
All Critical Gradient Descent Solutions Are Optimal

Anonymous Author
Anonymous Institution

Abstract

Within the theory of machine learning, we
prove that when over-parameterized and gra-
dient descent finds critical weights, i.e., a
point ~w on the error surface with zero slope,
the resulting neural network NN~w(x) pro-
vides perfect responses for each training data
point. To put it differently, the error sur-
face lacks local minima, maxima, and inflec-
tion points. This improves on work by Hui
Jiang (2019) [5]. Their result requires the
number of weights in the neural network to
be as large as (1/ǫ)N . Using different tech-
niques, we only require more nodes in a layer
than training data. This number of weights is
nearly optimal, because reducing the number
of weights further would render the weight
optimization problem NP-complete. Further-
more, our result establishes the first quantifi-
able link between the criticality of ~w and the
accuracy of the machine’s approximation to
the supervisor’s responses. As a theoretical
paper, we assume that at ~w the sensitivity
of the neural network itself has not gone flat,
either because of a conscious effort to main-
tain a sufficient number of sigmoid/ReLU ac-
tivation functions outside their flatter regions
or due to the inherent property that sigmoid
functions always retain at least some non-
zero slope.

1 INTRODUCTION

In practice, it’s often observed that with a sufficient
amount of data and parameters, systems like Chat-
GPT and self-driving cars can be developed. How-
ever, as noted by John Tsotsos (2023)[6], a lingering

Preliminary work. Under review by AISTATS 2024. Do
not distribute.

Figure 1: No local minimum

concern remains: practical experience has yet to grasp
when, why, and how the process might fail. When
gradient descent leads us to a critical point denoted
as ~w, the question arises: is this a global minimum,
and furthermore, can we guarantee that the resulting
neural network will provide flawless answers for the
provided training data? In this paper, we introduce
a perspective in which we challenge the existence of
disappointing critical points altogether.

1.1 Historical Perspective

Our result requires over-parameterized. A longstand-
ing debate within the realm of machine learning cen-
ters on the dilemma of whether the number of param-
eters, denoted as P , should surpass or fall short of the
size of the training data set, represented asD. The for-
mer is essential to ensure the existence of weight con-
figurations ~w that produce optimal computations on
the training data, while the latter, as demonstrated by
Avrim Blum and Ronald Rivest (1992) [3, 2] renders
the task of finding such weights NP-complete. (See
Section 2.6 for more). The former approach carries
the risk of over-fitting, whereas the latter safeguards
the machine’s capacity to generalize to unseen data (a
concept stemming from PAC learning). In contrast,
a smooth machine also exhibits enhanced generaliza-
tion capabilities. The fundamental idea is that when
a new input ~x lies between training inputs ~xd and ~xd′ ,
its output is likely to fall within the range defined by
their respective outputs. Bubeck and Sellke (2021) [4]

established that a machine attains smoothness only
when the parameter count P satisfies P ≥ Ω(ND).
Additionally, practical observations substantiate the
idea that having an increased number of weights en-
hances the maneuverability of gradient descent within
this higher-dimensional search space, enabling it to
navigate obstacles more effectively.

A well-known problem with gradient descent is that
when the pre-activation values become very large, the
slope of the sigmoid curve decays exponentially, which
can severely slow down gradient descent. To circum-
vent this issue, practitioners have become adept at en-
suring a sufficient proportion of sigmoid/ReLU acti-
vation functions remain outside their less responsive
regions. As a theory paper, we make the assumption
that, under the current weights, the sensitivity of the
neural network is not flat either because people have
succeeded at this or due to the inherent property that
sigmoid functions always retain at least some non-zero
slope.

Allen-Zhu, Li, and Song (2018) [1] gave an amazing
paper proving that gradient descent starting with ran-
dom weights ~w0 converges to an optimal solution in
DO(1) time as long as the machine has DO(1) parame-
ters. Their technique proves that as long as the weights
remain within a small ball around ~w0, each step of
gradient descent makes a multiplicative decrease in
the error until an optimal solution has been found.
While this finding demonstrates the capacity of gradi-
ent descent to navigate away from local minima and
flat regions, it falls short of conclusively asserting their
non-existence. Hui Jiang pointed out that a limitation
of the paper is that it only considers a small neigh-
borhood around randomly selected weights where the
convexity of the error space is evident. In practice,
gradient descent often traverses much larger distances.

Jiang (2019) [5] made a significant contribution by
proving the absence of local minima within the Er-
ror Surface. This achievement was accomplished by
employing a Fourier ǫ-approximation of the function
computed by the neural network. The error surface
with respect to the Fourier coefficients is nicely convex,
and this property translates back to the weight space.
The requirement for the number of weights may be
reasonable when the function to be learned possesses
smooth characteristics. However, in the worst case,
(1/ǫ)N weights are needed.

The present study advances this understanding by re-
ducing the requirements, specifically by stipulating
that the number of hidden nodes in the widest layer
need only match the amount of training data.

1.2 Mathematical Insight

We initiate our discussion with an intuitive overview
of our approach. Our primary objective is to prove
that only globally optimal critical points exist. When
considering sigmoid activation functions, we make the
assumption that their slope never reaches zero. Con-
sequently, we contend that as the weights wm undergo
changes, the output of the neural network consistently
varies. In practical terms, this implies that for any
fixed input ~x, the relationship between NN~w(x) and
~w does not encompass critical points. The error sur-
face Error(~w) =

∑

d(NN~w(~xd) − y∗d)
2 has local min-

imums only because of this imposed quadratic. We
prove that all such critical points are optimal in that
for each training input ~xd, the neural network produces
an output NN~w(~xd) equaling the supervisor’s answer
y∗d.

Hui Jiang (2019) [5] effectively introduces the following
framework: Consider a vector space of dimension D,
where each dimension corresponds to a training input
~xd. Given the current set of weights ~w, we can measure
the discrepancy between the neural network’s response
NN~w(~xd) and the supervisor’s answer y∗d using the vec-

tor ~Loss defined as ~Loss = 〈NN~w(~xd) − y∗d | d ∈ [D]〉.

For each weight ~wm, we define ~Dirm as the vector of

derivatives 〈 δNN~w(~xd)
δ ~wm

| d ∈ [D]〉. We can assemble a
matrix Dir using these vectors, where each row corre-
sponds to ~Dirm. This framework enables us to express
the direction of descent, i.e., the vector of derivatives
of the Error function with respect to each ~wm, as fol-
lows:

Error(~w) =
∑

d (NN~w(~xd)− y∗d)
2

δError(~w)
δ ~wm

= 2
∑

d (NN~w(~xd)− y∗d) ·
δNN~w(~xd)

δ ~wm

= 2 ~Loss · ~Dirm

∇Error(~w) =
〈

δError(~w)
δ ~w1

, . . . , δError(~w)
δ ~wP

〉

= 2 Dir · ~Loss

If the neural network has more weights than data, P ≥
D, the matrix Dir has more rows than columns. Our
task is to prove that it has full rank D. This then gives

~Loss = 1
2Dir−1 · ∇Error(~w)

Having the weights ~w situated at a critical point
implies that each of these Error derivatives is zero,
namely ∇Error(~w) = ~0. This results in ~Loss =
〈NN~w(~xd) − y∗d | d ∈ [D]〉 = ~0, signifying that the
neural network provides the optimal answers for all of
the training data points.

Hui Jiang (2019) [5] establishes that his version of
the matrix Dir indeed possesses a rank of D. This
achievement is accomplished through the application

of Fourier ǫ-approximation to the function computed
by the neural network. However, it’s worth noting that
in the worst-case scenario, Dir could have a stagger-
ing number of rows/weights on the order of (1/ǫ)N . In
addressing Hui Jiang’s challenge, we have managed to
demonstrate that this considerably smaller version of
Dir also has rank of D.

To provide some more context to our result, if one were
to perform gradient descent with respect to only a sin-
gle training input ~xd, it would be clear that the optimal
solution for this input would be found. The challenge
we faced in obtaining this result revolved around han-
dling the interactions among these various inputs. Our
proof successfully finds a way to do this. It’s impor-
tant to note that in deriving this result, we do assume
another matrix has linearly independent columns, this
assumption is much more reasonable for this different
matrix, thereby bolstering the validity of our overall
argument.

2 RESULTS

2.1 Statement of Theorem

Theorem 1 (Critical is Optimum): Consider
any computational machine NN~w(~xd) expressed as
[

NN3 ◦NN〈2, ~w〉 ◦NN1

]

(~xd), with NN1 and NN3 sat-
isfying requirements 1 and 3, as specified below. For
any given set of training data {〈~xd, y

∗
d〉 | d ∈ [D]},

there exists a set of weights ~w that enables the
machine to produce correct answers. Furthermore,
during gradient descent to learn these weights ~w,
the existence of no local minima (or maxima) is
guaranteed. Specifically, if the weights reach a state
of sufficient criticality such that the magnitude of the
gradient vector does not exceed ǫ, then they are nearly
optimal in that ∀d ∈ [D], |NN~w(~xd) − y∗d| ≤ ǫ

2qr .
The parameters r and q, both of which should be
approximately equal to one, are defined below.

(1) x′ = {NN1(~xd) | d ∈ [D]} is Linear Inde-
pendent: In the first stage of the machine, each
training input ~xd ∈ {0, 1}N is transformed into
a vector of hidden values ~x′

d ∈ {0, 1}M . This
transformation can be achieved through various
means, such as an arbitrary adversarial function,
a multi-layered neural network learned via gradi-
ent descent, or a straightforward one-to-one map-
ping. The requirement here is that given the set of
D training inputs {~xd | d ∈ [D]}, the resulting
set of vectors of hidden values {~x′

d | d ∈ [D]}
must exhibit linear independence with a scaling
factor of at least r, computed as Min~v |x′~v| ≥
r |~v|. Notably, this requirement necessitates that
the number of nodes M in this hidden layer must

Figure 2: Three examples are given of the machine
NN~w(~xd) =

[

NN3 ◦NN〈2, ~w〉 ◦NN1

]

(~xd). Machine A
is a typical one. The input to Machine-B is a singleton
value. Stage NN1 of machine-C is the 1-1 function
~x′
d = ~xd. Stage NN3 of machines B and C are the

1-1 function NN~w(~xd) = ~zd. The top box gives the
functions computed by the stages of the machine. The
bottom box gives the stages of the proof.

be greater than or equal to the quantity of train-
ing data D, i.e., M ≥ D. (In Section 2.6, we
contrast the number of hidden nodes M with the
number of parameters P .)

(2) ~zd = NN〈2, ~w〉(~x
′
d) = w × ~x′

d is Critical:
In the second stage, we have a fully connected
linear neural network layer that maps the hidden
values ~x′

d ∈ {0, 1}M from the previous layer

to the hidden values ~zd ∈ {0, 1}M ′

at the
subsequent layer. Let w denote the weights ~w

rearranged into the transpose of an M × M ′

weight matrix. The key requirement is that these
weights, obtained through some gradient descent
process, must be critical. This criticality is char-
acterized by the condition that the gradient vector

∇Error(~w) =
〈

δError(~w)
δw1

, . . . ,
δError(~w)
δw

M×M′

〉

has a magnitude no greater than the parameter
ǫ. It’s important to note that while the proof
primarily focuses on the specific error func-
tion Error(~w) =

∑

d(NN~w(~xd) − y∗
d)

2,
the only essential requirement is that when
∣

∣

∣

δError
δyd

∣

∣

∣
≤ O(ǫ), it implies |yd − y∗

d| ≤ O(ǫ).

As an illustrative example, this result also holds
true when the training data is categorical, the
activation function is softmax, and the error
function is cross-entropy.

(3) NN~w(~xd) = NN3(~zd): In the final stage, we
have a mapping from the hidden values ~zd ∈
{0, 1}M ′

to real-valued outputs. Similar to previ-
ous stages, this mapping can be achieved through
various means, such as an arbitrary adversarial
function, a multi-layered neural network learned
via gradient descent, or, with M ′=1, a straight-
forward one-to-one mapping.

Full Range: The requirement for the first result
is straightforward: the range of NN3(~z) must in-
clude all of the supervisor’s answers y∗

d.

Sensitive: The requirement for the second is
that the final stage is sensitive. In other
words, at each input ~zd under consideration, the
function NN3(~zd) must exhibit a large slope.
This sensitivity is quantified by the condition
that the vector of derivatives ∇NN3(~zd) =
〈

δNN3(~zd)
δ[~zd]1

, . . . ,
δNN3(~zd)
δ[~zd]M′

〉

must have a magni-

tude of at least the parameter q.

Section 2.4 provides arguments to support the idea
that these assumptions are not unreasonable.

2.2 Outline of the Proof

Suppose that the error surface Error(~w) =
∑

d(NN~w(~xd) − y∗d)
2 is flat/critical at the current

weights ~w. Our goal is to prove that the answers
NN~w(~xd) given by the neural network are the correct
ones y∗d. To do this, consider your favorite training
input ~xd. Let Errord(~w) = (NN~w(~xd) − y∗d)

2 denote
the error contribution from this ~xd. Our objective is
to find a direction ∆~wd in weight space such that the
outputNN~w+γ∆~wd

(~xd) changes with respect to γ while
keeping Errord(~w + γ∆~wd) flat/critical. If we can
achieve this, we are done because Errord(~w+γ∆~wd) =
(NN~w+γ∆~wd

(~xd)−y∗d)
2 is only flat/critical with respect

to γ when NN~w(~xd) = y∗d.

Given that the sum Error(~w) =
∑

d′ Errord′(~w) is
flat, the component Errord(~w) only fails to be flat
when other Errord′(~w) decrease to compensate for
Errord(~w) increasing. Hence, it is sufficient to prove
that in the direction ∆~wd, these other Errord′(~w +
γ∆~wd) do not change. This is ensured by having the
output NN~w+γ∆~wd

(~xd′) not change in this direction.
The proof technique then is to gain “linearly indepen-
dent control” over what the neural network outputs on
each of the training data.

We have let ~x′
d∈R

M denote the vector of values leav-
ing the first stage NN1. Having fewer such vectors
than the number of their dimensionality, it is possible
that they are linearly independent. Our first require-
ment is that this is the case, either because of proper-
ties of Vandermonde matrices or of random matrices.

In the second stage NN〈2, ~w〉, the relation is ~zd =

w × ~x′
d, where w denotes transpose of the M ×M ′

weight matrix and ~zd∈R
M ′

denotes the vector of pre-
activation values leaving this layer. The linear inde-
pendence of ~xd implies that for each training input ~xd,
there is a direction in weight space ∆wd that allows
us to change ~zd in any desired way ∆~zd while leaving
~zd′ unchanged for other inputs.

Because the third state NN3 is sensitive on input ~zd,
our modification ∆~zd of ~zd can be chosen to change
the output NN~w(~xd). In contrast, if the ~zd′ does not
change, then the output NN~w(~xd′) does not change.
This completes the proof.

2.3 Proof

Proof: We compute the weights ~w (or its matrix form
w) for the first part of the theorem as follows. As al-
lowed by Requirement 3, for every supervisor’s answers
y∗d, let ~zd denote a vector such that NN3(~zd)=y∗d. For
the purpose of linear algebra, form matrices x and x′,
and z, and vector y∗ with a column for each training
input ~xd, namely [x]d = ~xd, [x

′]d = ~x′
d, [z]d = ~zd, and

[y∗]d = y∗d. This gives x′ = NN1(x), z = w×x′, and
y∗ = NN3(z). Recall that Requirement 1 assures that
matrix x′ has full rank. Hence, by Lemma 2, we can
solve the z = w×x′ for w.

We now prove the second part of the theorem.
Consider a machine NN~w(~xd) = [NN3 ◦NN〈2, ~w〉

◦NN1](~xd) with critical weights ~w and training data
{〈~xd, y

∗
d〉 | d ∈ [D]} as required. Focus on the

training input ~xd and the corresponding hidden val-
ues ~zd =

[

NN〈2, ~w〉 ◦NN1

]

(~xd). Requirement 3 gives
that, at input ~zd, the function NN3(~zd) has a large
slope, i.e., the vector of derivatives ∇NN3(~zd) =
〈

δNN3(~zd)
δ[~zd]1

, . . . , δNN3(~zd)
δ[~zd]M′

〉

has magnitude at least pa-

rameter q. Let ∆~zd denote the length one vector in the
steepest accent direction, i.e., the unit length scaling
of ∇NN3(~zd). The slope of NN3(~zd) in this direction

is ∇∆~zdNN3(~zd) =
∣

∣

∣

δNN3(~zd+γ∆~zd)
δγ

∣

∣

∣
= [∇NN3(~zd)] ·

[∆~zd] = |∇NN3(~zd)| × |∆~zd| × cos(θ) ≥ q × 1× 1 = q.

Denote by ∆~wd a direction to change the weights ~w to
achieve the change ∆~zd, while at the same time making
zero effective change when given any other training

input. Namely, for every real value γ,
[

NN〈2, ~w+γ∆~wd〉 ◦NN1

]

(~xd)

=
[

NN〈2, ~w〉 ◦NN1

]

(~xd) + γ∆~zd = ~zd+γ∆~zd

and ∀d′ 6= d
[

NN〈2, ~w+γ∆~wd〉 ◦NN1

]

(~xd′)

=
[

NN〈2, ~w〉 ◦NN1

]

(~xd′) + 0 = ~zd′ + 0

We compute ∆~wd (or its matrix form ∆wd) as follows.
Let ∆zd be the matrix whose dth column is the re-
quired change ∆~zd and the rest of the columns are zero.
Note that this mostly zero matrix and the vector have
the same Euclidean magnitude |∆zd|2 = |∆~zd|2 = 1,

where we defining |M|2 =
√

∑

〈i,j〉 M〈i,j〉
2. Let ∆wd

denote any matrix satisfying the equation ∆wd×x′ =
∆zd. By Requirement 1, matrix x′ is linearly inde-
pendent with scaling factor at least r computed as
Min~v |x′~v| ≥ r |~v|. Hence by Lemma 1, r |∆wd|2 ≤
|∆wd×x′|2 = |∆zd|2 = 1 and hence |∆~wd| ≤

1
r
. Then,

by linearity, this weight change changes ~zd as required,
namely (w+γ∆wd)×x′ = (zd+γ∆zd).

The machine’s composition ensures that the weights
~w affect the machine’s output NN~w(~xd) only via the
hidden values ~z. We have shown that on input ~xd,
changing the γ in the weights ~w+γ∆~wd has the same
effect as changing the γ in the hidden values ~zd+γ∆~zd.

It follows that
∣

∣

∣

δNN~w+γ∆~w(~xd)
δγ

∣

∣

∣
=

∣

∣

∣

δNN3(~zd+γ∆~zd)
δγ

∣

∣

∣
, which

by Requirement 3, is at least q. In contrast, on any
other input ~xd′ , changing the γ in the weights ~w+γ∆~wd

has zero effect the ~zd′ . Hence,
∣

∣

∣

δNN~w+γ∆~w(~xd′)
δγ

∣

∣

∣
= 0.

Let’s examine how these weight changes affect
the machine’s error. Partition this error into
components Error(~w) =

∑

d′ Errord′(~w), where
Errord′(~w) = (NN~w(~xd′) − y∗d′)2. We have
seen that on any other input ~xd′ , changing the
γ in the weights ~w + γ∆~wd has zero effect on
the machine’s output NN~w+γ∆~w(~xd′) and hence
has zero effect on the input’s error component
Errord′(~w + γ∆~w). This means only the Errord

component affects the error, i.e.,
∣

∣

∣

δError(~w+γ∆~w)
δγ

∣

∣

∣

=
∣

∣

∣

δErrord(~w+γ∆~w)
δγ

∣

∣

∣
=

∣

∣

∣

∣

δ(NN~w+γ∆~wd
(~xd)−y

∗

d)
2

δγ

∣

∣

∣

∣

=
∣

∣

∣
2 (NN~w(~xd)−y∗d)×

δNN~w+γ∆~wd
(~xd)

δγ

∣

∣

∣
≥

2 |NN~w(~xd)−y∗d|×q.

Let’s now bound this error derivative in the other di-
rection. The gradient used for gradient descent is

∇Error(~w) =
〈

δError(~w)
δw1

, . . . , δError(~w)
δwM·M′

〉

giving the

slope along each axis. For any other direction ∆~w
in the weight space, the slope is ∇∆~wError(~w) =
δError(~w+γ∆~w)

δγ
. It is computed as ∇Error(~w) ·∆~w =

|∇Error(~w)| · |∆~w| · cos(θ). Requirement 2 gives that

this first magnitude is at most ǫ; we bound this second
magnitude to be most 1

r
, and cos(θ) ≤ 1.

Combining these two bounds ǫ
r
≥

∣

∣

∣

δError(~w+γ∆~w)
δγ

∣

∣

∣
≥

2q |NN~w(~xd)−y∗d| gives as required that |NN~w(~xd) −
y∗d| ≤

ǫ
2qr .

What remains for the proof is to prove some simple
properties of matrices.

Definition: We say that matrix M has scaling factor
at least r if Min~v |M~v| ≥ r |~v|. Note if r > 0, then
the matrix has full rank.

Lemma 1 (Scaling matrix): If matrix M has scaling
factor at least r and w is not a vector but is a matrix,

then |Mw|2 ≥ r |w|2, where |w|2 =
√

∑

〈i,j〉 w〈i,j〉
2.

Proof: |Mw|
2

=
∑

columns j |[Mw]j |
2

=
∑

j |M[wj]|
2
≥

∑

j r
2 |wj |

2
= r2 |w|

2
.

Lemma 2 (Solving for Weights): If the columns of
matrix x are linearly independent, then the equation
w×x = z can be solved for w.

Proof: Because the D columns of x are linearly inde-
pendent, the row rank is also D. Separate the rows
into x = 〈xA,xB〉 where xA is a square D×D invert-
ible matrix and xB contains the remaining rows. The
equation w×x = z is then rewritten and solved as fol-
lows: 〈wA,wB〉×〈xA,xB〉 = z; wA×xA+wB×xB = z;
wA×xA = z−wB×xB; andwA = (z−wB×xB)×xA

−1.
Let wB be zero/arbitrary and solve for wA.

2.4 Assumptions are Reasonable

We will now provide reasoning for why the assump-
tions in Theorem 1 can be considered reasonable.

(1) ~x′
d = NN1(~xd) ⇒ Linear Independence:

The requirement here is that, given the set of
D training inputs {~xd | d ∈ [D]}, the resulting
set {~x′

d | d ∈ [D]} of vectors of hidden values are
sufficiently linearly independent.

Independent Input: One possibility is that the
first stage NN1 is the 1-1 function and the
training inputs {~xd ∈ RN | d ∈ [D]} them-
selves are linear independent. This assump-
tion is likely to hold as long as the number of
bits in the input representation exceeds the
number of training inputs, i.e., D ≥ N =M .
For instance, consider a scenario where the
training data consists of millions of images,
each of which can be compressed into a set of
N ′<N values. If D ≥ N ′, then it’s probable
that the images are linearly dependent.

Features: If D<N , then each input ~xd could be
extended with sufficiently many features to
make them independent.

Fix Random Layer: An alternative approach
is to design the first stage NN1 as a fully con-
nected neural network layer with randomly
set weights that remain unchanged during
the learning process. With high probability,
such a layer can produce an output {~x′

d | d ∈
[D]} that is linearly independent. In an ex-
treme case where the input consists of a single
value xd=d, each ith hidden node will multi-
ply xd by some weight wi and add a threshold
w′

i before passing this through its activation
function. For simplicity, let’s set these val-
ues to wi = −1 and w′

i = i respectively, and
assume a threshold activation function. This
configuration results in an upper triangular
0/1 matrix defined by [~x′

d]i=1 if and only if
−d+i ≥ 0. This matrix is full rank.

Double Vandermonde Matrices: The follow-
ing is another surprising example. In the
previous example with single-valued inputs,
consider the scenario where the multiplica-
tive weights are wi = i and the threshold is
set to zero. In this case, the pre-activation
values [d× i]〈i,d〉 = [i] · [d] form a matrix with
only rank one. However, the post-activation
values [sig(d × i)]〈i,d〉 create a double Van-
dermonde matrix with a sigmoid Fourier ba-
sis, and this matrix also has full rank. This
phenomenon is similar to various other well-
known matrices, such as the polynomial in-
terpolation matrix [id]〈i,d〉, the Fourier trans-
formation matrix [sin(d× i)]〈i,d〉, and the al-

most sigmoid matrix [ed×i]〈i,d〉 = [(ed)i] =
[(d′)i]. The same would be true for any acti-
vation function that is non-linear enough to
have a “vandermonde” property.

(3.1) Full Range: The first version of the third re-
quirement is that the range of NN3(~z) includes all
of the supervisor’s answers y∗d. For this, it is suf-
ficient that the function outputs both bigger and
smaller values and is continuous.

(3.2)NN3(~zd) ⇒ Sensitive: The second version of
the third requirement is that the stage NN3

is sensitive, i.e., at each input ~zd consid-
ered, the function NN3(~zd) has a large slope,
i.e., the vector of derivatives ∇NN3(~zd) =
〈

δNN3(~zd)
δ[~zd]1

, . . . , δNN3(~zd)
δ[~zd]M′

〉

has magnitude at least

parameter q. Below we will justify why q should
be approximately one.

Activation Functions Not Flat: When the

pre-activation values become very large, the
slope of the sigmoid curve decays exponen-
tially, which can severely reduce sensitivity
and slow down gradient descent. To avoid
this issue, it is typically desirable to keep
pre-activation values within the middle
range of the sigmoid, where the slope is not
too small. ReLU (Rectified Linear Unit)
functions have the advantage that the slope
is big on one half but could be zero on the
other half.

As a theory paper, we just assume that un-
der the current weights, the sensitivity of the
neural network has not gone flat either be-
cause people have managed to keep a suffi-
cient number of its activation functions out
of their flat regions or because, as is the fact,
sigmoids always have at least some non-zero
slope.

Import a Threshold: In neural networks, each
node typically receives a pre-activation value
z, which is computed as the weighted sum
of its inputs. If all these weights are zero,
then this sum does not depend on its inputs.
Similarly, if all its inputs are zero, then this
sum does not depend on the multiplicative
weights. However, regardless of other fac-
tors, the pre-activation value z does depend
on the additive threshold value. Given we
have assumed that the activation functions
are not flat, changing the threshold value af-
fects the output of the node. If the third
stage NN3(~zd), as given, is not sensitive to
its input, one could change it by includ-
ing one such threshold as one of its inputs.
Then when we do gradient decent setting the
weights on the middle stage NN~w, it could
automatically adjust this threshold too.

Not Shrinking or Decaying: In practical ma-
chine learning scenarios, it is desirable to pre-
vent the values across a layer from either
blowing up or decaying as we move through
the layers of the network. Specifically, ma-
chine learners aim to keep the magnitudes
of each hidden vector |~zd| and the machine’s
output NN = NN3(~zd) close to one. This ex-
pectation implies that if the vector ~zd changes
by a certain distance in some direction, the
output should change by a similar amount.
In mathematical terms, this can be expressed

as δNN3(~zd+γ∆~zd)
δγ

≈ q|∆~zd|, where q is a con-
stant close to one. Using our previous calcu-

lation, δNN3(~zd+γ∆~zd)
δγ

= |∇NN3(~zd)| · |∆~zd| ·

cos(θ), it can be argued that |∇NN3(~zd)|
should be close to q, which should be some

constant close to one.

2.5 Long Gradient Descent Path

Figure 3: Long gradient decent path

A possible expectation is that having no local min-
ima or maxima in the error surface would guaran-
tee that the gradient descent path would traverse the
space once, ensuring that the path’s length matches
the breadth of the space. Unfortunately, this does not
hold true. Even when we obtain this result within ev-
ery hyperplane of the space, it still doesn’t guarantee
a short path. To illustrate this, consider the exam-
ple of a simple road winding down a mountain. As
shown in Figure A, the road can still be arbitrarily
long as it winds back and forth. Figures B-C demon-
strate that the steepest descent path in such a scenario
follows the road because the road’s side-to-side varia-
tion is relatively flat. Figure C illustrates that all the
plane cutting through the mountain road do not have
local minima or flat regions. Moving to the extreme in
which the neural network has a small number of hid-
den nodes per layer (M << D), the error space can
contain exponentially many local minima, as seen in
Figure D. Moving to the other extreme in which the
number of parameters is DO(1), gradient descent can
compete in polynomial time, as demonstrated in Fig-
ure E. When gradient descent is allowed to break out
of the subspace defined by A, it quickly drains into the
optimal solution. These visual examples highlight the
complex nature of the error surface and the behavior
of gradient descent.

2.6 A Lower Bounds on (M or P) vs D

The number of hidden nodes M vs parameters
P : One complaint about this paper is the focus on the
number of hidden nodes M instead of on the number
of parameters P . The first requirement is that the for-
mer is at least the number of training inputs D while
guaranteeing there are weights with which the machine
can compute the training data requires the latter to be
at least D. This distinction is quite significant because
the number of edges/parameters between two M node

layers is M2. We present two counterarguments to ad-
dress this concern. First, our results can accommodate
a scenario where P = O(M) parameters are utilized.
This can be achieved by having just one layer with
a minimum of M ≥ D nodes, while the other layers
can consist of as few as one node. See Figure 1. Sec-
ond, it remains uncertain whether D parameters or D
nodes are the minimal requirements to guarantee the
successful learning of the D training data.

Guaranteeing that one can learn the D train-
ing data: As stated in Section 1.1, if the number of
neural network parameters P is less than the number
D of training inputs, then, by simple counting, there
are training outputs {y∗d ∈ R | d ∈ [D]} that can-
not be computed by any of the settings ~w ∈ RP of
these parameters. This is tight. Given training data
{〈~xd, y

∗
d〉 | d ∈ [D]}, the standard look-up table neural

network has a hidden node for each possible input ~xd

which fires if this is the input. This requires M = D
and P = NM parameters, but one can decrease this to
(

N +D) parameters by building binary tree of nodes
off the N input nodes that convert each input ~xd into
a unique value.

The author believes that the number of nodes M in
this hidden layer is at least as important as the num-
ber of parameters P . To motivate this, consider now
the architecture that contains L fully connected lay-
ers each with M nodes, giving a total of P = LM2

parameters. If LM2 ≫ D, then there are sufficiently
many parameters for the architecture to compute any
training outputs. But if D ≫ M , then as far as the
author is aware, the question is unknown whether it
can always perfectly compute the training data.

Figure 4: Architecture for NP result

NP-Complete: Avrim Blum and Ronald Rivest
(1992) [3] prove that the neural network optimization
problem is NP-complete when the neural network has
one fully connected hidden layer with M threshold
nodes and a single AND output node. Upon ana-
lyzing their work, we observe that this result remains
valid when the amount of training data D is at least
Ω(NM), which corresponds to the number of weights
or edges in the network. To emphasize the importance

of the hidden layer’s widthM , we consider the scenario
where N is small. Remarkably, the result still holds

even when M is less than D1− 1
Θ(1) . Taking this idea

further, if M is just a little smaller than D, specifi-

cally M ≤ o
(

D
logD

)

, then the neural network problem

does not have a poly-time algorithm unless 3SAT has
a sub-exponential algorithm. This nicely balances the
fact that our result applies when M ≥ D. For com-
pletion, we discussed Blum and Rivest’s reduction in
more detail.

Lemma 3 (NP-Complete): Given the training data
as input, the computational problem is determining
whether there are weights for which the neural net-
work perfectly computes the D training data. The neu-
ral network considered has one fully connected hidden
layer with M threshold nodes and a single AND output
node. With D ≥ Ω(NM) = number of weights/edges,
this NN problem is NP-complete.

Proof: Blum and Rivest prove that the Neural Net-
work problem is NP-complete following the usual
steps. Given a fast algorithm for the Neural Network
problem, they design a fast algorithm for the NOT-
ALL-EQUAL 3SAT problem. Given an instance to
this 3SAT problem with Θ(N) variables and Θ(N)
clauses, they construct an instance of the NN problem
with N input nodes, some M hidden nodes, and D =
Θ(NM) training data. In order to be a proper NP-
reduction, we must keep the NN instance size Θ(ND)
polynomial in the 3SAT instance size Θ(N). This im-
poses the relationship D ≤ NΘ(1). Rearranging gives

NP-completeness as long as M ≤ Θ
(

D
N

)

= D1− 1
Θ(1) .

On the other hand, suppose we have a DΘ(1) time
algorithm for NN and want our 3SAT algorithm to
run in time 2o(N). Rearranging DΘ(1) = 2o(N) gives

N = logD
o(1) and M ≤ Θ

(

D
N

)

= o
(

D
logD

)

.

Each training input ~x ∈ {0, 1}N can be thought of as a
point in the N -dimensional Boolean cube and the su-
pervisor’s answer y∗d ∈ {0, 1} as a Boolean labeling of
this point. Each hidden node with weights ~wj ∈ R

N+1

can be thought of as defining an (N−1)-dimensional
hyperplane in this space and returns zero or one de-
pending on which side the input ~x lies, namely based
on the sign of ~wj · ~x =

∑

k[~wj]k×[~x]k.

Avrim Blum and Ronald Rivest designed the train-
ing data to include M − 2 spaced out copies of the
following gadget designed to waste one hidden node.
The gadget can be thought of as labeling one corner
of the hyper-cube 0 and all its N neighbors 1. More
formally, the gadget contains one training input ~xd

whose supervisor’s answer is y∗d = 0. It also contains
the N inputs ~xd′ that are hamming distance one from
~xd whose supervisor’s answer is y∗d′ = 1. Recall that

the output is the AND of these hidden nodes. Blum
and Rivest argue that any neural network NN~w(~x) get-
ting the correct answers on this training data must use
one of its hidden node’s hyperplane to separate this 0
point from the rest of the hyper-cube. Note that the

2N point N -cube has enough room to have up to 2N

N+1
of these gadgets. Adding M−2 of them adds a total
of D = (N+1)(M−2) items to our training data.

There will be two hidden nodes left. Blum and Rivest
prove that determining how to use these two remain-
ing hidden nodes is NP-complete. For this, they use
D = Θ(N) additional training data. The proof is a re-
duction to the Set-Splitting problem, which has a sim-
ple reduction to the NOT-ALL-EQUAL 3SAT prob-
lem with Θ(N) variables and Θ(N) clauses.

The total amount of training data used is then D =
(N+1)(M−2) + Θ(N).

3 Conclusion

We prove for a much smaller network than Hui Jiang
(2019) [5] that, when gradient descent finds critical
weights, i.e., a point ~w on the error surface with zero
slope, the resulting neural network NN~w(x) provides
perfect responses for each training data point. Our
machine must possess at least one hidden layer with
a node count M equal to or greater than the number
of training data points, denoted as D. Furthermore,
our findings establish the first quantifiable link be-
tween the criticality of ~w and the accuracy of the ma-
chine’s approximation to the supervisor’s responses.
The number of weights needed to achieve this result is
nearly optimal because reducing the number of weights
further would render the weight optimization problem
NP-complete.

References

[1] Z. Allen-Zhu, Y. Li and Z. Song. A Con-
vergence Theory for Deep Learning via Over-
Parameterization. ArXiv. /abs/1811.03962 Pro-
ceedings of the 36th International Conference on
Machine Learning, 242–252, 2019.

[2] P. Auer, M. Herbster, and M.K. Warmuth. Ex-
ponentially many local minima for single neurons.
In Proc. of Advances in Neural Information Pro-
cessing Systems 8 (NIPS), 1995.

[3] Avrim L. Blum and Ronald L. Rivest,
Training a 3-node neural network is NP-
complete. In Neural Networks, 5(1), 117-127.
https://doi.org/10.1016/S0893-6080(05)80010-3
209–213, 1992.

[4] S. Bubeck and M. Sellke A Universal
Law of Robustness via Isoperimetry. ArXiv.
/abs/2105.12806. 2021.

[5] H. Jiang, Why Learning of Large-Scale Neu-
ral Networks Behaves Like Convex Optimization.
ArXiv/̇abs/1903.02140. 2019

[6] John Tsotsos. Personal communication

