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Abstract

We study the advice complexity of an online version of the set cover problem. The goal is to quantify the
information that online algorithms for this problem need to be supplied with to compute high-quality
solutions and to overcome the drawback of not knowing future input requests. This concept was successfully
applied to many prominent online problems in the past while trying to capture the essence of “what
makes an online problem hard.” The online set cover problem was introduced by Alon et al. [SIAMJ
39(2), 2009]: for a ground set of size n and a set family of m subsets of the ground set, we obtain bounds
in both n and m. We show that a linear number (with respect to both n and m) of advice bits is both
sufficient and necessary to perform optimally. Furthermore, we prove that O((n log c)/c) bits are sufficient
to design a c-competitive online algorithm, and this bound is tight up to a factor of O(log c). We further
give upper and lower bound for achieving c-competitiveness with respect to m. Finally, we analyze the
advice complexity of the problem with respect to some natural parameters, i. e., measurable properties of
the inputs.

Keywords: Online computation, advice complexity, set cover problem

1. Introduction and Preliminaries

The idea of online algorithms is both a natural concept in practical applications and of great theoretical
interest. In this model, the algorithm designer faces the problem that an algorithm Alg has to read the
input instance of some problem piecewise and has to create parts of the output before knowing the whole
input string. Furthermore, Alg is not allowed to revoke any pieces of submitted output. Online scenarios
and online algorithms have been studied extensively; for an overview, we refer the reader to the standard
literature [1, 9, 16, 19]. Similar to the concept of the approximation ratio of algorithms dealing with
(hard) offline problems, competitive analysis (introduced in 1985 by Sleator and Tarjan [26]) is usually
used to measure the quality of online algorithms (ignoring the run time of the algorithm). Let Alg be an
online algorithm for an online minimization problem; Alg is called c-competitive if its cost is at most c
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times as large as that of an optimal solution for every instance of the problem. The competitive ratio of
Alg is the infimum over all c for which Alg is c-competitive. In this context, we think of the optimal
solution as being computed by an offline algorithm Opt that sees the whole input in advance, which is a
huge advantage compared to the knowledge Alg possesses.

Clearly, we may see the competitive ratio as a value that tells us what we forfeit for not knowing
the future. When studying the advice complexity of an online problem, we are interested in getting a
deeper understanding of what it is we pay for. A straightforward answer to this question is “the remainder
of the instance,” but we want to measure the essence of what makes the problem hard with respect to
online computation. Conversely, from an adversary’s point of view, we aim to investigate the amount
of power lost due to leakage of information to the algorithm. The main motivation is to quantify the
amount of information that helps to achieve some specific solution quality. Since we do not impose any
restriction on the nature of the information, our lower bounds are valid for any kind of information; thus
they generalize concepts such as lookahead or semi-online algorithms. What we get are statements of the
sort “whenever less than x bits of information are supplied, the online algorithm will always be worse
than c(x)-competitive.”

In the model used throughout this paper, we consider online algorithms that are able to receive extra
information from some advice tape that is thought of as being created by an oracle that sees the whole
input in advance. In every time step, an online algorithm Alg may sequentially read some piece of
information from this tape together with the input. More formally, we are dealing with the following
model.

Definition 1 (Online Algorithm with Advice). Let I = (x1, . . . , xn) be an input sequence for some
online problem. An online algorithm Alg with advice computes the output sequence Algφ(I) =
(y1, . . . , yn) such that yi is computed from φ, x1, . . . , xi, where φ is the content of the advice tape, i. e.,
an infinite binary sequence. Alg is c-competitive with advice complexity b(n) if there is a constant α
such that, for every n and for each input sequence I of length at most n, there is some φ such that
cost(Algφ(I)) ≤ c · cost(Opt(I)) + α and at most the first b(n) bits of φ have been accessed during the
computation of Algφ(I). If α = 0, Alg is called strictly c-competitive. An algorithm is optimal if it is
strictly 1-competitive.

Advice complexity was introduced by Dobrev et al. [13, 14] in 2008 and since then revised versions
[7, 15, 17] were used to study various online problems. For a detailed survey on this topic, we refer to
Hromkovič et al. [17], Boyar et al. [10], and Komm [20]. Previous to this paper, the advice complexity
of various problems was analyzed, e. g., the paging problem and the disjoint path allocation problem
[7], the job shop scheduling problem [7, 21], metrical task systems [15], the k-server problem [5, 15],
and the knapsack problem [6]. There are interesting connections between computing with advice and
randomization [5, 21, 23]. The study of advice has an interesting connection to recent developments in the
field of dynamic data structures, where the usage of advice bits was proposed as a lower bound technique
[11, 25].

As usual, in order to design hard instances for the online algorithms studied, we consider an adversary
that constructs the input in a malicious way [8, 9, 16, 19]. As mentioned, we add another player to
the game that is classically played between an online algorithm Alg and the adversary; an oracle that
collaborates with Alg by giving help using the advice tape. Note that, similar to randomized online
algorithms, we can think of an online algorithm Alg with advice as an algorithm that chooses, depending
on the advice it is given, from a set of deterministic strategies denoted by Strat(Alg). Another view we
might impose on computations with advice is that an optimal random choice is supplied by the oracle for
every input.

Throughout this paper, log denotes the logarithm with base 2, and ln is the logarithm with base
e = 2.718 . . .. By exp(x) = ex we denote the natural exponential function. To bound binomial coefficients,
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we will sometimes use [12] that(n
k

)k
≤
(
n

k

)
≤
(ne
k

)k
. (1)

In addition, we make use of Sperner’s Theorem [27], which states that

|S| ≤
(

n

bn/2c

)
, (2)

for any subset-free set family S over a ground set with n elements. Denoting the binary entropy function
by H2(x) = −x log x− (1− x) log(1− x), for any n, k ∈ N, we have(

n

k

)
≤ 2n·H2(k/n) , (3)

which gives us another means to bound the binomial coefficient [24].
We are now ready to define the online version of the set cover problem, which was introduced by Alon

et al. [2].

Definition 2 (The Online Set Cover Problem). Given a ground set X = {1, . . . , n}, a set of requests
X ′ ⊆ X, and a set family S ⊆ P(X) of size m, without loss of generality ∅ 6∈ S, a feasible solution for the
set cover problem is any subset {S1, . . . , Sk} of S such that

⋃k
i=1 Si ⊇ X ′. The aim is to minimize k, i. e.,

to use as few sets as possible. X and S are known in advance, but the elements of X ′ arrive successively
one by one in consecutive time steps. An online algorithm Alg is feasible for the online set cover problem
if, immediately after each yet uncovered request j, it specifies a set Si ∈ S such that j ∈ Si.

Note that formally the term “online set cover problem” refers to a class of problems parametrized by
two parameters n and m. It is crucial to note that n = |X| is an upper bound on the actual input length.
Therefore, an input for this problem does not have an arbitrary length, and since n is a parameter of the
problem that is known in advance, we may say that every online algorithm is 1-competitive according
to Definition 1 if we set the additive constant α to n − 1. In this paper, we therefore consider strictly
competitive algorithms only when talking about both lower and upper bounds.

Alon et al. [2] designed a deterministic O(logm logn)-competitive algorithm that even works for the
weighted version of the set cover problem.2 In the following, we give bounds on the advice complexity
with respect to both the size n of the ground set X and the size m of the set family S. Note that we may
assume that S is subset-free (if not, sets that are contained in other sets may be removed from the input
by a preprocessing step; since the sets are unweighted, it is never worse to prefer supersets). From this, it
directly follows due to (2) that we have |S| ≤

(
n
bn/2c

)
.

Sometimes, when we need to communicate a non-negative number x in a self-delimiting way, we
use a well-known technique that enables us to use at most 2dlogdlog xee+ dlog xe advice bits; see, e. g.,
Komm [20].

1.1. Organization and Contribution
We give almost tight upper and lower bounds that on the number of advice bits needed, which are

linear in both the size of the ground set, i. e., n = |X|, and in the size m of S. Section 2 considers the
situation when an optimal solution is needed. Sections 3 and 4 then give upper and lower bounds on the
number of advice bits necessary to obtain c-competitive solutions. These results can be summarized as
follows.

2Here, every member of S has a non-negative weight, and the objective is to minimize the sum of the weights of all sets
chosen.
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Theorem 1. With a ground set of size n = |X| and a set family of size m = |S|, the number b of advice
bits needed by any online algorithm is bounded by

• max
(
n− logn, log 3

3 m
)
≤ b ≤ min(n,m) to be optimal (Theorems 3 to 6) and

• max
(

n
O(c) ,

m
cO(c)

)
≤ b ≤ min

(
log c
c n, logm

c m
)
to be c-competitive (Theorems 7, 9 and 10).

Note that the fact that a linear number of advice is necessary to be optimal also follows from
Böckenhauer et al. [4], which deals with near-optimal solutions. Here, we improve both the lower bound
given in the preliminary version of the paper [22] (which is (n− c2 − 2c− 1)(log((c+ 1)/c))/(c2 + c)) and
the result from Böckenhauer et al. [4].

It is usually assumed that the oracle has unlimited computational power. The following observation
considers the case when the oracle is more limited.

Observation 1. If the oracle has to work in polynomial time, then our lower bounds still hold since the
problem is only harder. For the upper bounds, note that the simple greedy algorithm is an lnn-approximation.
Hence, any upper bound on c-competitiveness implies a (c lnn)-competitive online algorithm with the same
number of advice bits and an oracle that works in polynomial time. �

Section 5 considers the advice complexity of the problem with respect to a number of natural parameters,
namely the largest set contained in S, the size of an optimal solution, and the maximum number of times
that an item occurs in the sets in S. These results can be summarized as follows.

Theorem 2. When ` is the size of the largest set from S, k is the size of an optimal solution, and p is
the maximum number of times that an item occurs in the sets in S, the number b of advice bits needed by
online algorithm is bounded by

• ` log (n/`) ≤ b ≤ k` logn to be optimal (Theorems 11 and 12),

• k log p ≤ b ≤ k log p to be optimal, and

• 1 ≤ b ≤ m− (c− 1) ·m/(log p+ c) to be c-competitive.

Concluding remarks are given in Section 6.

2. Bounds to Obtain Optimality

First, let us analyze the information complexity of the problem, i. e., the advice complexity of optimal
solutions [17]. In the following, we show that a number of advice bits linear in |X| is sufficient to create
an optimal output by a very easy argument.

Theorem 3. There is an optimal online algorithm with advice that uses n− 1 advice bits.

Proof. The proof is straightforward. The oracle simply writes the characteristic function of X ′ on the
advice tape, i. e., a one at position i if and only if the ith element from X is contained in X ′. However,
the online algorithm knows one requested element from X before it has to take any action (and this is
known by the oracle). Thus, if the first element requested is j, the jth position is simply skipped on the
tape (not written down by the oracle). �

It is interesting to note that we are able to complement this result with an almost matching lower
bound to show that a linear number of advice bits is also necessary to be optimal.
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Theorem 4. Every optimal online algorithm with advice needs to use at least n− (1/2) log(n− 1)− 3
advice bits.

Proof. Let Alg be an optimal online algorithm with advice, let n be even, and let N(x) :=
(

x
bx/2c

)
, for

any x ∈ N. Consider the set S that contains all subsets of X of size exactly n/2. Clearly, there are exactly
N(n) such sets. Now the adversary requests n/2 items, starting with one fixed item x1 (after which Alg
has to start with choosing a set from S); one single set from S is sufficient to cover all requests. Since
Alg knows that x1 is included in the set it has to choose, there are

(
n−1
n/2−1

)
remaining candidate sets.

Observe that, since n is even, we have n/2− 1 = b(n− 1)/2c. Consequently, there are exactly N(n− 1)
sets left from which Alg has to select one.

Therefore, Alg has to distinguish between N(n− 1) different advices to distinguish this many sets
and if it reads strictly less than log(N(n− 1)) bits, this merely enables Alg to choose among strictly less
than N(n− 1) strategies, which is equivalent to choosing among this many deterministic algorithms. By
the pigeonhole principle, there are two distinct sets S1 and S2 (i. e., inputs which both contain x1, but
differ in at least one element) for which Alg chooses the same deterministic strategy A ∈ Strat(Alg).
Clearly, A cannot be optimal in both cases. Using Stirling’s approximation, we get

log(N(n− 1)) = log
((

n− 1
b(n− 1)/2c

))
≥ log

(
4(n−1)/2

2
√

(n− 1)π/2

)
> n− 1

2 log(n− 1)− 3 ,

which finishes the proof. �

Now we look at the online set cover problem from a different perspective, by bounding the advice in
the number m of sets that are given. Encoding the characteristic vectors of the sets that are used by an
optimal solution immediately gives the following result.

Theorem 5. There is an optimal online algorithm with advice that uses m advice bits. �

Again, this very naive approach is asymptotically the best we can hope for.

Theorem 6. Every optimal online algorithm with advice needs to use at least m/3 · log 3 advice bits.

Proof. Let n := ((q+ 1)/q)m, for some q ∈ N≥2. The adversary chooses X such that there are n/(q+ 1)
items y1, . . . , yn/(q+1) and (q/(q + 1))n items xi,j , i ∈ {1, . . . , q}, j ∈ {1, . . . , n/(q + 1)}. After that, the
adversary defines S to contain exactly the following sets: for every k ∈ {1, . . . , n/(q + 1)}, there are q sets
{yk, x1,k}, . . . , {yk, xq,k}.

Next, the adversary requests all items yi; hence, since each request has to be satisfied, Alg has to
fix n/(q + 1) sets to cover all items. After that, for every i, the adversary requests one of the q items
x1,i, . . . , xq,i. Note that any combination leads to a distinct optimal solution that consists of exactly m/q
sets. This way, Alg has to correctly choose one of qm/q possible families as answers for the first m/q
requests.

If, however, Alg uses less than log(qm/q) advice bits, then, by applying the pigeonhole principle, there
must be two identical advices for two different sequences of correct answers. Thus, the adversary can
choose the one not chosen by the algorithm. Consequently, a lower bound on the advice complexity is
log(qm/q) = m/q · log q. The claim follows from observing that, for a fixed m, this expression is maximized
for q = 3. �

Compare these results to those measured in n. On the one hand, in the proof of Theorem 6 we had
n = 4m/3, and thus m = 3n/4 which yields a lower bound of (n log 3)/4; i. e., it is worse than the lower
bound provided by Theorem 4. On the other hand, in the proof of Theorem 4, we had m = N(n) which
means that it merely gives a logarithmic lower bound in m, whereas Theorem 6 gives a linear lower bound.
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3. Upper Bounds to Obtain c-Competitiveness

The next question we are dealing with is how many bits of advice are necessary and sufficient to
achieve c-competitiveness. This section gives two upper bounds. First, we introduce an online algorithm
MaxCover that first tries to cover as many elements of X as possible together with every yet uncovered
request. This is, however, not done too often (depending on the competitive ratio we want to achieve).
For the part of X that is not covered by this procedure, the algorithm can compute an optimal solution
using the advice.

Theorem 7. There is a c-competitive online algorithm MaxCover with advice that uses O((n log c)/c)
advice bits.

Proof. Consider a fixed n, and let k denote the number of sets taken by an optimal solution; let d := bcc.
In order to be c-competitive, MaxCover can take kd ≤ kc sets to cover the requested elements. As
sketched above, the high-level idea of the algorithm is as follows. At first, MaxCover reads k from the
advice tape, which can be encoded using dlogne bits since 1 ≤ k ≤ n. Afterwards, MaxCover identifies,
without using any further advice or any information about the requested elements, k(d − 1) sets from
S that cover a large part of X; we call these the “greedy sets.” Additionally, the advice will encode all
requested elements that are not covered by the greedy sets. Before processing any requests, MaxCover
will use this advice to calculate an optimal solution to cover all such elements. By the definition of k, this
is possible with at most k sets.

Afterwards, MaxCover processes the requests. Each requested element is covered by some greedy set
whenever possible and by some set from the optimal solution for requested elements outside of the greedy
sets otherwise. In that way, the total number of sets used by MaxCover is at most k(d− 1) + k = dk.
The idea is depicted in Figure 1.

First, we describe how the greedy sets are computed. For any (X,S), let S0 := S. Then we obtain a
sequence (Si)i≥0 as follows. Given a set family Si−1, we identify a set Ti ∈ Si−1 such that |Ti| is maximal
(ties are broken arbitrarily); Ti is the ith “shrunk greedy set.” We obtain Si from Si−1 by removing all
elements of Ti from all sets T ′ ∈ Si−1. This way, we virtually shrink the instance such that it only contains
elements that are not covered up to this point. Note that Si = {∅} for all i ≥ n. We define

Xi := X \
⋃

1≤j≤i
Tj =

⋃
T ′∈Si

T ′ ,

i. e., Xi is the set of elements of X not covered after considering the first i shrunk greedy sets. By
construction, each shrunk greedy Ti corresponds to some member of S; all members of S that correspond
to some shrunk greedy set Ti, for 1 ≤ i ≤ k(d− 1), form the k(d− 1) greedy sets of MaxCover.

What needs to be done is to describe how to use the advice to specify which elements W ⊆ Xk(d−1)
are actually requested in the input X ′. MaxCover is then able to use the advice to compute the optimal
covering of these elements using at most k sets.

Let Q1, . . . , Qk be the sets of some fixed optimal solution and let Q =
⋃

1≤i≤kQi. Let Q′ := Q∩Xk(d−1),
and let a be the average size of the sets T1, . . . , Tk(d−1), i. e.,

a =
k(d−1)∑
i=1

|Ti|
k(d− 1) .

Then we can compute the number of elements of X not covered by greedy sets as

|Xk(d−1)| = n− k(d− 1)a .
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Figure 1: Example of how MaxCover processes an instance. The small circles represent the elements of X. The dashed
circles represent the sets from S that correspond to the greedy sets Ti, where, 1 ≤ i ≤ k(d− 1). The elements that remain
and that are actually requested are filled.

Since the size |Ti| decreases with i, we have |T ′| ≤ a, for all T ′ ∈ Sk(d−1), and we conclude that |Q′| ≤ ka
since the sets Q1, . . . , Qk restricted to the corresponding sets in Sk(d−1) cover Q′. Then again, since Q′
covers the actual requests W , we also have that |W | ≤ ka.

The advice contains the encoding of |W | using dlogne bits (which is possible since |W | ≤ n). There
are (

|Xk(d−1)|
|W |

)
=
(
n− k(d− 1)a

|W |

)
different subsets of Xk(d−1) of size |W |; all of them are candidates for W . Since MaxCover knows
Xk(d−1) and |W |, it can compute all such candidates in some fixed ordering. The position of the actual
W with respect to this ordering can then be encoded using another

log
((

n− k(d− 1)a
|W |

))
(4)

advice bits.
We still have to bound (4) from above. Note that, by the definition of a and the Tis, it holds that

n− k(d− 1)a ≥ 0 and therefore

ka ≤ n

d− 1 (5)

is always true.
Now we distinguish two cases depending on the size of the upper bound ka on the cardinality of W .

Case 1. First, suppose ka > (n− k(d− 1)a)/2. Using (5) and
(
n
l

)
≤
(

n
bn/2c

)
, we immediately obtain

log
((

n− k(d− 1)a
|W |

))
< log

((
2ka
|W |

))
≤ log

((
2n/(d− 1)
|W |

))
≤ log

((
2n/(d− 1)
n/(d− 1)

))
≤ n

d− 1 log 4 ,

which is in O(n/d).
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Case 2. Suppose ka ≤ (n− k(d− 1)a)/2. From |W | ≤ ka and (3), it follows that

log
((

n− k(d− 1)a
|W |

))
≤ log

((
n− k(d− 1)a

ka

))
≤ (n− k(d− 1)a) · H2

(
ka

n− k(d− 1)a

)
. (6)

Note that H2(x) ≤ −2x log x, for x ≤ 1/2, which holds due to the assumption of this case. Using
this we get from (6) that

log
((

n− k(d− 1)a
|W |

))
≤ 2(n− k(d− 1)a) · ka

n− k(d− 1)a · log
(
n− k(d− 1)a

ka

)
. (7)

To further bound the expression, we define γ such that

ka = n

γ(d− 1) ,

and thus

n− k(d− 1)a = n

(
1− 1

γ

)
.

Note that due to the assumptions of this case we have

n

γ(d− 1) ≤
n− n/γ

2 ,

and hence γ > 1.
We use this together with the fact that, for any x > 0, we have log x/x ≤ 0.54, and finally obtain
from (7) that

log
((

n− k(d− 1)a
|W |

))
≤ 2
(

1− 1
γ

)
n · ka

n− k(d− 1)a · log
(
n− k(d− 1)a

ka

)
≤ 2
(

1− 1
γ

)
n · log((γ − 1)(d− 1))

(γ − 1)(d− 1)

≤ 2
(

1− 1
γ

)
n ·
(

log(γ − 1)
(γ − 1)(d− 1) + log(d− 1)

(γ − 1)(d− 1)

)
≤ 2
(

1− 1
γ

)
n ·
(

0.54
d− 1 + log(d− 1)

(γ − 1)(d− 1)

)
≤ n

(
1.08
d− 1 +

(
γ − 1
γ

)
· 2 log(d− 1)

(γ − 1)(d− 1)

)
= n

(
1.08
d− 1 + 2 log(d− 1)

γ(d− 1)

)
≤ n

(
1.08 + 2 log(d− 1)

d− 1

)
,

which is in O((n log d)/d).
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To sum up, MaxCover needs to read dlogne bits to know k, another logn bits to know |W |, and at
most O((n log d)/d) additional bits to compute an optimal solution for the part of the input that is not
covered by greedy sets. Since (log d)/d ≤ (log c)/(c−1), the algorithm is c-competitive using O((n log c)/c)
bits of advice. �

To obtain results with respect to the number m of sets in S, we can make use of the previous results
we gained with respect to n. More specifically, consider Theorem 7, which states that the online algorithm
MaxCover with advice uses O((n log c)/c) advice bits to be c-competitive. If m ∈ Θ(n), this implies
that MaxCover uses O((m log c)/c) advice bits; if m ∈ ω(n), an even sublinear bound in m follows. We
now describe an online algorithm ChFunc with advice that uses the characteristic function of S.

Theorem 8. There is a c-competitive online algorithm ChFunc that uses (mdlogme)/(dlogme+ c− 1)
advice bits.

Proof. Again, suppose that an optimal solution uses exactly k sets. Let t := m/(dlogme+ c− 1). First,
observe that if k ≤ t, it clearly suffices to communicate

mdlogme
dlogme+ c− 1

bits to ChFunc to be optimal by writing the indices of all sets taken by an optimal solution on the advice
tape. Clearly, we need one additional bit to indicate that this is the case. Note that we do not need to
encode k into the advice, but we can pad the advice by duplicating certain sets instead.

We may therefore assume the other case, i. e., k > t. Suppose that, in this case, the oracle again writes
the characteristic function of S on the advice tape. Clearly, ChFunc may use (c− 1)k ≥ (c− 1)t more
sets than an optimal solution to guarantee c-competitiveness. This means that if ChFunc knows the first
m− (c− 1)t bits of the advice tape, it acted optimal to this point and may safely take one set for each
remaining uncovered element. We get

m− (c− 1)t = m− (c− 1)m
dlogme+ c− 1 = mdlogme

dlogme+ c− 1 .

As above, the number k does not need to be communicated to ChFunc.
Since m and c are known to ChFunc by construction, no further advice is necessary. �

4. Lower Bounds to Obtain c-Competitiveness

Now we give a lower bound on the number of advice bits required for any online algorithm that
matches the previous upper bound up to a factor of log c. To this end, we need the Azuma-Hoeffding
inequality for submartingales. Recall that a sequence Z1, Z2, . . . , Zn of discrete random variables forms a
submartingale if E[Zi | Zi−1, . . . , Z1] ≥ Zi−1.

Lemma 1 (Azuma, Hoeffding [3, 18]). Let Z0, . . . , Zn be a submartingale, such that |Zi−Zi−1| ≤ ci.
Then, for any positive real t,

Pr[Zn − Z0 ≤ −t] ≤ exp
(
− t2

2
∑n
i=1 c

2
i

)
. �

Theorem 9. Let c ≥ 1, and let Alg be a c-competitive online algorithm with advice. For any integers n
and a such that a > 2c and n is divisible by 2ac, Alg needs to use at least

n

4c ln 2 ·
(a/c− 2)2

(a/c)2

advice bits on instances for which every set in S has size a.
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Proof. Let S contain all possible subsets of size a of X. The input X ′ consists of n/(2c) requests; thus
there are also n/(2c) time steps. As a consequence, an optimal solution chooses n/(2ac) sets from S, and
every c-competitive online algorithm is allowed to pick at most n/(2a) sets.

We use the probabilistic method. In the first time step, the adversary chooses some element x1 from X
with probability 1/n; in the second time step, it chooses another element x2 from the remaining ones with
probability 1/(n− 1), and so on. In general, in time step i, some element xi is chosen with probability
1/(n− i+ 1), uniformly at random from the not-yet-chosen elements.

In what follows, let A denote some fixed deterministic online algorithm. Furthermore, let Yi, with
1 ≤ i ≤ n/(2c), be a random variable that is defined by

Yi :=


1 if A has chosen more than n/(2a) sets in time steps 1, . . . , i− 1,
1 if A has chosen at most n/(2a) sets in time steps 1, . . . , i− 1 and xi is uncovered,
0 else .

The intuition behind this definition is that if, for any n′,
∑n′

i=1 Yi is at most n/(2a), this sum counts the
number of sets from S that A takes up to time step n′. Conversely, if this sum is larger than n/(2a), this
means that A already took too many sets in the first n′ time steps.

We bound the expected value of Yi conditioned by Yi−1, . . . , Y1 from below. First, suppose A took
more than n/(2a) sets in the first i− 1 time steps. Then E[Yi | Yi−1, . . . , Y1] = 1. In the second case, A
took k sets and k ≤ n/(2a). On the one hand, since every set in S has size a, we know that A covers at
most n/2 elements when an element is requested in time step i. On the other hand, the adversary has
requested i− 1 elements so far, thus there remain n− i+ 1 candidate elements out of which one is chosen
uniformly at random. Thus, there are at least n/2 uncovered elements and each of them belongs to the
n− i+ 1 candidates. Since (n/2)/(n− i+ 1) ≥ 1/2, we have that

E[Yi | Yi−1, . . . , Y1] ≥ 1
2 (8)

in any case.
Next, let Z0 := 0 and Zi, with 1 ≤ i ≤ n/(2c), be defined as Zi := − i

2 +
∑i
j=1 Yi, which implies

Zi − Zi−1 = Yi − 1/2. Note that since 0 ≤ Yi ≤ 1, for every i with 1 ≤ i ≤ n/(2c), we have

|Zi − Zi−1| = |Yi −
1
2 | ≤

1
2

:=ci . (9)

Using linearity of expectation, we get

E[Zi | Zi−1, . . . , Z1] = E
[
Yi −

1
2 + Zi−1 | Zi−1, . . . , Z1

]
= E[Zi−1 | Zi−1, . . . , Z1] + E[Yi | Zi−1, . . . , Z1]− 1

2
≥ Zi−1 .

For the last inequality we used E[Zi−1 | Zi−1, . . . , Z1] = Zi−1, (8), and the fact that Yi−1, . . . , Y1 uniquely
define Zi−1, . . . , Z1 and vice versa. Consequently, Z1, . . . , Zn/(2c) form a submartingale.

We are interested in the probability that A is c-competitive, i. e., chooses at most n/(2a) sets from S.
Choosing t := n/(4c)− n/(2a), we can express this probability as

Pr

n/(2c)∑
i=1

Yi ≤
n

2a

 = Pr

n/(2c)∑
i=1

Yi −
n

4c ≤ −t

 = Pr
[
Zn/(2c) ≤ −t

]
= Pr

[
Zn/(2c) − Z0 ≤ −t

]
,

10



and we can use Lemma 1 with the above definition of t and ci = 1/2 due to (9), yielding

Pr

n/(2c)∑
i=1

Yi ≤
n

2a

 ≤ exp
(
− (n(1/(4c)− 1/(2a)))2

2
∑n/(2c)
j=1 1/4

)

= exp
(
−n(1/(4c)− 1/(2a))2

1/(4c)

)
= exp

(
−n (a− 2c)2

4a2c

)
.

As a result, the deterministic online algorithm A covers at most this fraction of the inputs that are
defined as above.

Now consider an online algorithm Alg with advice that reads b(n) bits in total for inputs of length n.
We can view Alg as selecting the best of 2b(n) deterministic algorithms from Strat(Alg) for every given
input. If Alg is c-competitive, for any given input it has to use one deterministic online algorithm that is
c-competitive on this input. In other words, it must hold that

2b(n) · exp
(
−n (a− 2c)2

4a2c

)
≥ 1 .

Taking the natural logarithm, we get

b(n) ≥ n (a− 2c)2

4a2c ln 2 = n

4c ln 2 ·
(a− 2c)2

a2 (10)

as an upper bound on the number of advice bits necessary, and the claim of the theorem follows. �

To get a more tangible result, we formulate the following corollary.

Corollary 1. Let c ≥ 1, and let Alg be a c-competitive online algorithm with advice. Then Alg needs
to use at least n/(4 ln(2)c)− o(1) advice bits.

Proof. Consider any integer n > 4c2 divisible by 4c2. We apply Theorem 9 for a := n/(2c). Note that
the instances used in the proof of the theorem are such that the optimal solution uses one set from S to
cover all requests. We get

b(n) ≥ n

4c ln 2 ·
(a/c− 2)2

(a/c)2 = n

4c ln 2 ·
(

1− 4
a/c

+ 4
(a/c)2

)
= n

4c ln 2 ·
(

1− 8
n

+ 16
n2

)
,

which proves the claim. �

Next, we complement this result by a lower bound that is linear in m. To this end, we use an approach
somewhat similar to an iterated application of the proof of Theorem 9.

Theorem 10. Let c ≥ 1, and let Alg be a c-competitive online algorithm with advice. Then Alg needs
to use at least m/cO(c) advice bits.

Proof. We again use the probabilistic method. Basically, in what follows, we concatenate a number of
disjoint subinstances, in which the optimal cost is one, while any given deterministic online algorithm has
to use an additional set for every given request with probability at least 1/2. We first describe a single
subinstance I ′. For a given c, I ′ contains a := 4c requests that are chosen uniformly at random among all
not yet requested objects. There are 2a2 objects in total and every set has size a.

11



Now we concatenate q such instances resulting in an instance I = (x1, x2, . . . , xaq) with aq requests,
|X| = 2a2q, and |S| =

(2a2

a

)
q; clearly, cost(Opt(I)) = q. Let A denote a deterministic online algorithm.

Similarly to the proof of Theorem 9, we define random variables Yi with 1 ≤ i ≤ aq by

Yi :=
{

1 if A has not covered xi when it is offered,
0 else .

Since, for every subinstance, no algorithm covers more than (a− 1)a objects (except possibly after the
last time step) and there are 2a2 objects in total, the current request is not covered with a probability
of at least 1/2, i. e., E[Yi | Yi−1, . . . , Y1] ≥ 1/2. Again, let Z0 := 0 and Zi := − i

2 +
∑i
j=1 Yi; hence,

Zi − Zi−1 = Yi − 1/2 and Z1, Z2, . . . , Zaq again form a submartingale. Note that A is c-competitive as
long as cost(A(I)) ≤ qc. Let t := q(a/2− c); the probability that A is c-competitive is

Pr
[
aq∑
i=1

Yi ≤ qc

]
= Pr

[
aq∑
i=1

Yi −
aq

2 ≤ −t
]

= Pr[Zaq − Z0 ≤ −t] .

Following Lemma 1 with ci = 1/2, we get

Pr[Zaq − Z0 ≤ −t] ≤ exp
(
−2t2

aq

)
= exp

(
−2q(a/2− c)2

a

)
= exp

(
−2qc2

4c

)
= exp

(
−qc2

)
.

Now again consider Alg that uses b(n) bits; we get

2b(n) · exp
(
−qc2

)
,

and thus

b(n) ≥ qc

2 ln 2 = mc(2a2

a

)
2 ln 2

= mc(32c2

4c
)
2 ln 2

≥ mc!
(32c)8c ≥

m

(32c)8c

advice bits are necessary to be c-competitive, which proves the claim. �

5. Parameters

In this section, we analyze the set cover problem with respect to other parameters, namely, the size `
of the largest set in S, the size k of an optimal solution, and the maximum number p of times an item
occurs in the sets of S.

5.1. The Size of the Largest Set in S
In this subsection, we study the advice complexity with respect to the parameters k and `. First, since

cost(Alg(I))/cost(Opt(I)) ≤ |X ′|/(|X ′|/`) = `, every deterministic online algorithm without advice
is `-competitive. To see that this bound is tight, consider the instance given by X := {1, . . . , `2} and
S := {S ⊆ X | |S| = `}. The adversary requests ` items; one set from S is thus sufficient to cover all
requests. However, in each round, the adversary requests an item not covered by the sets previously
picked by Alg. Thus Alg has to choose ` different sets and is `-competitive.

For the next result, we need the following generalization of Sperner’s Theorem [27] (see (2)).

Observation 2. For any set X of size n, the maximum size of an antichain of X, i. e., a set family
of incomparable subsets of X, consisting of sets of size at most ` is equal to

(
n
`

)
if ` ≤ n/2 and

(
n
n/2
)
if

` ≥ n/2. �
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We use this to obtain an upper bound on the number of advice bits sufficient to produce an optimal
output with respect to the parameters n, `, and k.

Theorem 11. There is an optimal online algorithm with advice that uses at most k` logn advice bits, for
` ≥ 4 and k ≥ 5.

Proof. Consider an algorithm Alg that works as follows. First, it reads dlog ke+ 2dlogdlog kee advice
bits from the tape that encode k in a self-delimiting way. Then it reads, for every requested item that is
not yet covered by a set previously specified by Alg, the index of the set to pick. Using Observation 2,
this is possible with at most(

n

min{`, n/2}

)
advice bits. Hence, the algorithm reads at most

k

⌈
log
((

n

min{`, n/2}

))⌉
+ dlog ke+ 2dlogdlog kee

advice bits in total.
In the following, we use the estimates dlog ke+ 2dlogdlog kee ≤ 1.4k, for k ≥ 5, (1), and log(

(
n
n/2
)
) ≤

log(nn/2)− 2.4. We distinguish two cases.

Case 1. If ` ≥ n/2, we can simply provide the index of the set to pick in every step. This needs at
most log(

(
n
n/2
)
) advice bits, thus in total, we get k

(
log(

(
n
n/2
)
) + 2.4

)
≤ k log(nn/2) = k(n logn)/2 ≤

k` logn.

Case 2. If ` ≤ n/2, we get

k

(
log
((

n

`

))
+ 2.4

)
(1)
≤ k

(
` log

(ne
`

)
+ 2.4

)
= k(` logn− ` log `+ ` log e + 2.4) ≤ k` logn ,

where the last inequality holds for ` ≥ 4.

The claim follows. �

A corresponding lower bound can be established in a straightforward fashion.

Theorem 12. Every optimal online algorithm with advice has to use at least (`− 1) log((n− 1)/(`− 1))
advice bits.

Proof. Again, S consists of all
(
n
l

)
subsets of X of size exactly `. The adversary requests exactly `

elements, so the optimal solution has size 1. After the first element is requested, Alg has to select the
unique set that covers all requested elements among all

(
n−1
`−1
)
possible sets. Hence, Alg needs to read at

least

log
((

n− 1
`− 1

))
(1)
≥ log

((
n− 1
`− 1

)`−1
)

= (`− 1) log
(
n− 1
`− 1

)
advice bits. �

Furthermore, one easily obtains a (1 + 1/k)-competitive online algorithm that uses at most n − l
advice bits. Let S be the first set in S of size ` with respect to the canonical order. The algorithm reads
n− l advice bits and interprets them as the characteristic function of X ′ with respect to X \ S. Then, it
computes an optimal solution for this set and specifies only sets from this optimal solution or S. Thus, its
computed solution has size at most k+ 1, and the competitive ratio of the algorithm is (k+ 1)/k = 1 + 1/k.
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5.2. The Largest Number of Occurrences of an Item
In this subsection, we investigate the advice complexity with respect to the parameters k and the

maximum number p of times an item occurs in the sets of S. We show that kdlog pe advice bits are
sufficient and bk log pc advice bits are necessary to be optimal.

For the upper bound, an algorithm reads, in every step, from the tape the index of the set to take. Since
this index can be given with respect to the number of sets in which the currently requested element occurs,
it has size dlog pe. For the lower bound, let n be a multiple of p+1, and let X consist of items yi and xi,j , for
1 ≤ i ≤ n/(p+ 1), 1 ≤ j ≤ p. Furthermore, S contains all sets {yi, xi,j}. First, the adversary requests all
items yi. Thus, Alg has to specify n/(p+1) sets to cover these items. For 1 ≤ i ≤ n/(p+1), the adversary
then requests one of the p possible items xi,j . This determines a unique optimal solution among all the
pn/(p+1) possible ones. Thus, Alg has to read at least blog

(
pn/(p+1))c = b(n log p)/(p+ 1)c = bk log pc

advice bits.
Finally, the proof of Theorem 8 can also be used to prove that there is a c-competitive online algorithm

Alg with advice that uses at most (mdlog pe)/(dlog pe+ c− 1) advice bits.

6. Conclusion

In this paper, we studied online algorithms with advice for the online set cover problem. We showed that
linear advice is both sufficient and necessary in order to compute an optimal solution, with respect to both
the size of the ground set and the set family. The main contribution is the c-competitive online algorithm
MaxCover with advice that uses O((n log c)/c) advice bits, and the lower bounds of n/(4 ln(2)c) and
m/cO(c). Furthermore, we studied advice with respect to different parameters. We showed that there is
an optimal online algorithm with advice that uses (k` logn) advice bits, where ` is the size of the largest
set in S, and k is the size of an optimal solution. This is complemented by a lower bound of roughly
` log(n`). Additionally, we showed that k log p advice bits are both necessary and sufficient to be optimal,
where p denotes the maximum number of times that an item occurs in the sets of S.

As usual in the context of advice complexity, we ignored the running time of the algorithms we
designed (see also Observation 1). If we consider optimal online algorithms with advice, either the
algorithm (see Theorem 3, where information about the instance is encoded) or the oracle (see Theorem 5,
where information about the optimal solution is encoded) need to solve an NP-hard problem. For c-
competitiveness, our lower bounds are only strengthened by the fact that we do not impose any time
restrictions on both the algorithm and oracle. As for upper bounds, MaxCover (and also its oracle)
needs to calculate an optimal solution, which cannot be done in polynomial time unless P 6= NP. In
general, it makes sense to analyze the advice complexity of efficient online algorithms. Almost nothing is
known about the comparison of online algorithms with advice with unrestricted and restricted runtime,
opening an interesting field for further research.

Moreover, it would certainly be interesting to get more insight about how the advice complexity of this
and other problems behaves with respect to different natural parameters that might be known (at least
in parts) in a practical scenario. Using such an approach, we touch other branches of models of online
computation, such as semi-online algorithms.
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