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Abstract

Cake cutting is a resource allocation problem in which aussmhas to be dividefirly among a
number of players. In this problem a player may not valuehalgarts of the resource in the same
manner and different players may value the same part diffigreA protocol(algorithm) to solve
the cake cutting problem can learn about these valuatioasking queries to players. The goal of
the protocol is to divide the resource fairly and make allglagershappyby asking as few queries
as possible. In 1984, Even and Paz gav&®#nlogn) protocol and recently Edmonds and Pruhs
proved that every deterministic protocol will a8kn logn) queries. In a separate paper, they also
gave an0O(n) randomized approximate fair protocol with(1) success probability. We improved

their algorithm by providing)(n) randomized protocol witl) (1 — Wl(n)) success probability.
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1 Introduction

The cake cutting problem originated in the 1940’s in the $fofnathematics community. It is a
resource allocation problem where a cake (any resourcewdaic be divided infinitely) has to be
divided fairly among a number of players. An important point to note herbas & player may
not value all the parts of the cake in the same manner andlitfglayers may value the same
part differently. For example, consider the case where dagep may want the icing and another
may want the strawberries on a cake. These likings are navkpriori to the protocol solving
the cake cutting problem. However, a protocol can learn atimse likings by asking queries
to players. The aim of the protocol is to make all the playeppyby asking as few queries as
possible.

A deterministic fair protocol with complexit$)(n?) was given in 1948 by Steinhaus in [14].
In 1984, Even and Paz [6] gave a deterministic divide and gendpir protocol that has com-
plexity ©(nlogn). Recently, there has been several lower bound results ker catting. Sgall
and Woeginger [13] showed that every exact fair protocaigeheinistic or randomized) has com-
plexity Q(nlogn) if every portion given to players is restricted to be a cambigs piece of the
cake. Edmonds and Pruhs [4] extended the lower bound to &pply when the protocol need to

guarantee onlgpproximate fairnesand not necessarily assign contiguous portions. They grove



that every deterministic approximate fair protocol for eakitting has complexit{2(n logn). In
the same paper, they also proved that every randomized»apyat fair protocol has complexity
Q(nlogn) if answers to queries asked by protocol are approximatimastual answers.

Edmonds and Pruhs also gave in a separate paper [5], a razetbapproximate fair proto-
col of complexityO(n) with O(1) success probability. Their protocol need not assign cantig
portions to players. We improve this by giving a randomizpgraximate fair protocol with com-
plexity O(n) with high probability of success. We make this improvement by modifying the

protocol of Edmonds and Pruhs [5]. An outline of their algfum is as follows:

e Each player chooses independently and uniforzdlpieces of valuea% fraction of the value

of whole cake, where: andd are appropriate constants.
e Select two semifinal pieces out of thexgpieces for each player.

e From these semifinal pieces, build amplication graphandsame-player-vee graphmpli-

cation graph and same-player-vee graph are defined in Glapte

e They defined the notion oflaad player in these graphs. Then under the assumption that no
player isbad narrow down to one final piece for every player such that geht of the

cake has at most 2 players wanting it.

They proved that,

Probltheir protocol does not work] < Prob[there exists a bad player] < O(1).

Lyyi ili 1
with probability at leaso(1 — W(n))



We tried to improve Edmonds and Pruhs protocol by relaxirgnibtion ofbad but we were
unsuccessful with that approach. We initially got some sasaowith the approach but later we
got more and more complex counterexamples to our approagry Eime we got rid of a coun-
terexample (by modifying the protocol), we got a new coustample. Our initial success kept
our hopes alive and we persisted with this approach untilamecup with a completely different
protocol. This new protocol is based on one key observatidtheoEdmonds and Pruhs protocol,

i.e.,
1

Prob[player p is bad] < O(n

).

From this observation, we came up with the following protoco

¢ Independently run twice, the protocol by Edmonds and Prphs e formation ofmplica-

tion graphandsame-player-vee graph
e Delete players that ategadfor the run from the corresponding graphs.
e Each runis then completed by narrowing down to one final giecevery player in the run.

e Merge results from the two runs. This results into a situatiere each point of the cake

has at most = 2 x 2 players (at most 2 players from each run) wanting it.

We delete players in our method. By doing so we might not asaity piece to deleted players.

However, we also prove that it is unlikely that some playdr be deleted from both the runs. In



particular, we show that,

IA

IA

IN

<

<

Prob|our protocol does not work]

Prob[there exists a player p that is bad in both runs]
n X Prob[player p is bad in both runs]

n x (Prob[player p is bad in one run])?

nx O(+)?

O(L).

n

We can execute the above two-run protokdimes and select the first successful execution.

This improves the probability of success,

Prob[none of the k executions work]
< (Problone execution does not work])*

< O(Gr)-

3

Note that for each of thé executions of the two-run protocol, no point in the cake inted

by more thant players. Since we select only one successful execution frerecutions, number

of players sharing any point in the cake is at mostWe get the same probability of success if

we run the Edmonds and Pruhs algorithm 1 times instead of two times but then the number of

players wanting any point of the cake could be as mudikas2. As with the Edmonds and Pruhs

protocol, our protocol may not assign contiguous piecesapaps.

Cake cutting, and related fair allocation problems, are ioevinterest in both social sciences

and mathematical sciences. (See, for example, Sgall an@ivger [13] for a nice overview).

There are several books written on fair allocation problench as cake cutting, that give more

extensive overviews. (See, for example, [3, 12]). SomelgGicoglingreveals that cake cutting

4



algorithms, and their analysis, are commonly covered byptder scientists in their algorithms

and discrete mathematics courses.

All of the results that are known so far in the area of cakeimgithre summarized in Table 1.

Deterministic| Exact Exact Contiguous
VS. VS. VS. VS. Probability | Complexity| Reference
Randomized| Approx. | Approx. | Non-contiguoug of failure

Protocol Queries| Fairness Portions

Deterministic| Exact * * 0 O(nlogn) [6]

* * Exact Contiguous 0 Q(nlogn) [13]
Deterministic * * * 0 Q(nlogn) [4]

* Approx. * * 0 Q(nlogn) [4]
Randomized| Exact | Approx.| Non-contiguousg (1) O(n) [5]
Randomized| Exact | Approx. | Non-contiguous O(ﬁ) O(n) This thesis

Table 1.1: Summary of known results. An asterisk (*) meaasttne result holds for both choices.

1.1 Related Work

Cake cutting is closely related to the multiple-choicedahd bins problem. In the multiple-choice
balls and bins modeli’ of an discrete bins are selected for each ball uniformly at randdhen
we select one bin out af bins such that maximum number of balls in the bin is the sretllEhis

number is called as thmaximum loadLater we will see that the balls and bins model is equivalent



to the special case of the cake model in which all the playkesthe cake uniformly. Analysis
of the balls and bins model has found wide applications imsaich as load balancing [8]. In
these situations, a ball represents a job that can be adsignarious bins/machines. Roughly
speaking, load balancing of identical machines is to baltslans, as load balancing on unrelated
machines is to cake cutting. Unrelated machines is one afté#melard models in the load balancing
literature [1]. In the unrelated machines model, spggdhat a machiné can work on a joly is
also specified. Assume that jobs can use more than one maahphéhat machines can be shared.
Then the total value of the machines to jpois > . s; ;, and ac-fair allocation for jobj would be

a collection of machines, or portions of machines, that cgether process jop at a speed of
TS

The first step towards obtaining &1 logn) lower bound on the complexity of cake cutting

was taken by Magdon-Ismail, Busch, and Krishnamoorthy asri®ed in [7]. They proved that
any protocol must mak®(n log n) comparisons to compute the assignment. This result does not
address query complexity i.e. the number of queries usetidoprotocol. Approx. fair protocols
were introduced by Robertson and Webb [11]. Traditionatiych of the research has focused
on minimizing the number of cuts, presumably out of conceat too many cuts would lead to
crumbling of a literal cake. There is deterministic protiddd, 10, 15] that achieve®@(1)-fairness
with ©(n) cuts andd(n?) evaluations.

There are several other objectives studied in the cakengusttting, most notablynax-min
fairness, an@nvy-fregfairness. (See, for example, [3] for details).

The literature on balanced allocations is also rather lakg@ce survey is given in [8]. We are
not aware of any other results on balanced allocations faelated machines.

6



1.2 Organization of Thesis

The remainder of the thesis is organized as follows.

¢ In Chapter 2 we present the formal definition of the cake wgttiroblem. We also present
key observations (properties) of the problem and brieflgulis two known deterministic

algorithms.

e In Chapter 3, we describe Edmonds and Pruhs randomizedthlgon detail. We then,
present our approach and our improved randomized algofi@hoake cutting and prove the

correctness of our algorithm.
¢ In Chapter 4, we outline our initial approaches that in the @i not work.
e Finally, in Chapter 5, we summarize our results and providectons for future work.

e In Appendix A, we provide the proofs given by Edmonds and Binl{5]. These proofs are

given as they were presented in their paper.



2 Preliminaries

In this chapter we first give a formal definition of the caketicigt problem in Section 2.1. We
then provide some observations or key properties of thel@nobln Section 2.2, we give a brief
overview of the balls and bins problem and its connectiorhlite cake cutting problem. In

Section 2.3 we briefly describe two deterministic algorighfior cake cutting.

2.1 Cake Cutting Problem

The cake cutting protocol involves division of a resourceagplayers who measure the resource
in their own way. These satisfaction measures are unknowmmetprotocol, but the protocol can
learn about these by asking questions to the players. THefthe protocol is to make everyone
happyby asking as few questions as possible. In the next sectidanwelly state the cake cutting
problem and also define the notionlappiness

We denote the resource By and denote: players byl, . .. n.

e We assume that can be divided indefinitely. We model it by the interj@l1] and call it a

cake

e Every playerp has her own private value functidr) onC. It is a function from the power



set ofC to [0, 1], i.e., it takes any subséf C C as input and returns the value of that subset.
It satisfies the following properties.
— Additive: for all disjoint subsets(, X' C C, V(X U X") = V,(X) + V,(X").

— Divisible: for everyX C C and0 < X < 1, there existX’ C X with V,(X') =

A=V (X).
— Normalized:V,(C) = 1.

e All the V,’s are unknown to the protocol, but the protocol can learrualieem by asking

two kinds of queries to players:
— Value queryVal,(z1, z2): this valuation query to playerreturns a value of the interval
[z1, 5] of the cake for playep. Thatis,Val,(z1, z2) = V,([z1, x2]).

— Cut query,Cut,(z1,«): this cut query to playep returnsz, such that the interval
[z1, 22] has valuex to playerp. Thatis,V,([z1, z2]) = «. If there is no such point then

it returns—1.

e The aim of the protocol is to divide the cake irttg, Cs, . . ., C,, pieces such that

— PieceC, is given to playep.
— Pieces must be disjoint, that iS,, andC,, must be disjoint for all players # q.
— Every player ishappy

e Happiness of the player: There are many ways to define haggibat two important ones

are:



— c-fair: if every playerp receivesC, such that/,(C,) > é

— Envy-free: if every playep receivesC, such that/,(C,) > V,(C,) for every piece’,

which is given to playey. Every player thinks that she got the best piece of the cake.

e Optimization: The protocol has to ask as few queries as plessiThe protocol will be

charged for queries, any other computation is free.
Some important observations of the cake cutting problem are

¢ Divisibility of V,, guarantees that value of the singleton point is zero (i.kievaf the|[z, x]
is zero for anyr € [0, 1]). This makes this problem completely different from th@edition
of indivisible resource among players. One consequence of this is that the corresponding

open and closed subintervals[6f1] have the same value to any player
e If ¢ = 1in ¢-fair then we say that it isxactfair. Otherwise we say that it Epproximateair.

e We can always divide the cake inte pieces for some playersuch that the value of each
piece is%. This can be achieved by asking cut quefigsg,, (0, %) =y forl <i<m-—1
to p. Them pieces will then be0, x,), [x1, z2), ... [rm_1, 1]. If we have to find any random
piece [a, b] out of thesem pieces then it can be found in two cut queries. For this, we
first generate any randome {1,2,...,m}, and ask cut querie§'ut,(0, =) = a and

Cut,(0, L) = b.

In this thesis, we will focus om-fair happiness criteria. In the next section we descrilge th

connection between cake cutting problem and the balls arsldsoblem.

10



2.2 Balls and Bins Problem

In this section we give a brief overview of the balls and bimslyem and its connection with
the cake cutting problem. In the balls and bins problem, wevim balls inton distinct bins.

Thus each ball is placed in a bin chosen independently arfdromy at random. We are then
interested in finding the maximum number of balls in any binefe are various results known for
the problem. (See, for example [8], for a nice overview). 8arhthe known results are given

below.

Theorem 1 ([9]). Assumer balls are thrown inton bins, with each ball choosing a bin indepen-

dently and uniformly at random. Then the maximum number kg maany bin is@(log’ign) with

probability Q(1 — m).
Theorem 2 ([2]). Assumen balls are thrown sequentially inte bins, each ball is placed in the
least full bin at the time of the placement, amahgins,d > 2, chosen independently and uni-

formly at random. Then after all the balls are placed, the mmayn number of balls in any bin is

f(*aloen) with probabilityQ(1 — —1—).

logd " poly(n)

In the light of Theorem 1, we can see thiat- 2 is essential in Theorem 2.

Theorem 3 ([2]). Assume each of theballs have been assigned ddins chosen independently
and uniformly at random from bins. Then there is an efficient method that, after knowihthel
d balls assigned to each ball, picks one of theins for each player, so that maximum number of

balls in any bin isO(1) with probability2(1 — Wl(n))-

Note that, in Theorem 3, we are making assignments offliag the algorithm knows pieces

11



for every player before assigning any piece. In contrasthaorem 2, we are assigning online,
i.e., the algorithm has to assign a bin to #i& ball without looking at the choices for any future

balls.

2.2.1 Relation with Cake Cultting

Cake cutting is generalization of balls and bins. If evegypl likes cake uniformly than it is the

same as balls and bins. But if the players have differenepeates then the situation is much
more complex and there is a lot more interdependence betexasgts. In this generalized setting
we proved Theorem 3. The online version of Theorem 2 for caking is open.

The connection between balls and bins and uniform cakenguisi as follows. Imagine a
case where we hawve players who like the cake uniformly and we divide the cake imtequal
pieces. Now if we assign players to pieces, independentlyaiormly at random, then maximum
number of players assigned to any piece is same as maximuinanwhballs placed in any bin if
we map players to balls and cake pieces to bins. Figure 2visstie balls and bins version of the
cake where each player has divided the cake into 9 equal pargeneral, players may like cake
differently (see Figure 2.2).

The generalization of Theorem 3 is proved by Edmonds andsRsubemma 4 as follows.

Lemma 4 (Balanced Allocation Lemma [5]). Leta > 17 be some sulfficiently large constant.
Each ofn players has a partition of the unit intervdd, 1], or cake, intoan disjoint candidate
subintervals/pieces. Each player independently pitks- 2d = 4 of her pieces uniformly at

random, with replacement. Then there is an efficient methatl with probabilityQ(1), picks one

12



of thed' pieces for each player, so that every point on the cake isredugy at mos® players.

We improve Lemma 4 to Lemma 5 to have arbitrarily small falprobability. To achieve this

we only need to weaken it by having constant times as manyacut$wice as much overlap.

Lemma 5 (Improved Balanced Allocation Lemma).Leta > 17 be some sufficiently large con-
stant. Each of. players has a partition of the unit intervgl, 1], or cake, intaxn disjoint candidate
subintervals/pieces. Each player independently pitks £ x 2 x 2d = 8k of her pieces uniformly
at random, with replacement. Then there is an efficient neethat, with probabilityQ2(1 — n—l,c),

picks one of thel’ subintervals for each player, so that every point on the dalk@vered by at

most4 players.

Removing Conflict: Once each player has one final piece, we need to divide thesespfur-
ther so that the players have disjoint collections of cakerimls. This is done as follows. Each
player has one final contiguous piece wogglhand every point of the cake is covered by at most
4 of player’s final pieces. These final pieces havé@n endpoints and these endpoints partition
the cake int;2n pieces. Denote these by. For each piece; and each playep, the player
either wants all off; or none of it. For eaclj, let S; be the set of players wanting cake piece
f;. Some playerp may appear in more than ortg, but we have thatS;| < 4, because every
point of the cake is covered by at maisof player’s final pieces. For each pie¢g the players

in S; use any fair algorithm to partitiori; between them. Each such application has complex-
ity ©(1) since it involves onlyo(1) players. In the process, the value of a player’s final portion
might get reduced but we can still guarantee that value opbeton is at Ieasgﬁ. Consider

13



a playerp. For eachy for whichp € S;, letv,, j, denote the amount she values pigice Note
> V) = Vp(Uf;) = V,(his final piecg = -L-. When fairly dividingf;, she receives a piece of

an’

f; with value at least#<-. The total cake that she receives has total vallie-#< > L. Note
that unlike all previous cake cutting algorithms, this om@s$l not guarantee contiguous portions
since a player’s final interval may be involved in many diffier such subintervalf.

Once we remove all the conflicts, each player will receiveraimworth%.
an

Independent Events: One difference between the balls and bins problem and the catting
problem is the independence of certain events. Consigéayers and their valuations of cake as

shown in Figure 2.1 (which corresponds to balls and binslpropand Figure 2.2.

Player 3
Player 2
Player 1 ‘

CAKE

Figure 2.1: Balls and bins version of cake.

Player3 - - - - - ---—- - - - - - - - — = = — — — — — = = — — - - - — — — —— -~ — — - — — —
Player2 - - ---------------------—--—-~—— -~ - -~ —“~——“"—~ - - - - --—---—----—.
Player 1 T e

CAKE

Figure 2.2: Divisions of cake by players into equal numbggietes as per their own valuations

Each player receives some piece chosen uniformly and ralydoym their own partition. Let
E; be the event that playdr overlaps with playe and E, be the event that playdr overlaps

with player3. These events are independent in Figure 2.1. In Figuref22ent£; occurs then it

14



is more likely that player has received her first piece anct@enis more likely thatz, will also

occur.

2.3 Deterministic Algorithms for Cake Cutting

In this section we briefly describe two deterministic alguns. The first algorithm is known as
the Trimming Algorithmand it was given by Banack and Knaster [14]. The second dkgoris
known as théivide and Conquer Algorithrand was given by Even and Paz [6].

First, consider a simple scenario to understand the cakiegytroblem. Alice and Bob have
been given a strawberry-chocolate cake to share. Bob sisgipes he will cut the cake into two
equal pieces and then give one piece to Alice. Alice is nopfapth this. This is because Alice
prefers more strawberries and she fears that even if Boliloeitsake into two equal parts, he may
give her a piece that has less strawberries. Bob likes brtviserries and chocolate. For similar
reasons Bob doesn’t want Alice to cut the cake and chooseca foe him. They can call Charlie
to cut the cake and then give one piece each to both of themetawthey are unhappy with this
approach as well. Let us consider that the value of the easike is 1 for both Alice and Bob.
When Charlie divides the cake into two pieces A and B, it mgyplea that Bob feels that piece A
is Worthé and piece B is Wortlg. Alice might feel the opposite. Now if Charlie gives them the
pieces which they Iik(—‘a“ then they both will be unhappy. A simple solution is that ohthem cuts
the cake into two equal pieces according to him/her and ther gterson chooses the piece which
he/she likes more. This will ensure that both will get a pieceth at Ieas% according to their

liking. If Bob divides the cake into two equal pieces, he isigunteed to get exactg/of the cake

15



(no matter which piece Alice chooses). Since Alice likeswinele cake by value 1, she likes one
of the pieces (two pieces of cake, cut by Bob) at I%asThis method is called asut and choose
method and results in fair allocation.

Next we present two deterministic algorithms for the gehesae. Algorithm 1 is a iterative
algorithm and require®(n?) queries. It first finds out points (by asking cut queries) for each
playeri such that value of the pied8, ¢;] is equal to% for playeri. Note that the value of the
piece[c;, 1] is equal to™=* for playeri. If we give piece[0,¢;,,.] to playeri,,,, wherec; .. is
the minimum of all the:;’s, then player,,;, will be happy Also, every other player values the
remaining cake at Iea@t;—l so the algorithm can iterate and make the other players happell.
An outline of the algorithm follows.

Algorithm 2 is known a®Divide and Conquer Algorithrand was given by Even and Paz [6].
First, it finds the middle point of the cake for every playerasking cut queries. Then, it divides
the cake into two partg;; andCs,. Half of the players are then happily assigned to parand the
remaining players are happily assigned to pattBy happily, we mean that players are guaranteed
that they will receive a fair piece from the assigned part.oitline of the algorithm follows. The

query complexity of Algorithm 2 i€ (n logn).
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Algorithm 1 Cake Division Protocol - Trimming
Pre-cond: SetP = {1,2,...,n} of n players with their own private value functiéf on the cake.

Post-cond: Division of cake into disjoint piece, b1 ], [ag, bs] . . . [an, by] SUCh

thatV;([a;, b;]) > 2 for1 <i < n.

1: a=0 and) = @
2: loop
3.  exitwhen|Q| =n

4. foreveryi € P—Qdo

5: ¢; = Cuti(a, ).

6: end for

7. inm=thei € P — @ that minimizes;
8 a;,..bi .]=1lac. |

9 a=¢,,
10: Q= Q + imin
11:  all partsia;, b;| for eachi € P

12: end loop
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Algorithm 2 Cake Division Protocol - Divide and Conquer
Pre-cond: Cake= [a,b] and setP = {1,2,...,n} of n players with their own private value

functionV; on the cake.
Post-cond: Division of cake into disjoint piece&, b1, [as, bs] . . . [an, b,] SUCh

that V;([a;, b;]) > ¥ for 1 < i < n.

n

1: if n=1then

2:  ay, by = [a, ]
3 exit

4: end if

5: Let k=|n/2].

6: for i= 1 tondo

7. v =Vi([a,b])

8 ¢ = Cuty(a, %)
9: end for

10: middle =k highest element ific;, cs, . .., ¢, }

11: Rename first k players whose < c¢iqqe @s{1,2,...,k} and recurse them ofu,b] =

[07 Cmiddle)

12: Rename remaining players &=, ...,n — k and recurse them dn, b| = [ciddie, 1]
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3 Randomized Cake Cutting Protocols

In this chapter, we first present Edmonds and Pruhs randdralgerithm for cake cutting, as given
in [5], in Section 3.1. We then, present our approach andrapraved randomized algorithm for
cake cutting in Section 3.2. We also prove the correctnessioalgorithm in Section 3.2. The
main result proved by us is thmproved Balanced Allocation Lemma&his lemma is used in the

design of our cake cutting protocol.

3.1 Edmonds and Pruhs Approach

Edmonds and Pruhs presented Baanced Allocation Lemnfeemma 4) in [5]. To prove this
lemma, they defined many new interesting concepts sudmlgation graph same-player-vee
graph andpair path Since our protocol makes use of these concepts, we givedégnitions in

the next section for easy reference.

3.1.1 Implication Graph and Pair Paths

Let ¢, denote the, (i € [1,an]) candidate piece for player. Suppose that every player
has chosen two semifinal pieceg, o, anda,, (in fact we choose these semifinal pieces for

every player from th@’ pieces chosen independently for every player). We can thestiict the
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implication graph as defined below.

Definition 6. Implication Graph: The vertices of the implication graplG are the2n pieces
ap, 1 <p<nand0 <r < 1. If piecea, , intersects piece, ), then there is a directed edge

from piecea, . to piecea, 1 and similarly froma, . 10 a, 1-).

The intuition behind the above definition is that if a playegetsa, ,y as her final piece, then
playerq must get piece,, ) if p’s andg’s pieces are not to overlap. Similarlygfgetsa, ),
thenp must geta(, ,,y. As an example, Figure 3.1 gives a subset of the semifinapiselected

from the candidate pieces. The corresponding implicatraplyis also given in Figure 3.1.

Definition 7. Pair Path: A pair path in an implication graph is a directed path betwéan pieces

for one player.

In Figure 3.1, there are two pair paths of length three froafitist player’s left semifinal piece
to her right and two pair paths of length two from the fourthy@r’s left semifinal piece to her
right. Two such pair paths from the implication graph in Fg@.1 are shown in Figure 3.2.

Note that such paths are problematic because they effgcimply that if the first player gets
her left semifinal piece as his final piece then she must geidtarpiece too. Edmonds and Pruhs
prove that if the implication graphG does not contain pair paths then the following algorithm

selects a final piece for each player in such a way that theslgpiieces are disjoint.

Final Piece Selection Algorithm: We repeatedly pick an arbitrary playethat has not selected
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Q0> VPR
A3 0> Qs 1>

a<2,1> a<2v0>

a<1vo> a<1,1>

Figure 3.1: Players’ two selected pieces and correspondiptication graph.

a1 65 A6 A0 Ao 1>

As 0> Ao s A

Figure 3.2: Pair Paths.

a final piece. We pick the piecg,,, as the final piece fop. Further, we pick as final pieces all

those pieces idG that are reachable from,, ) in IG.

Lemma 8. If an implication graph/G of the semifinal pieces does not contain a pair path, then
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the Final Piece Selection Algorithm selects a final piecesteh player and these final pieces are

disjoint. (See Section A.1 for a proof of this lemma.)

3.1.2 Two Types of Pair Paths

They gave a lemma to compute the probability of having a patin pr an implication graph. First,
they observed the vital difference between pair paths ajtletwo and pair paths of length three
or more. Note that a pair path occurs when thereviseamong the semifinal pieces. They defined
aveeto consist of a triple of pieces, omenterpiece and twdasepieces, with the property that
the center piece intersects both of the base two pieces xBaor@e, see the three left most pieces

in Figure 3.1. To understand the connection between pauspatd vees see Figure 3.3. Figure

Figure 3.3: The dotted edges are between semifinal piecesvdap. The solid directed edges

are the resulting edges in the implication graph.

shows a pair path of lengthfrom a,, .,y t0 a,,,1-r,). FOr this pair path to exist ihG, we need
the vee formed by, o), a(p, 1) @nday,, ., among semifinal pieces. We also need the directed
edges(ap, )y Alpsrs) )r (Alpara)s Upg,ra) ) ANAApg g, Apa.ryy ) IN the implication grapH G.
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They proved the following lemma that bounds the expectedumuraf vees in the implication

graph.

Lemma 9. If each player only chooses 2 semifinal pieces then the eegpecimber of vees inG
can be as high a®(n?), which would be disastrous for us. However, if two brackétd e- 2
pieces are chosen and these are narrowed down to two senpfewd then the expected number

of vees inf[G is at mostf—ggn. (See Section A.2 for a proof of this lemma.)

Using Lemma 9 they proved the following lemma that boundspitudability of implication

graph having pair paths of length three or more.

Lemma 10. The probability that the implication graph contains a pair path of length at least

three is at mostcﬁ(?;%dzﬁ). (See Section A.3 for a proof of this lemma.)

A pair path of length two occurs if and only if the implicatignaph contains aame-player-
vee A same-player-vess a vee where both of the base pieces belong to the same.pldadris,
there is a center piecg, ) and two bases oy anda, 1y. For example, see piecesg, ), a2,y and
a1y in Figure 3.1,

To get around the problem of same-player-vees, they intedithesame-player-vee graph

Definition 11. Same-player-vee GraphThe vertices of the same-player-vee grafth are then
playersp, 1 < p < n. If playerp and playerq are involved in same-player-vee with playen the

center then there is a directed edge frprto q.

Then they proved the following lemma to partition the playeto two groups such that there
is no same-player-vee involving two players in the samatpant
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Lemma 12. The probability that the same-player-vee graph is mot 2 colourable is at most

%” + Saif (See Section A.4 for a proof of this lemma.)

They proved Lemma 12 by bounding the probability of samegataree graph having a path
of length two. Note that if the same-player-vee graph dogéfawee a path of length two then we
can colour the graph /colours such that if andq have an edge between them then they receive
different colours. If a node of the same-player-vee grapdt ihe head of a directed edge then
colour it red, if at the tail, blue, and otherwise red. A noslemly forced to be both red and blue if

there is a directed path of length two in the graph.

3.1.3 Balanced Allocation Algorithm

Then they gave following algorithm which can be used as aocieffi method mentioned in the

Balanced Allocation Lemma:

e Step 1:Independently, for each playere [1,n] and eachr € [0, 1], randomly choosé = 2
of the candidate pieces, ;) to be in the quarterfinal bracket,, ..

e Step 2: In each quarterfinal bracket, ,y, pick as the semifinal piecg,, .y, the piece that
intersects the fewest other candidate pieggs. If we are unlucky and the Implication
Graph contains a pair path of length greater than or equalttee8 halt(Lemma 10).

e Step 3: Construct and vertex colour the same-player-vee graplgukagreedy colouring
algorithm using at mosty = 2 colours. This is easy if the graph does not have paths of
length two or more (Lemma 12). L&}, be the subgraph of the implication graph containing

only those players colourgd This ensures that Implication Graph restrictedfccontains
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no pair paths of length 2.

e Step 4:For eachS,, pick the final piece for each player involvedS$p by applying the Final
Piece Selection Algorithm t&),. Because the Implication Graph ¢ contains no pair
paths of any length, this algorithm ensures that these firakp for each player are disjoint,

i.e. for any point in the cake, the final piece of at most onggidrom S, covers this point.
e Step 5: Conclude that for any point in the cake, the final pieces of astnv = 2 players

cover this point.

3.2 Our Approach

In this Section we present our work and the improved randedha&gorithm. From the above
discussions, it can be observed that the Balanced Allat&tigorithm does not fail if there are no

players that arbadaccording to the following definition.

Definition 13. Bad Player: A playerp is bad if
e a pair path of length three or more starting withexists in the implication graph, or
e a path of length two or more starting wighexists in the same-player-vee graph.

If we remove all the bad players with corresponding edges ftioe implication graph and
same-player-graph before Stepf the Balanced Allocation Algorithm then it will always pioce

disjoint final pieces.

Run: A run of our algorithm is same as the Balance Allocation Aitjon, except that in our case
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it removes all the bad players from implication graph andesghayer-vee graph before Stef
the Balanced Allocation Algorithm.

The only problem with the above definition of run is that baayelrs do not get any portion
of the cake. Later we will see in Lemma 17 that probabilityt f@me playep is bad in a run is
at mostO(1). Therefore, the probability that a run will not give piecestery player is at least
O(1). However, if we execute two independent runs then prolighiiat both runs will delete the

same playep is at mosl()(%) (see Lemma 18).

Execution: We define an execution as a following sequence of steps:

1. Independently start two runsyn, andruny upto formation of implication graph and same-

player-vee graph.
2. If some playep is bad in both the runs then halt the execution.
3. If some player playes is good (i.e.p is not bad) in both the runs then delete it fromm;.
4. Finish both the runs.

Note that an execution will halt only if there is a player tietbad in both the runs. The
probability that some player is bad in both of the two indefsem runs is at mos(<) (see
Lemma 18). In each run, number of players wanting any poithefcake is at most. Hence,
amongst the two runs, each point of the cake will be shared byoat4 players in the execution.
We still have to make the final pieces disjoint. We do this byaeing conflict among pieces (See

Section 2.2.1). We present our protocol for the cake cuttiodplem as follows:
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Protocol:

e Executek independent executions.
e If all executions are unsuccessful then fail otherwiseceahe first successful execution.

e Assign the final pieces according to this execution. Eveay@l receives a final piece worth

1

an”

e Remove conflicts among final pieces. Each player receivampavorth ﬁ

Note that protocol will fail only if allt executions halt and this happens with probability at

mostO(-% ) (see Lemma 18). So our protocol succeeds with high prolyabili

3.2.1 Probability of Player Being Bad

We observe the following fact from Lemma 28(see Section A.2)

Lemma 14. The expected number of vees with any particular playierthe center in the impli-

cation graph/G is at mostieZ.
By using Lemma 14 we proved the following lemma.

Lemma 15. The probability that the implication graphGG contains a pair path of length at least

three starting with playep is at most#fw) -1

Proof. This proof is constructed by making small changes in thefpsgbbemma 31. Consider a
playerp and letV, be the set of all 3-tuples representing all possible veé&iwith p in the center
of the vee and fol” € V,, let P,(V) be the set of all possible pair paths of lengtthat include

the veeV .
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Bracket 1: Each player randomly
select a bracket of d pieces of
value éﬁ

Bracket 2: Each player randomly
select a bracket of d pieces of

Bracket 1: Each player randomly
select a bracket of d pieces of
value %,

Bracket 2: Each player randomly
select a bracket of d pieces of
value E’Iﬁ

1
value g

piece from Bracket 1

Select one semifinal
piece from Bracket 2

Select one semifinal
piece from Bracket 1|

Select one semifinal
piece from Bracket|2

Pro

NZOoTAHCcOmMXm

tocol

XzZzo—Hcomxm

Select one semifinal ‘

From 2n semfinal pieces, build implication From 2n semfinal pieces, build implication
graph IG and same-player-vee graph SG graph IG and same-player-vee graph SG

| l

Remove bad players from IG and SG *>( Remove bad players from IG and SG

Updated IG and SG from Run 1

‘ Colour SG with red and blue colours

Updated IG and SG from Run 1

‘ Colour SG with red and blue colours

‘ IG for red players ‘ ‘ IG for blue players ‘

!

‘ IG for red players ‘ ‘ IG for blue players ‘

Select final piece for each of these
players without any overlap

Select final piece for each of these

players without any overlap players without any overlap

Select final piece for each of these
players without any overlap

‘ ‘ Select final piece for each of these ‘

Merge answer for 4 types of players. Each player has
apiece of value L. Maximum overlap is 4

Probability of HALT < (k-

Select the first successful Execution

|

Remove conflicts. Each player has a portion
of valuei;. Portions are disjoint

|

Probability of failure < O(—?]T ) ‘

Figure 3.4: Flowchart of Our Protocol.
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Consider a simple pair path = (a(g.ro)s Aprr1)s - - - U 1m0 1) Upo,1-ro) ) OF lENgthz > 3.
Let V' be the vee with center, ., and bases,, 1_.) anda,, . . Fori € [1,2—2], let
I; € IG be the event that semifinal pieces, ,,, anda,,,, 1—r,. ) intersect.

The probability that/ G contains a pair path of length at least three starting widlyglp is at

most

zn: > ) ProblP e IG]

2=3 VeV, PeP.(V)

< > > ) Prob[V € IG] - I} Prob[J; € IG] (3.1)
2=3 V€V, PeP,(V)
n 2d2 z—2
< > > Prob[VelG] Y (—) (3.2)
=3 VEVp PeP:(V) an
242\ *7°
< ! — .
< ZZProbVGIG ((z—?))( 3))<an) (3.3)
z=3 VeV,
n 2d2 z—2
< Z(2n)2_3 <—) Z Prob[V € IG]
z=3 an Vevp
a 242\ *7* (164
< =3 :
< Sy () (1)
8P o~ [4d2\ "
< -
~ aln ;( ! )
OSP4 (1
- a?n \ « 1 —4d?/a
B 24 1
 a%(a—4d?) n

The inequality in line 3.1 follows from Lemma 30 (see Sect#of) and the inequality in line
3.2 follows from Lemma 27(see Section A.2). The inequahtyime 3.3 holds since there ate3

pieces inP that are not part of the véé. The inequality in line 3.4 follows from Lemma 14.1
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Now we show that, probability that same-player-vee gréphhas a path of length two starting
with playerp is at most()(%). Recall that we put the directed edge frprto ¢ in the same-player-
vee graph if one of playey’'s two semifinal pieces, namely,, ,, or a1y, overlap with both of
playerg's two semifinal pieces, namely,, anda . Hence, a path of length 2 consists of
semi-final PIeCeB.(p, 1)y Apo,ra)s Alps,1—ra)s G(ps,0) ANCayy, 1y fOr three playerg,, p,, andps, where
botha, »,y anda,, 1,y overlap witha,, .y, and bothu,,, oy anda,y, 1y overlap witha,, ,.,,. We

compute the probability of such paths by modifying the pgigén in Lemma 37(see Section A.3).

Lemma 16. Consider a playep,. The probability that there are semi-final pieegs, ,,y, @y, ,),
Qps,1—ro)r G(ps,0) AN ayp, 1y fOr three playersp;, p, and ps, where botha,, .,y and a, 1—r,)

overlap withay, ,,,, and botha,,, o) anday,, 1, overlap witha,, ,,, is at mostse + &

Proof. Let ¢,; be the number of candidate pieces of the other players tletapvwith the can-
didate piecer, ;, of playerq. Without loss of generality, let us renumbgs candidate pieces in
non-increasing order b, ;, thatis,l (g ;) > £(q,i+1)-

Let R, be the event that the candidatg; is selected to be the semifinal piecg . It

is proved in Lemma 28 (see Section A.2) tltabb[R,; ] = d - (=) - (=2)?"!. There arewn
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choices fora,, ,,), Thus by Lemma 36 (see Section A.4), our desired probalisliéy most

an d i1 d—1 4d2£2p ) an
Z — Lo+ —
an \ an (an)3 Al )

i=1

A
d— 1
= (an) d+3 ZE (p1,%) (i—1) (an)d+2 Z&m#’) ©
=1
4d3 4d2 an

= (an)d+3 (an)*™*(2an?)? n)d+2 Z Ciprsi

3
< 4d

4d2 2an?
d—2 2\2 d
()3 (an)**(2an®)* + ()i (an) ( . )
(1P 8Py 1
N a3 a? n
The second inequality follows from Lemma 29 (see Section.AThe third inequality is due to

the fact that since th&,, ;'s are non-increasing, the sum is obviously maximized iheqg; ; is

equal. Thatis, eachy,, , = 222°, O

an

Lemma 17. If we build the implication grapli G and same-player-ve€G graph then the proba-

bility that a playerp is bad is at mosO(2).

Proof. Recall that a playep is bad if there exists a pair path of length three or moreiatawith

itin /G or a path of length two starting with it iSG, i.e.,

Prob|player p is bad|

< Problplayer pis bad in 1G] + Prob[player p is bad in SG]
32d° 1 16d®  8d? 1
< = —_—t )= 3.5
— a?(a—4d?) n+<oz3 az) n (3:5)
32d° 1
< = .
- a2 n
The inequality in line 3.5 above follows from Lemma 15 and lneanl6. 0J
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Lemma 18. If we build two independent paifd G1, SG1) and (1G2, SG2) of the implication
graph and the same-player-vee graph then probability tate playerp is bad in both the pairs

is at mostO(+).
Proof.

Prob[some player pis in (IG1, SG1) and (1G2, SG2)]

Z Prob[player p is bad in (IG1,SG1) and (I1G2,SG2)]

p=1

IA

IA

Z Prob[player p is bad in (IG1, SG1)] - Prob[player p is bad in (IG1, SG1)]

p=1
n

(L Ly (3.6)

2
(6% n
p=1

1024d*? 1

IN

IN

ot n

The inequality in line 3.6 follows from Lemma 17. O
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4 Initial Unsuccessful Approach

In this chapter we briefly describe our initial attempts im@oeg up with an improved randomized
protocol for cake cutting. We needed some structure thagagpn the implication graphG with
low probability and if it does not appear then we can solvegrablem. Edmonds and Pruhs used
pair pathas their structure. If we carefully observe their Final Bi&election Algorithm then we
can find that pair path in one direction (i.e. having pair dadm a,,y t0 a1,y but not from
agp,1—ry 10 ag, ) is not really problematic. It just implies that we shouldesta,, ., for player
p. We found that as long as we have pair paths in one directibn we can solve the problem.
However, pair paths in both directions will be problematic.

We can correlate this with the 2-SAT problem. In the 2-SAThbean we want to check whether
given 2-SAT formulaF’ is satisfiable or not. To solve this problem we build a dirdgeaphG
from the given 2-SAT formuld’. For each variable;, we put two vertices; andz; (not of z;) in
G. The clauses then correspond to edges. Clause)) gives edges from to y andy to x. If z is
true theny must be true to make clauseV y) true. GraphG; has the property that is satisfiable
if and only if there is no directed cycle @& containingz andz for some variable:. We try to find
out the satisfying assignment fér by selecting one of the vertex or z; (setting variabld or 0

respectively). Note that if we select then we should not selegt or vice versa. This procedure
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to select the vertices is almost similar to the Final Piedec@en Algorithm except that it works
even if we have path from; to z; but not the other way around for someSo the procedure fails

only if G contains a directed cycle.

Pair Cycle:A pair cycle in the implication graph is a directed cycle @ning both semifinal
piecesa, , anday, ) for some playep. Note that a pair cycle is same as having a directed path
in both directions, fromu, o) t0 a1y anda, 1y 10 a,, ¢y for some playep. For example, see Fig-
ure 4.1. It shows a pair cycle which contains both the sentifieezes of playei. Note that it has

two pair paths.

a<6,:|_>

a6

CIEN

Figure 4.1: The dotted edges are between semifinal piecesvbdap. The solid directed edges

are the resulting edges in the implication graph

Next we prove that if the implication grapttz does not contain pair cycle then the following
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algorithm selects a final piece for each player in such a watytttese final pieces are disjoint.

Modified Final Piece Selection Algorithm: We repeatedly pick an arbitrary playerthat has
not selected a final piece. If there is no pair path fregy, to a1y then we select the piece
a0 as the final piece fop. Otherwise we select the pieag, ;) as the final piece fop. Further,

we pick as final pieces all those pieced (i that are reachable from the selected piegg, in IG.

Lemma 19. If an implication graph/G of the semifinal pieces does not contain a pair cycle, then
the Modified Final Piece Selection Algorithm selects a finate for each player and these final

pieces are disjoint.

Proof. Consider an iteration that starts by assigning a piece tgepja There are two possible

cases depending on the piece assigned to

e Case 1:Assigned piece i, . This happens only when there is no directed path from
a0 10 agp,qy. This iteration will force the assignment of at most one piéz any player
because if there is a playgisuch that both, oy anda, 1y are reachable from,, ;, then by

Lemma 24 there will be a directed path fram o) to a, 1).

o Case 2:Assigned piece i8, 1). This happens only when there is a directed path fugsp,
to a(,,1y. This iteration will force the assignment of at most one pitany player because
if there is playey such that botla, o, anda, 1y are reachable from,, ;, then by Lemma 24
there will be directed path from,, 1y to a, ). In other words we will have a pair cycle in
IG.
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Similarly, if this same iteration forces playgto be assigned say tg, ,,, then we need to prove
that she has not already been assigngdl._,, during an earlier iteration. If assigning, , forces
a.q.r, then there is a path from the one to the other. Hence, by Le&8nthere is a path from
a(,1-r t0ag 1. Hence, ifa, 1,y had been previously assigned, then playaould have been
forced toa, ;) and in this casg would not be involved in this current iteration. The disfniess

of the final pieces follows from the definition of the implizat graph. O

4.1 Probability of Pair Cycle

Having solved the problem when there are no pair cycles, vamaains is to prove that pair cycles
do not occur with high probability in the implication grapty. We anticipated this probability to
be less tharﬁ)(%). To understand our anticipation, let us assume that edggs wccur indepen-
dently and with probability)(ﬁ). Let us calculate the probability of pair paths/i&'. Any pair
path of length: > 2 requiresz edges and + 1 vertices but only: players. We get the following

probability calculation for implication graph having paaths.

Prob[IG contain pair paths]

INA A
M- 11
3N Q
N —
=
Q
\/N 3‘}_.
~—

IN

IA

Now if we consider any pair cycle of length> 4 then it requires edges, vertices and at

36



mostz — 1 players. Then probability that implication graph has pggie is given by,

Prob[IG contain pair cycles]

A
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1
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< 0()

The only problem with the above calculation is that we hawwiased that edges occur inde-
pendently, but we know that edges do not occur independéeitall the cake distribution given
in Figure 2.2). Nevertheless, Edmonds and Pruhs were ahlpeote the results for pair path.

Motivated from their result of Lemma 31 we made the followawmjecture.

Conijecture 20. The probability that for some player we have pair paths of length at least three

fromag, o) t0 a1y and froma, 1y t0 ay, ) in the implication graph/ G is at mostO(2).

Recall that pair cycle requires that at least one playettk bemifinal pieces have to be present
in it. To prove Conjecture 20, we started with the case whraetéy one player’s both semifinal
pieces are presentin the pair cycle. This case looks simplear intuition said that the probability
of having more than one player repeating in a pair cycle is than the case when exactly one
player repeats. More repeats will reduce the number ofrdisplayers in a pair cycle but the
number of edges will remain the same. We were able to provprtiteability calculation for this
case.
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Lemma 21. The probability that for some playgrwe have pair paths of length at least three from
a0y 10 a1y and fromay, 1y to a, ) in the implication graph/ G' and except playep there is no

common player involved in both the pair paths, is at m@@%).

Proof. We will provide highlights of the proof. Consider a simplargaaths
Py = <a<p,0>, Apy,ri)s - .a<p207177"2071> , a(p71>> of lengthz, > 3 and
P = <a<p,1>, gy ,r1)s - - .a<q2171m2171>,a<p70>> of Iength21 > 3.

Let V; be the vee with center,, ;, and bases,, 1) anda< , andV; be the vee with

p207177’2071>

centera, ;y and bases,, 1) anda< ) Fori € [1, z0—2], let I, € IG be the event that

9z1—1,Tz—1

semifinal pieces.,, ,,y anday, y intersect. Forj € [1, 2 —2|, let],, € IG be the event

i+1,1—Tit1

that semifinal pieces,, ., anda, intersect. Since both the pair paty and P, have

@j+1,1—rjp1)
all different players except player event/,, and/;; are independent for all possible valuesi of
andj. Playerp contributes to both the pair paths but for the probabilitgnpaitation it is counted

only once. We can slightly modify the proof of Lemma 31 andttetdesired result. Instead of

considering seV of all possible vees, we consider the 3&tof possible pairgVy, V) of vees

where center piece df, andV; is a, o) anday, 1y respectively for some player O

Note that above lemma consider the case when length of batipaths is at least three and
only one player repeats. In general, more than one playeregeat in a pair cycle and pair path
can be of length two in one of the direction or both. Recalt thlhenever we have pair path of
length two, we get self-vee among semifinal pieces. We présaiving lemma to handle the

case when one of the pair path has length two.

Lemma 22. Leta > 10 be some sufficiently large constant. Eachngblayers has a partition

38



of the unit interval|0, 1], or cake, intoan disjoint candidate subintervals/pieces. Each player
independently pické’ = 3d = 6 of her pieces uniformly at random, with replacement. Themneh
is an efficient method that, with probability at ledstl — %), chooses three of thé& pieces for
each player and then narrow down two pieces for each plagehat same-player-vee graph build

from these chosen pieces can be coloured by at most two colour

Proof. We will provide highlights of the proof. Same-player-veaghn will have path of length
two starting with playep if one of the semifinal piece,,, of playerp overlaps with both the
semifinal pieces,, ¢y anda,, 1y of some playep, and one of the piece,,, ,,, overlaps with both
the semifinal pieces,, ¢y anda,, 1y of some playep,. So piecex, , is not good for playep. We

proved that probability of any two pieces (out of three clmosieces) being bad for some player
is at mosi()(%). This is done by modifying the proof given for Lemma 16. So \&a select with
probability at leasf2(1 — %) two pieces for each player such that same-player-vee gragd bt

have path of length two. O

Then to handle the case where more than one player can repeair icycle, we tried many

proof techniques and then found the following countereXamp

Counterexample:

Figure 4.2 shows the counterexample to Conjecture 20. §ooreling cake distribution is
shown in Figure 4.3. It also shows the semifinal pieces redeby the corresponding players.
Note that once playdrand playee select their leftmost piece as the semifinal piece, with tzoms

probability we get the dashed square shown in Figure 4.2.pfbieability that both playet and
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Figure 4.2: The dotted edges are between semifinal pieceswbdap. The solid directed edges

are the resulting edges in the implication graph.

Player4 — — — — — — — — — — G- - - - === === == - == == ==

Player3 — — 4 - - — - — = — = — — — — — — — — — — — — — — — T - - - - - - - - - -

Player 2 T~~~ -~ " ——-----—-—-—--- [~ ————-—--

Playerl‘ —— —— —— -~ -~~~ —- - - - ----- g~ - ~—-—-
CAKE

Figure 4.3: Cake distribution of 4 players with their sedecsemifinal pieces.

2 will select their leftmost piece as the semifinal piece iseaBiQ(%). Therefore, the probability
that we get dashed square is at Ieﬁ(;tnl—Q). The remaining two dashed edges can occur with
probability at Ieasﬂ(#). So the probability that this particular counterexamplistsxs at least
Q(-). Since we have at lea§t(n*) possible choices fot players having cake distribution shown
in Figure 4.3, probability that this sort of counterexamgiests in the implication graph is at least

Q(1).
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5 Summary and Future Directions

In this chapter we summarize our contributions and providections for future work by listing
the open problems in the area of cake cutting.

Sgall and Woeginger [13] showed that every exact fair pat¢deterministic or randomized)
has complexity)(n log n) if every portion given to players is restricted to be a camtigs piece of
the cake. Edmonds and Pruhs [4] extended the lower boungtp@pen when the protocol need to
guarantee onlgpproximate fairnesand not necessarily assign contiguous portions. They grove
that every deterministic approximate fair protocol foreaktting has complexit§2(n log n). They
also proved that every randomized approximate fair pratoas complexity2(n log n) if answers
to queries asked by protocol are approximations to actusalers.

In [5], Edmonds and Pruhs gave a randomized approximateraiocol of complexityO(n)
with O(1) success probability. Their protocol need not assign caotig portions to players. We
have improved on this by giving a randomized approximategdeatocol with complexityO(n)
with high probability of success. The probability of success of owtquol isO(1 — m). An

outline of our protocol follows.

¢ Independently run twice, the protocol by Edmonds and Prphs thhe formation ofmplica-

tion graphandsame-player-vee graph
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e Delete players that ategadfor the run from the corresponding graphs.
e Each runis then completed by narrowing down to one final giecevery player in the run.

e Merge results from the two runs. This results into a situatitnere each point of the cake

has at most = 2 x 2 players (at most 2 players from each run) wanting it.

We also proved that it is unlikely that some player will beedetl from both the runs by proving
that the probability of existence of a bad player is less tragqual toO(%). This implies that the
probability that our protocol will not work is als@(2).

One can execute the above two-run protdctimes and select the first successful execution.
This improves the probability of success because the piiityathat none of thek executions
would work is less than or equal (-%;). For each of thé: executions of the two-run protocol,
no point in the cake is wanted by more thamplayers and since we select only one successful
execution fromk executions, the number of players sharing any point in the aat mostl.. We
get the same probability of success if we run Edmonds andsRdgiorithmk + 1 times instead of
two times, but the number of players wanting any point of thkeeccould be as much as + 2. As
with the Edmonds and Pruhs protocol, our protocol may nagasontiguous pieces to players.

There are several lines of further inquiry. One could try ébedmine if linear complexity is
obtainable for cake cutting if either exact fairness or mprdus portions were required for either

constant or high probability of success.

5.1 Open Problems

The open problems in the area of cake cutting are as follows.
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e ALinearrandomized protocol which is fair or assigns comtigs pieces, with either constant

or high probability of success.
e Lower bound on the probability of success for linear randmaiprotocols.

e Let« be some large constant. Each of thplayers has a partition of the unit interval 1],
or cake, intoan disjoint candidate subintervals/pieces. Each playerpgeddently picks]
of her pieces uniformly at random, with replacement. Eaelygd comes one by one. Can
we get an efficient method that, with either constant or higibability, picks one of the
subintervals for each player, so that every point on the tsakevered by at moﬁ(%)

pieces ? This is the generalization of Theorem 2 for cakengutt
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A Proofs by Edmonds and Pruhs

In this section we prove the various claims that we made irptheious section. Each subsection
can essentially be read independently of the others. Dugdoeslimitations, some proofs are

moved to the appendix, and some of the easier proofs areeamitt

A.1 Final Piece Selection Algorithm

We show some structural properties of the implication grepply the correctness of the Final

Piece Selection Algorithm.

Lemma 23. If there is a path inGG from a, ;) t0 a(, ) then there must be a path from, ,_,, to

A(p,1—r) inG.

Lemma 24. If both the pieces, ) anda, ., are reachable from a piece, ) in the implication

graphG, thenG has a pair path.

Lemma 25. If an implication graphG of the semifinal pieces does not contain a pair path, then
the Final Piece Selection Algorithm selects a final pieceefiech player and these final pieces are

disjoint.

a7



Proof. Consider an iteration that starts by assignigg, to playerp. This iteration will force the
assignment of at most one piece to any one player becausenup&a 4 there can not be a player

q such that bothu, o, anda, 1) are reachable from, . Similarly, if this same iteration forces
playerq to be assigned say i, o), then we need to prove that he has not already been assigned
a1y during an earlier iteration. If assigning, o forcesa, o), then there is a path from the one

to the other. Hence, by Lemma 23, there is a path frgm, to a, 1y. Hence, ifa(, ;) had been
previously assigned, then playewould have been forced tq, ;, and in this case would not be
involved in this current iteration. The disjointness of fimal pieces follows from the definition of

the implication graph. 0J

A.2 The Number of Vees

In this subsection we show that the number of vee3(ig) with probability 2(1). Recall that a
veeconsists of a triple of semifinal pieces, ocenterpiecea,,, and twobasepiecesa, ) and

a(g sy, With the property that the center piece intersects both@blase two pieces.

Lemma 26. Assume that players have partitioned their cake into pieces each. Let, ; be the
number of pieces of the other players that overlap with piexfeplayerp. Then for any playep,

an )
> iy bpi < 2am”.

Lemma 27. The probability that semifinal pieeg, , overlaps with semifinal pieag, ., is at most
242

an ”

Lemma 28. The expected number of vee's(iris at mosti4"n.
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Proof. Consider a particular player Again let/,, ;, denote the total number of candidate pieces
overlapping the' candidate piecey, ;, of the playemp. Without loss of generality, let us renumber
p’s candidate pieces in non-increasing orderhy,, that is,(, ;y > i, ;1)

Forp € [n], i € [an], andr € [0,1], let R, ;,, be the event that the candidatg; is
selected to be the semifinal piegg,y. To understand this, let us review how this is chosen. First,
playerp randomly chooseg candidate pieces to be in his quarterfinal brackgts,. Then the
semifinal piecer, , is chosen to be the one with the smallést, value or, by our ordering, the
one with the largest index. Hence, the probability/yf ; .y is the probability that! indexes are
randomly selected fromn indexes and the largest selected indek iShis givesProb[R, ; )] =
4 () (5

Letz,,y be the number of vee’s with,, ,y as the center. There a(é ) pairs of candidate
pieces that might be the two base pieags, anda, ., With the center piece, ,, = c, ;. The
probability that both of this pair are semifinal pieces is ast{22)”. Hence,E[z(, ) | Ryin] is

at most(“%?) (i—i)z <27, (i)z.

an

an an d i—1 d—1 d 2
E[Wp,r)] = ZPTOb[R@,i,m] ‘E[ﬁ(pﬂ | R(p,i,r>] < Z (%) ( an ) '%%pn') (%)
i=1 i=1
243 — .4 1
() 2%

Lemma 26 bounds that(", £,y < 2an® = M. The next lemma then boundsy™  i*~'¢;, , <

ma=2)2,
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2d3 - 9 8d3
E[x(pm)] < (W) . (Oén)d 2. (2&”2) < E

By linearity of expectation, the expected number of veeg allds 22:1 Zizo Elzyy] < 2n-

8d3
8d_ |

«

Lemma 29.1fd > 2,Vi € [L,m — 1] 4; > {1y > 0,and> ", 4; = M, then " id-1¢?

IA

mia—2M?2,

Proof. Let/,,.; = 0, ands; = ¢; — ¢;,; for 1 < i < m. Note that our constraint gives thagt> 0.
Further moref; = 37", sy andM = Y " | £; = " is;. Then lett; = is; sothatM = 3" | #;.

Now using basic algebra we conclude that

. m 2 m m m m.m
Yt =y i (ZSJ) = DT D s = DD s
- : : — L=

A
NE
NE

M@‘-
Eoul P
=)
J=4
<o
=
QL
A
3
N
WE
NE
=~
I
3
&

N
NE

-
I -,
3 v
&
<

A.3 The Existence of Pair Paths

In this subsection, we show that with probabilityl), the implication graph doesn’t contain a pair
path of length three of more. Recall that if the semifinal pg&eg, ,, anda, ) intersect, then there
is an directed edge in the implication gra@gtfrom a,  t0 a(,1—s and froma, ) to ay, ;- and
that apair path is a directed path between the two semifinal pieces for theegdayer, i.e. from
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someay, y t0 a(,1—,. Note that we need to only bound the probabilitysahplepair paths (pair
paths where all the players are different except startinearding player in the path). The next

lemma is best understood by studying Figure A.1.

Figure A.1: The dotted edges are between semifinal pieceésvikdap. The solid directed edges

are the resulting edges in the implication graph.

Lemma 30. Consider a simple pair patl = {a(y.ro), Ap1.r1)s - - - Upge_1,m01)» Apo,1—r) ) OF lENgth
k > 3. LetV be the vee with center, ., and bases.;,, 1_,,y anda,, .. ,). Fori € [1,k—2],

let I; € G be the event that semifinal pieags, ,,, anda, intersect. Then

Pit1,1="Tit41)
Prob[P € G] < Prob[V € G] - 12 Prob[I; € G

Proof. AssumeP € G. The edges from,, ,,) t0 a(,, ,,y and fromag,, | .. ) 10 @y, 1-r,) MeaN
that a, .y intersect with bothu,, 1,y anday, .. ,). Hence, the ved occurs. The edge

from a,, .y t0 a means that,, ., anda, intersect, i.e.;. It follows that

Dit1,Ti+1) Dit1,1-7Ti41)

Prob[P € G] < Prob|V & eachl; € G]. What remains is to prove that the evehtsnd each;
are independent. Whether a semifinal piece of playensdq intersect is independent of whether
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a semifinal piece of different playegs and ¢’ intersect because these event have nothing to do
with each other. This remains true when the playaaad)y’ are the same, but we are talking about
different semifinal pieces of this player, namely evergnd/; ; are independent. This is because
the selection of the quarterfinal pieces for the brackgt, and the selection gfs semifinal piece

a0y Within this bracket is independent of this process for hiseosemifinal piece,, ;). O

Lemma 31. The probability that the implication grapfy’ contains a pair path of length at least

three is at mos%

Proof. LetV be the set of all 3-tuples representing all possible vee’s amd forV € V let P (V)
be the set of all possible pair paths of lengthhat include the ved&’. The probability that>

contains a pair path of length at least three is at most

Z > ) ProblPed] (A.1)

k=3 VEV PePy(V)

< ZZ Z Prob[V € G] - TI¥-2Prob[I; € G| (A.2)
k=3 VeV PeP,(V
2d>
< ZZPrOb[V cal Y (—) (A3)
k=3 VeV PePy(V) an
(A.4)
n 2n 242\ ¥
< > ) Prob[V €] ((k B 3) (k— 3)!) (%) (A-5)
k=3 VeV
n 242 k—2
< > (2n)h? (—) > Prob[V € G (A.6)
k=3 an Vey
» 24\ *7? 1643
< S (n)h (_) <—n) (A7)
kz:; an a?
83 <~ [(4d*\ TP 8dP [4d? 1 32d°
< wx(0) =5 (0)(mem) - anmm o9

k=
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The inequality in line A.2 follows from Lemma 30 and line Ai®Mm Lemma 27. The inequality
in line A.5 holds since there ake— 3 pieces inP that are not part of the véé. The inequality in

line A.7 follows from Lemma 28. O

A.4 Coloring Same-Player-Vee Graphs

In this subsection we show that with probabilif1), we can color the same-player-vee graph

with 2 colors since this graph will have no paths of length-= 2.

Lemma 32. The probability that the same-player-vee graph is wmot= 2 colourable is at most

Recall that we put the directed edge ¢) in the same-player-vee graph if one of playé&r
two semifinal pieces, namely, o or a, 1y, overlap with both of playeq’s two semifinal pieces,
namelya.q o andag, ;). Hence, a path of length 2 consists of semi-final pieggs.,, @y, ),
A (py, 1791 Q(py,0y, ANday,, 1y for three playerg,, p,, andps, where bothyy, ..,y anda,, 1,y overlap
with a, ), and botha,, o) anda,, 1y overlap witha,, ). We will consider the probability of

such paths starting backwards.

Lemma 33. Suppose we are considering a set ehndidate pieces for the semi-final pieegs )
anda,, 1. The probability that some player gets both of his semi finatgs from this set is at

mostmin((<£)2, 1).

an

Consider some candidate piegg, ;) that potentially might be,, ). Let/, , denote the

number of other candidate pieces of overlapping it. Comsidme playep,. Letc, j,), Cps.ji+1)
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cips,j) D€ the candidate pieces of playsrthat overlap with piecey,, ;. Let/,,, ;, denote the
number of other candidate pieces overlapping;,. Consider some playex. Define/,, ;. to
be the number of player’s candidate pieces that overlap, ;. Note thatif(,, ; ., = 1, thenitis
impossible to have both of playes’s semi-final pieces overlap,, ;. Hence, we canignore player
ps when consideringy,, ;) as beinguy, .,y (we needu,, o) anda,,, 1, both to overlap withu,, ,.),
giving £, j »,y = 2). Hence, define?pmm to bel iy, jps) If Lipsipsy = 2 @nd zero otherwise.
Define@

pd) = Dog Z@mm. Note this is the number of pieces that overgp ;, excluding those

pieces whose player only has one piece overlapgifg, .

Lemma 34. ThenS 1 0, 1) < 204,

Lemma 35. Consider a candidate piecg,, ;, such that there aré, ;, other candidate pieces
overlapping it and some other playgs. The probability that there are semi-final pieces, ,.),
a(py,0y» @Nday,, 1y for some playeps, wherea,, ,,, overlaps withc,, ;y, and botha,, o, anda,, 1

overlap witha,, ) is at mosti< - [% n 1].

Proof. Consider a candidate piecg, ;, that overlaps witt,, ;. The probability that candidate
piececy,, ;) is a semi-final piece for player, is at mostz—fl. By Lemma 33, the probability that
there are semi-final pieces,, ¢y, anda,, 1y for some playeps; which both overlap with,

(p2,5)

at mostmm((%) 1). It follows that the required probability is at most
94 Wi\ 2 ! Wi\
S = min ( ””) A <=1+ | ) min <ﬂ> 1]+
— an an an e an
J=n J=n+1

By Lemma 34 Zj’ ]llﬂ Am 5 < 20y, - Hence, because of the quadratics in the sum, our sum is

maximized by having a fe\@mm as big as possible. But because of thi@, there is no reason to
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make a€ (pa,j) DIgger than. Hence, the sum is maximized by settnqqéf“l—l> of the valuei

(p2,5)

to % and the rest to zero. This gives the result

2d 2dl,, ;
_[H[ﬂ.

an an

min(1, 1)} + 1} .

O

We will now add the requirement that players other candidate piecee,, ;) also overlaps with

c(p,,iy @and sum the resulting probability over all possible players

Lemma 36. Consider a candidate pieae,, ;, such that there aré,,, ;, other candidate pieces
overlapping it. The probability that there are semi-finab@esa,, .y, A(py,1-r0)» A 0y, ANAaA(p, 1)

for two playersp, and p3, where bothu,, .,y anday,, ..,y overlaps withc,, ;, and botha,, o

d2 02

(p1,%) an
anda,, 1y overlap witha,, ..,y is at most- anft [1 t @, l)]

Proof. The probability that a particular candidate piegg ;) is playerp.’s semi-final piece.,, 1 —.,)
is at most-L. Denote the number of playgs’s candidate pieces,, ), C(ps.jit1), - - - » Cips,j,) that
overlap with piece,, ; to beg,, = j. — j; + 1. Because these all overlap with, ;, we have that
sz @, = Ly ,iy- Using Lemma 35, we get that the required probability is astmo

d Ad [ dlip, 4 d A [dlp, ) A0, an_
}:_. . ==, .|=. 1| = ——2d g :
an p [Om [ an T H an Cipi [om [ an * H (an)3 " dlp, i

p2

O

We will now add the requirement thag, ;) is one of playep,’s semi-final pieces and sum up over

all p; candidate pieces and over all playgss
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Lemma 37. The probability that there are semi-final pieaes, .y, @(py,rs)» Aips,1—rs)» A(ps,0y, AN
apy 1y for three players, p,, andps, where bothu,, ..,y anda,, 1., overlap witha,, .y, and

bothag, o) andag, 1y overlap withay,, .,y is at mostee + 84

Proof. As in the proof of Lemma 28, leR,, ; .y be the event that the candidatg; is selected to
be the semifinal piecey, ). Recall thatProb[Ry,; ] = d - (=) - (=2)4"1. There aren choices
for playerp;. Thus by Lemma 36, our desired probability is at most

g -1\ AR, an
- (= B v T T L
ae> an ( an ) (an)? { " d£<p17i>]

i=1

4d* & _ a1
(an) d+3 ZE (0= 1 (Om)d+2 § :€<P17i>(l -1 >
i=1

4d® d—2 22 Ad* - ; d—1
W(an) (2an7)" + (an)a? D lpa(i—1)
=1

3 2 2 3 2
n < 4d (an)**(2an®)* + Ay <—2an )) _ 1647 + S

(an)+3 (an)d+2 (an) an s a2

IN
S

IA
S

The second inequality follows by Lemma 29. The third inegudbllows from noting that, given

that thel(,, ;'s are non increasing, the sum is obviously maximized if €agh, is equal. That s,

eachl(,, » = 2an? m

an °

A.5 Computing the Probability of Failure

The probability that the total same-player-vee graph is2aoblourable is at mos%e’i’ +
The probability that the implication graph contains a paithpof length three or more is at most

%. Thus we get that the probability that the maximum overlaghefinal pieces is more than
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2is at mostSL 4 8 %3). By settingd = 2, and then setting to be sufficiently large, one

a?(a—d?

can make this probability arbitrarily small. Hence, thelgability that our caking cutting algorithm

. _ A 16d3 % 32d3
is not at leasRa-fair is at most=>5- + =% + o)

57



