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Abstract

Cake cutting is a resource allocation problem in which a resource has to be dividedfairly among a

number of players. In this problem a player may not value all the parts of the resource in the same

manner and different players may value the same part differently. A protocol(algorithm) to solve

the cake cutting problem can learn about these valuations byasking queries to players. The goal of

the protocol is to divide the resource fairly and make all theplayershappyby asking as few queries

as possible. In 1984, Even and Paz gave anO(n log n) protocol and recently Edmonds and Pruhs

proved that every deterministic protocol will askΩ(n log n) queries. In a separate paper, they also

gave anO(n) randomized approximate fair protocol withO(1) success probability. We improved

their algorithm by providingO(n) randomized protocol withO(1 − 1
poly(n)

) success probability.
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1 Introduction

The cake cutting problem originated in the 1940’s in the Polish mathematics community. It is a

resource allocation problem where a cake (any resource which can be divided infinitely) has to be

divided fairly among a number of players. An important point to note here is that a player may

not value all the parts of the cake in the same manner and different players may value the same

part differently. For example, consider the case where one player may want the icing and another

may want the strawberries on a cake. These likings are not known apriori to the protocol solving

the cake cutting problem. However, a protocol can learn about these likings by asking queries

to players. The aim of the protocol is to make all the playershappyby asking as few queries as

possible.

A deterministic fair protocol with complexityΘ(n2) was given in 1948 by Steinhaus in [14].

In 1984, Even and Paz [6] gave a deterministic divide and conquer fair protocol that has com-

plexity Θ(n log n). Recently, there has been several lower bound results for cake cutting. Sgall

and Woeginger [13] showed that every exact fair protocol (deterministic or randomized) has com-

plexity Ω(n log n) if every portion given to players is restricted to be a contiguous piece of the

cake. Edmonds and Pruhs [4] extended the lower bound to applyeven when the protocol need to

guarantee onlyapproximate fairnessand not necessarily assign contiguous portions. They proved
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that every deterministic approximate fair protocol for cake cutting has complexityΩ(n log n). In

the same paper, they also proved that every randomized approximate fair protocol has complexity

Ω(n log n) if answers to queries asked by protocol are approximations to actual answers.

Edmonds and Pruhs also gave in a separate paper [5], a randomized approximate fair proto-

col of complexityO(n) with O(1) success probability. Their protocol need not assign contiguous

portions to players. We improve this by giving a randomized approximate fair protocol with com-

plexity O(n) with high probability1 of success. We make this improvement by modifying the

protocol of Edmonds and Pruhs [5]. An outline of their algorithm is as follows:

• Each player chooses independently and uniformly2d pieces of value1
αn

fraction of the value

of whole cake, whereα andd are appropriate constants.

• Select two semifinal pieces out of these2d pieces for each player.

• From these semifinal pieces, build animplication graphandsame-player-vee graph. Impli-

cation graph and same-player-vee graph are defined in Chapter 3.

• They defined the notion of abadplayer in these graphs. Then under the assumption that no

player isbad, narrow down to one final piece for every player such that eachpoint of the

cake has at most 2 players wanting it.

They proved that,

Prob[their protocol does not work] ≤ Prob[there exists a bad player] ≤ O(1).

1with probability at least0(1 − 1
poly(n) )
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We tried to improve Edmonds and Pruhs protocol by relaxing the notion ofbadbut we were

unsuccessful with that approach. We initially got some success with the approach but later we

got more and more complex counterexamples to our approach. Every time we got rid of a coun-

terexample (by modifying the protocol), we got a new counterexample. Our initial success kept

our hopes alive and we persisted with this approach until we came up with a completely different

protocol. This new protocol is based on one key observation of the Edmonds and Pruhs protocol,

i.e.,

Prob[player p is bad] ≤ O(
1

n
).

From this observation, we came up with the following protocol:

• Independently run twice, the protocol by Edmonds and Pruhs upto the formation ofimplica-

tion graphandsame-player-vee graph.

• Delete players that arebad for the run from the corresponding graphs.

• Each run is then completed by narrowing down to one final piecefor every player in the run.

• Merge results from the two runs. This results into a situation where each point of the cake

has at most4 = 2 × 2 players (at most 2 players from each run) wanting it.

We delete players in our method. By doing so we might not assign any piece to deleted players.

However, we also prove that it is unlikely that some player will be deleted from both the runs. In
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particular, we show that,

Prob[our protocol does not work]

≤ Prob[there exists a player p that is bad in both runs]

≤ n × Prob[player p is bad in both runs]

≤ n × (Prob[player p is bad in one run])2

≤ n × O( 1
n
)2

≤ O( 1
n
).

We can execute the above two-run protocolk times and select the first successful execution.

This improves the probability of success,

Prob[none of the k executions work]

≤ (Prob[one execution does not work])k

≤ O( 1
nk ).

Note that for each of thek executions of the two-run protocol, no point in the cake is wanted

by more than4 players. Since we select only one successful execution fromk executions, number

of players sharing any point in the cake is at most4. We get the same probability of success if

we run the Edmonds and Pruhs algorithmk + 1 times instead of two times but then the number of

players wanting any point of the cake could be as much as2k +2. As with the Edmonds and Pruhs

protocol, our protocol may not assign contiguous pieces to players.

Cake cutting, and related fair allocation problems, are of wide interest in both social sciences

and mathematical sciences. (See, for example, Sgall and Woeginger [13] for a nice overview).

There are several books written on fair allocation problemssuch as cake cutting, that give more

extensive overviews. (See, for example, [3, 12]). Some quick Googlingreveals that cake cutting
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algorithms, and their analysis, are commonly covered by computer scientists in their algorithms

and discrete mathematics courses.

All of the results that are known so far in the area of cake cutting are summarized in Table 1.

Deterministic Exact Exact Contiguous

vs. vs. vs. vs. Probability Complexity Reference

Randomized Approx. Approx. Non-contiguous of failure

Protocol Queries Fairness Portions

Deterministic Exact * * 0 O(n logn) [6]

* * Exact Contiguous 0 Ω(n log n) [13]

Deterministic * * * 0 Ω(n log n) [4]

* Approx. * * 0 Ω(n log n) [4]

Randomized Exact Approx. Non-contiguous Ω(1) O(n) [5]

Randomized Exact Approx. Non-contiguous O( 1
nO(1) ) O(n) This thesis

Table 1.1: Summary of known results. An asterisk (*) means that the result holds for both choices.

1.1 Related Work

Cake cutting is closely related to the multiple-choice balls and bins problem. In the multiple-choice

balls and bins model,d′ of αn discrete bins are selected for each ball uniformly at random. Then

we select one bin out ofd′ bins such that maximum number of balls in the bin is the smallest. This

number is called as themaximum load. Later we will see that the balls and bins model is equivalent
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to the special case of the cake model in which all the players like the cake uniformly. Analysis

of the balls and bins model has found wide applications in areas such as load balancing [8]. In

these situations, a ball represents a job that can be assigned to various bins/machines. Roughly

speaking, load balancing of identical machines is to balls and bins, as load balancing on unrelated

machines is to cake cutting. Unrelated machines is one of thestandard models in the load balancing

literature [1]. In the unrelated machines model, speedsi,j that a machinei can work on a jobj is

also specified. Assume that jobs can use more than one machine, and that machines can be shared.

Then the total value of the machines to jobj is
∑

i si,j, and ac-fair allocation for jobj would be

a collection of machines, or portions of machines, that can together process jobj at a speed of

∑
i

si,j

cn
.

The first step towards obtaining anΩ(n log n) lower bound on the complexity of cake cutting

was taken by Magdon-Ismail, Busch, and Krishnamoorthy as described in [7]. They proved that

any protocol must makeΩ(n log n) comparisons to compute the assignment. This result does not

address query complexity i.e. the number of queries used by the protocol. Approx. fair protocols

were introduced by Robertson and Webb [11]. Traditionally,much of the research has focused

on minimizing the number of cuts, presumably out of concern that too many cuts would lead to

crumbling of a literal cake. There is deterministic protocol [11, 10, 15] that achievesO(1)-fairness

with Θ(n) cuts andΘ(n2) evaluations.

There are several other objectives studied in the cake cutting setting, most notably,max-min

fairness, andenvy-freefairness. (See, for example, [3] for details).

The literature on balanced allocations is also rather large. A nice survey is given in [8]. We are

not aware of any other results on balanced allocations for unrelated machines.
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1.2 Organization of Thesis

The remainder of the thesis is organized as follows.

• In Chapter 2 we present the formal definition of the cake cutting problem. We also present

key observations (properties) of the problem and briefly discuss two known deterministic

algorithms.

• In Chapter 3, we describe Edmonds and Pruhs randomized algorithm in detail. We then,

present our approach and our improved randomized algorithmfor cake cutting and prove the

correctness of our algorithm.

• In Chapter 4, we outline our initial approaches that in the end did not work.

• Finally, in Chapter 5, we summarize our results and provide directions for future work.

• In Appendix A, we provide the proofs given by Edmonds and Pruhs in [5]. These proofs are

given as they were presented in their paper.
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2 Preliminaries

In this chapter we first give a formal definition of the cake cutting problem in Section 2.1. We

then provide some observations or key properties of the problem. In Section 2.2, we give a brief

overview of the balls and bins problem and its connection with the cake cutting problem. In

Section 2.3 we briefly describe two deterministic algorithms for cake cutting.

2.1 Cake Cutting Problem

The cake cutting protocol involves division of a resource among players who measure the resource

in their own way. These satisfaction measures are unknown tothe protocol, but the protocol can

learn about these by asking questions to the players. The goal of the protocol is to make everyone

happyby asking as few questions as possible. In the next section weformally state the cake cutting

problem and also define the notion ofhappiness.

We denote the resource byC, and denoten players by1, . . . , n.

• We assume thatC can be divided indefinitely. We model it by the interval[0, 1] and call it a

cake.

• Every playerp has her own private value functionVp on C. It is a function from the power
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set ofC to [0, 1], i.e., it takes any subsetX ⊆ C as input and returns the value of that subset.

It satisfies the following properties.

– Additive: for all disjoint subsetsX, X ′ ⊆ C, Vp(X ∪ X ′) = Vp(X) + Vp(X
′).

– Divisible: for everyX ⊆ C and0 ≤ λ ≤ 1, there existX ′ ⊆ X with Vp(X
′) =

λ · Vp(X).

– Normalized:Vp(C) = 1.

• All the Vp’s are unknown to the protocol, but the protocol can learn about them by asking

two kinds of queries to players:

– Value query,V alp(x1, x2): this valuation query to playerp returns a value of the interval

[x1, x2] of the cake for playerp. That is,V alp(x1, x2) = Vp([x1, x2]).

– Cut query,Cutp(x1, α): this cut query to playerp returnsx2 such that the interval

[x1, x2] has valueα to playerp. That is,Vp([x1, x2]) = α. If there is no such point then

it returns−1.

• The aim of the protocol is to divide the cake intoC1, C2, . . . , Cn pieces such that

– PieceCp is given to playerp.

– Pieces must be disjoint, that is,Cp andCq must be disjoint for all playersp 6= q.

– Every player ishappy.

• Happiness of the player: There are many ways to define happiness, but two important ones

are:

9



– c-fair: if every playerp receivesCp such thatVp(Cp) ≥
1
cn

.

– Envy-free: if every playerp receivesCp such thatVp(Cp) ≥ Vp(Cq) for every pieceCq

which is given to playerq. Every player thinks that she got the best piece of the cake.

• Optimization: The protocol has to ask as few queries as possible. The protocol will be

charged for queries, any other computation is free.

Some important observations of the cake cutting problem are:

• Divisibility of Vp guarantees that value of the singleton point is zero (i.e. value of the[x, x]

is zero for anyx ∈ [0, 1]). This makes this problem completely different from the allocation

of indivisible resource amongn players. One consequence of this is that the corresponding

open and closed subintervals of[0, 1] have the same value to any playerp.

• If c = 1 in c-fair then we say that it isexactfair. Otherwise we say that it isapproximatefair.

• We can always divide the cake intom pieces for some playerp such that the value of each

piece is 1
m

. This can be achieved by asking cut queriesCutp(0,
i
m

) = xi for 1 ≤ i ≤ m − 1

to p. Them pieces will then be[0, x1), [x1, x2), . . . [xm−1, 1]. If we have to find any random

piece [a, b] out of thesem pieces then it can be found in two cut queries. For this, we

first generate any randomi ∈ {1, 2, . . . , m}, and ask cut queriesCutp(0,
i−1
m

) = a and

Cutp(0,
i
m

) = b.

In this thesis, we will focus onc-fair happiness criteria. In the next section we describe the

connection between cake cutting problem and the balls and bins problem.
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2.2 Balls and Bins Problem

In this section we give a brief overview of the balls and bins problem and its connection with

the cake cutting problem. In the balls and bins problem, we throw n balls inton distinct bins.

Thus each ball is placed in a bin chosen independently and uniformly at random. We are then

interested in finding the maximum number of balls in any bin. There are various results known for

the problem. (See, for example [8], for a nice overview). Some of the known results are given

below.

Theorem 1 ([9]). Assumen balls are thrown inton bins, with each ball choosing a bin indepen-

dently and uniformly at random. Then the maximum number of balls in any bin isθ( log n

log log n
) with

probabilityΩ(1 − 1
poly(n)

).

Theorem 2 ([2]). Assumen balls are thrown sequentially inton bins, each ball is placed in the

least full bin at the time of the placement, amongd bins,d ≥ 2, chosen independently and uni-

formly at random. Then after all the balls are placed, the maximum number of balls in any bin is

θ( log log n

log d
) with probabilityΩ(1 − 1

poly(n)
).

In the light of Theorem 1, we can see thatd ≥ 2 is essential in Theorem 2.

Theorem 3 ([2]). Assume each of then balls have been assigned tod bins chosen independently

and uniformly at random fromn bins. Then there is an efficient method that, after knowing all the

d balls assigned to each ball, picks one of thed bins for each player, so that maximum number of

balls in any bin isO(1) with probabilityΩ(1 − 1
poly(n)

).

Note that, in Theorem 3, we are making assignments offline, i.e., the algorithm knowsd pieces
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for every player before assigning any piece. In contrast, inTheorem 2, we are assigning online,

i.e., the algorithm has to assign a bin to thekth ball without looking at the choices for any future

balls.

2.2.1 Relation with Cake Cutting

Cake cutting is generalization of balls and bins. If every player likes cake uniformly than it is the

same as balls and bins. But if the players have different preferences then the situation is much

more complex and there is a lot more interdependence betweenevents. In this generalized setting

we proved Theorem 3. The online version of Theorem 2 for cake cutting is open.

The connection between balls and bins and uniform cake cutting is as follows. Imagine a

case where we haven players who like the cake uniformly and we divide the cake into n equal

pieces. Now if we assign players to pieces, independently and uniformly at random, then maximum

number of players assigned to any piece is same as maximum number of balls placed in any bin if

we map players to balls and cake pieces to bins. Figure 2.1 shows the balls and bins version of the

cake where each player has divided the cake into 9 equal parts. In general, players may like cake

differently (see Figure 2.2).

The generalization of Theorem 3 is proved by Edmonds and Pruhs is Lemma 4 as follows.

Lemma 4 (Balanced Allocation Lemma [5]). Let α ≥ 17 be some sufficiently large constant.

Each ofn players has a partition of the unit interval[0, 1], or cake, intoαn disjoint candidate

subintervals/pieces. Each player independently picksd′ = 2d = 4 of her pieces uniformly at

random, with replacement. Then there is an efficient method that, with probabilityΩ(1), picks one

12



of thed′ pieces for each player, so that every point on the cake is covered by at most2 players.

We improve Lemma 4 to Lemma 5 to have arbitrarily small failure probability. To achieve this

we only need to weaken it by having constant times as many cutsand twice as much overlap.

Lemma 5 (Improved Balanced Allocation Lemma).Letα ≥ 17 be some sufficiently large con-

stant. Each ofn players has a partition of the unit interval[0, 1], or cake, intoαn disjoint candidate

subintervals/pieces. Each player independently picksd′ = k×2×2d = 8k of her pieces uniformly

at random, with replacement. Then there is an efficient method that, with probabilityΩ(1 − 1
nk ),

picks one of thed′ subintervals for each player, so that every point on the cakeis covered by at

most4 players.

Removing Conflict: Once each player has one final piece, we need to divide these pieces fur-

ther so that the players have disjoint collections of cake intervals. This is done as follows. Each

player has one final contiguous piece worth1
αn

and every point of the cake is covered by at most

4 of player’s final pieces. Thesen final pieces have2n endpoints and these endpoints partition

the cake into2n pieces. Denote these byfj . For each piecefj and each playerp, the player

either wants all offj or none of it. For eachj, let Sj be the set of players wanting cake piece

fj . Some playersp may appear in more than oneSj , but we have that|Sj | ≤ 4, because every

point of the cake is covered by at most4 of player’s final pieces. For each piecefj, the players

in Sj use any fair algorithm to partitionfj between them. Each such application has complex-

ity Θ(1) since it involves onlyΘ(1) players. In the process, the value of a player’s final portion

might get reduced but we can still guarantee that value of herportion is at least 1
4αn

. Consider
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a playerp. For eachj for which p ∈ Sj, let v〈p,j〉 denote the amount she values piecefj . Note

∑
j v〈p,j〉 = Vp(∪jfj) = Vp(his final piece) = 1

αn
. When fairly dividingfj , she receives a piece of

fj with value at least
v〈p,j〉

k
. The total cake that she receives has total value

∑
j

v〈p,j〉

k
≥ 1

4αn
. Note

that unlike all previous cake cutting algorithms, this one does not guarantee contiguous portions

since a player’s final interval may be involved in many different such subintervalsfj .

Once we remove all the conflicts, each player will receive a portion worth 1
4αn

.

Independent Events: One difference between the balls and bins problem and the cake cutting

problem is the independence of certain events. Consider3 players and their valuations of cake as

shown in Figure 2.1 (which corresponds to balls and bins problem) and Figure 2.2.

Player 1
Player 2
Player 3

CAKE

Figure 2.1: Balls and bins version of cake.

Player 1
Player 2
Player 3

CAKE

Figure 2.2: Divisions of cake by players into equal number ofpieces as per their own valuations

Each player receives some piece chosen uniformly and randomly from their own partition. Let

E1 be the event that player1 overlaps with player2 andE2 be the event that player1 overlaps

with player3. These events are independent in Figure 2.1. In Figure 2.2, if eventE1 occurs then it
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is more likely that player has received her first piece and hence it is more likely thatE2 will also

occur.

2.3 Deterministic Algorithms for Cake Cutting

In this section we briefly describe two deterministic algorithms. The first algorithm is known as

the Trimming Algorithmand it was given by Banack and Knaster [14]. The second algorithm is

known as theDivide and Conquer Algorithmand was given by Even and Paz [6].

First, consider a simple scenario to understand the cake cutting problem. Alice and Bob have

been given a strawberry-chocolate cake to share. Bob suggests that he will cut the cake into two

equal pieces and then give one piece to Alice. Alice is not happy with this. This is because Alice

prefers more strawberries and she fears that even if Bob cutsthe cake into two equal parts, he may

give her a piece that has less strawberries. Bob likes both strawberries and chocolate. For similar

reasons Bob doesn’t want Alice to cut the cake and choose a piece for him. They can call Charlie

to cut the cake and then give one piece each to both of them. However, they are unhappy with this

approach as well. Let us consider that the value of the entirecake is 1 for both Alice and Bob.

When Charlie divides the cake into two pieces A and B, it may happen that Bob feels that piece A

is worth 1
3

and piece B is worth2
3
. Alice might feel the opposite. Now if Charlie gives them the

pieces which they like1
3

then they both will be unhappy. A simple solution is that one of them cuts

the cake into two equal pieces according to him/her and the other person chooses the piece which

he/she likes more. This will ensure that both will get a pieceworth at least1
2

according to their

liking. If Bob divides the cake into two equal pieces, he is guaranteed to get exactly1
2

of the cake
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(no matter which piece Alice chooses). Since Alice likes thewhole cake by value 1, she likes one

of the pieces (two pieces of cake, cut by Bob) at least1
2
. This method is called ascut and choose

method and results in fair allocation.

Next we present two deterministic algorithms for the general case. Algorithm 1 is a iterative

algorithm and requiresO(n2) queries. It first finds out pointsci (by asking cut queries) for each

player i such that value of the piece[0, ci] is equal to1
n

for player i. Note that the value of the

piece[ci, 1] is equal ton−1
n

for playeri. If we give piece[0, cimin
] to playerimin, wherecimin

is

the minimum of all theci’s, then playerimin will be happy. Also, every other player values the

remaining cake at leastn−1
n

so the algorithm can iterate and make the other players happyas well.

An outline of the algorithm follows.

Algorithm 2 is known asDivide and Conquer Algorithmand was given by Even and Paz [6].

First, it finds the middle point of the cake for every player byasking cut queries. Then, it divides

the cake into two parts,C1 andC2. Half of the players are then happily assigned to partC1 and the

remaining players are happily assigned to partC2. By happily, we mean that players are guaranteed

that they will receive a fair piece from the assigned part. Anoutline of the algorithm follows. The

query complexity of Algorithm 2 isO(n log n).
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Algorithm 1 Cake Division Protocol - Trimming
Pre-cond: SetP = {1, 2, . . . , n} of n players with their own private value functionVi on the cake.

Post-cond: Division of cake into disjoint pieces[a1, b1], [a2, b2] . . . [an, bn] such

thatVi([ai, bi]) ≥
1
n

for 1 ≤ i ≤ n.

1: a=0 andQ = ∅

2: loop

3: exit when|Q| = n

4: for everyi ∈ P − Q do

5: ci = Cuti(a, 1
n
).

6: end for

7: imin= thei ∈ P − Q that minimizesci

8: [aimin
, bimin

] = [a, cimin
]

9: a = cimin

10: Q = Q + imin

11: all parts[ai, bi] for eachi ∈ P

12: end loop
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Algorithm 2 Cake Division Protocol - Divide and Conquer
Pre-cond: Cake= [a, b] and setP = {1, 2, . . . , n} of n players with their own private value

functionVi on the cake.

Post-cond: Division of cake into disjoint pieces[a1, b1], [a2, b2] . . . [an, bn] such

thatVi([ai, bi]) ≥
Vi([a,b])

n
for 1 ≤ i ≤ n.

1: if n=1 then

2: [a1, b1] = [a, b]

3: exit

4: end if

5: Let k=⌊n/2⌋.

6: for i= 1 to ndo

7: vi = Vi([a, b])

8: ci = Cutpi
(a, k·vi

n
)

9: end for

10: middle =kth highest element in{c1, c2, . . . , cn}

11: Rename first k players whoseci ≤ cmiddle as {1, 2, . . . , k} and recurse them on[a, b] =

[0, cmiddle)

12: Rename remaining players as1, 2, . . . , n − k and recurse them on[a, b] = [cmiddle, 1]
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3 Randomized Cake Cutting Protocols

In this chapter, we first present Edmonds and Pruhs randomized algorithm for cake cutting, as given

in [5], in Section 3.1. We then, present our approach and our improved randomized algorithm for

cake cutting in Section 3.2. We also prove the correctness ofour algorithm in Section 3.2. The

main result proved by us is theImproved Balanced Allocation Lemma. This lemma is used in the

design of our cake cutting protocol.

3.1 Edmonds and Pruhs Approach

Edmonds and Pruhs presented theBalanced Allocation Lemma(Lemma 4) in [5]. To prove this

lemma, they defined many new interesting concepts such asimplication graph, same-player-vee

graph, andpair path. Since our protocol makes use of these concepts, we give their definitions in

the next section for easy reference.

3.1.1 Implication Graph and Pair Paths

Let c〈p,i〉 denote theith, (i ∈ [1, αn]) candidate piece for playerp. Suppose that every player

has chosen two semifinal piecesa〈p,0〉 and a〈p,1〉 (in fact we choose these semifinal pieces for

every player from thed′ pieces chosen independently for every player). We can then construct the
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implication graph as defined below.

Definition 6. Implication Graph: The vertices of the implication graphIG are the2n pieces

a〈p,r〉, 1 ≤ p ≤ n and0 ≤ r ≤ 1. If piecea〈p,r〉 intersects piecea〈q,s〉, then there is a directed edge

from piecea〈p,r〉 to piecea〈q,1−s〉 and similarly froma〈q,s〉 to a〈p,1−r〉.

The intuition behind the above definition is that if a playerp getsa〈p,r〉 as her final piece, then

playerq must get piecea〈q,1−s〉 if p’s andq’s pieces are not to overlap. Similarly ifq getsa〈q,s〉,

thenp must geta〈p,1−r〉. As an example, Figure 3.1 gives a subset of the semifinal pieces selected

from the candidate pieces. The corresponding implication graph is also given in Figure 3.1.

Definition 7. Pair Path: A pair path in an implication graph is a directed path betweentwo pieces

for one player.

In Figure 3.1, there are two pair paths of length three from the first player’s left semifinal piece

to her right and two pair paths of length two from the fourth player’s left semifinal piece to her

right. Two such pair paths from the implication graph in Figure 3.1 are shown in Figure 3.2.

Note that such paths are problematic because they effectively imply that if the first player gets

her left semifinal piece as his final piece then she must get herright piece too. Edmonds and Pruhs

prove that if the implication graphIG does not contain pair paths then the following algorithm

selects a final piece for each player in such a way that these final pieces are disjoint.

Final Piece Selection Algorithm: We repeatedly pick an arbitrary playerp that has not selected
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Figure 3.1: Players’ two selected pieces and correspondingimplication graph.
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Figure 3.2: Pair Paths.

a final piece. We pick the piecea〈p,0〉 as the final piece forp. Further, we pick as final pieces all

those pieces inIG that are reachable froma〈p,0〉 in IG.

Lemma 8. If an implication graphIG of the semifinal pieces does not contain a pair path, then
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the Final Piece Selection Algorithm selects a final piece foreach player and these final pieces are

disjoint. (See Section A.1 for a proof of this lemma.)

3.1.2 Two Types of Pair Paths

They gave a lemma to compute the probability of having a pair path in an implication graph. First,

they observed the vital difference between pair paths of length two and pair paths of length three

or more. Note that a pair path occurs when there is aveeamong the semifinal pieces. They defined

a veeto consist of a triple of pieces, onecenterpiece and twobasepieces, with the property that

the center piece intersects both of the base two pieces. For example, see the three left most pieces

in Figure 3.1. To understand the connection between pair paths and vees see Figure 3.3. Figure

<p , 1− r >a <p , 1− r >a <p , 1− r >a <p , 1− r >a <p , 1− r >a

<p , r >a <p , r >a <p , r >a <p , r >a <p , r >a
o 

o o 

o 1

1

2

2

3

3

4

4

1 3 4

1

2

2 3 4

Figure 3.3: The dotted edges are between semifinal pieces that overlap. The solid directed edges

are the resulting edges in the implication graph.

shows a pair path of length5 from a〈p0,r0〉 to a〈p0,1−r0〉. For this pair path to exist inIG, we need

the vee formed bya〈p0,r0〉, a〈p1,1−r1〉 anda〈p4,r4〉 among semifinal pieces. We also need the directed

edges
〈
a〈p1,r1〉, a〈p2,r2〉

〉
,
〈
a〈p2,r2〉, a〈p3,r3〉

〉
and

〈
a〈p3,r3〉, a〈p4,r4〉

〉
in the implication graphIG.
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They proved the following lemma that bounds the expected number of vees in the implication

graph.

Lemma 9. If each player only chooses 2 semifinal pieces then the expected number of vees inIG

can be as high asΘ(n2), which would be disastrous for us. However, if two brackets of d = 2

pieces are chosen and these are narrowed down to two semifinalpiece then the expected number

of vees inIG is at most16d3

α2 n. (See Section A.2 for a proof of this lemma.)

Using Lemma 9 they proved the following lemma that bounds theprobability of implication

graph having pair paths of length three or more.

Lemma 10. The probability that the implication graphIG contains a pair path of length at least

three is at most 32d5

α2(α−4d2)
. (See Section A.3 for a proof of this lemma.)

A pair path of length two occurs if and only if the implicationgraph contains asame-player-

vee. A same-player-veeis a vee where both of the base pieces belong to the same player. That is,

there is a center piecea〈p,r〉 and two basesa〈q,0〉 anda〈q,1〉. For example, see piecesa〈4,0〉, a〈2,0〉 and

a〈2,1〉 in Figure 3.1.

To get around the problem of same-player-vees, they introduced thesame-player-vee graph.

Definition 11. Same-player-vee Graph:The vertices of the same-player-vee graphSG are then

playersp, 1 ≤ p ≤ n. If playerp and playerq are involved in same-player-vee with playerp in the

center then there is a directed edge fromp to q.

Then they proved the following lemma to partition the players into two groups such that there

is no same-player-vee involving two players in the same partition.
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Lemma 12. The probability that the same-player-vee graph is notw = 2 colourable is at most

16d3

α3 + 8d2

α2 . (See Section A.4 for a proof of this lemma.)

They proved Lemma 12 by bounding the probability of same-player-vee graph having a path

of length two. Note that if the same-player-vee graph does not have a path of length two then we

can colour the graph by2 colours such that ifp andq have an edge between them then they receive

different colours. If a node of the same-player-vee graph isat the head of a directed edge then

colour it red, if at the tail, blue, and otherwise red. A node is only forced to be both red and blue if

there is a directed path of length two in the graph.

3.1.3 Balanced Allocation Algorithm

Then they gave following algorithm which can be used as an efficient method mentioned in the

Balanced Allocation Lemma:

• Step 1: Independently, for each playerp ∈ [1, n] and eachr ∈ [0, 1], randomly choosed = 2

of the candidate piecesc〈p,i〉 to be in the quarterfinal bracketA〈p,r〉.

• Step 2: In each quarterfinal bracketA〈p,r〉, pick as the semifinal piecea〈p,r〉, the piece that

intersects the fewest other candidate piecesc〈q,j〉. If we are unlucky and the Implication

Graph contains a pair path of length greater than or equal to 3, then halt(Lemma 10).

• Step 3: Construct and vertex colour the same-player-vee graph using the greedy colouring

algorithm using at mostw = 2 colours. This is easy if the graph does not have paths of

length two or more (Lemma 12). LetSh be the subgraph of the implication graph containing

only those players colouredh. This ensures that Implication Graph restricted toSh contains
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no pair paths of length 2.

• Step 4:For eachSh, pick the final piece for each player involved inSh by applying the Final

Piece Selection Algorithm toSh. Because the Implication Graph onSh contains no pair

paths of any length, this algorithm ensures that these final pieces for each player are disjoint,

i.e. for any point in the cake, the final piece of at most one player fromSh covers this point.

• Step 5: Conclude that for any point in the cake, the final pieces of at mostw = 2 players

cover this point.

3.2 Our Approach

In this Section we present our work and the improved randomized algorithm. From the above

discussions, it can be observed that the Balanced Allocation Algorithm does not fail if there are no

players that arebadaccording to the following definition.

Definition 13. Bad Player: A playerp is bad if

• a pair path of length three or more starting withp exists in the implication graph, or

• a path of length two or more starting withp exists in the same-player-vee graph.

If we remove all the bad players with corresponding edges from the implication graph and

same-player-graph before Step3 of the Balanced Allocation Algorithm then it will always produce

disjoint final pieces.

Run: A run of our algorithm is same as the Balance Allocation Algorithm, except that in our case
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it removes all the bad players from implication graph and same-player-vee graph before Step3 of

the Balanced Allocation Algorithm.

The only problem with the above definition of run is that bad players do not get any portion

of the cake. Later we will see in Lemma 17 that probability that some playerp is bad in a run is

at mostO(1). Therefore, the probability that a run will not give pieces to every player is at least

O(1). However, if we execute two independent runs then probability that both runs will delete the

same playerp is at mostO( 1
n
) (see Lemma 18).

Execution: We define an execution as a following sequence of steps:

1. Independently start two runs,run1 andrun2 upto formation of implication graph and same-

player-vee graph.

2. If some playerp is bad in both the runs then halt the execution.

3. If some player playerp is good (i.e.p is not bad) in both the runs then delete it fromrun1.

4. Finish both the runs.

Note that an execution will halt only if there is a player thatis bad in both the runs. The

probability that some player is bad in both of the two independent runs is at mostO( 1
n
) (see

Lemma 18). In each run, number of players wanting any point ofthe cake is at most2. Hence,

amongst the two runs, each point of the cake will be shared by at most4 players in the execution.

We still have to make the final pieces disjoint. We do this by removing conflict among pieces (See

Section 2.2.1). We present our protocol for the cake cuttingproblem as follows:
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Protocol:

• Executek independent executions.

• If all executions are unsuccessful then fail otherwise select the first successful execution.

• Assign the final pieces according to this execution. Every player receives a final piece worth

1
αn

.

• Remove conflicts among final pieces. Each player receives portion worth 1
4αn

.

Note that protocol will fail only if allk executions halt and this happens with probability at

mostO( 1
nk ) (see Lemma 18). So our protocol succeeds with high probability.

3.2.1 Probability of Player Being Bad

We observe the following fact from Lemma 28(see Section A.2).

Lemma 14. The expected number of vees with any particular playerp in the center in the impli-

cation graphIG is at most16d3

α2 .

By using Lemma 14 we proved the following lemma.

Lemma 15. The probability that the implication graphIG contains a pair path of length at least

three starting with playerp is at most 32d5

α2(α−4d2)
· 1

n
.

Proof. This proof is constructed by making small changes in the proof of Lemma 31. Consider a

playerp and letVp be the set of all 3-tuples representing all possible vees inIG with p in the center

of the vee and forV ∈ Vp, let Pz(V ) be the set of all possible pair paths of lengthz that include

the veeV .
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Figure 3.4: Flowchart of Our Protocol.
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Consider a simple pair pathP =
〈
a〈p0,r0〉, a〈p1,r1〉, . . . a〈pz−1,rz−1〉, a〈p0,1−r0〉

〉
of lengthz ≥ 3.

Let V be the vee with centera〈p0,r0〉 and basesa〈p1,1−r1〉 anda〈pz−1,rz−1〉. For i ∈ [1, z−2], let

Ii ∈ IG be the event that semifinal piecesa〈pi,ri〉 anda〈pi+1,1−ri+1〉 intersect.

The probability thatIG contains a pair path of length at least three starting with playerp is at

most

n∑

z=3

∑

V ∈Vp

∑

P∈Pz(V )

Prob[P ∈ IG]

≤

n∑

z=3

∑

V ∈Vp

∑

P∈Pz(V )

Prob[V ∈ IG] · Πz−2
i=1 Prob[Ii ∈ IG] (3.1)

≤

n∑

z=3

∑

V ∈Vp

Prob[V ∈ IG]
∑

P∈Pz(V )

(
2d2

αn

)z−2

(3.2)

≤
n∑

z=3

∑

V ∈Vp

Prob[V ∈ IG]

((
2n

z − 3

)
(z − 3)!

)(
2d2

αn

)z−2

(3.3)

≤
n∑

z=3

(2n)z−3

(
2d2

αn

)z−2 ∑

V ∈Vp

Prob[V ∈ IG]

≤
n∑

z=3

(2n)z−3

(
2d2

αn

)z−2(
16d3

α2

)
(3.4)

≤
8d3

α2n

n∑

z=3

(
4d2

α

)z−2

≤
8d3

α2n

(
4d2

α

)(
1

1 − 4d2/α

)

=
32d5

α2(α − 4d2)
·
1

n

The inequality in line 3.1 follows from Lemma 30 (see SectionA.3) and the inequality in line

3.2 follows from Lemma 27(see Section A.2). The inequality in line 3.3 holds since there arez-3

pieces inP that are not part of the veeV . The inequality in line 3.4 follows from Lemma 14.
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Now we show that, probability that same-player-vee graphSG has a path of length two starting

with playerp is at mostO( 1
n
). Recall that we put the directed edge fromp to q in the same-player-

vee graph if one of playerp’s two semifinal pieces, namelya〈p,0〉 or a〈p,1〉, overlap with both of

player q’s two semifinal pieces, namelya〈q,0〉 anda〈q,1〉. Hence, a path of length 2 consists of

semi-final piecesa〈p1,r1〉, a〈p2,r2〉, a〈p2,1−r2〉, a〈p3,0〉 anda〈p3,1〉 for three playersp1, p2, andp3, where

botha〈p2,r2〉 anda〈p2,1−r2〉 overlap witha〈p1,r1〉, and botha〈p3,0〉 anda〈p3,1〉 overlap witha〈p2,r2〉. We

compute the probability of such paths by modifying the proofgiven in Lemma 37(see Section A.3).

Lemma 16. Consider a playerp1. The probability that there are semi-final piecesa〈p1,r1〉, a〈p2,r2〉,

a〈p2,1−r2〉, a〈p3,0〉 and a〈p3,1〉 for three playersp1, p2, and p3, where botha〈p2,r2〉 and a〈p2,1−r2〉

overlap witha〈p1,r1〉, and botha〈p3,0〉 anda〈p3,1〉 overlap witha〈p2,r2〉 is at most16d3

α3 + 8d2

α2 .

Proof. Let ℓq,i be the number of candidate pieces of the other players that overlap with the can-

didate piecec〈q,i〉 of playerq. Without loss of generality, let us renumberq’s candidate pieces in

non-increasing order byℓ〈q,i〉, that is,ℓ〈q,i〉 ≥ ℓ〈q,i+1〉.

Let R〈p,i,r〉 be the event that the candidatec〈p,i〉 is selected to be the semifinal piecea〈p,r〉. It

is proved in Lemma 28 (see Section A.2) thatProb[R〈p,i,r〉] = d · ( 1
αn

) · ( i−1
αn

)d−1. There areαn
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choices fora〈p1,r1〉, Thus by Lemma 36 (see Section A.4), our desired probabilityis at most

αn∑

i=1

d

αn

(
i − 1

αn

)d−1 4d2ℓ2
〈p1,i〉

(αn)3
·

[
1 +

αn

dℓ〈p1,i〉

]

≤
4d3

(αn)d+3

αn∑

i=1

ℓ2
〈p1,i〉(i − 1)d−1 +

4d2

(αn)d+2

αn∑

i=1

ℓ〈p1,i〉(i − 1)d−1

≤
4d3

(αn)d+3
(αn)d−2(2αn2)2 +

4d2

(αn)d+2

αn∑

i=1

ℓ〈p1,i〉(i − 1)d−1

≤
4d3

(αn)d+3
(αn)d−2(2αn2)2 +

4d2

(αn)d+2
(αn)d

(
2αn2

αn

)

=

(
16d3

α3
+

8d2

α2

)
·
1

n

The second inequality follows from Lemma 29 (see Section A.4). The third inequality is due to

the fact that since theℓ〈p1,i〉’s are non-increasing, the sum is obviously maximized if each ℓ〈p1,i〉 is

equal. That is, eachℓ〈p1,i〉 = 2αn2

αn
.

Lemma 17. If we build the implication graphIG and same-player-veeSG graph then the proba-

bility that a playerp is bad is at mostO( 1
n
).

Proof. Recall that a playerp is bad if there exists a pair path of length three or more starting with

it in IG or a path of length two starting with it inSG, i.e.,

Prob[player p is bad]

≤ Prob[player p is bad in IG] + Prob[player p is bad in SG]

≤
32d5

α2(α − 4d2)
·

1

n
+

(
16d3

α3
+

8d2

α2

)
·
1

n
(3.5)

≤
32d6

α2
·
1

n

The inequality in line 3.5 above follows from Lemma 15 and Lemma 16.
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Lemma 18. If we build two independent pairs(IG1, SG1) and (IG2, SG2) of the implication

graph and the same-player-vee graph then probability that some playerp is bad in both the pairs

is at mostO( 1
n
).

Proof.

Prob[some player p is in (IG1, SG1) and (IG2, SG2)]

≤

n∑

p=1

Prob[player p is bad in (IG1, SG1) and (IG2, SG2)]

≤

n∑

p=1

Prob[player p is bad in (IG1, SG1)] · Prob[player p is bad in (IG1, SG1)]

≤
n∑

p=1

(
32d6

α2
·
1

n
)2 (3.6)

≤
1024d12

α4
·
1

n

The inequality in line 3.6 follows from Lemma 17.
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4 Initial Unsuccessful Approach

In this chapter we briefly describe our initial attempts in coming up with an improved randomized

protocol for cake cutting. We needed some structure that appears in the implication graphIG with

low probability and if it does not appear then we can solve ourproblem. Edmonds and Pruhs used

pair pathas their structure. If we carefully observe their Final Piece Selection Algorithm then we

can find that pair path in one direction (i.e. having pair pathfrom a〈p,r〉 to a〈p,1−r〉 but not from

a〈p,1−r〉 to a〈p,r〉) is not really problematic. It just implies that we should select a〈p,1−r〉 for player

p. We found that as long as we have pair paths in one direction only, we can solve the problem.

However, pair paths in both directions will be problematic.

We can correlate this with the 2-SAT problem. In the 2-SAT problem we want to check whether

given 2-SAT formulaF is satisfiable or not. To solve this problem we build a directed graphG

from the given 2-SAT formulaF . For each variablexi, we put two verticesxi andx̄i (not ofxi) in

G. The clauses then correspond to edges. Clause(x∨ y) gives edges from̄x to y andȳ to x. If x̄ is

true theny must be true to make clause(x∨ y) true. GraphG has the property thatF is satisfiable

if and only if there is no directed cycle inG containingx andx̄ for some variablex. We try to find

out the satisfying assignment forF by selecting one of the vertexxi or x̄i (setting variable1 or 0

respectively). Note that if we selectxi then we should not select̄xi or vice versa. This procedure
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to select the vertices is almost similar to the Final Piece Selection Algorithm except that it works

even if we have path fromxi to x̄i but not the other way around for somei. So the procedure fails

only if G contains a directed cycle.

Pair Cycle:A pair cycle in the implication graph is a directed cycle containing both semifinal

piecesa〈p,0〉 anda〈p,1〉 for some playerp. Note that a pair cycle is same as having a directed path

in both directions, froma〈p,0〉 to a〈p,1〉 anda〈p,1〉 to a〈p,0〉 for some playerp. For example, see Fig-

ure 4.1. It shows a pair cycle which contains both the semifinal pieces of player1. Note that it has

two pair paths.

a<6,1>   

a<5,1>   

a<4,1>   

a<4,0>   

a<5,0>   

a<6,0>   

a<3,1>   

a<2,0>   

a<1,0>   

a<3,0>   

a<2,1>   

a<1,1>   

Figure 4.1: The dotted edges are between semifinal pieces that overlap. The solid directed edges

are the resulting edges in the implication graph

Next we prove that if the implication graphIG does not contain pair cycle then the following
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algorithm selects a final piece for each player in such a way that these final pieces are disjoint.

Modified Final Piece Selection Algorithm: We repeatedly pick an arbitrary playerp that has

not selected a final piece. If there is no pair path froma〈p,0〉 to a〈p,1〉 then we select the piece

a〈p,0〉 as the final piece forp. Otherwise we select the piecea〈p,1〉 as the final piece forp. Further,

we pick as final pieces all those pieces inIG that are reachable from the selected piecea〈p,r〉 in IG.

Lemma 19. If an implication graphIG of the semifinal pieces does not contain a pair cycle, then

the Modified Final Piece Selection Algorithm selects a final piece for each player and these final

pieces are disjoint.

Proof. Consider an iteration that starts by assigning a piece to player p. There are two possible

cases depending on the piece assigned top:

• Case 1: Assigned piece isa〈p,0〉. This happens only when there is no directed path from

a〈p,0〉 to a〈p,1〉. This iteration will force the assignment of at most one piece to any player

because if there is a playerq such that botha〈q,0〉 anda〈q,1〉 are reachable froma〈p,1〉 then by

Lemma 24 there will be a directed path froma〈p,0〉 to a〈p,1〉.

• Case 2:Assigned piece isa〈p,1〉. This happens only when there is a directed path froma〈p,0〉

to a〈p,1〉. This iteration will force the assignment of at most one piece to any player because

if there is playerq such that botha〈q,0〉 anda〈q,1〉 are reachable froma〈p,1〉 then by Lemma 24

there will be directed path froma〈p,1〉 to a〈p,0〉. In other words we will have a pair cycle in

IG.
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Similarly, if this same iteration forces playerq to be assigned say toa〈q,r〉, then we need to prove

that she has not already been assigneda〈q,1−r〉 during an earlier iteration. If assigninga〈p,s〉 forces

a〈q,r〉, then there is a path from the one to the other. Hence, by Lemma23, there is a path from

a〈q,1−r〉 to a〈p,1−s〉. Hence, ifa〈q,1−r〉 had been previously assigned, then playerp would have been

forced toa〈p,1−s〉 and in this casep would not be involved in this current iteration. The disjointness

of the final pieces follows from the definition of the implication graph.

4.1 Probability of Pair Cycle

Having solved the problem when there are no pair cycles, whatremains is to prove that pair cycles

do not occur with high probability in the implication graphIG. We anticipated this probability to

be less thanO( 1
n
). To understand our anticipation, let us assume that edges inIG occur indepen-

dently and with probabilityO( 1
αn

). Let us calculate the probability of pair paths inIG. Any pair

path of lengthz ≥ 2 requiresz edges andz + 1 vertices but onlyz players. We get the following

probability calculation for implication graph having pairpaths.

Prob[IG contain pair paths]

≤

n∑

z=2

(
n

z

)(
1

αn

)z

≤

n∑

z=2

nz

(
1

αn

)z

≤

n∑

z=2

1

(α)z

≤
1

α(α − 1)
.

Now if we consider any pair cycle of lengthz ≥ 4 then it requiresz edges,z vertices and at
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mostz − 1 players. Then probability that implication graph has pair cycle is given by,

Prob[IG contain pair cycles]

≤

n∑

z=4

(
n

z − 1

)(
1

αn

)z

≤

n∑

z=2

nz−1

(
1

αn

)z

≤
1

n

n∑

z=2

1

(α)z

≤ O(
1

n
).

The only problem with the above calculation is that we have assumed that edges occur inde-

pendently, but we know that edges do not occur independently(recall the cake distribution given

in Figure 2.2). Nevertheless, Edmonds and Pruhs were able toprove the results for pair path.

Motivated from their result of Lemma 31 we made the followingconjecture.

Conjecture 20. The probability that for some playerp, we have pair paths of length at least three

froma〈p,0〉 to a〈p,1〉 and froma〈p,1〉 to a〈p,0〉 in the implication graphIG is at mostO( 1
n
).

Recall that pair cycle requires that at least one player’s both semifinal pieces have to be present

in it. To prove Conjecture 20, we started with the case where exactly one player’s both semifinal

pieces are present in the pair cycle. This case looks simple and our intuition said that the probability

of having more than one player repeating in a pair cycle is less than the case when exactly one

player repeats. More repeats will reduce the number of distinct players in a pair cycle but the

number of edges will remain the same. We were able to prove theprobability calculation for this

case.
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Lemma 21. The probability that for some playerp we have pair paths of length at least three from

a〈p,0〉 to a〈p,1〉 and froma〈p,1〉 to a〈p,0〉 in the implication graphIG and except playerp there is no

common player involved in both the pair paths, is at mostO( 1
n
).

Proof. We will provide highlights of the proof. Consider a simple pair paths

P0 =
〈
a〈p,0〉, a〈p1,r1〉, . . . a〈pz0−1,rz0−1〉, a〈p,1〉

〉
of lengthz0 ≥ 3 and

P1 =
〈
a〈p,1〉, a〈q1,r1〉, . . . a〈qz1−1,rz1−1〉, a〈p,0〉

〉
of lengthz1 ≥ 3.

Let V0 be the vee with centera〈p,0〉 and basesa〈p1,1−r1〉 anda〈pz0−1,rz0−1〉, andV1 be the vee with

centera〈p,1〉 and basesa〈q1,1−r1〉 anda〈qz1−1,rz1−1〉. For i ∈ [1, z0−2], let I0i
∈ IG be the event that

semifinal piecesa〈pi,ri〉 anda〈pi+1,1−ri+1〉 intersect. Forj ∈ [1, z1−2], let I1j
∈ IG be the event

that semifinal piecesa〈qj ,rj〉 anda〈qj+1,1−rj+1〉 intersect. Since both the pair pathP0 andP1 have

all different players except playerp, eventI0i
andI1j

are independent for all possible values ofi

andj. Playerp contributes to both the pair paths but for the probability computation it is counted

only once. We can slightly modify the proof of Lemma 31 and getthe desired result. Instead of

considering setV of all possible vees, we consider the setV ′ of possible pairs(V0, V1) of vees

where center piece ofV0 andV1 is a〈p,0〉 anda〈p,1〉 respectively for some playerp.

Note that above lemma consider the case when length of both pair paths is at least three and

only one player repeats. In general, more than one player canrepeat in a pair cycle and pair path

can be of length two in one of the direction or both. Recall that whenever we have pair path of

length two, we get self-vee among semifinal pieces. We provedfollowing lemma to handle the

case when one of the pair path has length two.

Lemma 22. Let α ≥ 10 be some sufficiently large constant. Each ofn players has a partition
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of the unit interval[0, 1], or cake, intoαn disjoint candidate subintervals/pieces. Each player

independently picksd′ = 3d = 6 of her pieces uniformly at random, with replacement. Then there

is an efficient method that, with probability at leastΩ(1 − 1
n
), chooses three of thed′ pieces for

each player and then narrow down two pieces for each player, so that same-player-vee graph build

from these chosen pieces can be coloured by at most two colour.

Proof. We will provide highlights of the proof. Same-player-vee graph will have path of length

two starting with playerp if one of the semifinal piecea〈p,r〉 of playerp overlaps with both the

semifinal piecesa〈p1,0〉 anda〈p1,1〉 of some playerp1 and one of the piecea〈p1,r1〉 overlaps with both

the semifinal piecesa〈p2,0〉 anda〈p2,1〉 of some playerp2. So piecea〈p,r〉 is not good for playerp. We

proved that probability of any two pieces (out of three chosen pieces) being bad for some playerp

is at mostO( 1
n
). This is done by modifying the proof given for Lemma 16. So we can select with

probability at leastΩ(1 − 1
n
) two pieces for each player such that same-player-vee graph does not

have path of length two.

Then to handle the case where more than one player can repeat in pair cycle, we tried many

proof techniques and then found the following counterexample.

Counterexample:

Figure 4.2 shows the counterexample to Conjecture 20. Corresponding cake distribution is

shown in Figure 4.3. It also shows the semifinal pieces received by the corresponding players.

Note that once player1 and player2 select their leftmost piece as the semifinal piece, with constant

probability we get the dashed square shown in Figure 4.2. Theprobability that both player1 and
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a

a

a

a

a

a

a<4,1>   

a

<1,0>   

<2,0>   

<3,0>   

<4,0>   

<2,1>   

<1,1>   

<3,1>   

Figure 4.2: The dotted edges are between semifinal pieces that overlap. The solid directed edges

are the resulting edges in the implication graph.

Player 1
Player 2
Player 3

CAKE

Player 4

1

0

1

1

0

1

0

0

Figure 4.3: Cake distribution of 4 players with their selected semifinal pieces.

2 will select their leftmost piece as the semifinal piece is at leastΩ( 1
n2 ). Therefore, the probability

that we get dashed square is at leastΩ( 1
n2 ). The remaining two dashed edges can occur with

probability at leastΩ( 1
n2 ). So the probability that this particular counterexample exists is at least

Ω( 1
n4 ). Since we have at leastΩ(n4) possible choices for4 players having cake distribution shown

in Figure 4.3, probability that this sort of counterexampleexists in the implication graph is at least

Ω(1).
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5 Summary and Future Directions

In this chapter we summarize our contributions and provide directions for future work by listing

the open problems in the area of cake cutting.

Sgall and Woeginger [13] showed that every exact fair protocol (deterministic or randomized)

has complexityΩ(n log n) if every portion given to players is restricted to be a contiguous piece of

the cake. Edmonds and Pruhs [4] extended the lower bound to apply even when the protocol need to

guarantee onlyapproximate fairnessand not necessarily assign contiguous portions. They proved

that every deterministic approximate fair protocol for cake cutting has complexityΩ(n log n). They

also proved that every randomized approximate fair protocol has complexityΩ(n log n) if answers

to queries asked by protocol are approximations to actual answers.

In [5], Edmonds and Pruhs gave a randomized approximate fairprotocol of complexityO(n)

with O(1) success probability. Their protocol need not assign contiguous portions to players. We

have improved on this by giving a randomized approximate fair protocol with complexityO(n)

with high probability of success. The probability of success of our protocol isO(1 − 1
poly(n)

). An

outline of our protocol follows.

• Independently run twice, the protocol by Edmonds and Pruhs upto the formation ofimplica-

tion graphandsame-player-vee graph.
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• Delete players that arebad for the run from the corresponding graphs.

• Each run is then completed by narrowing down to one final piecefor every player in the run.

• Merge results from the two runs. This results into a situation where each point of the cake

has at most4 = 2 × 2 players (at most 2 players from each run) wanting it.

We also proved that it is unlikely that some player will be deleted from both the runs by proving

that the probability of existence of a bad player is less thanor equal toO( 1
n
). This implies that the

probability that our protocol will not work is alsoO( 1
n
).

One can execute the above two-run protocolk times and select the first successful execution.

This improves the probability of success because the probability that none of thek executions

would work is less than or equal toO( 1
nk ). For each of thek executions of the two-run protocol,

no point in the cake is wanted by more than4 players and since we select only one successful

execution fromk executions, the number of players sharing any point in the cake is at most4. We

get the same probability of success if we run Edmonds and Pruhs algorithmk + 1 times instead of

two times, but the number of players wanting any point of the cake could be as much as2k +2. As

with the Edmonds and Pruhs protocol, our protocol may not assign contiguous pieces to players.

There are several lines of further inquiry. One could try to determine if linear complexity is

obtainable for cake cutting if either exact fairness or contiguous portions were required for either

constant or high probability of success.

5.1 Open Problems

The open problems in the area of cake cutting are as follows.
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• A Linear randomized protocol which is fair or assigns contiguous pieces, with either constant

or high probability of success.

• Lower bound on the probability of success for linear randomized protocols.

• Let α be some large constant. Each of then players has a partition of the unit interval[0, 1],

or cake, intoαn disjoint candidate subintervals/pieces. Each player independently picksd

of her pieces uniformly at random, with replacement. Each player comes one by one. Can

we get an efficient method that, with either constant or high probability, picks one of thed

subintervals for each player, so that every point on the cakeis covered by at mostθ( log log n

log d
)

pieces ? This is the generalization of Theorem 2 for cake cutting.

43



Bibliography

[1] Y. A ZAR, (1998) On-line Load Balancing,Online Algorithms - The State of the Art, Springer,

178-195.

[2] Y. A ZAR, A. BRODER, A. KARLIN , AND E. UPFAL, (2000) Balanced Allocations, SIAM

Journal of Computing 29, 180–200.

[3] S.J. BRAMS AND A.D. TAYLOR (1996).Fair Division – From cake cutting to dispute reso-

lution. Cambridge University Press, Cambridge.

[4] J. EDMONDS AND K. PRUHS, Cake cutting really isn’t a piece of cake,Proceedings of the

17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’2006).

[5] J. EDMONDS AND K. PRUHS, Balanced Allocations of Cake,Proceedings of the 47th Annual

IEEE Symposium on Foundations of Computer Science (FOCS’2006), 623-634.

[6] S. EVEN AND A. PAZ (1984). A note on cake cutting.Discrete Applied Mathematics 7,

285–296.

44



[7] M. M AGDON-ISMAIL , C. BUSCH, AND M.S. KRISHNAMOORTHY (2003). Cake cutting is

not a piece of cake.Proceedings of the 20th Annual Symposium on Theoretical Aspects of

Computer Science (STACS’2003), LNCS 2607, Springer Verlag, 596–607.

[8] M. M ITZENMACHER, A. RICHA , AND R. SITARAMAN 200 The power of two random

choices: A survey of the techniques and results,Handbook of Randomized Computing, edi-

tors: P. Pardalos, S. Rajasekaran, and J. Rolim, Kluwer.

[9] N. JOHNSON AND S. KOTZ (1977). Urn Models and Their Application.John Wiley and Sons.

[10] S.O. KRUMKE, M. L IPMANN , W. DE PAEPE, D. POENSGEN, J. RAMBAU , L. STOUGIE,

AND G.J. WOEGINGER (2002). How to cut a cake almost fairly.Proceedings of the 13th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’2002), 263–264.

[11] J.M. ROBERTSON AND W.A. WEBB (1995). Approximating fair division with a limited

number of cuts.Journal of Combinatorial Theory, Series A 72, 340–344.

[12] J.M. ROBERTSON AND W.A. WEBB (1998).Cake-cutting algorithms: Be fair if you can.

A.K. Peters Ltd.

[13] J. SGALL AND G. J. WOEGINGER (2003). A lower bound for cake cutting. LNCS 2461,

Springer Verlag, 896–901.Proc. of the 11th Ann. European Symp. on Algorithms (ESA),

Lecture Notes in Comput. Sci. 2832, Springer, 459–469.

[14] H. STEINHAUS (1948). The problem of fair division.Econometrica 16, 101–104.

45



[15] G.J. WOEGINGER (2002). An approximation scheme for cake division with a linear num-

ber of cuts.Proc. of the 10th Ann. European Symp. on Algorithms (ESA), Lecture Notes in

Comput. Sci. 2461, Springer, 896–901.

46



A Proofs by Edmonds and Pruhs

In this section we prove the various claims that we made in theprevious section. Each subsection

can essentially be read independently of the others. Due to space limitations, some proofs are

moved to the appendix, and some of the easier proofs are omitted.

A.1 Final Piece Selection Algorithm

We show some structural properties of the implication graphimply the correctness of the Final

Piece Selection Algorithm.

Lemma 23. If there is a path inG from a〈p,r〉 to a〈q,s〉 then there must be a path froma〈q,1−s〉 to

a〈p,1−r〉 in G.

Lemma 24. If both the piecesa〈q,0〉 anda〈q,1〉 are reachable from a piecea〈p,r〉 in the implication

graphG, thenG has a pair path.

Lemma 25. If an implication graphG of the semifinal pieces does not contain a pair path, then

the Final Piece Selection Algorithm selects a final piece foreach player and these final pieces are

disjoint.
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Proof. Consider an iteration that starts by assigninga〈p,0〉 to playerp. This iteration will force the

assignment of at most one piece to any one player because by Lemma 24 there can not be a player

q such that botha〈q,0〉 anda〈q,1〉 are reachable froma〈p,0〉. Similarly, if this same iteration forces

playerq to be assigned say toa〈q,0〉, then we need to prove that he has not already been assigned

a〈q,1〉 during an earlier iteration. If assigninga〈p,0〉 forcesa〈q,0〉, then there is a path from the one

to the other. Hence, by Lemma 23, there is a path froma〈q,1〉 to a〈p,1〉. Hence, ifa〈q,1〉 had been

previously assigned, then playerp would have been forced toa〈p,1〉 and in this casep would not be

involved in this current iteration. The disjointness of thefinal pieces follows from the definition of

the implication graph.

A.2 The Number of Vees

In this subsection we show that the number of vees isO(n) with probabilityΩ(1). Recall that a

veeconsists of a triple of semifinal pieces, onecenterpiecea〈p,r〉 and twobasepiecesa〈q,s〉 and

a〈q′,s′〉, with the property that the center piece intersects both of the base two pieces.

Lemma 26. Assume thatn players have partitioned their cake intoαn pieces each. Letℓp,i be the

number of pieces of the other players that overlap with piecei of playerp. Then for any playerp,

∑αn

i=1 ℓp,i ≤ 2αn2.

Lemma 27. The probability that semifinal piecea〈p,r〉 overlaps with semifinal piecea〈q,s〉 is at most

2d2

αn
.

Lemma 28. The expected number of vee’s inG is at most16d3

α2 n.
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Proof. Consider a particular playerp. Again letℓ〈p,i〉 denote the total number of candidate pieces

overlapping theith candidate piecec〈p,i〉 of the playerp. Without loss of generality, let us renumber

p’s candidate pieces in non-increasing order byℓ〈p,i〉, that is,ℓ〈p,i〉 ≥ ℓ〈p,i+1〉.

For p ∈ [n], i ∈ [αn], and r ∈ [0, 1], let R〈p,i,r〉 be the event that the candidatec〈p,i〉 is

selected to be the semifinal piecea〈p,r〉. To understand this, let us review how this is chosen. First,

playerp randomly choosesd candidate pieces to be in his quarterfinal bracketsA〈p,r〉. Then the

semifinal piecea〈p,r〉 is chosen to be the one with the smallestℓ〈p,i〉 value or, by our ordering, the

one with the largest index. Hence, the probability ofR〈p,i,r〉 is the probability thatd indexes are

randomly selected froman indexes and the largest selected index isi. This givesProb[R〈p,i,r〉] =

d · ( 1
αn

) · ( i−1
αn

)d−1.

Let x〈p,r〉 be the number of vee’s witha〈p,r〉 as the center. There are
(

ℓ〈p,i〉

2

)
pairs of candidate

pieces that might be the two base piecesa〈q,s〉 anda〈q′,s′〉 with the center piecea〈p,r〉 = c〈p,i〉. The

probability that both of this pair are semifinal pieces is at most
(

2d
αn

)2
. Hence,E[x〈p,r〉 | R〈p,i,r〉] is

at most
(

ℓ〈p,i〉

2

) (
2d
αn

)2
≤ 2ℓ2

〈p,i〉

(
d

αn

)2
.

E[x〈p,r〉] =

αn∑

i=1

Prob[R〈p,i,r〉] · E[x〈p,r〉 | R〈p,i,r〉] ≤

αn∑

i=1

(
d

αn

)(
i − 1

αn

)d−1

· 2ℓ2
〈p,i〉

(
d

αn

)2

≤

(
2d3

(αn)d+2

)
·

αn∑

i=1

id−1ℓ2
〈p,i〉

Lemma 26 bounds that
∑αn

i=1 ℓ〈p,i〉 ≤ 2αn2 = M . The next lemma then bounds
∑m

i=1 id−1ℓ2
〈p,i〉 ≤

md−2M2.
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E[x〈p,r〉] ≤

(
2d3

(αn)d+2

)
· (αn)d−2 ·

(
2αn2

)2
≤

8d3

α2
.

By linearity of expectation, the expected number of vees over all is
∑n

p=1

∑1
r=0 E[x〈p,r〉] ≤ 2n ·

8d3

α2 .

Lemma 29. If d ≥ 2, ∀i ∈ [1, m − 1] ℓi ≥ ℓi+1 ≥ 0, and
∑m

i=1 ℓi = M , then
∑m

i=1 id−1ℓ2
i ≤

md−2M2.

Proof. Let ℓm+1 = 0, andsi = ℓi − ℓi+1 for 1 ≤ i ≤ m. Note that our constraint gives thatsi ≥ 0.

Further more,ℓi =
∑m

j=i sj andM =
∑m

i=1 ℓi =
∑m

i=1 isi. Then letti = isi so thatM =
∑m

i=1 ti.

Now using basic algebra we conclude that

m∑

i=1

id−1ℓ2
i =

m∑

i=1

id−1

(
m∑

j=i

sj

)2

=

m∑

i=1

id−1

m∑

j=i

m∑

k=i

sjsk =

m∑

j=1

m∑

k=1

sjsk

min(j,k)∑

i=1

id−1

≤
m∑

j=1

m∑

k=1

tjtk
jk

min(j, k)d ≤ md−2
m∑

j=1

m∑

k=1

tjtk = md−2

(
m∑

j=1

tj

)2

= md−2M2

A.3 The Existence of Pair Paths

In this subsection, we show that with probabilityΩ(1), the implication graph doesn’t contain a pair

path of length three of more. Recall that if the semifinal piecesa〈p,r〉 anda〈q,s〉 intersect, then there

is an directed edge in the implication graphG from a〈p,r〉 to a〈q,1−s〉 and froma〈q,s〉 to a〈p,1−r〉 and

that apair path is a directed path between the two semifinal pieces for the same player, i.e. from
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somea〈p,r〉 to a〈p,1−r〉. Note that we need to only bound the probability ofsimplepair paths (pair

paths where all the players are different except starting and ending player in the path). The next

lemma is best understood by studying Figure A.1.

<p , 1− r >a <p , 1− r >a <p , 1− r >a <p , 1− r >a <p , 1− r >a

<p , r >a <p , r >a <p , r >a <p , r >a <p , r >a
o 

o o 

o 1

1

2

2

3

3

4

4

1 3 4

1

2

2 3 4

Figure A.1: The dotted edges are between semifinal pieces that overlap. The solid directed edges

are the resulting edges in the implication graph.

Lemma 30. Consider a simple pair pathP =
〈
a〈p0,r0〉, a〈p1,r1〉, . . . a〈pk−1,rk−1〉, a〈p0,1−r0〉

〉
of length

k ≥ 3. LetV be the vee with centera〈p0,r0〉 and basesa〈p1,1−r1〉 anda〈pk−1,rk−1〉. For i ∈ [1, k−2],

let Ii ∈ G be the event that semifinal piecesa〈pi,ri〉 anda〈pi+1,1−ri+1〉 intersect. Then

Prob[P ∈ G] ≤ Prob[V ∈ G] · Πk−2
i=1Prob[Ii ∈ G]

Proof. AssumeP ∈ G. The edges froma〈p0,r0〉 to a〈p1,r1〉 and froma〈pk−1,rk−1〉 to a〈p0,1−r0〉 mean

that a〈p0,r0〉 intersect with botha〈p1,1−r1〉 anda〈pk−1,rk−1〉. Hence, the veeV occurs. The edge

from a〈pi,ri〉 to a〈pi+1,ri+1〉 means thata〈pi,ri〉 and a〈pi+1,1−ri+1〉 intersect, i.e.Ii. It follows that

Prob[P ∈ G] ≤ Prob[V & eachIi ∈ G]. What remains is to prove that the eventsV and eachIi

are independent. Whether a semifinal piece of playersp andq intersect is independent of whether
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a semifinal piece of different playersp′ andq′ intersect because these event have nothing to do

with each other. This remains true when the playersp andp′ are the same, but we are talking about

different semifinal pieces of this player, namely eventIi andIi+1 are independent. This is because

the selection of the quarterfinal pieces for the bracketA〈p,0〉 and the selection ofp’s semifinal piece

a〈p,0〉 within this bracket is independent of this process for his other semifinal piecea〈p,1〉.

Lemma 31. The probability that the implication graphG contains a pair path of length at least

three is at most 32d5

α2(α−4d2)
.

Proof. LetV be the set of all 3-tuples representing all possible vee’s inG and forV ∈ V letPk(V )

be the set of all possible pair paths of lengthk that include the veeV . The probability thatG

contains a pair path of length at least three is at most

n∑

k=3

∑

V ∈V

∑

P∈Pk(V )

Prob[P ∈ G] (A.1)

≤

n∑

k=3

∑

V ∈V

∑

P∈Pk(V )

Prob[V ∈ G] · Πk−2
i=1 Prob[Ii ∈ G] (A.2)

≤

n∑

k=3

∑

V ∈V

Prob[V ∈ G]
∑

P∈Pk(V )

(
2d2

αn

)k−2

(A.3)

(A.4)

≤

n∑

k=3

∑

V ∈V

Prob[V ∈ G]

((
2n

k − 3

)
(k − 3)!

)(
2d2

αn

)k−2

(A.5)

≤
n∑

k=3

(2n)k−3

(
2d2

αn

)k−2∑

V ∈V

Prob[V ∈ G] (A.6)

≤
n∑

k=3

(2n)k−3

(
2d2

αn

)k−2(
16d3

α2
n

)
(A.7)

≤
8d3

α2

n∑

k=3

(
4d2

α

)k−2

≤
8d3

α2

(
4d2

α

)(
1

1 − 4d2/α

)
=

32d5

α2(α − 4d2)
(A.8)
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The inequality in line A.2 follows from Lemma 30 and line A.3 from Lemma 27. The inequality

in line A.5 holds since there arek − 3 pieces inP that are not part of the veeV . The inequality in

line A.7 follows from Lemma 28.

A.4 Coloring Same-Player-Vee Graphs

In this subsection we show that with probabilityΩ(1), we can color the same-player-vee graph

with 2 colors since this graph will have no paths of lengthw = 2.

Lemma 32. The probability that the same-player-vee graph is notw = 2 colourable is at most

16d3

α3 + 8d2

α2 .

Recall that we put the directed edge〈p, q〉 in the same-player-vee graph if one of playerp’s

two semifinal pieces, namelya〈p,0〉 or a〈p,1〉, overlap with both of playerq’s two semifinal pieces,

namelya〈q,0〉 anda〈p,1〉. Hence, a path of length 2 consists of semi-final piecesa〈p1,r1〉, a〈p2,r2〉,

a〈p2,1−r2〉, a〈p3,0〉, anda〈p3,1〉 for three playersp1, p2, andp3, where botha〈p2,r2〉 anda〈p2,1−r2〉 overlap

with a〈p1,r1〉, and botha〈p3,0〉 anda〈p3,1〉 overlap witha〈p2,r2〉. We will consider the probability of

such paths starting backwards.

Lemma 33. Suppose we are considering a set ofℓ̂ candidate pieces for the semi-final piecesa〈p3,0〉

anda〈p3,1〉. The probability that some player gets both of his semi final pieces from this set is at

mostmin(( dbℓ
αn

)2, 1).

Consider some candidate piecec〈p1,i〉 that potentially might bea〈p1,r1〉. Let ℓ〈p1,i〉 denote the

number of other candidate pieces of overlapping it. Consider some playerp2. Let c〈p2,jl〉, c〈p2,jl+1〉,
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. . . , c〈p2,jr〉 be the candidate pieces of playerp2 that overlap with piecec〈p1,i〉. Let ℓ〈p2,j〉 denote the

number of other candidate pieces overlappingc〈p2,j〉. Consider some playerp3. Defineℓ〈p2,j,p3〉 to

be the number of playerp3’s candidate pieces that overlapc〈p2,j〉. Note that ifℓ〈p2,j,p3〉 = 1, then it is

impossible to have both of playerp3’s semi-final pieces overlapc〈p2,j〉. Hence, we can ignore player

p3 when consideringc〈p2,j〉 as beinga〈p2,r2〉 (we needa〈p3,0〉 anda〈p3,1〉 both to overlap witha〈p2,r2〉,

giving ℓ〈p2,j,p3〉 ≥ 2). Hence, definêℓ〈p2,j,p3〉 to beℓ〈p2,j,p3〉 if ℓ〈p2,j,p3〉 ≥ 2 and zero otherwise.

Define ℓ̂〈p2,j〉 =
∑

q ℓ̂〈p2,j,q〉. Note this is the number of pieces that overlapc〈p2,j〉 excluding those

pieces whose player only has one piece overlappingc〈p2,j〉.

Lemma 34. Then
∑jr−1

j=jl+1 ℓ̂〈p2,j〉 ≤ 2ℓ〈p1,i〉.

Lemma 35. Consider a candidate piecec〈p1,i〉 such that there areℓ〈p1,i〉 other candidate pieces

overlapping it and some other playerp2. The probability that there are semi-final piecesa〈p2,r2〉,

a〈p3,0〉, anda〈p3,1〉 for some playerp3, wherea〈p2,r2〉 overlaps withc〈p1,i〉, and botha〈p3,0〉 anda〈p3,1〉

overlap witha〈p2,r2〉 is at most4d
αn

·
[

dℓ〈p1,i〉

αn
+ 1
]
.

Proof. Consider a candidate piecec〈p2,j〉 that overlaps withc〈p1,i〉. The probability that candidate

piecec〈p2,j〉 is a semi-final piece for playerp2 is at most2d
αn

. By Lemma 33, the probability that

there are semi-final piecesa〈p3,0〉, anda〈p3,1〉 for some playerp3 which both overlap withc〈p2,j〉 is

at mostmin((
dbℓ〈p2,j〉

αn
)2, 1). It follows that the required probability is at most

jr∑

j=jl

2d

αn
· min




(

dℓ̂〈p2,j〉

αn

)2

, 1



 ≤
2d

αn
·



1 +




jr−1∑

j=jl+1

min




(

dℓ̂〈p2,j〉

αn

)2

, 1







+ 1



 .

By Lemma 34,
∑jr−1

j=jl+1 ℓ̂〈p2,j〉 ≤ 2ℓ〈p1,i〉. Hence, because of the quadratics in the sum, our sum is

maximized by having a feŵℓ〈p2,j〉 as big as possible. But because of themin, there is no reason to
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make âℓ〈p2,j〉 bigger thanαn
d

. Hence, the sum is maximized by setting
2dℓ〈p1,i〉

αn
of the valueŝℓ〈p2,j〉

to αn
d

and the rest to zero. This gives the result

2d

αn
·

[
1 +

[
2dℓ〈p1,i〉

αn
· min(1, 1)

]
+ 1

]
.

We will now add the requirement that playerp2’s other candidate piecea〈p2,1−r2〉 also overlaps with

c〈p1,i〉 and sum the resulting probability over all possible playersp2.

Lemma 36. Consider a candidate piecec〈p1,i〉 such that there areℓ〈p1,i〉 other candidate pieces

overlapping it. The probability that there are semi-final piecesa〈p2,r2〉, a〈p2,1−r2〉, a〈p3,0〉, anda〈p3,1〉

for two playersp2 andp3, where botha〈p2,r2〉 anda〈p2,1−r2〉 overlaps withc〈p1,i〉, and botha〈p3,0〉

anda〈p3,1〉 overlap witha〈p2,r2〉 is at most
4d2ℓ2

〈p1,i〉

(αn)3
·
[
1 + αn

dℓ〈p1,i〉

]
.

Proof. The probability that a particular candidate piecec〈p2,j〉 is playerp2’s semi-final piecea〈p2,1−r2〉

is at most d
an

. Denote the number of playerp2’s candidate piecesc〈p2,jl〉, c〈p2,jl+1〉, . . . , c〈p2,jr〉 that

overlap with piecec〈p1,i〉 to beqp2 = jr − jl +1. Because these all overlap withc〈p1,i〉, we have that

∑
p2

qp2 = ℓ〈p1,i〉. Using Lemma 35, we get that the required probability is at most

∑

p2

d

an
·qp2 ·

[
4d

αn
·

[
dℓ〈p1,i〉

αn
+ 1

]]
=

d

an
·ℓ〈p1,i〉·

[
4d

αn
·

[
dℓ〈p1,i〉

αn
+ 1

]]
=

4d2ℓ2
〈p1,i〉

(αn)3
·

[
1 +

αn

dℓ〈p1,i〉

]
.

We will now add the requirement thatc〈p1,i〉 is one of playerp1’s semi-final pieces and sum up over

all p3 candidate pieces and over all playersp3.
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Lemma 37. The probability that there are semi-final piecesa〈p1,r1〉, a〈p2,r2〉, a〈p2,1−r2〉, a〈p3,0〉, and

a〈p3,1〉 for three playersp1, p2, andp3, where botha〈p2,r2〉 anda〈p2,1−r2〉 overlap witha〈p1,r1〉, and

botha〈p3,0〉 anda〈p3,1〉 overlap witha〈p2,r2〉 is at most16d3

α3 + 8d2

α2 .

Proof. As in the proof of Lemma 28, letR〈p,i,r〉 be the event that the candidatec〈p,i〉 is selected to

be the semifinal piecea〈p,r〉. Recall thatProb[R〈p,i,r〉] = d · ( 1
αn

) · ( i−1
αn

)d−1. There aren choices

for playerp1. Thus by Lemma 36, our desired probability is at most

n

(
αn∑

i=1

d

αn

(
i − 1

αn

)d−1 4d2ℓ2
〈p1,i〉

(αn)3
·

[
1 +

αn

dℓ〈p1,i〉

])

≤ n

(
4d3

(αn)d+3

αn∑

i=1

ℓ2
〈p1,i〉(i − 1)d−1 +

4d2

(αn)d+2

αn∑

i=1

ℓ〈p1,i〉(i − 1)d−1

)

≤ n

(
4d3

(αn)d+3
(αn)d−2(2αn2)2 +

4d2

(αn)d+2

αn∑

i=1

ℓ〈p1,i〉(i − 1)d−1

)

≤ n

(
4d3

(αn)d+3
(αn)d−2(2αn2)2 +

4d2

(αn)d+2
(αn)d

(
2αn2

αn

))
=

16d3

α3
+

8d2

α2

The second inequality follows by Lemma 29. The third inequality follows from noting that, given

that theℓ〈p1,i〉’s are non increasing, the sum is obviously maximized if eachℓ〈p1,i〉 is equal. That is,

eachℓ〈p1,i〉 = 2αn2

αn
.

A.5 Computing the Probability of Failure

The probability that the total same-player-vee graph is not2-colourable is at most16d3

α3 + 8d2

α2 .

The probability that the implication graph contains a pair path of length three or more is at most

32d3

α2(α−d2)
. Thus we get that the probability that the maximum overlap ofthe final pieces is more than
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2 is at most16d3

α3 + 8d2

α2 + 32d3

α2(α−d2)
. By settingd = 2, and then settingα to be sufficiently large, one

can make this probability arbitrarily small. Hence, the probability that our caking cutting algorithm

is not at least2α-fair is at most16d3

α3 + 8d2

α2 + 32d3

α2(α−d2)
.
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