
Towards Time-Space Lower Bounds On Branching Programs

Jeff Edmonds∗ Russell Impagliazzo†

September 6, 2016

History:

• This work was done in 1993 while Jeff Edmonds was doing a post-doctorate at International Computer
Science Institute Berkeley and Russell Impagliazzo was newly at Dept. of Computer Science UCSD.

It was recompiled in Latex in 2016 with a cover page added. The originals were cited by Pudlak and
Sgall in Nov 1993. All but this cover page of the current document is a verbatim copy of this 1993
original. See http://www.cse.yorku.ca/∼jeff/research/spi

• A lower bound on the time space trade off for directed st-conn on a branch-
ing program is reduced to proving a lower bound on a simple ”card” game. See
http://www.cse.yorku.ca/∼jeff/research/spi/russell.comb.pdf or main.pdf Section 1.

• A lower bound on the time space trade off for some problem (not st-conn) on a branching program
is reduced to proving a lower bound on a simpler card game. Some attempts at this lower bound are
made. See http://www.cse.yorku.ca/∼jeff/research/spi/spi.comb.pdf or main.pdf Section 2.

• Pavel Pudlak and Jiri Sgall came up with an k2/5 upper bound, beating the bound that we hoped to
prove as a lower bound. This killed all our intuition about the problem.

• A more general card game was defined. It was conjectured that this game was actually hard. See
http://www.cse.yorku.ca/∼jeff/research/spi/main.pdf Section 3.

• Pavel Pudlak and Jiri Sgall came up with a log2 k upper bound to both the original and the more
general card game. This kills any hope us using this game for lower bounds on branching programs.

• We defined an even more general card game. It is still conjectured that this game is actually hard.
This game is called the Lazy Susan problem. The game is similar to the previous game, except instead
of k cards, you have k lazy susans. Each lazy susan has r ”sides” on which you can read bits. (Note
in the card game, r = 2). At each round you can look at only one side on each lazy susan and then
write on the black board. Nothing has been written about it.

∗Now at York University Toronto jeff@cse.yorku.ca
†Dept. of Computer Science UCSD, russell@cs.ucsd.edu

Towards Time-Space Lower Bounds On Branching Programs Jeff EdmondsWork
done while at International Computer Science Institute Berkeley. Now at York University Toronto
jeff@cse.yorku.ca Russell ImpagliazzoDept. of Computer Science UCSD, russell@cs.ucsd.edu Oct 1993
Abstract: Section 1: The goal is to prove a time-space tradeoff for st-conn on the branching program
model. My parity comb graph seemed to be a good graph to consider. Russell Impagliazzo suggested a
problem that seemed to characterize what was still needed to prove the result. Two steps remained. A
lower bound was needed for Russell’s problem and a reduction was needed from this problem to st-conn.
The first proved to be hard. The second proved to be easy. Below I will define Russell’s problem, give an
easier version of it, give a more complex version of it, and give a sketch of the proof that if the conjecture
about the more complex version is true, then a time-space tradeoff for st-conn on the branching program
model follows. It interesting that if the conjecture is true than a lower bound on the time-space tradeoff for
element distinctness follows as well. I have not written this up. The last section is a surprising upper bound
contradicting the conjectured lower bound for a related communication game.

Section 2: I define the n = 2 version of this communication game. Russell pointed out that the n = 2
game is similar to element distinctness. In fact, a lower bound for (a slightly more complex version of) the
n = 2 game gives a lower bound on the time-space tradeoff for element distinctness. Below are my thoughts
on this game. Included is a surprising upper bound.

Section 3: This sketch of a paper defines a more general card game and proves that a non-trivial lower
bound for this game with cheating gives non-trivial lower bound for the time-space trade off (for some
boolean function) on a branching program.

1 st-Connectivity

1.1 Russell’s Problem

Russell’s problem is defined as follows. The input consists of k vectors of l bits each. The output is∧
i∈[1..k]

⊕
j∈[0..l−1] α〈i,j〉, i.e. whether one of the vectors has odd parity. The computation model is a branch-

ing program that is broken into blocks of time. The blocks of time can be arbitrarily long. The goal is to
prove a tradeoff between the space and the number of blocks. There is however a restriction. During each
block of time the computation can access at most ǫl of the bits from each of the vectors. However, for each
vector and each time block, the computation is able to non-uniformly choose which ǫl bits to read.

The conjecture is that with S space, this computation requires at least k
S (actually k

ǫS) time blocks. The
intuition is as follows. In order to know that all k vectors have zero parity, the parity of each vector must be
computed at some point in the computation. When knowing only ǫl bits of a vector, the parity of the vector
is not known. What is needed is the parity of the ǫl bits of this vector that were read during the previous
block of time. This requires the use of one bit of memory between the blocks of time. There are only S bits
of memory. Hence k

S blocks are needed to compute the parities of all k vectors.
Such a lower bound would say nothing about the time to compute

∧
i∈[1..k]

⊕
j∈[0..l−1] α〈i,j〉. In fact, it

is trivially in linear time, constant space. Such a bound would, however, indicate an order in which the bits
must be accessed.

CK Poon, Hisao Tamaki, and I were working (without luck) on a communication game that relates to
the problem when l = 2 and S = 1. The input to the game consists of k pairs of bits (or two k bit vectors).
The question is whether or not the two vectors are the same (for each pair of two bits the parity is 0, hence
for each pair of bits, the bits are the same.) Each time step a new player is able to read either the left or the
right bit of each pair (but never both). The player then communicates one bit of information to the world.
In the end, the answer must be determined by the bits communicated. Note that if we restrict the game
further so that the players must either read the left bit of each pair or the right bit of each pair, then the
game becomes the Karchmer Wigderson universal communication game.

I think that this is a great game, because it characterizes a feature of information that intuitively should
be true. The tth player only knows half the bits and t communicated bits. How can he compare his half to
the other half unless t = k?

A lower bound of k for this communication game gives a lower bound for Russell’s game for n = 2 and
any space S. Given an algorithm to Russell’s game for n = 2 and space S. The player communicates what

is written in the S bits of memory after each time block. This depends only on what was in memory at the
beginning of the time block (which is included in the communication) and on the bits read during the time
block. The communication game requires k bits to be communicated, so Russell’s game requires k

S time
blocks.

In Section 2.3, an algorithm is proven to exist for which O
(√

k log k
)

bits are communicated. This does
not give an algorithm for Russell’s game. Because in Russell’s game what is done next can only depend on
the S bits saved, not on the entire previous communication.

The more complex game is the same except for the following. The computation is legally able to access
all but 1 bit of each vector during a single block of time. Some times the computation may read all the bits
of a vector within one block, but this is considered cheating. The amount of cheating is restricted in the
following way. Uniformally at random choose an input conditional on the fact that the parity of each vector
is 0, i.e.

∧
i∈[1..k]

⊕
j∈[0..l−1] α〈i,j〉 = 0. The branching program must be such that the probability is less than

2−S of the computation cheating on this input for more than k
2 vectors.

Conjecture 1 The number of time blocks required for the more complex version of Russell’s problem is

Ω
(

k
S

)
.

1.2 st-connectivity

Theorem 1 If Conjecture 1 is true then st-connectivity on a branching program requires

T × S
1
3 ∈ Ω

(
m

2
3 n

2
3

)
.

Proof of Theorem 1: The proof is very similar to the NNJAG result in my thesis. Hence, the following
only sketches the differences between the proofs.

1.3 Parity Comb Graphs

The family of graphs considered are the parity comb graphs. As before, a parity comb graph is composed
of a back, v1, . . . , vn, and χ teeth of length l = n

χ . Again, the variables y1, . . . , ym ∈ [1..χ] will be used to
specify which tooth each of the m connecting edges leads to. The new feature of the graph is that each
tooth, for r ∈ [1..χ], is formed from two columns of nodes u〈r,1,0〉, . . . , u〈r,l,0〉 and u〈r,1,1〉, . . . , u〈r,l,1〉. The
variables α〈r,0〉, . . . , α〈r,l−1〉 ∈ {0, 1} indicate how these nodes are connected. If α〈r,0〉 = 0, then each back

node vj for which yj = r, is connected to the left node on the top of the rth tooth by the edge
〈
vj , u〈r,1,0〉

〉
,

while if α〈r,0〉 = 1, they are connected to the right top node u〈r,1,1〉. For each k ∈ [1..l−1], if α〈r,k〉 = 0, then

two directed edges go directly down,
〈
u〈r,k,0〉, u〈r,k+1,0〉

〉
and

〈
u〈r,k,1〉, u〈r,k+1,1〉

〉
, while if α〈r,k〉 = 1, the two

directed edges cross over
〈
u〈r,k,0〉, u〈r,k+1,1〉

〉
and

〈
u〈r,k,1〉, u〈r,k+1,0〉

〉
. Finally, the right node on the bottom

of the rth tooth is connected to t with the edge
〈
u〈r,l,1〉, t

〉
. It follows that s is connected to t via the rth

tooth iff
⊕

k∈[0..l−1] α〈r,k〉 = 1. This means that st-conn =
∧

r∈[1..χ]

⊕
k∈[0..l−1] α〈r,k〉. See the figure below.

x

n
x

s

n

t

m

Figure 1: A parity comb graph

3

1.4 The Branching Program

Each node of a branching program queries an input variable, i.e. specifies one node of the input graph and
one edge label and queries to determine which node is adjacent along this edge. By querying for the end
point of the connecting edge ej , j ∈ [1..m], the branching program learns that it is connected to the node
u〈r,1,a〉 for some r ∈ [1..χ] and a ∈ [0, 1]. This implies that yj = r and α〈r,0〉 = a. When this occurs, we say
that the computation queries α〈r,0〉. Note that the branching program is not able to directly query α〈r,0〉,
but must search connecting edges ej until one is found that is attached to the rth tooth. The α〈r,k〉 for k 6= 0
are easier to query. By querying either node u〈r,k,0〉 or node u〈r,k,1〉, for r ∈ [1..χ] and k ∈ [1..l − 1], the
branching program learns the value of α〈r,k〉.

1.5 The Probability Distribution D on Parity Comb Graphs

The probability distribution D is defined by constructing parity comb graphs as follows. Randomly partition
the teeth into two equal size subsets easyteethG and hardteethG ⊆ [1..χ]. Randomly choose χ

2 of the m
connecting edges and put the associated variables yj in the set hardedgesG. Randomly attach each of these
“hard” connecting edges to one of the “hard” teeth in a one-to-one way. The set easyedgesG is defined to
contain the remaining yj variables. Independently assign each yj ∈ easyedgesG a tooth from easyteethG

chosen uniformly at random.
The variables α〈r,k〉, r ∈ [1..χ], k ∈ [0..l−1] are chosen independently at random, subject to the condition

that
⊕

k∈[0..l−1] α〈r,k〉 = 0 for each tooth.

1.6 The Definition of Progress

As before, the branching program P is broken into sub-branching programs P̂ of height h. We will say that
the amount of progress made is the number of hard teeth, i.e. r ∈ hardteethG, for which the computation
has accessed each of the variables α〈r,0〉, . . . , α〈r,l−1〉 within the same block of time.

1.7 Progress within Sub-Branching Program

The key step is to prove that a shallow sub-branching program cannot make much progress for many inputs.
Consider one of the sub-branching programs P̂ ∈ P. We will determine how much progress it makes for
every input G ∈ D (even if the computation on input G never reaches the root of P̂).

For each input G ∈ D, define CG ⊆ [1..χ] to be the set of teeth r for which the computation during the

block of time specified by P̂, on input G, accesses each of the variables α〈r,0〉, . . . , α〈r,l−1〉. The teeth have

length l and the computation by P̂ performs only h steps; therefore |CG| ≤ h
l . Let c = h

l denote this bound.

Clearly, |CG ∩ hardteethG| is the amount of progress made by the sub-branching program P̂ on input G.

Lemma 1 If h ≤ |easyteethG|
2 , then PrG∈D

[
|CG ∩ hardteethG| ≥ 2ρc

]
≤ 2−0.38ρc, where ρ = χ

m .

Proof of Lemma 1: Note that the set of teeth CG depends on the input G only as far as which computation
path γ it follows. Therefore, it is well defined to instead refer to the set Cγ . Because every input follows one

and only one computation path γ through P̂, it is sufficient to prove that for every path γ, a lot of progress
is made for very few of the inputs that follow the computation path γ. Specifically, for each path γ through

P̂, we prove that PrG∈D
[
|Cγ ∩ hardteethG| ≥ 2ρc

∣∣∣ G follows γ
]
≤ 2−0.38ρc.

Each tooth r ∈ Cγ can be thought of as a trial. The rth trial consists of choosing a random in-
put G subject to the condition that G follows the computation path γ. The trial succeeds if the rth

tooth is hard. For each trial r ∈ Cγ and each O ∈ {succeeds, fails}Cγ−{r}, let Z〈γ,r,O〉 = PrG∈D
[

r ∈
hardteethG

∣∣∣ G follows γ and satisfies O
]
, where O indicates the condition that the other trials have the

stated outcome. We will proceed to prove that for each r and each O, Z〈γ,r,O〉 ≤ χ
m = ρ.

In order to bound Z〈γ,r,O〉, fix r ∈ Cγ and the outcomes O ∈ {0, 1}Cγ−{r} for the other trials. The first step
is to understand the condition “G follows γ”. A computation path γ can be specified by stating the collection
of variables queried and their values. For example, γ = {yj = r, . . . , yj′ = r′, α〈r′′,k〉 = 0, . . . , α〈r′′′,k′〉 = 0}.

4

Because r ∈ Cγ , we know that each of the variables α〈r,0〉, . . . , α〈r,l−1〉 are queried. Recall that the branching
program is not able to directly query α〈r,0〉, but must search the connecting edges ej until one is found that

is attached to the rth tooth. Querying α〈r,0〉 means that yj = r for some j ∈ [1..m] was also queried. Hence,
the condition that “G follows γ” includes the condition that yj = r.

How does this condition by itself affect the probability that r is in hardteethG? From the definition
of hardedgesG, we know that if yj = r, then yj ∈ hardedgesG if and only if r ∈ hardteethG. This gives

us that PrG∈D
[

r ∈ hardteethG

∣∣∣ yj = r
]

= PrG∈D
[

yj ∈ hardedgesG

∣∣∣ yj = r
]
. This is equal to

PrG∈D
[

yj ∈ hardedgesG

]
, because we know that yj has some value and there is a symmetry amongst all

the possible values. Hence, telling you that yj = r gives you no information about whether yj ∈ hardedgesG.

Finally, PrG∈D
[

yj ∈ hardedgesG

]
= χ/2

m , because χ
2 of the variables y1, . . . , ym are randomly chosen to be

in hardedgesG.
What remains is to consider the additional effects of the other conditions. See my thesis for this. The

only difference is the addition of the α〈r,k〉 variables, but these are completely independent of which teeth
are hard.

1.8 Reducing to Russell’s Problem

The thesis explains how to use the bound on the amount of progress achieved in a subprogram to obtain a
bound on the total progress made. The only difference here is that the constants need to be changed by a
factor of 2 so that we bound the probability that the branching program makes progress for only half the
hard teeth instead of all the hard teeth. The lemma obtained is the following.

Lemma 2 Pr
G∈D

[
more than χ

4 progress is made for G
]

≤ 2−S .

Fix one partition of the teeth into hardteethG and easyteethG, fix one setting of the variables y1, ..., ym,
and fix one setting of the variables α〈r,0〉, . . . , α〈r,l−1〉 for each of the easy teeth r ∈ easyteethG such that

Pr
G∈D

[
more than χ

4 progress is made for G
∣∣∣ the fixed stuff

]
≤ 2−S .

Consider the branching program restricted by the fixed information. The only parts of the input re-
maining to be chosen are the values of α〈r,0〉, . . . , α〈r,l−1〉 for the χ

2 hard teeth. The output of the restricted
branching program must compute

∧
r∈hardteethG

⊕
k∈[0..l−1] α〈r,k〉. This restricted branching program solves

the more complex version of Russell’s game with k′ = χ
2 vectors each of length l. Note that making progress

in the st-conn setting is the same as cheating in Russell’s setting. The input distribution D restricted to the
fixed information is simply choosing Uniformally at random a input to Russell’s game conditional on the fact
that the parity of each vector is 0. It follows that the restricted branching program has the property that
the probability of cheating on more than k

2 vectors is less than 2−S . The space of this branching program is

no more than S and the number of time blocks is no more than T
h . In order to contradict Conjecture 1, the

number of blocks must be less than Ω
(

k
S

)
. In fact, T

h∈Ω(k
S)

, when plugging in the setting of the parameters

used in the thesis. Recall, h = χ
4 , χ = 2.77m

1
3 n

1
3 S

1
3 , and Tmax = 0.09m

2
3 n

2
3

S
1
3

. In conclusion, if there is a

branching program contradicting the time-space trade off for st-connectivity, then there is one contradicting
the block-space trade off for Russell’s problem.

1.9 Open Problems

It would be interesting to get a similar sort of result for CK Poon’s NNJAG result. The graph to consider
might be two copies of his graph laid on top of each other. For each edge 〈u, v〉 of his graph, there is a parity
variable α〈u,v〉. If α〈u,v〉 = 0, then the edge 〈u, v〉 appears in the top copy of the graph and the corresponding
edge 〈u′, v′〉 appears in the bottom copy. If α〈u,v〉 = 1, then cross over edges 〈u, v′〉 and 〈u′, v〉 are given
instead. A “pebble” on this parity graph would give both the location of the node in the original graph and
the parity of the path from s to the pebble. In the above proof, I charge only one bit for each “pebble”,
considering only the parity bit. This can not be done for a Ω

(
log2 n

)
space bound.

5

2 Element Distinctness

The goal is to prove a time-space tradeoff on the branching program model. I have a lower bound for st-
connectivity on the NNJAG model. Russell Impagliazzo suggested a problem that seemed to characterize
what was still needed to prove the same result for branching programs. In fact, I can reduce st-connectivity to
(a slightly more complex version of) Russell’s game. Below I define the n = 2 version of this communication
game. Russell pointed out that the n = 2 game is similar to element distinctness. In fact, a lower bound
for (a slightly more complex version of) the n = 2 game gives a lower bound on the time-space tradeoff for
element distinctness. Below are my thoughts on this game. Included is a surprising upper bound.

2.1 The n = 2 Communication Game

The n = 2 Communication Game is defined as follows. The input consists of k pairs of bits (or two k bit
vectors). The question is whether or not the two vectors are the same. Each time step a new player is able
to read either the left or the right bit of each pair (but never both). The player then communicates one bit
of information to the world. In the end, the answer must be determined by the bits communicated.

More formally, suppose the input is 〈u, v〉 ∈ {0, 1}2k. Based on the sequence of bits communicated so
far, the algorithm specifes a set Π ⊆ [1..k] and a set S ⊆ {0, 1}k. The player reads the jth bit of u if j ∈ Π,
otherwise he reads the jth bit of v. Denote the k bit vector that is read by Π(u, v). The player communicates
a 1 if Π(u, v) ∈ S otherwise he communicates a 0.

A story to make the game more appealing is that we have k pieces of paper, with a bit on each side. The
pages are laying on the floor. You can flip them over, but at any one point in time you can only see one side
of each page. You can make notes on your pad, but you have no memory about what you have seen before.
How many bits must you write down before you know whether each page has the same bit on both sides.

Note that if we restrict the game further so that the players must either read the left bit of each pair or
the right bit of each pair, then the game becomes the Karchmer Wigderson universal communication game.

I think that this is a great game, because it characterizes a feature of information that intuitively should
be true. The tth player only knows half the bits and t communicated bits. How can he compare his half to
the other half unless t = k?

2.2 O
(
k1/2 log1/2 k

)
Algorithm for the n = 2 Communication Game

Mike Luby helped with some of the probability calculations.

Theorem 2 There exists a O
(√

k log k
)

Algorithm for the n = 2 game.

Proof of Theorem 2: Let a, T , and T̃ be parameters to be chosen at the end. Let C1, . . . , Cka be partition
of {0, 1}k such that for each set Ci, and each pair of distinct vectors u, v ∈ Ci, the hamming distance H (u, v)
is at least a.

Aside, I am pretty sure that only ka such sets are needed to cover all of {0, 1}k. This is standard coding

theory. If anyone is sure about this let me know.

Let S1, . . . , S2T̃ be partition of {0, 1}k chosen randomly as follows. For each u ∈ {0, 1}k, randomly choose
one of the sets for it to be in. Clearly for each set Si and each vector u ∈ {0, 1}k, the probability that u ∈ Si

is 2−T̃ .
Let Π1, . . . ,ΠT ⊆ [1..k] be chosen randomly as follows. Independently, for each Πi and each j ∈ [1..k],

add j to Πi with probability 1
2 .

Given these constructs the algorithm is as follows. Let 〈u, v〉 ∈ {0, 1}2k be the input. First u is read, i.e.
Π = [1..k]. Communicate which Ci that u is contained in. Then read v, i.e. Π = ∅. One bit suffices to tell
whether u and v are in the same set. If they are in different Ci sets, then we are done: u 6= v. Otherwise,
assume that they are in the same Ci. It follows that either u = v or H (u, v) ≥ a.

The second step is to do the same for the Si sets. Specifically, which set Si that u is in and which that
v is in. Again assume that u and v are in the same set. Denote the set containing both u and v by Si.

The last step is as follows. For each Πt, communicate whether or not Πt(u, v) ∈ Si. Note that if u = v,
then Πt(u, v) = u ∈ Si. Therefore, if Πt(u, v) 6∈ Si, then u 6= v and we are done.

6

If all of these tests to prove that u 6= v fail, then assume that u = v. The total number of bits
communicated is 2a log (k) + 2T̃ + T . Hence, we might as well assume that a log (k) = T̃ = T .

Fix an input 〈u, v〉 ∈ {0, 1}2k. We need to prove that the probability that the randomly chosen deter-
ministic algorithm fails on input 〈u, v〉 is small. If u = v, the algorithm works. If u and v are in different Ci

sets or in different Si sets, the algorithm works. Therefore, assume that u 6= v, H (u, v) ≥ a, and u, v ∈ Si.
Consider the set of vectors {Π1(u, v), . . . ,ΠT (u, v)} that are read in the third step. If this set contains

fewer than T/2 vectors, then we will assume that the chosen algorithm fails on input 〈u, v〉. The probability
of this can be bound as follows. Suppose that u and v differ in a′ ≥ a places. For each of these a′ places,
Πt selects the bit in u or in the bit in v with equal probability. Each of the 2a′

of these possibilities leads
to a different vector Πt(u, v). Choosing a random Πt effectively randomly chooses one vector from the set
of 2a′

possibilities. We are selecting such a vector T times. We what to know the probability of getting
fewer then T/2 distinct vectors. If we do then there is a set of vectors Q ⊆ {0, 1}k, such that |Q| = T/2
and {Π1(u, v), . . . ,ΠT (u, v)} ⊆ Q. Fix a set Q of size T/2. Each Πt(u, v) is chosen randomly from a set of

size 2a′

and hence is in Q with probability
(

T/2

2a′

)
. Hence, {Π1(u, v), . . . ,ΠT (u, v)} ⊆ Q with probability

(
T/2

2a′

)T

. However, there are
(

2a′

T/2

)
different set Q. This gives the bound

(
T/2

2a′

)T (
2a′

T/2

)
≤ 2−aT/2.

Now assume that 〈u, v〉 is such that |{Π1(u, v), . . . ,ΠT (u, v)}| ≥ T/2. The algorithm fails only if for each
Πt, it is the case that Πt(u, v) ∈ Si. Consider a Πt(u, v) that is different than u and v. There are at least
T/2 − 2 such vectors. This vector was put in a random set Si′ . Hence, the probability that Πt(u, v) ∈ Si is

2−T̃ . Hence, the probability that {Π1(u, v), . . . ,ΠT (u, v)} ⊆ S is no more than
(
2−T̃

)T/2−2

.

In conclusion, the probability that the algorithm fails on the input 〈u, v〉 is no more than

2−aT/2 + 2−T̃ (T/2−2). Hence, the probability that it fails on some input in {0, 1}2k is bounded by

22k
[
2−aT/2 + 2−T̃ (T/2−2)

]
. However, if a log (k) = T̃ = T ∈ O

(√
(k log k)

)
, then this probability is strictly

less than 1. Hence, there exists a deterministic algorithm which works for each input 〈u, v〉. The number of

bits communicated is 2a log (k) + 2T̃ + T ∈ O
(√

(k log k)
)
.

2.3 A 2k1/2 Algorithm for the n = 2 Communication Game

Hey! Nathan Linial was visiting and helped come up with a better algorithm.

Theorem 3 There is a 2
√

k Algorithm for the n = 2 game.

Proof of Theorem 3: Partition [1..k] into
√

k equal parts of size
√

k. Let u =
〈
u1, . . . , u√

k

〉
be the

partitioning of the vector u ∈ {0, 1}k. The algorithm is as follows. Read u. Communicate the sum of the

parts u1+. . .+u√
k. Here sum can either be the bit-wise sum mod 2 or think of ut as an integer up to 2

√
k and

compute the sum mod 2
√

k. For t ∈ [1..
√

k], let Πt be such that vt and u1, . . . , ut−1, ut+1, . . . , u√
k are read.

Read Πt(u, v) and communicate whether the sum u1+ . . .+ut−1+vt+ut+1+ . . .+u√
k is the same. Note that

if u 6= v then there is a t such that ut 6= vt. In this case, u1+ . . .+u√
k 6= u1+ . . .+ut−1+vt+ut+1+ . . .+u√

k.

2.4 Lower Bounds

Defn: We say that the probes Π1, . . . ,ΠT ⊆ [1..k] covers the set S ⊆ {0, 1}k if for all distinct pairs of
vectors u, v ∈ S, there exists a Πi such that Π(u, v) 6∈ S.
An equivalent definition is
Defn: Let Π−1 = ∅ and Π0 = [1..k]. We say that the probes Π−1,Π0,Π1, . . . ,ΠT ⊆ [1..k] covers’ all
the vectors {0, 1}k with the set S ⊆ {0, 1}k if for all distinct u, v ∈ {0, 1}k, there exists a Πi such that
Π(u, v) ∈ S.

Defn: For all T̃ , let T (T̃) be the minimum T for which there is a set S of size 2k−T̃ that can be covered
with only T Π’s.

Defn: For all T , let T̃ (T) be the minimum T̃ for which there is a set S of size 2k−T̃ that can be covered
with only T Π’s.

7

Claim 1 The functions T (T̃) and T̃ (T) are both monotone non-increasing.

Proof of Claim 1: If Π1, . . . ,ΠT ⊆ [1..k] covers the set S then it covers any subset of S.

Lemma 3 The number of bits of communication required for the n = 2 Communication Game is at least

minT max{T, T̃ (T)}, i.e. the point at which T̃ = T (T̃).

Proof of Lemma 3: Consider an algorithm that communicates at most C bits. For every string of bits

α ∈ {0, 1}C communicated, there is a set of inputs Sα ∈
(
{0, 1}k

)2
for which this string is communicated. On

input 〈u, v〉, the bits α communicated must determine whether u = v. Hence, each Sα is either completely
on or completely or off the diagonal. Each of the 2k inputs 〈u, u〉 on the diagonal must be in one of these
sets. Because α ∈ {0, 1}C , there are at most 2C of these sets. Hence, there must be a set Sα′ on the diagonal
of size at least 2k−C . Let S ⊆ {0, 1}k be the set of vectors u such that 〈u, u〉 ∈ Sα′ . Let T̃ be such that

|S| = 2k−T̃ . Clearly, C ≥ T̃ .
Let Π1, . . . ,ΠT ⊆ [1..k] be the set of probes that the algorithm uses when the string α′ is communicated.

Clearly, C ≥ T . What remains is to prove that Π1, . . . ,ΠT cover the set S. From this, the lemma follows.
By way of contradiction, assume that Π1, . . . ,ΠT does not cover the set S. Then there are distinct vectors

u, v ∈ S such that Π1(u, v) ∈ S ∧ . . . ∧ ΠT (u, v) ∈ S. Because u 6= v, the string α′ cannot be communicated
on input 〈u, v〉. Hence, there is a first time step t ∈ [1..C] on which the communication deviates. Because
the communication is the same until time t, the probe Πt used at time t on input 〈u, v〉 is the same used
at time t with communication α′ and in both cases the bit communicated is a fixed function of the string
Πi(u, v) read. At time t, the communications for input 〈u, v〉 deviates from α′. Hence, is the algorithm reads
the string Πt(u, v) at time t, it must not write the bit α′

t. On the other hand, by the choice of u and v,
Πt(u, v) ∈ S. By the definition of S, on input 〈Πt(u, v),Πt(u, v)〉, the string α′ is communicated. On this
input, the probe reads Πt(Πt(u, v),Πt(u, v)) = Πt(u, v). Hence, if the algorithm reads the string Πt(u, v), it
must write the bit α′

t. This is a contradiction.

Claim 2 If the set S ⊆ {0, 1}k is covered by some list of probes, then S has minimum hamming distance 2,

i.e. for all distinct u, v ∈ S, H(u, v) ≥ 2.

Proof of Claim 2: Suppose that u, v ∈ S are distinct and H(u, v) = 1. For any probe Π ⊆ [1..k], Π(u, v)
is either u or is v. Hence, Πi(u, v) ∈ S for each Πi in the list of probes.

Claim 3 Every set S can be covered with only k probes.

Therefore, T (1) = k. For example, S could be all vectors with even parity.
Proof of Claim 3: For i ∈ [1..k], let Πi = {i}, i.e. the player reads all of v except instead of vi he
reads ui. Consider any distinct vectors u, v ∈ S. Let i be an index on which they are different. Clearly,
H(Πi(u, v), v) = 1. By Claim 2, v ∈ S implies that Πi(u, v) 6∈ S.

Claim 4 If S contains all vectors with even parity, then it requires Ω(k) probes to cover it. If S contains

all bits with l ones, then it requires Ω

(
log((k

l))
log l

)
probes to cover it. For l = k/2, this is Ω

(
k

log k

)
.

Proof of Claim 4: The proof for parity is easy. The proof for
(
k
l

)
uses the fact that it requires log |S|

bipartite graphs to cover all the edges in the complete graph with vertex set S.
Suppose S =

(
k
l

)
is covered by Π1, . . . ,ΠT . Think of the graph on vertex set S. Each edge must be

covered by some Πt. Let Et = {{ab, cd} | ab, cd ∈ S and Πt(ab, cd) = ad 6∈ S} be the set of edges covered by
Πt. We will break this set into 2 log l parts. These parts must 1) cover all edges covered by Et and 2) each
be bipartite. This give a covering of S with T × 2 log l bipartite graphs. log |S| bipartite graphs are needed.
The result follows.

Let f : {a} → [1..l] and g : {b} → [1..l] with the property that ab ∈ S → f(a) = g(b) and ab 6∈ S →
f(a) 6= g(b). For S =

(
k
l

)
, f(a) is the number of 1’s in a and g(b) is l minus the number of 1’s in b.

For j ∈ [1..l], define Et,j,0 = {ab | ab ∈ S and [f(a)]j = 0} × {cd | cd ∈ S and [g(d)]j = 1} and
Et,j,1 = {ab | ab ∈ S and [f(a)]j = 1} × {cd | cd ∈ S and [g(d)]j = 0}.

1) These parts cover all edges covered by Et. If {ab, cd} ∈ Et, then Πt(ab, cd) = ad 6∈ S, then f(a) 6= g(b),
then there is and index j in which they are different . . .

8

2) These parts are each bipartite. Specifically, {ab | ab ∈ S and [f(a)]j = 0} and {cd | cd ∈
S and [g(d)]j = 1} = {ab | ab ∈ S and [g(b)]j = 1} are disjoint. This is because if ab ∈ S, then f(a) = g(b).

(The first constraint could be relaxed to ab ∈ S′ ⊆ S → f(a) = g(b) as long as the same S′ is used for
each Πt. Then we cover the graph on vertex set S′.)

Claim 5 T (T̃) ∈ O
(

k
T̃

)

Both Theorem 2 and Theorem 3 give example S and Π.

Claim 6 If S is a randomly chosen set of size 2k−T̃ , then T ∈ Ω
(

k
T̃

)
probes are needed.

The proof is the same as for Theorem 2.

Conjecture 2 T (T̃) ∈ Ω
(

k
T̃

)
.

I.e. the worst cases are random sets S and those S give by Theorem 3. This result would give a Ω
(√

k
)

lower bound for the n = 2 Communication Game.

Lemma 4 Fix a set S and a probe Π. Pru,v∈S [Π(u, v) ∈ S] ≥ Prw∈{0,1}k [w ∈ S].

The argument is as follows. Let u = 〈a, b〉, u = 〈c, d〉, and Π(u, v) = 〈a, d〉. The prefix a is chosen randomly
by choosing u uniformally from S. Hence, the distribution on a is biased towards those a which have lots
of extensions b such that 〈a, b〉 ∈ S. Similarly for d. Hence the probability that 〈a, d〉 ∈ S is higher than if
a and d were chosen randomly. Mike Luby, Russell, and I came up with an ugly proof of this (with slight
handwaving). There should be an easier proof. However, the next conjecture is even harder.

Conjecture 3 Fix a set S and probes Π1, . . . ,ΠT . Pru,v∈{0,1}k [u ∈ S∧v ∈ S∧Π1(u, v) ∈ S∧. . .∧ΠT (u, v) ∈
S] ∈ Ω

(
Pru,v,w1,...,wT ∈{0,1}k [u ∈ S ∧ v ∈ S ∧ w1 ∈ S ∧ . . . ∧ wT ∈ S]

)
.

The difficulty in proving this is dealing with the dependencies between the different Π’s. However, this would
prove Conjecture 4.

Proof: Suppose that S is covered by Π1, . . . ,ΠT . Let s = |S|. s
2k

1
2k = Pru,v∈{0,1}k [u ∈ S ∧ u = v]

= Pru,v∈{0,1}k [u ∈ S ∧ v ∈ S ∧Π1(u, v) ∈ S ∧ . . .∧ΠT (u, v) ∈ S] ≥ Pru,v,w1,...,wT ∈{0,1}k [u ∈ S ∧ v ∈ S ∧w1 ∈
S ∧ . . . ∧ wT ∈ S] =

(
s
2k

)T+2
. This gives |S| ≤ 2

T
T+1

k = 2k− 1
T+1

k = 2k−T̃ , where T̃ = 1
T+1k.

One strategy is to understand which sets S can be covered by one Π and then by two. This is all that I
know so far.

Lemma 5 T̃ (1) = 2
1
2
k, i.e. the largest S that is covered by 1 Π is of size 2

1
2
k.

2
2
3
k ≤ T̃ (2) ≤ 2

3
4
k.

Proof of Lemma 5: There is an S of size 2
2
3
k that can be covered by two Π’s. This is given in Theorem 3.

Therefore, T̃ (2) ≥ 2
2
3
k. T̃ (2) ≤ 2

3
4
k is because the two Πs partition the index set [1..k] into 4 pieces. Suppose

that the fourth is the largest. Knowing 3 of the pieces of a u ∈ S must determine the fourth. Otherwise,
there are two vectors 〈abcd〉 and 〈abcz〉 both in S. Π(〈abcd〉 , 〈abcz〉) reads either all of d or all of z. Hence,
what is read is either 〈abcd〉 or 〈abcz〉. However, both are in S.

The next goal is to prove that T̃ (2) = 2
2
3
k.

3 New Card Game

Previously a card game was considered. It was proved that a non-trivial lower bound for this game with
cheating gives a non-trivial lower bound for the time-space trade off for element distinctness on a branching
program. The impressive upper bound by Pavel Pudlák and Jiri Sgall dashed any hope of us finding a
lower bound for this card game. This sketch of a paper defines a more general card game and proves that a
non-trivial lower bound for this game with cheating gives non-trivial lower bound for the time-space trade
off (for some boolean function) on a branching program.

9

3.1 The More General Card Game

Let f : {0, 1}q ∗ {0, 1}q → {0, 1} define the communication game in which the A-player is given u ∈ {0, 1}q,
the B-player is given v ∈ {0, 1}q, they communicate, and then answer f(u, v). This function f can be any
function of your choice for which you can get a result. My intuition is that q = 2 bits are sufficient for our
purposes. For example, let f(u, v) = [u]1 ∧ [v]1 ∨ [u]2 ∧ [v]2. The communication complexity of this game is
2.

From this communication game f , we form the following card game. The inputs to the card game are
n independent inputs to the communication game, i.e. u =< u1, u2, . . . , un > and v =< v1, v2, . . . , vn >∈
[{0, 1}q]n. What needs to be computed is the boolean answer f(u1, v1)∧ . . .∧ f(un, vn). There is a different
player for each time step. At time t, the tth player first reads the blackboard so that he knows what the
previous players have communicated. Then for each of the communication games i ∈ [1..n], he either reads
the ui input or the vi input, but not both. The idea is that there are n cards. On one side of the ith card is
ui and on the other is vi. The player can look at one side of each card. He makes this selection by specifying
a function Π : [1..n] → {u, v}. Based on all this information, he writes a single bit on the black board. At
the end, the last player must determine whether f(u1, v1) ∧ . . . ∧ f(un, vn). The complexity is the number
of bits written on the black board.

The original card game is the above game in which q = 1 and f(u, v) = 1 iff u = v. Pavel Pudlák and
Jiri Sgall gives the complexity of this game to be at most n2/5. The question is what can be said about this
card game for different functions f .

The 2
√

qn upper bound still holds for an arbitrary game f . I don’t under stand Jiri’s paper well enough

to know whether his n2/5 holds for an arbitrary game f , but I doubt it.

3.2 The 2(qn)
1

2 Upper Bound

The 2
√

qn upper bound to the card game for a general communication game f goes as follows. Partition the

index set [1..n] into
√

qn parts of size
√

n/q each. Use this partition to partition the input u = 〈u1, . . . , un〉 ∈
[{0, 1}q]n into the vectors

〈
u1, . . . , u√

qn

〉
. Think of each ui =

〈
uj , . . . , uj+

√
n/q

〉
∈ [{0, 1}q]

√
n/q as a

number between 0 and 2
√

qn − 1. Similarly partition v =< v1, v2, . . . , vn >. In the first
√

qn time steps,

the player reads all of u =
〈
u1, . . . , u√

qn

〉
and communicates [u1 + . . . + u√

qn] mod 2
√

qn. In the tth

remaining step, t ∈ [1..
√

qn], the player learns [u1 + . . . + u√
qn] mod 2

√
qn from the black board and he

reads vt and u1, . . . , ut−1, ut+1, . . . , u√
qn. From this he computes ut = [u1 + . . . + u√

qn]− [u1 + . . . + ut−1 +

ut+1 + . . . + u√
qn] mod 2

√
qn. He now knows both ut and vt. These comprise the 〈ui, vi〉 for

√
n/q of

the communication games. He computes f(ui, vi) for each of these and writes on the black board one bit
indicating f(ui, vi) ∧ . . . ∧ f(u

i+
√

n/q
, v

i+
√

n/q
). From this, the last player knows f(ui, vi) ∧ . . . ∧ f(un, vn).

3.3 The Card Game with Cheating

The card game with cheating is the same as the card game, except some cheating is allowed. An algorithm,
on a given input, cheats with a card i ∈ [1..n] if ever a player looks at both sides of the card at the same
time. An algorithm for the card game with cheating requires that for a random input 〈u, v〉, the probability
that cheating is done on more than ǫn cards is no more than 1

2 . Here the distribution on inputs 〈u, v〉 can
be anything you like. For example, for the original game, there was an motivation for looking only at the
cheating done on random inputs of the form 〈u, u〉.

3.4 Branching Program Lower Bound

Theorem 4 A lower bound of nω for the card game with cheating gives a lower bound of TS1/2 ∈ Ω
(
n1+ω/2

)

for some boolean function on oblivious branching programs.

10

Proof of Theorem 4: The function F computed by the branching program has inputs 〈π, u, τ, v〉, where
u = 〈u1, . . . , un〉 , v = 〈v1, . . . , vn〉 ∈ [{0, 1}q]

n
and π = 〈π(1), . . . , π(n)〉 and τ = 〈τ(1), . . . , τ(n)〉 are each

permutatutions of [1..n]. It is defined by

F (π, u, τ, v) = f
(
uπ−1(1), vτ−1(1)

)
∧ . . . ∧ f

(
uπ−1(n), vτ−1(n)

)
.

When the permutations π and τ are understood, let û be such that ûj = uπ−1(j) (ui = ûπ(i)) and similarly
v̂j = vτ−1(j) (vi = v̂τ(i)). Another way of thinking of F is that it input is formed as follows. Choose an input
û = 〈û1, . . . , ûn〉 , v̂ = 〈v̂1, . . . , v̂n〉 ∈ [{0, 1}q]

n
to the card game. F will have the same output as the card

game does on 〈û, v̂〉. Form the matrix with n rows and two columns:
〈1, û1〉 〈1, v̂1〉
〈2, û2〉 〈2, v̂2〉

...
...

〈j, ûj〉 〈j, v̂j〉
...

...
〈n, ûn〉 〈n, v̂n〉

Now choose two permutations π−1 and τ−1 and use these to permute the two columns, i.e. if π(i) = j then
the ith row of the first column becomes 〈j, ûj〉 = 〈π(i), ui〉. To simplify the proof (and not hurt the lower
bound by more than a factor of log n), we consider branching programs which each node of the computation
are able to access a complete matrix entry 〈π(i), ui〉 (or 〈τ(i), vi〉) for some fixed i ∈ [1..n].

By way of contradiction, consider a branching program that computes F and for which TS1/2 <√
ǫ
2n1+ω/2. From this branching program we construct a card game algorithm with cheating. This al-

gorithm will contradict the claimed lower bound. To construct the algorithm, fix two permutations 〈π, τ〉.
Given these, there is a fixed 1-1 mapping between the inputs 〈u, v〉 to the branching program and the inputs
〈û, v̂〉 to the card game. Recall that ûj = uπ−1(j) (ui = ûπ(i)) and similarly for v̂.

Break the branching program into T/h stages (layers) of height h, where h = ǫ
2n2/T . This breaks the

branching program into at most 2S sub-branching programs of height h. The card game algorithm has T/h
stages as well. Each stage, the players write on the black board the index of the sub-branching program that
the branching program computation is at the top of at the end of the stage. It requires S bits to write down
this index. Therefore, each stage of the card game algorithm consists of S time steps, for a total of ST/h
times steps. Plugging in h = ǫ

2n2/T gives 2
ǫ T 2S/n2. Plugging in TS1/2 <

√
ǫ
2n1+ω/2, gives that card game

algorithm requires fewer than nω times steps. This contradicts the claimed lower bound.
By reading the black board, the first player in a stage knows which sub-branching program the compu-

tation is at the top of. Because the sub-branching program is oblivious, it access a fixed set of h branching
program variables 〈π(i1), ui1〉 (or 〈τ(i1), vi1〉), . . ., 〈π(ih), uih

〉 (or 〈τ(ih), vih
〉). Because the permutations

〈π, τ〉 are fixed, this corresponds to accessing a fixed set of h card game variables ûj1 (or v̂j1), . . ., ûjh
(or

v̂jh
). The first player in the stage accesses these variables. Note that if the branching program reads both

〈π(i), ui〉 and 〈τ(i′), vi′〉 and it happens that j = π(i) = τ(i′), then the player reads both ûj and v̂j . This of
course cheating, but the card game is allowed a cirtain amount of cheating. The amount of cheating will be
bound latter.

After the player reads these variable, he knows how the branching program computation will proceed
through the sub-branching program and hence he knows which sub-branching program the stage will end
at. The index of this sub-branching program needs to be written on the black board. This player can only
write one bit, so he writes the first bit in the index. The remaining S − 1 players in the stage read the same
variables, gaining the same information, and write the remaining bits of the index. (Note by the definition
of cheating, the algorthm is penalized once for j, even though ûj and v̂j are both read by many players.)
This completes the definition of the card game algorithm.

What remains is choose the fixed permutations 〈π, τ〉 so that the probability that card game algorithm
cheats on more than ǫn cards is no more than 1

2 when its input 〈û, v̂〉 is choosen randomly. Consider some
fixed sub-branching program. We say that the sub-branching program makes progress if it reads the same
value j on both sides of the input matrix. Clearly progress for the branching program corresponds to cheating
for the card game algorithm. The sub-branching program reads h entries in matrix. For any fixed value
j ∈ [1..n], the probability (over the random 〈π, τ〉 and 〈u, v〉) of the sub-branching program reading j on

11

both sides of the input matrix is at most (h/n)2. Therefore, the expected number of such j is at most
h2/n. Chernoff says the probabity of getting twice the expected at most 2−c∗expected for some constant c.
Therefore, the probability that at least 2h2/n progress is made in this sub-branching program is at most

2−ch2/n. Because there are fewer then 2S different sub-branching programs, the probability that there exists
a sub-branching program in which at least 2h2/n progress is made is at most 2S2−ch2/n. We want this
probability to be at most 1

2 . This requires that S < c′h2/n. Plugging in h = ǫ
2n2/T gives the requirement

S < ǫ′n3/T 2 or that TS1/2 < ǫ′′n3/2. However, we assumed that TS1/2 <
√

ǫ
2n1+ω/2 << ǫ′′n3/2, so the

requirement is met.
The progress made for an input in the entire branching program is the sum of the progress made in

each sub-branching program that the input passes through. An input passes through at most T/h stages.
Therefore, if an input makes ǫn progress total then there exists a sub-branching program in which it makes
at least ǫnh/T progress. Plugging in h = ǫ

2n2/T gives ǫnh/T = 2(h2)/n. As said above, the probability
(over the random 〈π, τ〉 and 〈u, v〉) that at least 2(h2)/n progress is made in some sub-branching program is
at most 1

2 . Therefore, this is the probabilty that ǫn progress is made in the entire branching program. Fix
some two permutations 〈π, τ〉 such that the probability (over the input 〈u, v〉) is still at most 1

2 . These are
the permutations that are used in the algorithm above.

4 Bibliography

• P. Pudlak, J. Sgall: An upper bound for a communication game related to space-time tradeoffs, In The
Mathematics of Paul Erdos, volume I, eds. Ronald L. Graham and Jaroslav Nesetril, pages 393-399.
Springer, 1996.

12

