pow€&es algorithm. Hence,
we avoid this problem by assuming that the algorithm has dounded computational
power. The priority lower bound scheme described in thigieeds information theo-
retic. Just like with lower bounds for on-line algorithmsg would like to assume that an
algorithm does not “know” about any unprocessed item inibeta

Unlike, on-line algorithms, however, a priority algorithras some knowledge and con-
trol over the unprocessed data items because it gets to henelie sorted. For example,
if the algorithm has sorted data items based on the weighatafitems and has been given
itema;_; with weight 10, then the algorithm knows that any later itess b weight greater
or equal to 10.

At the beginning of the*" iteration of the game, the algorithm has been given the par-
tial instancePl;_; = (a1, as,...,a;_1) and has committed to the partial soluti®y; | =
(dy1,ds,...,d;_1). The adversary has chosen the Bet; of the data items from which fu-
ture data items are chosen. More formally, the actual inmténce willbed = {a, as, . . .,
a;_1,a;,-..,a,}, wherea, ... a;_; are as stated in the partial solutié¥; 1, a;1,. .., a,
are from the restricted set of unseen data itétns andn > i — 1 is the yet unknown num-
ber of items in the instance. The loop invariant that the exhrg maintains is that given

any instance of this form the algorithm would have seen the partial inseaRI; | =

14



(ai,...,a;,_1), committed to the decision®S; ; = (di,...,d;_1), and know nothing
about the future items except that they come frBm,.

The adversary initializes the game by narrowing down theenniverse of possible
data items taP,. At the same timeP, and PS, are defined to be empty sets since the
algorithm has done nothing at this stage.

During thei" iteration, P;, PI;, and P.S; that maintain this loop invariant are chosen
as follows. The algorithm being adaptive is allowed to reorthe data items i#,_;. The
adversary promises that he will make whichever data itgne P;_; is the algorithm’s
favorite bea,,. Note that we don't really care about the complete orderesime only
care about which data item will be,,. Hence, the game is simplified by allowing the
algorithm to choose,, from P,_; and make a decisiaf} ona,,. Knowinga,, andd,., the
adversary is allowed to narrow dowh_; to P, by removing some data items (including
a,) that would make the algorithm’s task “easy”. This eifisteration and open& + 1)
iteration of the game, that is, the algorithm has seen, a.,, . . ., a.,) and made decisions
(dy,...,d;) onthem and knows the future items are fréin

Generally, the adversary is allowed to dynamically choase tmany data items there
will be in the actual instance. Hence, the adversary hasdiepat the beginning of the
i'" iteration to declare that the game ends. Then, the actuanosis/ = PI,_, U P,_,
and by the loop invariant = P.S;_; would be the algorithm’s solution. The adversary
wins if I is a valid instance and is not an optimal solution for it. If there is an adaptive
priority algorithm for this problem then such an algorithsrable to win the game against
any adversary. The contrapositive is that if we can show aeradrial strategy for this

15



An adversarial set, P;;

(2) The algorithm chooses one data item from P;;. Assume that it is a;.

a, a, az ay

as deg d; dg --.-

B The adversary removes some data items in order to worsen the performance of the algorithm.

Figure 2.1: The description of th® round of the game

game then there is no adaptive algorithm for this problem .
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3 Maximum Acyclic Subgraph problem

As a warm up, we will prove a relatively easy adaptive priokitver bound. The problem
considered is Maximum Acyclic Subgraph (MAS) problem. Astance of the problem is
a simple directed grapf¥ = (V, E'). The problem is to find a maximum sized subset of
the edges that is acyclic. Two 2-approximation algorithneskamown and are described in
Vazirani [16] and in Berger and Shor [3]. The first of theseoalipms can be interpreted
as a priority algorithm that keeps two solution sets: the@dgm arbitrarily orders the
vertices; the algorithm then puts the forward edges in tls $olution set and puts the
backward edges in the second solution set. When all edgge@ressed, the algorithm
returns either the set of forward edges or the set of backedges, depending on which
set has greater cardinality. Clearly, both of these twotgmwis are acyclic. One of the two
sets must have at leg¢i(G)|/2 edges. Hence, the value achieved by the algorithitz,
is at leas{ £(()| /2, which is at leas© PT/2, giving the ratioR = $£L = 2.

The problem with the above algorithm is that it does not comonaccepting or reject-
ing an edge until it has seen all the edges. Borodin et. alexignded the definition of

the priority algorithm to allow it to keep some polynomialmber of solutions in parallel:

the extended model is called thacktracking model. The number of parallel solutions that
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the above algorithm needs is 2. Can we design a priority ghgorthat keeps only one
solution for the MAS problem? This question is answered in [Bheir algorithm first
arbitrarily orders the vertices. Then, for each vertex the chosen order, it considers
all incident edges to that have not been considered before. Of these, it accdapes ei
all incoming edges or all outgoing edges, depending on whashgreater cardinality and
rejects the others. After the algorithm processes all &estiit returns the set of accepted
edges as its solution. Note that this solution is acyclicoiews. Consider any cyclé’

in the graph. Let denote the first vertex in the cycle that the algorithm comsid Let
(u,v) and(v, w) be the edges in the cycle coming into and leavingecause is the first
edge considered in the cycle, neither of these edges hagbesidered yet. Hence, when
the algorithm reject either all afs unprocessed incoming edges or allaf unprocessed
outgoing edges, eith€r, v) or (v, w) will be rejected. Either way this breaks the cycle.
Because this is true for every cycle in the graph the solytr@mduced by the algorithm is
valid. With the similar reason described for the first algaom in [16], it is easily shown
that the performance guarantee by this algorithm is at lealtof the optimal solution.
Their algorithm can be fit in as either a vertex or an edge moBgting into the vertex
model, the data item is a vertex with a list of its neighbo@se difference from the usual
vertex model is that the decisions are made on the edgest®&1n0 (u) to be the number
of directed edges coming intoanddeg—(u) to be the number of directed edges going out
from u. Fitting in the edge model, the data item is an edge’) with the in-degree ofi
and out-degree af, namely(u, v, deg—(u), deg™(u)). Since the algorithm remembers all
accepted items and deleted items, when it considers a @atduit v, deg~(u), deg™ (u)),
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it will make a decision based on the comparisod@f (u) — x anddeg™ (u) — y, wherex
is the number of either accepted or rejected incoming edgeso far andy is the number
of either accepted or rejected outgoing edges froso far. Ifdeg=(u) — x > degt(u) —y
is the case, the algorithm rejects the considered data Beitvsequently, using its ordering
power, it rejects all remaining unseen outgoing edges fricand then accepts all remain-
ing unseen incoming edges t0 Otherwise, the algorithm accepts the data item and all
remaining unseen outgoing edges frorand rejects all remaining unseen incoming edges
to .

We tried, but failed to prove a matching lower bound of 2 botthie vertex model and
in the edge model with degrees. These remain open problemslidVhowever manage to

prove a lower bound in the edge model where the degrees anechaded.

Theorem 1. No adaptive priority algorithmin the edge model can achieve better than 2 — %

approximation for the MAS problem.

Proof. A data item, a directed edge, is represented as an orderedupa}, whereu is

the tail andv is the head. The set of decisions¥is= {accepted, rejected}. Initially,

an adversary narrows down the entire universe of possiligeittans down taP,, which
consists of the edges in(& + 1)-complete graph. Because of the symmetry in the set of
edgeslr,, we can assume without loss of generality that the algorjhocesses the edge

(1,2) first. This edge has been made bold in Figure 3.1.

e Case 1:If the algorithm accepts the eddg 2), then, the adversary reducEsdown

to P, as shown in Figure 3.1. In fact, the adversary declares spttint that this is
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the final input instance. For eaghe [3,4, ...,k + 1], the algorithm can either take
the edg€2, j) or the edg€y, 1) but not both. Otherwise, this will create a cycle with
the edge(1, 2) already committed to. The optimal solution on the other heawal
take both(2, j) and(j, 1) for eachj € [3,4,...,k + 1] and take(2, 1). This gives

that the value of the algorithm’s solution is at méstvhereas the cost of the optimal

solution is2k — 1. Hence, the approximation ratio® = $°1 = 2=1 — 2 —

Figure 3.1: A possible adversarial 98t C F, based on the algorithm’s first choice.

e Case 2:If the algorithm rejects the bold eddg, 2), the adversary reducéd$ to P
by deleting all edges i, except the single eddeé, 2) just rejected by the algorithm.
The approximation ratio is theR = % A 00.

Based on the two cases, no priority algorithm can ever ael@ie% performance guarantee.

0

The complement of the MAS problem is the Minimum Feedbackget(MFA) prob-
lem. The instance of the problem is a simple directed gi@pk= (V, E)). The problem
is to remove the minimum number of edges that leaves the rengagraph as acyclic.
Let us briefly mention thato adaptive priority algorithmin the edge model can solve the
MFA problem with any approximation ratio. The proof is very similar to that of the MAS
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problem except that the value of the solution is the numbedges deleted, which is the

number of edges in the graph minus the number kept. In cas€ores=S = £ = f and,

in case tWoR = = ~ oo.

1
0
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4  Minimum Steiner Tree (MST) Problem

We study Minimum Steiner Tree (MST) Problem in priority artdck algorithm frame-
works. In Section 4.1, specifications, applications, arfthdens of the problem are stated.
In Section 4.2, some modeling issues are discussed suctamaglérinequality, complete
graph instances, the size of the connected graph instaarwé $ixed edge weights. In Sec-
tion 4.3, we prove an arbitrary high and%apriority lower bound for the MST problem
under different variations. In Section 4.4, with anotheiatzon of the model, we conjec-
ture a strange upper bounidy O(%). We in turn show that an arbitrary high priority lower
bound can be achieved under the model appeared in Borod&mn@zm, and Magen [4].

Finally, we prove & — % stack lower bound improving the reséliower bound in [4].

4.1 Basis for the MST problem

An instance of the MST problem consists of a grépk- (V, £), a nonnegative real-valued
costc : E — R™ on the edges and a sdt C V of terminal vertices. A treeT of G

is called aSteiner tree if it spans all the terminal vertices @¢f. The problem is to find a
Steiner tred” whose cost > ¢(ij) is minimum.

ij€E(T)

The problem has practical applications: routing VLSI latydlie design of communica-
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tion networks; accounting and billing for the use of telephaetworks; and the phylogeny
problem in biology. Unfortunately, the problemN#-hard, therefore, it is likely that any
algorithm for finding a minimal Steiner tree is inefficientehte, designing an approxima-
tion algorithm, which has a polynomial running time, seerge@d and profitable direction
for this problem. The best approximation algorithm app@aRobins and Zelikovsky [15]
and achieves 1.55 performance guarantee. However, iemdith into a priority model nor
a stack model. The best known priority algorithm, shown izik&ni [16], achieves the
2-approximation ratio for the metric MST problem, simplydoyning the minimum span-
ning tree algorithm on the induced subgraph of the termiedices in the given instance
graph. Clearly, this algorithm being fixed priority greefitg into the priority model.
Before we go further, several terms need to be defined. TlieeBteerticesl” \ N are
called Steinervertices. An edge = (u,v) is calledSteiner edgef « is a Steiner vertex
andv is a terminal vertex, or vice versa. An edge= (t,,t,11) is called aterminal edge
if the two endpointsf; andt,, are both terminal vertices. Auasi-bipartitegraph@ is
a bipartite graph with some edges between terminal vertiBesompletequasi-bipartite
graph denoted by)x 5 is a complete bipartite grapfix ; where terminal vertices i
form clique. We denot&-star for £ Steiner edges incident to the same Steiner vertex. At

last, we denot&v(e)for the weight of an edge.
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4.2 Issues on Variations of Instances and Model

Section 1.3 outlined a number of variations in the MST probknd the model. These

variations are described in more detail here.

Triangle Inequality ( A): With unconstrained edge weights, we will prove thatadap-
tive priority algorithm can solve this version of the MST problem with any approx-
imation ratio. Hence, we consider the metric version of the MST problemcivhi

requires the triangle inequality to hold, namely(u, v)) < w((u, w)) + w((w, v)).

Fixed Edge Weights vs. Varying Edge Weights (FW). Our second variation is whether
the adversary is allowed to vary the weights on the edges @t fruthem. The
motivation of the latter is that having the adversary chatigeweight of unseen
edges complicates the proof. In fact, one needs to be caefult how one models
this. The adversary cannot change these weights arbytrifie algorithm may have
some very complex criteria that it uses to sort the data itdfriee weights change
even slightly, the total order may change, changing whida d¢am the algorithm
would have seen first. Instead, this is modeled by the adwepéacing multiple data
items (u, v, w(u,v)) between the same two verticés, v) in the setP; of possible
future data items, each with distinct edge weights, v). The adversary can throw
out any copies of an edde, v) that have weights(u, v) that he does not want to
give the algorithm. Then when algorithm sorts possible datas in P;, it states
which of these edgéu, v, w(u,v)) it wants next. When the adversary gives the
algorithm this edge, it needs to immediately delete frBm, any additional copies
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of this same edgé., v) that have different weights. This ensures that the actpaitin

instance only has at most one edge between any pair of \v&rtice

Davis and Impagliazzo [10] provedgapriority lower bound with the varying edge
weight approach. See Theorem 2. In Section 4.3, we imprdsedlg but with the
fixed edge weights approach. In Theorem 5, however, we semtbaneral, having

fixed weights gives too much power to the algorithm.

Not Known but Fixed Instance Size vs. Arbitrary but Known Instance Sizen : Ourt-
hird variation is whether the lower bound is proved with adixestance size (having
some small number of vertices) without giving the algorittite instance size or
whether a stronger result can be proved in the following tvagsv first, it is stronger
because it applies to arbitrarily large graphs; secontliy,stronger because it gives

the size information to the algorithm.

For many computational problems, the size difference icnatial because we can
achieve the same lower bound by creating a final instancesistorg of multiple
copies from the class of small instances. However, thisestie generated instance
graph to be disconnected. For the MST problem, the graphsneede connected.
This is why we had this concern about Davis and Impagliazasslt. Because it
only considers graphs with at most four vertices, it is neaciwhether this proves
the multiplicative constan@% < % or only an additive onelLG < 1-OPT + ¢

for some constant depending on the maximum weight in the graph but not on the

number of vertices in it. In fact, Theorem 5 shows how theslait the case when
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edge weights are fixed.

Providing the size of instances at the beginning restrio¢satdversarial reduction
strategies fronP,_; to P; because it cannot delete all the edges incident to a vertex
u. Hence, this variation favours for an upper bound. In Sectigl, we prove a

priority and a stack lower bound letting the algorithm “kridive instance size.

Incomplete vs. Complete InstancesOur fourth variation is whether the input instance
must be a complete graph or not. If yes, then there must be @liciexiata item
in the instance, providing the weight between every posghir of vertices (expect
those between Steiner vertices). If no, edges that are pditily mentioned in the
instance have weights imposed by the triangle inequaligy,the weight of a missing

edge(u, v) is the length of the shortest path framo v amongst the included edges).

Allowing a non-complete instance expands the set of passilgut instances and,
therefore, gives more power to the adversary. It gives thveradry complete power
to restrict the sef’; of possible future edges from the current $&t; as defined
in the section 2.2. We call thithe adversary deleting edges. In contrast, for the
complete graph model, the adversary is not able to deletesedq arbitrary way.
When restricting the data item st from P,_; , it still has the power to delete an
edge(u,v), but, in order to keep the final instance graph complete, streither
delete all the edges incident to the vertegr all those incident te. Although such
a stepP; C P,_; is really a reduction in the set of edges, we call thisadversary

deleting the vertex u (or v).
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4.3 A3 Priority Lower Bound

In this section, we prove the arbitrary large priority lovilerund and th§ priority lower
bound. Davis and Impagliazzo [10] proved the first priordyweér bound for the MST prob-
lem, whereR = g See Theorem 2. A quick exploration of the limits of theirhteigue
gives their result can easily be improved to an arbitrarighhcompetitive ratio, but this
requires giving the algorithm instances where the triamgggjuality does not hold. See
Theorem 4. Playing with their cases further, we managed poakre their lower bound to
%. Another small improvement of our result is that we do it ie thodel in which each
edge weight in an instance is fixed. This strengthens thétiescause the algorithm has
more knowledge and the adversary has less power. In additieriixed weight variation

significantly simplifies the proof.

Theorem 2. (Davis and Impagliazzo [10]) No adaptive priority algorithm in the edge
model can achieve better than 2 approximation for the MST problem with the following

variations.

A | Fixed Weight | n | Complete Graph | Stack | R Bound

Y N N Y N 5

Theorem 3. No adaptive priority algorithm in an edge model can achieve better than §

approximation for the MST problem with the following variations.

A | Fixed Weight | n | Complete Graph | Stack | R Bound

Y Y N Y N .
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Proof. The adversary initially constructs a g, consisting of the edges within the com-

plete quasi-bipartite grapfis; ; shown on the left of Figure 4.1.

1
7] N

2 1

adversary 1

2 t 1 —— t @

13

Figure 4.1: The left is an initial adversarial sit and the bold edge is assumed to be
considered first by the algorithm. The right is the seconceeshrial sef?, C F,, reduced
from P, by the adversary. The squared vertices are terminals ancrified vertices are

Steiners.

e Case 1:Since the three Steiner edges are identical initially, athoss of generality,

assume that it considers considers the edge- (7, s1), made in bold in Figure 4.1.

— Case 1.1:f the algorithm accepts the edge, the adversary respondsnbgv-
ing all the remaining edges as shown on the right of Figure Bhe remaining
graph will be the final input instance. It is a complete grapipeomised. The

algorithm should not have taken the bold edge. The apprdiomaatio is

_ALG 1
R =587 =0

A 00.

— Case 1.2:f the algorithm rejects the bold edge, the adversary gikieshtire
graph as the instance shown in Figure 4.2. Again this is cetaplNo matter
what future decisions are made, the best cost for the afgoiig 4 whereas the

optimal cost is by taking the three Steiner edges. Thergtbesapproximation
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ratioisR = §

1 1

2 1 2 1
adversary

2 b 1 ) 2 15} 1

t3 t3

Figure 4.2: A possible adversarial 98t (the right graph) reduced fro, (the left graph)

by the adversary.

e Case 2:We now consider the second case where the algorithm takesimét edge.
Since three terminal edges are identical, without loss aegaity, we assume that
the algorithm considers the edgg = (r, 7o) made the bold in Figure 4.3.

— Case 2.1:If the algorithm accepts the edge, the adversary does rpthhio
matter what future decisions are made, the best cost for ltwithm is 4
whereas the optimal cost is just 3 using the three Steinezsedfhe approxi-
mation ratio is yeR = 3.

— Case 2.2:If the algorithm rejects the edge, the adversary removethalfe-
maining edges as shown in Figure 4.4. In this case, the ghgoeven fails to

find a valid Steiner tree.

Based on the two cases, the best competitive fdtibat the algorithm can achieve is

(SN
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adversary

2 5] 1 ) 2 5] 1

t; I3

Figure 4.3: A possible adversarial 98t (the right graph) reduced froiy, (the left graph)

by the adversary when the algorithm decides to accept tlteteohinal edge.

1 AV

adversary

I3

Figure 4.4: A possible adversarial 98t (the right graph) reduced fro, (the left graph)

by the adversary when the algorithm decides to reject the: teoininal edge.

The reader may wonder if one can get a better lower bound bydpaauch bigger
weights on the terminal edges. This is the case, howevegldtes the triangle inequality.

We demonstrate this with the following theorem.

Theorem 4. If we do not need to satisfy the triangle inequality then we can obtain an
arbitrarily large lower bound. No adaptive priority algorithmin the edge model can solve

the MST problemwith any approximation ratio with the following variations.

A | Fixed Weight | n | Complete Graph | Stack | R Bound

N Y N Y N 0
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Proof. The graph being considered is simply a triangle with two teatverticiest; andt,
and one Steiner vertex The two Steiner edges still have weight one, but now we asze

the weight of the terminal edge to This graph is’.

e Case 1:Since the two steiner edges are symmetric, assidime) is considered by

an algorithm.

— Case 1.1:If the algorithm accepts the edge, the adversary removesthie
two edges. The cost of the algorithm’s solution is one wieetba cost of the
optimal solution is zero because if the instance contaihsare isolated termi-
nal vertex, then the solution requires no edges. Henceathegris arbitrarily
large.

— Case 1.2If the algorithm rejects the edge, the adversary does ngtiaving,
rejected one of the Steiner edges, the algorithm is forcedki® the terminal
edge with weight. The optimal solution still ig + 1. This gives the rati® is
5, which becomes arbitrarily large as the weiglmcreases.

e Case 2:Algorithm consider the edgs.

— Case 2.1:If the algorithm accepts the edge, the adversary does mptfiihe

ratio is arbitrarily large as in Case 1.2.

— Case 2.2:If the algorithm rejects the edge, the adversary removesvie
Steiner edges (and the Steiner vertices). Having rejetiednly edge in the

input instance, the algorithm fails to come up with a valition.

Based on the two cases, the competitive r&ics arbitrarily large.
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With this motivation, we return now to graphs with the trismgequality. A concern
with our above% result and Davis and Impagliazzo [10§’sresult is that only small graphs,
instances with at most four vertices, are considered. Ber#we lower bound does not
consider arbitrarily large graphs, it does not prove thest ¢nror is multiplicative. Hence,
these results do not rule out the possibifiky< 1-O PT + ¢ for some constant depending
on the maximum weight in the graph but not on the number ofeesin it. This motivates
us to want to prove a lower bound with fixed weights, arbilydarge n, and a complete

graph.

4.4 A2 - 2 Stack Lower Bound

Proving a lower bound with arbitrarily large turned out to be harder than we expected.
In line with what we did in Section 4.3, we first try to prove tresult using fixed edge
weights. However, it turns out that this gives too much potwehe algorithm. At the end
of this section we outline a strange and unfair algorithn tis®s tricks to learn the input
instance and then uses its unbounded computational powetam what we conjecture to

be a near optimal solution.

Conjecture 5. A priority algorithmin the edge model can achievea 1+ O(%) upper bound

for the MST problemwith the following variations.

A | FixedWeight | n | Complete Graph | Stack | R Bound

Y Y Y/N Y N | 1+0(3)
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The Y/N variation for n means that the instance size is arbitrarily large but the exact size

is not known to the algorithm.

This conjecture forced us to attempt to prove a lower bounddoying the weights. How-
ever, we were unsuccessful. See the discussion about t8iscition 4.2. This remains as
an interesting open problem. See Chapter 5.

Borodin, Cashman, and Magen [4] get around the problemsoh@dixed weights
in an arbitrarily large graph by considering incompleteping We follow their lead. In
this model, some edges are not incluggglicitly in the input instance and, therefore, an
algorithm cannot make decision on them. The edges not indludll be calledimplicit
edges. Their weights, as dictated by the triangle inequality] bd the length of the shortest
explicit path from one of the edge’s endpoint to the other.

We, however, found that before tistack is introduced, this model has a small glitch
making it too favorable for a lower bound. Even if the infotioa about the size of the
instances and the weights on edges are provided, an aitpitemge competitive ratio can

be still obtained for the priority model.

Theorem 6. If the priority algorithm is not allowed to accept or reject the implicit edges

then we can prove an arbitrarily large lower bound.

A\ | Fixed Weight | n | Complete Graph | Stack | R Bound

Y Y Y N/N N 0

The N/N variation for Complete Graph means that implicit edges cannot be accepted or

rejected.
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This result is proved after the proof the the main resultiig section. Though this glitch
goes away when the stack is introduced, the glitch still vadéid us to vary the model yet
one more time. In this new version, the algorithm can accepeject an implicit edge
(u,v) any time. This decision however will have to be made withouplieitly learning the
weight of the edge. This weight can be implied from the tréwesiclosure of the explicit
edges, once their weights are learned. The key thing th&t aa@lgorithm cannot do is
to initially learn about, andv by saying “Give me the most expensive implicit edge and |
will reject it.” Note that this is exactly what the+ O(+) algorithm of Conjecture 5 does.
Using this model, we were able to prove a % priority lower bound. We, however, will
not present this result because we were able to prove artbttesubsumes it.

Borodin, Cashman, and Magen [4] define a new model referreak ttheadaptive
stack model. They advocate that their model captures reasonable pdoelalgorithms
and local-ratio algorithms. The weakness of the adaptivaripr model is that the al-
gorithm must make an irrevocable decision on the chosenittatg that is,d; € > =
{accept, reject}. The stack model gives the algorithm a second phase in whieimireject
previously “accepted” data items.

The adaptive stack modallows the algorithm to have two phases. The first phase is
the same as the adaptive priority algorithms except thatttek algorithm has a stack and
a choice setb = {regject, stack}. The rejected data items are permanently discarded by the
algorithm. Instead of accepting a data item, the data itemwiiichd; = stack are pushed
on the top of the stack. These data items are reconsiderbd setond phase.

The data items that are placed in the stack are processedjdinei second phase, which
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is called thepop phase. Each data item is popped in the reverse of the pracesser in
the first phase. Each time an item is popped, the algorisiforced to discard it if the data
items that have been previously been popped and acceptetthéogvith those remaining
in the stack create a feasible solution. Otherwise, the @djemis forced to be included
in the algorithm'’s solution.

Note that the stack model is carefully designed to give tigerthm no control over
the second phase. Giving the algorithm this control wodlahait to solve even the halting
problem in linear time. Recall that, as explained in Sec#id) the algorithm has unlimited
computational power. The only hope for the lower bound igrtotlthe information the
algorithm has before it is forced to make an irrevocable sieni If the algorithm had
control over the second phase, then it could read all of tkeeitems during the first phase
and push them all onto the stack. Then, knowing the entiratimstance, it can use its
unlimited power to compute the optimal solution. During s$eeond phase, it could simply
accept and reject the data items corresponding to thisisnlut

Using trick of incomplete graphs and fixed edge weights, BoroCashman, and Ma-

gen [4] were able to prove?lower bound within this stack model.

Theorem 7. [4] No stack algorithmin the edge model achieves better than § lower bound

for the MST problemwith the following variations.

A\ | Fixed Weight | n | Complete Graph | Stack | R Bound

Y Y Y N/N Y

(SIS

We were able to tighten their result frofito the tight competitive ratia — 2.
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Theorem 8. No adaptive stack algorithm in the edge model achieves better than 2 — %

approximation for the MST problem with the following variations.

A\ | Fixed Weight | n | Complete Graph | Stack | R Bound

Y Y Y N/Y Y 2—

2
k

Proof. Recall that, in the stack model, a popped item is forced toikeadded if the data
items that have been previously popped and accepted togeithethose remaining in
the stack create a feasible solution. Hence, our goal isrtefthe algorithm to stack an
expensive solution followed by a cheap solution. When theaphsolution is popped, it is
forcefully discarded because there is still a feasibletsmiunamely the expensive solution,
on the stack. Later, on the other hand, the expensive solutibbe kept because there is
either no more valid solution left on the stack or no previpascepted solution.

A valid solution for the MST problem consists of a set of taraliand Steiner edges that
connect the terminal vertices together. Wanting such aisalto be pushed on the stack,
the adversary will monitor how well the edges stacked by therdhm so far connect the
terminal vertices. To do this, the adversary partitiongénminal vertices into components
that are connected via the stacked edges. Notekthat “edges” are needed to connect
k terminal vertices inte components. (For example,df= k thenk — ¢ = 0 edges are
needed to keep thieterminal ink isolated components, while if= 1, thenk — 1 edges
are needed to connect them all together.)

Wanting this solution on the stack to be expensive, the adwvgmnwants it to cost the
algorithm at least 2 for each “edge” connecting two termumatices. There are four types
of such connecting “edges”. The first type of “edge” is simalyerminal edget,,t, ),

36



which as required costs 2. The second type of “edge” consistgo Steiner edge§,, s,)
and(s,, t,), which also costs + 1 = 2. The third type of “edge” needs to be avoided
because it is too inexpensive. This consists bf-atar from one Steiner vertex, fanning

out with explicit Steiner edges to soméof the terminal vertices. This acts &51 con-
necting “edges” but only costs, as explicit Steiner edges only cost 1 each. The adversary
will avoid allowing the algorithm to push such stars onto $it@ck by making the rest of
unseen edges incident g implicit as soon as the algorithm pushes two explicit edges
incident tos;. The final type of “edge” involves the algorithm acceptingraplicit Steiner
edge. However, these edges cost 3. We will-lét andd’ denote the number of “edges”

of the first, second, and fourth type. The loop invariant r@is that + b + 0 > k — ¢
which reconfirms that the number of these “edges” is at léest t ¢ needed to connect
the terminal vertices into connected components. Having enough intuition, we are how
ready to prove the theorem.

There will bek terminal vertices and. > k Steiner vertices for some constant
These informations are known to an algorithm. Each expBtétiner edge has weight 1.
Each implicit Steiner edge has weight 3. And, each termidgkeewill be always explicit
and will have weight 2. An adversary initially construcétg narrowing down the universe
of all possible data items to include all possible termirdges and all possible explicit
Steiner edgest,, s;, 1) for each terminal vertex, and each Steiner vertex. If, later,
the adversary deletds,, s;, 1) from P,, then the deleted explicit edge becomes an implicit
edge. The initial adversarial s} is shown in Figure 4.5.

Recall thatP;_, is the set of edges that the adversary still considers to beopthe
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Figure 4.5: A possible situation at the beginning of tftdteration.

input instance. We call a stacked edgeessary if it does not create a cycle with previously
stacked edges. Otherwise, it is calledumnecessary edge. In order to prove the theorem,

we first prove that the adversary is able to maintain thefohg loop invariants.

LI;: EitherS; or S, applies to each Steiner vertexn P,_;.

S1. At most one necessary explicit Steiner edge incidenthas been stacked by

the algorithm.

Sy: Exactly two necessary explicit Steiner edges are incitiertand each of the
rest of edges incident tohas either been rejected, stacked as unnecessary edge,

or removed by the adversary causing it to be implicit.

LI,: Arelationr +b+ b > k — c holds. (Ther denotes the number of necessary stacked
terminal edges. Thé denotes the number of Steiner verticesSeftype. Thet’

denotes the number of accepted necessary implicit Stedigeise Andiy, . . ., C. are
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partitions of thek terminal vertices into connected components where twoitedm
verticest, andt, are connected if the stacked terminal and Steiner edgesaqath

between them. Thedenotes the number of these components.

We prove the loop invariants are maintained as followsidlyt no edge has been seen.
Therefore,S; applies to all Steiner vertices, and= b = v’ = 0 andc = k, which results
inr+b+ b >k — c. Therefore, the base case clearly holds.

Now assume that the loop invariants hold at the beginning"oteration. The Fig-

ure 4.6 depicts a possible adversarial Bet .
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unprocessed edge —H— stacked as unnecessary explicit edge
----- rejected edge —4— stacked as unnecessary implicit edge

— stacked as necessary explicit edge = ——+—— stacked as necessary implicit edge

Figure 4.6: A possible situation at the beginning of tfidteration.

Imagine that an algorithm considers an edge. No matter whatit is if it is rejected

by the algorithm nothing changes. Hence, we consider ordg@eance cases.

e Case 1:The algorithm stacks a necessary terminal edge= (t,,t;). The adver-

sary, in turn, does nothing, yielding = P,_;. Sincea,, is a terminal edge, it does

39



not affectS; or S,. Thec decreases by one,increases by one, aridand?’ are
unchanged. Hence, the relatior- b + v/ > k — ¢ still holds.

Case 2: The algorithm stacks the explicit Steiner edge = (t,, s;), which is the
first stacked edge incident t9. The adversary does nothing, yieldifiy = P,_;.
Because there was an unseen explicit Steiner edge incmlentd; must have been
of type S; and must remain of typ€;. Henceb is unchanged. Because this new edge
is the first stacked edge incidentdpg it cannot create a cycle and hence is necessary.
Also, it cannot merge two connected components and herscalso unchanged. In
addition,r andd’ are unchanged. Therefore, the relation b + & > k — 1 holds.
Case 3: The algorithm stacks the second necessary and explicite3tedger,, =
(t4,s;) incident to Steiner vertex;. The adversary, in turn, removes the rest of
the unseen edges incidentdq yielding P, C P,_;. These removed edges become
implicit edges. Moreovery, now applies tos; instead ofS;, increasing by one.
Sincea,, is necessary, it does not create a cycle with previouslksthedges and
hencec decreases by 1. Theandd’ are unchanged. The relation+ b+ b > k — ¢

is true.

Case 4:The algorithm considers an edge which creates a cycle vattkst edges.
By definition, such an edge is called unnecessary. Whetleealtjorithm decide to
stack or to reject it, the adversary does nothing, yieldtheg P,_;. Noteb does not
change because the definition ®f and.S, considers only necessary edges. Ehe

does not change because the new edge creates a cycle.oflhemay increase by
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one. Hence, the relation+ b + ' > k — ¢ still holds.

e Case 5:The algorithm stacks a necessary implicit Steiner édges;) without actu-
ally seeing it. If this edge is still i, _; then the adversary can be kind by informing
the algorithm that actually this edge is explicit in the atinput instance. It is just
that the algorithm has not yet read this part of the inputsTlaise can be handled by
Case 2, 3, or 4. If the edge being accepted is nét in, the adversary kindly informs
the algorithm that this is in fact an implicit edge and its g¥giis 3. In latter case,
the adversary in turn does nothing, yieldiRg= P;_;. Since the edge is implicit, it
does not affect; vertices. The: decreases by oné&,increases by one, andandb

are unchanged. Hence, the relation is still true.

Based on the five cases above, we conclude that the loopantaare maintained.

Whenc becomes one, the adversary knows that the terminal vedreesonnected by
the stacked edges into one component. Hence, he knows énatisran expensive solution
pushed on the stack. The adversary at this point stops thisplrase of the game. He
declares to the algorithm that the actual input instancesistsof the edges seen by the
algorithm so far together with all the edges remaininginThe next task is to prove that
this instance contains a cheap optimal solution. The fiegt & accomplish this is to note
that at mosk — 1 Steiner vertices of typs, definitely connect thé terminal vertices into
one component and hence, we know that the number of sucteBteriices cannot exceed
this number. Because there a@ré&teiner vertices, the loop invariant ensures us that there

is at least one Steiner vertex remaining of tyfie All the edges incident to such a vertex
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have not ever been deleted frdthand hence all appear explicitly in the input. This forms
ak-star which in itself is an optimal solution of weight

At the end of this first stage of the game, the algorithm stilktrmake decisions about
the remaining data items in the input instance (which adogrtb the adversary will be
those edges remaining i). The algorithm may decide to stack them or decide to reject
them. It does not actually matter to the adversary, becaittser evay these edges will be
rejected at the very beginning of the pop stage of the algoritThe reason for this is that
the adversary was careful that there is an expensive solptaviously pushed on the stack
and hence these remaining edge®jimare not needed.

As the rest of the pop stage of the algorithm proceeds, we teepve which of the
algorithm’s stacked edges get forcefully accepted and hwhet forcefully rejected. This
happens in reverse of the pushed order. Any edge labelednesessary will be rejected
when it is popped. It formed a cycle with the edges alreadh@d®n the stack when it got
pushed on and hence it will form the same cycle with the edtjésrsthe stack when it is
popped. The one necessary Steiner edge incident to a Stemex of typeS; will also be
rejected. All other edges incident to this Steiner vertéxegiwas initially rejected and not
stacked or has already been popped and rejected by the map btance, this edge is not
a part of a remaining solution. What will get forcefully apted when popped will be the
“edges” forming the expensive solution. As they got stadkgdhe algorithm these were
needed to merge the connected components of the terminiglegetogether and hence are
all needed for the solution. By definitiondenotes the number of these necessary stacked
terminal edges) denotes the number of Steiner verticessetype, and thé’ denotes the
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Figure 4.7: Two possible final instances of the newly definethg. The optimal solution
is thek-star incident tos;,. Since there is another valid solution stacked beneath-gtar,

the algorithm cannot accept thestar.

number of accepted necessary implicit Steiner edges. Eawotinal edge has weight 2.
There are two Steiner edges incident to each Steiner veftipe S,, each with weight
1. Each implicit Steiner edges incident has weight 3. Heheecbst of this popped and
accepted solutioni®-r + (1 +1)-b+ 3 -V > 2(r + b+ b') which by the loop invariant
is at leas(k — ¢) and by the termination condition ik — 1). Above we showed how

the cost of the optimal solution is onky Hence, we can summarize the competitive ratio
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tobeR = ALE > 22D — 9

EIIN

0

Before we close this section, two issues are discussed: &) prbblems arise when the
implicit edges cannot be accepted and 2) what problems atisa all the edges in the
complete graph must be explicit and the edge weights are.fixed

Proof of Theorem 6. Not allowing the implicit edges to be accepted was refeakdve
as a glitch. When the model has a stack, this does not seemda ssue. However,
without a stack and without this ability, we can prove an tagnily large lower bound.
The main changes to the proof of Theorem 8 is that all the teahedges are implicit
and hence can'’t be accepted. (Which many may say is unfagt)bBing able to accept
implicit edges, the algorithm must find a solution using o8kginer edges, ideally the
optimal solution consisting of thie-star. The second change to the proof is that the number
h of Steiner vertices will be increased to be much larger thafo find thek-star it must
consider each of these Steiner vertices, accepting onefiticident edges. Because the
algorithm does not have a stack, we no longer need that thiése accepted edges form a
valid solution. Hence, as soon as the algorithm accept cgiaedtedge incident tg;, the
adversary deletes the rest of unseen edges incident Tis causes the degreegfin the
actual input instance to be one. Accepting this one edge Was a costly mistake for the
algorithm because this edge goes no where. The game teesiwatn the algorithm has
done this for all but one of the Steiner vertices. Then theeeshry allows the algorithm to

accept thek-star incident to the remaining Steiner vertex. Hence, thmapetitive ratio is
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R = ALS — =Tk which can be arbitrarily large by makirigarbitrary large.

Having many Steiner vertices is not a problem when algorithallowed to accept the
terminal edges, because it can get a competitive ratio ofmplgiby finding a minimum
spanning tree on the terminal edges.

Not allowing the algorithm to accept or reject the implidilges does not seem to be
a problem when the algorithm has a stack, because all of Steseer edges that lead no
where will get rejected when they are popped off the stack.

(|

We now consider what problems arise when all the edges indimplete graph must
be explicit and the edge weights are fixed.
Proof Sketch for Conjecture 5 Above we conjectured that a priority algorithm in the edge
model can achieve &+ O(+) upper bound for the MST problem in this case. Before
discussing how this algorithm might work for a general inmdtance, let us see how
an algorithm can trivially find the optimal-star in the input instance used in the proof
of Theorem 8. Suppose that the algorithm does not know eitileenumber of terminal
or Steiner vertices and does not know the weights of spedfie® but does know that
the terminal edges have weight 2 and that Steiner edgegs éiélve weight 1 or 3. The
algorithm with this information will start by asking for amdjecting all edges with weight
3. After doing this, it completely knows the input instandé.as in Theorem 8 one of
the Steiner vertices is the root of a star with edges of welgtd each of the terminal
vertices, then the algorithm will know which Steiner vertgxhis is because it is the one

for which no incident edges have been rejected. Even if thanap solution is not so
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obvious because it is some complex subset of the terminaseaigd the Steiner edges of
weight 1, the algorithm can uses its unbounded computdtpmveer to obtain the optimal
solution. A difficulty arises if the input instance has edgeth many different weights
and if the optimal solution contains a few of the more expensveighted edges. The
algorithm would not want to learn the what the graph is by @gKor and rejecting the
expensive edges only to learn that some of these rejectaxs edlg needed for the optimal
solution. However, to learn that a vertex is in the inputanse, the algorithm only needs
to see one edge incident to it. This can be the edge’s mosnhsikgeincident edge. An
algorithm certainly is able to ask for and reject the mostesgive edge incident to each
vertex. One has to be a little careful the one does not disaxirihe graph. But that aside,
we conjecture that there exists and nearly optimal solutioncontaining any of these
rejected edges. The algorithm uses its unbounded commuaéhpower to find such a near

optimal solution.
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5 Summary and Future Directions

This chapter summarizes the results and states open prebMiadeling the priority al-
gorithm and the stack algorithm is a recent achievement. yMé®-hard optimization
problems still remain open to be formalized. The MAS probkerd the MST problem are
in the class MAX-SNP which is defined in Papadimitriou and rvakakis [14], therefore,
no polynomial-time algorithm achievést ¢ approximation ratio unles8 = N P.

We proved & — % priority lower bound for the Maximum Acyclic Subgraph prebi
in the edge model. We also showed that the Minimum Feedbacisétrproblem has no
priority algorithm that achieves any approximation ratibis worth noting that the com-
plement problem of a particular one is harder in context eédy or greedy-like algorithm
paradigms.

For the MST problem, we started by improving tﬁlq)riority lower bound of Davis
and Impagliazzo [10] tcg for the MST problem when the graph is small and the edge
weights are known. See Section 4.3. We were unable to géresthls lower bound for
an arbitrarily large graphs. In fact, we conjecture thah# tveights on edges are known
then there is & + O(3) upper bound. On the other hand, we were able to prave-&

lower bound by weakening the result by considering incotepdgaphs. This result was
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strengthened by extending it to the stack model of Borodashtnan, and Magen [4]. See
Section 4.4.

Though our2 — % lower bound for the Maximum Acyclic Subgraph problem magtche
the competitive ratio of 2 achieved by the upper bound, trseaedisconnection. Our lower
bound is within the edge model that does not let the algoritiawe degree information,
while the upper bound requires such degree informatios.dpen to prove the same lower
bound either in the vertex model or in the edge model in whiehdata items have vertex
degree and the edge information. It is also possible thawarlbound higher than 2 could

be proved when the algorithm does not have this degree isfttom See below table.

Upper Bound| Lower Bound

Edge Model without degree ? 2
Edge Model with degree 2 ?
Vertex Model 2 ?

For the Minimum Steiner Tree problem, it is completely opemptove a lower bound
when the input instance is arbitrarily large and the graglomplete. We have seen that this
would required varying the edge weights. This will ensui the error of the algorithm’s
solution is indeed multiplicative as size of the instanaagy.

In general, one can continue the oscillating journey betwaseupper and lower bound

by tightening the gap or strengthening the model.
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