
Logarithmic Gradient Descent Running time

(Given Minimal Over-Parameterization and crazy assumptions)

Jeff Edmonds ∗

September 18, 2023

Abstract

Allen-Zhu, Li, and Song [?] gave an amazing paper proving that gradient descent starting
with random weights converges to an optimal solution in time DO(1) as long as the machine
has DO(1) parameters, where D is the amount of training data. But surely with a trillion data
items, the number of iteration does not exceed ∼logD. Previous paper[?] had the time depend

on 2# levels. But surely with hundreds of levels, this dependence is not more than ∼L. The
goal of our paper is to make sufficient reasonable assumptions to get these results to mirror
those found in practice. The result obtained is that the number of iterations is O (L log(D))
as long as certain unrelated vectors remain not perpendicular, and some strange values remain
constant.

1 Introduction

In practice, it’s often observed that with a sufficient amount of data and parameters, systems like
ChatGPT and self-driving cars can be developed. However, as noted by Tsotsos [?], a lingering
concern remains: practical experience has yet to grasp when, why, and how the process might fail.
We propose a worldview in which the number of gradient descent steps to get the optimal solution
is O (L log(D)) where D is the amount of training data and L is the number of layers in the neural
network. Note that it does not depend on the width M of the machine. The result does require
overfitting and a few other reasonable assumptions.

2 Historical Perspective

A longstanding debate within the realm of machine learning centers on the dilemma of whether the
number of parameters, denoted as M ′, should surpass or fall short of the size of the training data
set, represented as D. The former is essential to ensure the existence of weight configurations ~w that
produce optimal computations on the training data, while the latter, as demonstrated by Avrim
Blum and Ronald Rivest [?, ?] renders the task of finding such weights NP-complete. (See Section ??
for more). The former approach carries the risk of over-fitting, whereas the latter safeguards the
machine’s capacity to generalize to unseen data (a concept stemming from PAC learning). In
contrast, a smooth machine exhibits enhanced generalization capabilities. The fundamental idea is
that when a new input ~x lies between training inputs ~xd and ~xd′ , its output is likely to fall within
the range defined by their respective outputs. Bubeck and Sellke [?] established that a machine
attains smoothness only when the parameter count M ′ satisfies M ′ ≥ Ω(ND). Additionally,
practical observations substantiate the idea that having an increased number of weights enhances
the maneuverability of gradient descent within this higher-dimensional search space, enabling it to
navigate obstacles more effectively.

∗York University, jeff@cse.yorku.ca, supported by The Natural Sciences and Engineering Research Council of
Canada (NSERC)

In 2018, Allen-Zhu, Li, and Song [?] gave an amazing paper proving that gradient descent
starting with random weights ~w0 converges to an optimal solution in DO(1) time as long as the
machine has DO(1) parameters. Their technique proves that as long as the weights remain within
a small ball around ~w0, each step of gradient descent makes a multiplicative decrease in the error
until an optimal solution has been found.

A paper by Hui Jiang [?] proves that when gradient descent finds critical weights, i.e., a point
~w on the error surface with zero slope, the resulting neural network NN~w(x) provides accurate
responses for each training data point. Edmonds [?] decreases the requirement from needing (1/ǫ)N

parameters to needing the machine to possess at least one hidden layer with a node count M equal
to or greater than the number of training data points, denoted as D. Furthermore, they establish a
more quantifiable link between the criticality of ~w and the accuracy of the machine’s approximation
to the supervisor’s responses. The number of weights needed to achieve this result is nearly optimal
because reducing the number of weights further would render the weight optimization problem NP-
complete.

Having more parameters to learn clearly takes more computation time for each step of gradient
descent. However, [?] proves optimizing the weight is NP-complete with lots of local minimum
when the neural network width is less than the amount of training data, while our second result
proves that the number of iterations depends on the number of layers L but not on the width M
of the machine and only O(logD) on the amount D of training data.

3 Statement of Result

Theorem 1 (Time) When the assumptions are met for the entire duration of the gradient descent
algorithm, the number of iterations is t = θ(1+caaahL) log(D/ǫ), where D is the amount of training
data, L is the number of layers in the neural network, and caaah is a strange value we will assume
is θ(1). The required assumptions are as follows:

1. Error Function: The error Error(~w) is assumed to change from Θ(D) to ǫ.
Here Error(~w) =

∑

d∈[D] (NN~w(~xd)− y∗d)
2 =

∑

d∈[D]Θ(1) = Θ(D).
We are assuming that the supervisor’s answer y∗d has been normalized to O(1) and the net-
works output NN~w(~xd) is kept to O(1).

2. Activation Function: Though the proof uses sigmoid, the only property of it that we use

is that δsigmoid(z)2

δz2
/ δsigmoid(z)

δz = 1−2y ∈ [−1, 1]. If the activation function where linear, then
δactivation(z)2

δz2
= 0 and the caaahL part of the time would disappear. One might conclude that

the same holds for a piece-wise linear function like ReLU. However, it does not because the
Taylor approximations breaks down as soon as one of the activation functions crosses such a
transition.

3. O(1) Step Size: In order to avoid second-order curvature terms, the step size is set as
follows. In order to avoid higher-order curvature terms, the step size γt cannot exceed one.

γt = Min

(

[

θ(1+caaahL) ·
∑

d

∑

m

(

δNN~w(~xd)
δ ~wm

)2
]−1

, 1

)

Note that this value changes with each time step. We generally simplify all the notation by
dropping the t subscripts.

2

The problem with decreasing γt to one is that this decreases the running time by the same
factor. To avoid this, we add the assumption that the original defined amount is O(1).

Lemma 2 helps to justify this by proving it is θ
(

1
cxczDL3

)

where we justify cx and cz are θ(1)

as follows.

• Here cx = Avgd,ℓ |~x〈d,ℓ〉|2 = Avgd,ℓ
∑

k

(

x〈d,ℓ,k〉
)2
.

In practice, machine learners do not want the values across a layer to blow up or decay
layer by layer. We expect this to be Θ(1).

• Here cz = Avgd,ℓ
∑

j

(

δNN~w(~xd)
δz〈d,ℓ,j〉

)2
.

This is similar to the sensitivity requirement in Theorem ??. We expect this to be Θ(1),
because if the pre-activation values z〈d,ℓ,j〉 of all Mℓ nodes at level ℓ change by ǫ, we
likely want the output NN~w(~xd) to change by about Θ(ǫ).

4. Non-Perpendicular: Define a D-dimensional vector space with a dimension for each train-
ing input ~xd. Let ~Loss denote the vector 〈NN~w(~xd)− y∗d | d ∈ [D]〉 and for each weight ~wm,

let ~Dirm denote the vector
〈

δNN~w(~xd)
δ ~wm

| d ∈ [D]
〉

. These vectors ~Loss and ~Dirm are not co-

ordinated in that a little noise added to the supervisor’s output 〈y∗d〉 weights changes the
first, and a little noise added to the weights ~w changes the second. We require that angle αm

between them is not 90o so that cos(αm) ≥ Ω(1).
Unlike Theorem ?? proving that there are no local minimum, this result does not ”need”
the width M to be big. However, having more nodes M , means more vectors ~Dirm =
〈

δNN~w(~xd)
δ ~wm

| d ∈ [D]
〉

so ”more” of them are going to be not perpendicular to ~Loss. Con-

sider the M edges from the M nodes at level ℓ′−1 to a fixed node z〈d,ℓ′,j〉. The matrix
〈

δNN~w(~xd)
δw〈ℓ′,k,j〉

| k ∈ [M], d ∈ [D]

〉

is equal to the matrix

〈

δx〈d,ℓ′,k〉
| k ∈ [M], d ∈ [D]

〉

times the

vector

〈

δNN~w(~xd)
δz〈d,ℓ′,j〉

| d ∈ [D]

〉

. Lemma ?? proves that the second matrix is has rank D so so

does the first matrix. However, linear independence does not help that much because if the
columns are all perpendicular to each other, then all but one could be perpendicular to ~Loss.
In this case, the bound on the running time increases by a factor of D.

5. Negations in Sum: The proof will want to factor a funny value
(

1−2y〈d,ℓ,j〉
)

w〈ℓ,k,j〉 out of
a funny sum. We define

(

1−2y〈d,ℓ,?〉
)

w〈ℓ,k,?〉 to be the value to make it work, namely so that

∑

j∈[Mℓ]

(

1−2y〈d,ℓ,j〉
) δNN~w(~xd)

δz〈d,ℓ,j〉
w〈ℓ,k,j〉

2 ≤
(

1−2y〈d,ℓ,?〉
)

w〈ℓ,k,?〉 ·
∑

j∈[Mℓ]
δNN~w(~xd)
δz〈d,ℓ,j〉

w〈ℓ,k,j〉.

If all of these numbers were positive, we would simply factor out the maximum of these values.
Having different signs, however, makes it awkward. The sum we want to be small could not
cancel at all, while the one we want to be large could cancel to zero. In order to handle this,
we assume that we are able to factor out O(1) of their average value. The justification is that
if in both sums the sign of these Mℓ terms were chosen randomly, then in both sums, all but
θ(
√
Mℓ) of the terms are expected to cancel.

6. Mid-Sigmoid: We define caaah so that ∀ 〈t, d, ℓ, k〉, (or at least on “average”)
∣

∣w〈ℓ,k,?〉

∣

∣ ≤
caaah

∣

∣

∣

δNN~w(~xd)
δx〈d,ℓ,k〉

∣

∣

∣
. We will assume that this caaah ≤ O (1). (In the event that caaah < o(1), the

theorem is stated as θ(1+caaahL).) The justification is as follows.

3

Notation: Recall w〈ℓ,k,j〉 represents the weight from layer ℓ’s kth input node with post-

activation value x〈d,ℓ,k〉 to its jth output node with pre-activation value z〈d,ℓ,j〉.

Proportional: The equation is δNN~w(~xd)
δx〈d,ℓ,k〉

=
∑

j
δNN~w(~xd)
δz〈d,ℓ,j〉

w〈ℓ,k,j〉, which is proportional to

scaling all the w〈ℓ,k,j〉 by the same factor.

Simple Case: For better understanding assume that node x〈d,ℓ,k〉 feeds into a single sigmoid
that is the output NN~w(~xd).

δNN~w(~xd)
δx〈d,ℓ,k〉

=
∑

j
δNN~w(~xd)
δz〈d,ℓ,j〉

w〈ℓ,k,j〉 =
δsig(z〈d,L〉)

δz〈d,L〉
w〈L,k,?〉 = sig(z〈d,L〉)(1−sig(z〈d,L〉))w〈Y,k,?〉

caaah =
∣

∣

∣
w〈ℓ,k,?〉/

δNN~w(~xd)
δx〈d,ℓ,k〉

∣

∣

∣
= 1

sig(z〈d,L〉)(1−sig(z〈d,L〉))

It is not surprising that the running time increases inverse proportionally to how small
the sigmoid outputs get. Theorem ?? assumes that these are all θ(1).

Non-Blowup: In practice, machine learners do not want the values across a layer to blow
up or decay layer by layer.

w〈ℓ,k,j〉: The relation is z〈d,ℓ,j〉 =
∑

k∈[Mℓ−1]
w〈ℓ,k,j〉×x〈d,ℓ,k〉. Rearranged “gives” |w〈ℓ,k,j〉|

needs to be
|z〈d,ℓ,j〉|

∣

∣

∣

∑

k∈[Mℓ−1]
??

∣

∣

∣
×|x〈d,ℓ,k〉|

. Being the input to the sigmoid, we want
∣

∣z〈d,ℓ,j〉
∣

∣ ∈

θ (1). Because
∑

k∈[Mℓ−1]

(

x〈d,ℓ,k〉
)2

is expected to be θ (1),
∣

∣x〈d,ℓ,k〉
∣

∣ is expected to

be θ
(

1/
√

Mℓ−1

)

. If the sign of these Mℓ−1 terms were chosen randomly, then all but

θ
(√

Mℓ−1

)

of the terms are expected to cancel. Together this gives us that |w〈ℓ,k,j〉|
needs to be θ(1)

θ(
√

Mℓ−1)×θ(1/
√

Mℓ−1)
= θ (1).

δNN~w(~xd)
δx〈d,ℓ,k〉

: The relation is δNN~w(~xd)
δ?? =

∑

k∈[Mℓ−1]
δNN~w(~xd)
δx〈d,ℓ,k〉

× δx〈d,ℓ,k〉

δ?? . Rearranged “gives”
∣

∣

∣

δNN~w(~xd)
δx〈d,ℓ,k〉

∣

∣

∣
needs to be

∣

∣

∣

δNN~w(~xd)

δ??

∣

∣

∣

∣

∣

∣

∑

k∈[Mℓ−1]
??

∣

∣

∣
×

∣

∣

∣

∣

δx〈d,ℓ,k〉
δ??

∣

∣

∣

∣

. Because |NN~w(~xd)| is expected to be

θ (1), we expect ǫ events to change it by θ (ǫ× 1). This gives that δNN~w(~xd)
δ?? needs to

be θ(1). Because
∣

∣x〈d,ℓ,k〉
∣

∣ is expected to be θ
(

1/
√

Mℓ−1

)

, we expect our ǫ event to

change it by θ
(

ǫ× 1/
√

Mℓ−1

)

. This gives that
∣

∣

∣

δx〈d,ℓ,k〉

δ??

∣

∣

∣
needs to be θ

(

1/
√

Mℓ−1

)

.

Again if the sign of the Mℓ−1 terms in a sum were chosen randomly, then all but

θ
(√

Mℓ−1

)

of the terms are expected to cancel. Together this gives
∣

∣

∣

δNN~w(~xd)
δx〈d,ℓ,k〉

∣

∣

∣
needs

to be θ(1)

θ(
√

Mℓ−1)×θ(1/
√

Mℓ−1)
= θ (1).

caaah: This gives caaah =
∣

∣

∣
w〈ℓ,k,?〉/

δNN~w(~xd)
δx〈d,ℓ,k〉

∣

∣

∣
= θ (1/1).

3.1 Proof Idea

The Error function is quadratic when it is defined as Error(~w) =
∑

d(NN~w(~xd) − y∗d)
2 and the

neural network has only linear activation functions. On this, gradient descent solves the problem
in logarithmic time. Given current values wt, error Error(wt) = (wt−w∗)

2, derivative Error′(w) =
2(wt−w∗), update wt+1 = wt−γError′(w), each iteration decreases the error amount |wt−w∗| and
the error measure (wt−w∗)

2 by a constant factor, which leads to logarithmic time. What remains

4

is to take a step size small enough that the non-linearity of the neural network has an insignificant
effect.

The effect of the non-linearity is characterized by its second derivatives. This paper has a few
lemmas that approximate these second derivatives by converting them into the product of first

derivatives. Lemma 5 for example wants to prove δNN~w(~xd)
2

δw〈ℓ,k,j〉 δw〈ℓ′,k′,j′〉
≤ δNN~w(~xd)

δw〈ℓ,k,j〉

δNN~w(~xd)
δw〈ℓ′,k′,j′〉

. This is

proved by induction on the number of sigmoids L−ℓ between the node/edge layer ℓ being considered
and the output layer L. This is easy when differentiating with respect to different things, i.e.
w〈ℓ,k,j〉 vs w〈ℓ′,k′,j′〉 or when what is being passed through is linear. Lemma 8 handles the case when
neither is true, namely moving through the non-linear sigmoid activation function on the same
node twice. The relation being “passed through” is y〈d,ℓ,j〉 = sigmoid(z〈d,ℓ,j〉). The lemma proves
[

δNN~w(~xd)
2

δy〈d,ℓ,j〉
2 ≤ c

(

δNN~w(~xd)
δy〈d,ℓ,j〉

)2
]

⇒
[

δNN~w(~xd)
2

δz〈d,ℓ,j〉
2 ≤ c

(

δNN~w(~xd)
δz〈d,ℓ,j〉

)2
+
(

1−2y〈d,ℓ,j〉
) δNN~w(~xd)

δz〈d,ℓ,j〉

]

. The second

term is the ugly one leading to caaah. The induction collects one such caaah for each sigmoid it
passes through. The c on the first term is how many times it has been collected so far. Not having
the c on the second ugly term means that it is collected additively caaah+caaah+. . .+caaah=caaah×L
instead of multiplicatively caaah×caaah×. . .×caaah=cLaaah.

3.2 Linear Approximation

Proof: We begin the proof by considering what occurs in each step of gradient descent.

∆~w = γ∆Error(~w) = γ
〈

δError
δ ~w1

, . . . , δE
δ ~wM′

〉

Error(~w+∆~w) (by Taylor approximation)

= Error(~w) +
∑

m

[

δError
δ ~wm

·∆~wm

]

+ curvature Θ(∆~w2) terms

= Error(~w) +
∑

m

[

δError
δ ~wm

·
(

−γ δError
δ ~wm

)]

+Θ(γ2)

= Error(~w)− γ
∑

m

(

δError
δ ~wm

)2
+Θ(γ2)

= Error(~w)− Ω((1+caaahL)
−1) Error(~w) (by Lemmas 1 and 3)

=
(

1−Ω((1+caaahL)
−1)
)

Error(~w) = e−Ω((1+caaahL)
−1t)Error(~w0)

Hence, the Error reaches ǫ after t ≤ θ(1+caaahL) log(D/ǫ).

Lemma 1
∑

m

(

δError
δ ~wm

)2
≥ Ω

(

Error(~w)
(1+caaahL)γ

)

.

Proof: Recall the vectors ~Loss = 〈NN~w(~xd)− y∗d | d ∈ [D]〉 and ∀m ∈ [M ′], ~Dirm =
〈

δNN~w(~xd)
δ ~wm

| d ∈ [D]
〉

.

5

By assumption 4 of Theorem 1, the angle αm between them is not 90o so that cos(αm) ≥ Ω(1).

Error(~w) =
∑

d (NN~w(~xd)− y∗d)
2

δError(~w)
δ ~wm

= 2
∑

d (NN~w(~xd)− y∗d) ·
δNN~w(~xd)

δ ~wm
= 2 ~Loss · ~Dirm = 2 cos(αm) | ~Loss| | ~Dirm|

= Ω(1) · | ~Loss| · | ~Dirm|
∑

m

(

δError(~w)
δ ~wm

)2
=

∑

mΩ(1) · | ~Loss|2 · | ~Dirm|2

= Ω(1) ·
[

∑

d (NN~w(~xd)− y∗d)
2
]

·
[

∑

m

∑

d

(

δNN~w(~xd)
δ ~wm

)2
]

= Ω(1) · [Error(~w)] · [θ(1+caaahL) · γ]−1 (By the definitions of Error and γ.)

This is not why the step-size γ is set to

[

θ(1+caaahL) ·
∑

d

∑

m

(

δNN~w(~xd)
δ ~wm

)2
]−1

, but it sure is

convenient.

Lemma 2 [θ(1+caaahL) · γ]−1 =
∑

m | ~Dirm|2 =
∑

m

∑

d

(

δNN~w(~xd)
δ ~wm

)2
= cxczDL.

Proof: We begin by considering the influence of weight w〈ℓ,k,j〉∈R.

z〈d,ℓ,j〉 =
∑

k w〈ℓ,k,j〉×x〈d,ℓ,k〉
δNN~w(~xd)
δw〈ℓ,k,j〉

= δNN~w(~xd)
δz〈d,ℓ,j〉

· δz〈d,ℓ,j〉
δw〈ℓ,k,j〉

= δNN~w(~xd)
δz〈d,ℓ,j〉

· x〈d,ℓ,k〉
∑

d,ℓ,k,j

(

δNN~w(~xd)
δw〈ℓ,k,j〉

)2
=

∑

d,ℓ

∑

j

∑

k

(

δNN~w(~xd)
δz〈d,ℓ,j〉

)2
·
(

x〈d,ℓ,k〉
)2

=
∑

d,ℓ

[

∑

j

(

δNN~w(~xd)
δz〈d,ℓ,j〉

)2
]

·
[

∑

k

(

x〈d,ℓ,k〉
)2
]

= czcxDL

3.3 Step Size γ and Second Derivatives

Lemma 3 Setting the step size to γ =

[

θ(1+caaahL) ·
∑

d

∑

m

(

δNN~w(~xd)
δ ~wm

)2
]−1

is small enough to

avoid second-order curvature terms.

Proof: The Taylor expansion is Error(~w+γ∆Error) = Error(~w)−E′γ + 1
2E

′′γ2 + 1
3!E

′′′γ3 +

We avoid the second order term, i.e. E′′γ2 ≤ E′γ, by setting γ = E′

E′′ . This in turn ensures the
higher order terms decrease geometrically, at least in the cases when Error(~w) is wc and ecw. The
problem cases are cw, sigmoid(0), and sin(0) because E′′ = 0, giving γ = ∞. We avoided this by

6

assuming that γ is O(1) and rounding down to one.

E′γ =
∑

m

(

δError
δ ~wm

)2
γ (Theorem 1)

E′′γ2 =
∑

m

∑

m′

[

δError2

δ ~wm δ ~wm′
·∆~wm ·∆~wm′

]

≤ ∑

m

∑

m′

[[

θ(1+caaahL) ·
∑

d
δNN~w(~xd)

δ ~wm
· δNN~w(~xd)

δ ~wm′

]

·
(

−γ δError
δ ~wm

)

·
(

−γ δError
δ ~wm′

)]

(by Lemma 4) (Gradient Descent Step)

= θ(1+caaahL) ·
∑

d

[

∑

m
δNN~w(~xd)

δ ~wm
· δError

δ ~wm

]2
γ2 (Think of this as the dot product of two vectors.)

= θ(1+caaahL) ·
∑

d

[〈

δNN~w(~xd)
δ ~wm

|m
〉

·
〈

δError
δ ~wm

|m
〉]2

γ2

= θ(1+caaahL) ·
∑

d

[

cos(α) ·
∣

∣

∣

〈

δNN~w(~xd)
δ ~wm

|m
〉∣

∣

∣
·
∣

∣

∣

〈

δError
δ ~wm

|m
〉∣

∣

∣

]2
γ2

≤ caaahL ·
[

∑

d

∑

m

(

δNN~w(~xd)
δ ~wm

)2
]

·
[

∑

m

(

δError
δ ~wm

)2
]

γ2

γ = E′

E′′ =

[

θ(1+caaahL) ·
∑

d

∑

m

(

δNN~w(~xd)
δ ~wm

)2
]−1

Lemma 4 δError(~w)2

δ ~wm δ ~wm′
≤ θ(1+caaahL) ·

∑

d
δNN~w(~xd)

δ ~wm
· δNN~w(~xd)

δ ~wm′
.

Proof: δError(~w)
δ ~wm

= 2
∑

d (NN~w(~xd)− y∗d) ·
δNN~w(~xd)

δ ~wm

δError(~w)2

δ ~wm δ ~wm′
= 2

∑

d
δNN~w(~xd)

δ ~wm′
· δNN~w(~xd)

δ ~wm

+ 2
∑

d (NN~w(~xd)− y∗d) ·
δNN~w(~xd)

2

δ ~wm δ ~wm′

|NN~w(~xd) − y∗d| is assumed to be O(1). Lemmas 5 proves that the second term is at most caaahL
times the first.

Lemma 5 Whether or not (x〈d,ℓ,k〉 and x〈d,ℓ′≤ℓ,k′〉) and (w〈ℓ,k,j〉 and w〈ℓ′≤ℓ,k′,j′〉) represent different
or the same node/edge:

δNN~w(~xd)
2

δx〈d,ℓ,k〉 δx〈d,ℓ′,k′〉
≤ caaah(L−ℓ) · δNN~w(~xd)

δx〈d,ℓ,k〉

δNN~w(~xd)

δx〈d,ℓ′,k′〉
(1)

δNN~w(~xd)
2

δw〈ℓ,k,j〉 δw〈ℓ′,k′,j′〉
≤ caaah(L−ℓ) · δNN~w(~xd)

δw〈ℓ,k,j〉

δNN~w(~xd)

δw〈ℓ′,k′,j′〉
(2)

Proof of Lemma 5.1: This is proved by induction on the number of sigmoids L−ℓ between the
node/edge layer ℓ being considered and the output layer L. When the two nodes/edge are in
different layers, i.e., ℓ > ℓ′, the proof moves the second one up increasing ℓ′ until they are in the
same layer. Being about the same, the proof here focuses on the case in which they are in the same
layer, i.e., ℓ = ℓ′. The hardest case is when the two nodes are the same.

The base case occurs at the output NN~w(~xd) which is the output y〈d,L−1,j〉 to the L−1st layer.

If there were one, this would also be the input x〈d,L,k〉 to the Lth layer. The number of sigmoids

7

between this x〈d,L,k〉 and the output is L−L = 0. Here, the statement is true because 0 =

δNN~w(~xd)
2

δx〈d,L,k〉
2 = caaah(L−L)

(

δNN~w(~xd)
δx〈d,L,k〉

)2
= 0× 1.

The induction step proves δNN~w(~xd)
2

δx〈d,ℓ,k〉 δx〈d,ℓ′,k′〉
≤ caaah(L−ℓ) · δNN~w(~xd)

δx〈d,ℓ,k〉

δNN~w(~xd)
δx〈d,ℓ′,k′〉

with L−ℓ sigmoids

after it. By way of induction, assume the same statement is true for each x〈d,ℓ+1,j〉 with L−ℓ−1
sigmoids after it. Recall that x〈d,ℓ+1,j〉 is different notation for y〈d,ℓ,j〉 shifted one layer up. This
gives us the precondition for Lemmas 6, 7, and 8 with c = L−ℓ−1. We continue the proof as
follows.

∀j, z〈d,ℓ,j〉 =
∑

k w〈ℓ,k,j〉×x〈d,ℓ,k〉
δNN~w(~xd)
δx〈d,ℓ,k〉

=
∑

j
δNN~w(~xd)
δz〈d,ℓ,j〉

δz〈d,ℓ,j〉
δx〈d,ℓ,k〉

=
∑

j
δNN~w(~xd)
δz〈d,ℓ,j〉

w〈ℓ,k,j〉

δNN~w(~xd)
2

δx〈d,ℓ,k〉 δx〈d,ℓ,k′〉
=

∑

j
δNN~w(~xd)

2

δz〈d,ℓ,j〉 δx〈d,ℓ,k′〉
w〈ℓ,k,j〉 =

∑

j

[

∑

j′
δNN~w(~xd)

δz〈d,ℓ,j〉 δz〈d,ℓ,j′〉
w〈ℓ,k′,j′〉

]

w〈ℓ,k,j〉

(There is an extra term when the two nodes 〈ℓ, j〉 = 〈ℓ, j′〉 are the same.)

≤ ∑

j

∑

j′ caaah(L−ℓ−1) · δNN~w(~xd)
δz〈d,ℓ,j〉

δNN~w(~xd)
δz〈d,ℓ,j′〉

w〈ℓ,k,j〉w〈ℓ,k,j′〉 (by Lemma 7)

+
∑

j∈[Mℓ]

(

1−2y〈d,ℓ,j〉
) δNN~w(~xd)

δz〈d,ℓ,j〉
w〈ℓ,k,j〉

2 (by Lemma 8)

1st term = caaah(L−ℓ−1) ·
(

δNN~w(~xd)
δx〈d,ℓ,k〉

)2

2nd term By assumption 5 of Theorem 1, we can pretend that the
(

1−2y〈d,ℓ,j〉
)

w〈ℓ,k,j〉

can be factored out.

=
(

1−2y〈d,ℓ,?〉
)

w〈ℓ,k,?〉 ·
∑

j∈[Mℓ]
δNN~w(~xd)
δz〈d,ℓ,j〉

w〈ℓ,k,j〉 =
(

1−2y〈d,ℓ,?〉
)

w〈ℓ,k,?〉 ·
(

δNN~w(~xd)
δx〈d,ℓ,k〉

)

Here y〈d,ℓ,?〉 is the output of the sigmoid activation function and hence 1−2y〈d,ℓ,?〉 ∈ [−1..1].

By assumption 6 of Theorem 1,
∣

∣w〈ℓ,k,?〉

∣

∣ ≤ caaah

∣

∣

∣

δNN~w(~xd)
δx〈d,ℓ,k〉

∣

∣

∣

≤ caaah

(

δNN~w(~xd)
δx〈d,ℓ,k〉

)2

The number of
(

δNN~w(~xd)
δx〈d,ℓ,k〉

)2
introduced by the 1st term is caaah(L−ℓ−1) and the number introduced

by the 2nd is caaah for a total of caaah(L−ℓ).

Lemma 6 Whether or not w〈ℓ,k,j〉 and w〈ℓ′,k′,j′〉 are the same weight:
[

δNN~w(~xd)
2

δz〈d,ℓ,j〉 δz〈d,ℓ′,j′〉
= c δNN~w(~xd)

δz〈d,ℓ,j〉

δNN~w(~xd)
δz〈d,ℓ′,j′〉

]

⇒
[

δNN~w(~xd)
2

δw〈ℓ,k,j〉 δw〈ℓ′,k′,j′〉
= c δNN~w(~xd)

δw〈ℓ,k,j〉

δNN~w(~xd)
δw〈ℓ′,k′,j′〉

]

Proof of Lemma 5.2 and 6:

z〈d,ℓ,j〉 =
∑

k w〈ℓ,k,j〉×x〈d,ℓ,k〉
δNN~w(~xd)
δw〈ℓ,k,j〉

= δNN~w(~xd)
δz〈d,ℓ,j〉

δz〈d,ℓ,j〉
δw〈ℓ,k,j〉

= δNN~w(~xd)
δz〈d,ℓ,j〉

x〈d,ℓ,k〉

δNN~w(~xd)
2

δw〈ℓ,k,j〉 δw〈ℓ′,k′,j′〉
= δNN~w(~xd)

2

δz〈d,ℓ,j〉 δz〈d,ℓ′,j′〉

δz〈d,ℓ′,j′〉
δw〈ℓ′,k′,j′〉

x〈d,ℓ,k〉 = δNN~w(~xd)
2

δz〈d,ℓ,j〉 δz〈d,ℓ′,j′〉
x〈d,ℓ,k〉x〈d,ℓ′,k′〉

≤ c δNN~w(~xd)
δz〈d,ℓ,j〉

δNN~w(~xd)
δz〈d,ℓ′,j′〉

x〈d,ℓ,k〉x〈d,ℓ′,k′〉 (by assumption)

= c δNN~w(~xd)
δw〈ℓ,k,j〉

δNN~w(~xd)
δw〈ℓ′,k′,j′〉

8

Lemma 7 If we are considering two different nodes, i.e., 〈ℓ, j〉 6= 〈ℓ′, j′〉,
then

[

δNN~w(~xd)
2

δy〈d,ℓ,j〉 δy〈d,ℓ′,j′〉
= c δNN~w(~xd)

δy〈d,ℓ,j〉

δNN~w(~xd)
δy〈d,ℓ′,j′〉

]

⇒
[

δNN~w(~xd)
2

δz〈d,ℓ,j〉 δz〈d,ℓ′,j′〉
= c δNN~w(~xd)

δz〈d,ℓ,j〉

δNN~w(~xd)
δz〈d,ℓ′,j′〉

]

Proof: y〈d,ℓ,j〉 = sigmoid(z〈d,ℓ,j〉)

δNN~w(~xd)
δz〈d,ℓ,j〉

= δNN~w(~xd)
δy〈d,ℓ,j〉

δy〈d,ℓ,j〉
δz〈d,ℓ,j〉

= δNN~w(~xd)
δy〈d,ℓ,j〉

δsig(z〈d,ℓ,j〉)

δz〈d,ℓ,j〉

δNN~w(~xd)
2

δz〈d,ℓ,j〉 δz〈d,ℓ′,j′〉
= δNN~w(~xd)

2

δy〈d,ℓ,j〉 δy〈d,ℓ′,j′〉

δsig(z〈d,ℓ,j〉)

δz〈d,ℓ,j〉

δsig(z〈d,ℓ′,j′〉)

δz〈d,ℓ′,j′〉

≤ c δNN~w(~xd)
δy〈d,ℓ,j〉

δNN~w(~xd)
δy〈d,ℓ′,j′〉

δsig(z〈d,ℓ,j〉)

δz〈d,ℓ,j〉

δsig(z〈d,ℓ′,j′〉)

δz〈d,ℓ′,j′〉
(by assumption)

≤ c δNN~w(~xd)
δz〈d,ℓ,j〉

δNN~w(~xd)
δz〈d,ℓ′,j′〉

Lemma 8 If we are considering the same node twice, then
[

δNN~w(~xd)
2

δy〈d,ℓ,j〉
2 ≤ c

(

δNN~w(~xd)
δy〈d,ℓ,j〉

)2
]

⇒
[

δNN~w(~xd)
2

δz〈d,ℓ,j〉
2 ≤ c

(

δNN~w(~xd)
δz〈d,ℓ,j〉

)2
+
(

1−2y〈d,ℓ,j〉
) δNN~w(~xd)

δz〈d,ℓ,j〉

]

Proof:

y〈d,ℓ,j〉 = sigmoid(z〈d,ℓ,j〉)

y = sig(z) = 1
1+e−z and δy

δz = y(1− y)

δy2

δz2
= δy

δz (1− y) + δ(1−y)
δz = [y(1− y)](1− y)− y[y(1− y)] = [1− 2y][y(1− y)]

∈ [−1, 1] δyδz
δNN~w(~xd)
δz〈d,ℓ,j〉

= δNN~w(~xd)
δy〈d,ℓ,j〉

δy〈d,ℓ,j〉
δz〈d,ℓ,j〉

= δNN~w(~xd)
δy〈d,ℓ,j〉

δsig(z〈d,ℓ,j〉)

δz〈d,ℓ,j〉

δNN~w(~xd)
2

δz2
〈d,ℓ,j〉

= δNN~w(~xd)
2

δy〈d,ℓ,j〉 δz〈d,ℓ,j〉

δsig(z〈d,ℓ,j〉)

δz〈d,ℓ,j〉
+ δNN~w(~xd)

δy〈d,ℓ,j〉

δsig(z〈d,ℓ,j〉)
2

δz〈d,ℓ,j〉
2

1st term = δNN~w(~xd)
2

δy2
〈d,ℓ,j〉

(

δsig(z〈d,ℓ,j〉)

δz〈d,ℓ,j〉

)2
= c

(

δNN~w(~xd)
δy〈d,ℓ,j〉

)2 (δsig(z〈d,ℓ,j〉)

δz〈d,ℓ,j〉

)2
= c

(

δNN~w(~xd)
δz〈d,ℓ,j〉

)2

2nd term =
[

δNN~w(~xd)
δz〈d,ℓ,j〉

/
δsig(z〈d,ℓ,j〉)

δz〈d,ℓ,j〉

] (

δsig(z〈d,ℓ,j〉)

δz〈d,ℓ,j〉

)2
=
(

1−2y〈d,ℓ,j〉
) δNN~w(~xd)

δz〈d,ℓ,j〉

4 Mathematical Insight

We initiate our discussion with an intuitive overview of our approach. Our primary objective
is to prove that only globally optimal critical points exist. When considering sigmoid activation
functions, we make the assumption that they never reach zero or exhibit flat regions. Consequently,
we contend that as the weights wm undergo changes, the output of the neural network consistently
varies. In practical terms, this implies that for any fixed input ~x, the relationship between NN~w(x)

9

and ~w does not encompass critical points. The error surface Error(~w) =
∑

d(NN~w(~xd)− y∗d)
2 has

local minimums only because of this imposed quadratic. We prove that all such critical points
are optimal in that for each training input ~xd, the neural network produces an output NN~w(~xd)
equaling the supervisor’s answer y∗d.

Hui Jiang, in his work [?], effectively introduces the following framework: Consider a vector
space of dimension D, where each dimension corresponds to a training input ~xd. Given the cur-
rent set of weights ~w, we can measure the discrepancy between the neural network’s response,
denoted as NN~w(~xd), and the supervisor’s provided answer y∗d using the vector ~Loss, defined as
~Loss = 〈NN~w(~xd)− y∗d | d ∈ [D]〉. For each weight ~wm, we define ~Dirm as the vector of derivatives

〈 δNN~w(~xd)
δ ~wm

| d ∈ [D]〉. We can assemble a matrix Dir using these vectors, where each row corre-

sponds to ~Dirm. This framework enables us to express the direction of descent, i.e., the vector of
derivatives of the Error function with respect to each ~wm, as follows:

Error(~w) =
∑

d (NN~w(~xd)− y∗d)
2

δError(~w)
δ ~wm

= 2
∑

d (NN~w(~xd)− y∗d) ·
δNN~w(~xd)

δ ~wm
= 2 ~Loss · ~Dirm

∇Error(~w) =
〈

δError(~w)
δ ~w1

, . . . , δError(~w)
δ ~wM′

〉

= 2Dir · ~Loss

If the neural network has more weights than data, M ′ ≥ D, the matrix Dir has more rows than
columns. Our task is to prove that it has full rank D. This then gives

~Loss = 1
2Dir−1 · ∇Error(~w)

Having the weights ~w situated at a critical point implies that each of these Error derivatives is zero,
namely ∇Error(~w) = ~0. This results in ~Loss = 〈NN~w(~xd)− y∗d | d ∈ [D]〉 = ~0, signifying that the
neural network provides the optimal answers for all of the training data points.

Hui Jiang’s work [?] establishes that his version of the matrix Dir indeed possesses a rank of D.
Edmonds [?] decreases the requirement from needing (1/ǫ)N parameters to needing the machine
to possess at least one hidden layer with a node count M equal to or greater than the number of
training data points, denoted as D.

Theorem 1 proves that the number of iterations is θ(1+caaahL) log(D/ǫ) as long as during the
entire gradient descent, the angle αm between ~Loss and ~Dirm is not 90o so that cos(αm) ≥ Ω(1).
This may be why in practice, noise is added to gradient descent. Perhaps naively, the authors argue
that this is a reasonable assumption. These vectors are not coordinated in that a little noise added
to the supervisor’s output 〈y∗d〉 changes ~Loss = 〈NN~w(~xd)− y∗d | d ∈ [D]〉 and a little noise added

to the weights ~w changes ~Dirm =
〈

δNN~w(~xd)
δ ~wm

| d ∈ [D]
〉

.

If the gradient descent computation reached a point where all M ′ of the vectors ~Dirm were
perpendicular to ~Loss, then the computation would stop in a local minimum. If a r

M ′ fraction
(“randomly” chosen) of them are non-perpendicular, the rate of progress would decrease by a
factor of r

M ′ . However, such progress would move the computation past such an unfortunate place.
Unlike Theorem ??, Theorem 1, does not “need” the width M to be big. However, having more

nodes M means having more vectors ~Dirm, and hence “more” of them will not be perpendicular
to ~Loss. Theorem ?? proves that D of the vectors ~Dirm are linearly independent. This, however,
does not help that much because if these ~Dirm were perpendicular to each other and one of them
equals ~Loss, then all but this one will be perpendicular to ~Loss. On the other hand, if the vectors

10

~Dirm span the D dimensional space, then at least one of them is not in the D−1 dimensional
subspace of vectors perpendicular to ~Loss. This keeps the computation moving. These are the
types of problems arising in [?] that we are ignoring.

11

	Introduction
	Historical Perspective
	Mathematical Insight
	Statement of Result
	Proof Idea
	Linear Approximation
	Step Size and Second Derivatives

