Multicast Pull Scheduling: When Fairness is Fine

Jeff Edmonds * Kirk Pruhs f

April 29, 2002

Abstract

We investigate server scheduling policies to minimize average user perceived latency in pull-based client-
server systems (systems where multiple clients request data from a server) where the server answers requests
on a multicast/broadcast channel. We first show that there is no O(1)-competitive algorithm for this problem.
We then give a method to convert any nonclairvoyant unicast scheduling algorithm A to nonclairvoyant
multicast scheduling algorithm B. We show that if A works well works well, when jobs can have parallel
and sequential phases, then B works well if it is given twice the resources. More formally, if A is an s-
speed c-approximation unicast algorithm, then its counter part algorithm B is a 2s-speed c-approximation
multicast algorithm. In is already known [6] that Equi-partition, which devotes an equal amount of processing
power to each job, is an (2 + €)-speed O(1 + 1/e)-approximation algorithm for unicast scheduling of such jobs.
Hence, it follows that the algorithm BEQUI, which broadcasts all requested files at a rate proportional to the
number of outstanding requests for that file, is an (4 + €)-speed O(1 + 1/¢)-approximation algorithm. We give
another algorithm BEQUI-EDF, and show that BEQUI-EDF is also an (44 ¢)-speed O(1+ 1/¢)-approximation
algorithm. However, BEQUI-EDF has the advantage that the maximum number of preemptions is linear in

the number of requests, and the advantage that no preemptions occur if the data items have unit size.

1 Introduction

We investigate server scheduling policies to minimize average user perceived latency in pull-based client-server
systems (systems where multiple clients request data from a server) where the server answers requests on a
broadcast channel. One notable commercial example of such a system is Hughes’ DirecPC system [4]. In the
DirecPC system the clients request web files via a low bandwidth dial-up connection, and the web files are
broadcasted via high bandwidth satellite to all clients (so it may be possible to satisfy many requests to a
common file with a single broadcast). One would expect that the ability to broadcast would reduce the workload
on a server for the same reason that proxy caches reduce the workload on a server, because it is common for
different clients to make requests for the same data item. The average user perceived latency, or equivalently
average flow time, is the average (over all client requests) of the difference in time between when the request is
fully satisfied and when the request was made.

For convenience, we will adopt terminology appropriate for the DirecPC system, i.e. a web server broadcasting
files to clients, although our discussion is independent of the type of server, and the type of data items. We
consider what appear to us to be the two most natural job environments. In the job environment r;, pmin the
files sizes are not uniform, and the server may preempt, that is, terminate the broadcast of one file, and later

return to broadcasting that file from the point of preemption. Systems that service jobs with widely disparate

*York University, Canada. jeff@Qcs.yorku.ca. Supported in part by NSERC Canada.
tComputer Science Department. University of Pittsburgh. kirk@cs.pitt.edu. Supported in part by NSF grants CCR-9734927,
CCR-0098752, ANIR-0123705, and by a grant from the US Air Force.

resource requirements, e.g. an operating system, generally need to allow preemption to achieve reasonable system
performance. This would be an appropriate job environment for a web server. In the case of a name server
communicating IP address, or any server where all data items are small, a more appropriate job environment
would be r;, p; = 1, that is, jobs are of unit size and preemption is not allowed. Implementable algorithms must be
online, that is, the schedule must be created over time as the jobs arrive without knowledge of the future. We make
the natural assumption that servers broadcast files sequentially, and the clients must receive files sequentially,
that is, a client cannot buffer the last part of a file if it makes a request for that file in mid-broadcast of that file.
Although recent results in [12] on the relationship of various models of multicast pull scheduling show that the
results in this paper extend, with at most minor modification, to other models (e.g. when the client can buffer
the end of a file). We will denote the two resulting problems as Blr;, pmin|>_ F; and B|r;, p; = 1| Fi.

Input

20
1 Schedule

Figure 1: An example instance of B|r;, pmin|Y_ F;

As a concrete example of the problem B|r;, pmin|_ F; consider the instance shown in figure 1. There are
two files (designated by the rectangles with two different fill patterns in the input). The first file is of length 9,
and the second file is of length 1 (designated by the horizontal lengths of the rectangles in the input). The first
file is requested at times 0 and time 7 (designated by the horizontal positioning of the rectangles in the input).
The second file is requested at times 1, 3 and 5. Presumably the online scheduler, with unit bandwidth, starts
broadcasting the first file at time 0. At time 1, a request for the second file arrives and the online scheduler must
decide whether to continue broadcasting the first file, or preempt and start broadcasting the second file. In the
feasible schedule shown, the second file is broadcast from time 5 to time 6, satisfying all of the requests for the
second file with this single broadcast. Note that after this schedule finished broadcasting the first file at time 10,
the schedule must again broadcast all 9 units of the first file since we are assuming that the user that made the
request for the first file at time 7 could not buffer the last 3 units of the first file between time 7 and time 10.
The average flow time for this schedule is (104+5+ 34 1+ 12)/5, where the flow times of the individual requests
in the numerator are ordered by increasing the arrival times of the requests.

In section 3 we will show that there is no O(1)-competitive algorithm for the multicast pull scheduling problem
Blri,pmin|Y_ F;. In [9] it was shown that there are no O(1)-competitive algorithms for the problem B|r;,p; =
113" F;. Note that the lower bound for B|r;,p; = 1|>_ F; does not apply to the the problem B|r;, pmin|}_ F;
because preemption is allowed in B|r;, pmin|>_ F;.

We thus consider resource augmentation analysis. Resource augmentation analysis was proposed as an method
for analyzing scheduling algorithms in [8]. We adopt the notation and terminology from [11]. In our context of a
scheduling minimization problem, an s-speed c-approzimation algorithm A has the property that for all inputs, the
value of the objective function of the schedule that A produces with speed s processors, denoted by A, is at most
¢ times the optimal value of the objective function for speed 1 processors. Standard competitive analysis assumes
that A has unit speed processors. So an algorithm A is c-competitive if A is a 1-speed c-approximation algorithm.
Not that an s-speed c-approximation algorithm is O(c)-competitive if OPTy = ©(OPT;). Intuitively, OPTy is
O(OPT;) unless the system has load at least 1/s. So one way to interpret an s-speed c-approximation analysis
result is that the algorithm should perform reasonably well if the system is not too heavily loaded. The only

previously known positive result for broadcast scheduling was an O(1)-speed O(1)-approximation polynomial-

time LP-based offline algorithm given in [9] for the problem B|r;, p; = 1|3 F;. The constants were subsequently
improved in [5, 7].

Broadcasting complicates the task of the server in that it must decide whether to broadcast a file as soon as
possible after a request comes or to wait for some undetermined length of time in case more requests for the same
file arrive that can be handled by a single broadcast. To further understand this complication, let us consider the
lower bound proofs that no O(1)-competitive online algorithms exist for B|r;, p; = 1|Y_ F; or B|r;, pmin|Y_ F;.
After the online algorithm has performed a significant amount of work on a file that was requested by a single
client, the adversary can again direct another client to request that file. The online algorithm must service this
second request as well. In contrast, the optimal schedule knows not to initially give any resources to the first
request, because the broadcast for the second request simultaneously services the first. In this regard, the work
associated with the first request is essentially “sequential”, in that even though the online algorithm devotes a lot
of resources to it and the optimal algorithm devotes no resources to it, it completes under both within a constant
factor of the time. This is in contrast to the more standard notion of parallel work, where increasing the fraction of
the processing power devoted to this work by a multiplicative factor of f decreases the time required to complete
the work by a factor of f. Hence, we interpret these lower bounds to indicate that the real difficulty of broadcast
scheduling is that the adversary can force some of the work to be sequential. In section 4, we formalize the above
intuition by giving a method to convert any nonclairvoyant unicast scheduling algorithm A to nonclairvoyant
multicast scheduling algorithm B. We show that if A works well works well, when jobs can have parallel and
sequential phases, then B works well if it is given twice the resources. The basic idea is that B simulates A,
creating a separate job for each request, and then the amount of time that B broadcasts a file is equal to the
amount of time that A runs the corresponding jobs. More formally, if A is an s-speed c-approximation unicast
algorithm, then its counter part algorithm B is a 2s-speed c-approximation multicast algorithm. This result is
surprising given the fact the problems being solved are so different.

It is shown in [6] that an algorithm, Equi-partition, which devotes an equal amount of processing power to
each job, is an (2 4 ¢)-speed O(1 + 1/¢)-approximation algorithm for unicast scheduling of jobs with “natural”
speed-up curves. These “natural” speed-up curves include jobs that consist of parallel and sequential phases.
In section 5 we apply our reduction to Equi-partition to obtain the intuitive algorithm BEQUI for the problem
B|r;, pmin| Y F;. The algorithm BEQUIT broadcasts each file at a rate proportional to the number of outstanding
requests for that file. Hence we can conclude that BEQUI is an (4 + ¢€)-speed O(1+ 1/¢)-approximation algorithm
for the problem Blr;, pmtn|>_ F;. We believe that these results are evidence of the applicability to other problems
of the model of scheduling jobs with various speed-up curves, and the analysis of Equi-partition from [6].

In section 6, we propose another algorithm BEQUI-EDF. We show that BEQUI-EDF is also an (4 + ¢)-
speed O(1 + 1/¢)-approximation algorithm for B|r;, pmitn|>_ F;. However, BEQUI-EDF has the advantage of
guaranteeing that it preempts on average at most once per broadcast, or alternatively, that the number of
preemptions is at most the number of requests. Furthermore, we show that if the files have unit size then
BEQUI-EDF will not preempt any broadcast. Thus BEQUI-EDF is an (4 + €)-speed O(1 + 1/¢)-approximation
algorithm for B|r;, p; = 1| > F;. The algorithm BEQUI-EDF can be viewed as a two stage algorithm. The first
stage BEQUI-EDF simulates the algorithm BEQUI. When BEQUI completes the jth broadcast of a file at time
t, a job with work equal to the length of this file, and deadline equal to ¢ plus the flow time for the jth broadcast
in BEQUI, is sent to the second stage. The second stage is always broadcasting the job with the earliest deadline.

The algorithms BEQUI and BEQUI-EDF have several nice features. Both algorithms are nonclairvoyant,
meaning that they do not need to know the quantity of remaining unfinished work for each uncompleted job.
This could allow a server to begin broadcasting a dynamically generated file before the file is fully generated. In
addition, both algorithms are fair to all jobs, and thus they avoid starving long jobs as say Shortest Remaining

Processing Time might. Both algorithms are easy to implement. Another way of viewing BEQUI is that the

bandwidth is distributed evenly between all requests R; ; that are either waiting or being serviced. Hence, BEQUI
can be implement by servicing the requests in a round robin fashion.

Multicast pull scheduling has received considerable attention recently in the database, networks, and algorithms
literature (e.g. [1, 3, 9]). Let us quickly summarize a couple of the seemingly most related results in the literature
that we have not yet mentioned. The offline problem is NP-hard [5]. In [3] it is shown that the algorithm
First-Come-First-Served is 2-competitive for the objective function of minimizing the max flow time, and that
minimizing the maximum flow time can be approximated well offline (under the assumption that client buffering is
allowed). There has been a fair amount of research into push-based broadcast systems, sometimes called broadcast
disks, where the server pushes information to the clients without any concept of a request, ala a television or radio
broadcast [2, 10]. It seems that good strategies for push-based systems have little to do with good strategies for
pull-based systems.

Before preceding with the results we need to formalize some terms and concepts in section 2.

2 Definitions

We start by more formally defining the multicast pull scheduling problem B|r;, pmtn|Y_ F;. The input that the
server receives is a sequence of requests for m different files. The j'* request for the ‘" file is denoted R; ; and
its integer arrival time is denoted by a; ;. An online server algorithm does not become aware of R; ; until time
a; ;. The length/work of file ¢ is an integer /;. The only information that a nonclairvoyant algorithm can infer
about /; is that it is lower bounded by the amount of work that the algorithm has done on the file. Let R denote
the collection of all requests.

A multicast scheduling algorithm, here denoted B;, has a given speed s. Broadcasting a file simultaneously
services all requests that arrived before the broadcast began. With this goal in mind, the algorithm must schedule
when to broadcast the files at speed s across the single channel of bandwidth L. At each time step, the algorithm
partitions the effective s bandwidth between the files. We denote by pft the bandwidth allocated by B;(R) to
the " file at time t. The restriction is that > pft < sL. We denote by b?’k the time that the k'* broadcasting
of the i*" file begins (that is the time that the first bit of i** file is broadcast for the k' time), and by cf’k
the time that the k'” broadcasting of the i'* file ends. To accomplish this, the algorithm must allocate enough
bandwidth so that fte[b?’k,c?’k] Pi,t = l;, because this is the length of the file.

The life span of a request R; ; is as follows. It arrives at some time a; ; specified by the input R. It must wait
until the next broadcasting of the i** file to begin, i.e. the minimum & such that b?’k > a; ;. This time is denoted
bfj = b?’k. The request is then being serviced until the time denoted cfj = cf’k that this broadcast completes.
The flow time for this request is time from the arrival and the completion the request, namely [cfj —aj ;]. The
total/average flow time of a schedule is the total/average of this over all requests. We use BOPT to denote the
optimal schedule. Note for simplicity we polymorphically use the same notation B, (R) for the algorithm B on
input R, the schedule produced by B on R, and the total flow time for this schedule.

The job environment SC, r;, pmtn given in [6] is as follows. The input to the problem is a set of n jobs J = {J;}
that are to be executed on P processors (note that generally speaking, the number of processors is not relevant
since one can use the speed-up curves to simulate a multi-processor environment in single machine environment).
The j** job is denoted by J;, its arrival time is denoted by a;, and it has a sequence of phases <Jj71, Jj25000s Jj7qj>.
Each phase is an ordered pair {w;,4,T; 4}, where w; , denotes the amount of work and T'; ;, denotes its speedup
function. Here T'; ,(3) represents the rate at which work is executed for phase ¢ of job ¢ when given 8 processors
(note that 3 need not be integer). The original motivation for introducing speed-up curves was that, in the
context of a parallel computer, not all code is equally parallelizable. In this paper, each phase can either be a

parallel phase, that is a phase where T'(3) = 3, or sequential phase, that is a phase where T'(3) = 1. (Note that

in [6] each speedup function can be an arbitrary nondecreasing sublinear function.) Sequential work completes
work at a rate of 1 even when absolutely no processors are allocated to it. A unicast scheduling algorithm A,
has a given speed s. At each time step, the algorithm partitions the effective sP processors between the jobs.
We denote by pﬁt the number of processors allocated by A,(J) to the job J; at time t. The restriction is that
Zj pﬁt < sP. We denote by cﬁq the time that A,(J) completes the ¢** phase of job J;. To accomplish this, the

algorithm must allocate enough processors so that fte[cA oA]qu(pft)dt = wj 4, because w; 4 is the work in
Fa—=1""4,q ’

this phase and I'; , is its speedup function. The completion time of a job J;, denoted cf, is the completion time
of the last phase of the job. The flow time for this job is [c}»4 —a;]. The performance of the algorithm is measured
by the average flow time, A,(J) = Avg; [c}4 — a;]. We use JOPT to denote the optimal schedule.

In this setting a nonclairvoyant schedule is completely in the dark. In addition to not knowing what jobs will
arrive in the future, it does not know the amount of work remaining or the speedup functions I'; , of the jobs that
have already arrived. All it knows is when a job arrives and when it completes. Not knowing the amount of work
remaining in a job, prevents the scheduler from doing Shortest-Remaining-Work-First, which is optimum when
all the jobs are fully parallelizable. Not knowing the speedup functions of the jobs is an even bigger handicap
because any processors accidently allocated to a sequential phase of a job are effectively wasted. The optimum
scheduler, in contrast, knows not to allocate any processors to the sequential phases of jobs. A nonclairvoyant
scheduler that is often used in practice for jobs with varying speed-up curves is Equi-partition, which allocates
an equal number of processors to each outstanding job. That is, pft = SP#, where n” is the number of jobs
that are outstanding at time ¢, and for simplicity we use F to denote the algorithm Equi-partition. In [6], it is
shown that Equi-partition is a 2 4 e-speed O(1 + %)—approximation algorithm (note that is it easy to see that no
O(1)-competitive algorithm exists for this problem).

Theorem 1 ([6]) For all instance J of SC,r;, pmitn, Jg%ef(‘]}) =0(1+ %)

3 A Lower Bound

Theorem 2 There is no o(+/n)-competitive algorithm for B|r;, pmin|>_ F;, where n is the number of requests.

Proof: We prove the first statement first. Initially 2k unit-length files are each requested once. Without loss of
generality, assume that at time k that the online algorithm has done less work on the first & files than on the
last & files. Thus the online algorithm has at least k/2 work remaining on the first & files just before time k.
At time k, the last k files are all requested again by one more client each. Thus at time k, the online has 3k/2
remaining work. At time 2k, the online algorithm must have at least k/2 remaining work. The adversary can
have no remaining work at time 2k by broadcasting the first % files from time 0 to k, and by broadcasting the
last k files between time k and time 2k. ;From time 2k until time k% a new previously unrequested unit length
file is requested at each integer time step. Thus at each time between time 2k and time k2, the online algorithm
with have at least k/2 unfinished work, and hence at least k/2 unsatisfied requests. Therefore the total flow time
of the online algorithm is Q(k3). The optimal total flow time is O(k?). The number of requests n = O(k?). m

4 A Reduction from Multicast to Unicast

In this section we give a reduction that converts a nonclairvoyant unicast scheduling algorithm into an almost

equally competitive nonclairvoyant multicast scheduling algorithm.

Description of the Reduction: Let A be a nonclairvoyant algorithm for the unicast scheduling problem

P|SC, r;,pmin|>_ F;. Despite the fact that the problems being solved are so different, our corresponding algorithm

B for the multicast pull scheduling problem B|r;, pmtn|_ F; requires little changes. Algorithm B is defined as
follows. Algorithm B broadcasts each of its files continuously, (though sometimes at a rate of zero). When it
completes its k" broadcast of the i** file, it immediately starts its (k+1)*! broadcast of the file, i.e. cf’k = pBR+1,
Algorithm B simulates algorithm A to determine the current rate at which it broadcasts each file. At each point
in time, the jobs active under A directly correspond to the requests that are either waiting to be serviced, or
are currently being serviced under B. When B receives the j'* request for the i*" file, R;;, B tells A that
it has received a new job J(; ;). When B competes servicing a request, it tells A that the corresponding job
has completed. Because algorithm A is nonclairvoyant, it never has any more knowledge about the jobs then
this. Hence, B can know at each point in time the number of processors p(;’j)’t allocated by A to job Ji; ;).
Algorithm B then allocates the same amount of resources to each request by broadcasting the i*" page at a rate
of pft = Zj péj)’t. Note that the total bandwidth needed by B is always equal to the number sP of processors
that A has.

Theorem 3 If A is an s-speed c-approximation nonclairvoyant algorithm for the problem P|SC,r;, pmin|>_ F; then
B is an 2s-speed c-approximation nonclairvoyant algorithm for the problem 1|5C', r;, pmin|>_ F;.

Proof: We start by making one simplification. We assume that the (k + 1)’ broadcast for B begins when the k"
Bk _ 1Bk+1
= bo

broadcast ends, that is, c; . Thus we assume that any requests that arrive strictly after cf’k will not

be serviced by the (k + 1)** broadcast for B. This assumption is strictly to B’s disadvantage. The assumption
that cf’k = bBF+1 allows us to simplify notation and our figures.

Changing s, we will assume that A is § competitive and prove that B is s competitive. To do this we must
prove that for each set of requests R, that the flow time of B with requests R and speed s (denoted B;(R)) is at
most a constant times the flow time of the optimal schedule BOPT;(R) for the requests with speed 1. This is done

by constructing from R a set of jobs J to give to the algorithm A and proving that BOBPf{“If()R) < JO’L;,SFE‘Z()J) < O(1).

The last inequality follows from the fact that algorithm A is § competitive.

The first step of the proof considers in detail the execution of B;(R). The second step quickly considers
the execution of the optimal algorithm BOPT(R). The third step uses the details of these two executions to
construct the sequential and parallel phases of the jobs in J in such a way that the flow time for each request in
B;(R) will be equal to (or be less than) the flow time of the corresponding job in A,(J). The final step constructs
a schedule JOPT)(J) whose total flow time is at most the total flow time of BOPT(R). The optimal total flow
time of JOPTy(J) is clearly at most the total flow time of JOPT%(J). These steps complete the proof.

The proof requires lots of notation. It considers five different algorithms, Bs(R), BOPT(R), As(J), JOPT4(J)
and JOPTy(J). For simplicity, the first four will be indicated by a superscript of B, O, A, and O’. Because the
proof focuses exclusively on the i'? file, we will drop the subscript i. For example, R; and J;, and not R;; and
J(i,5), will denote the jt" request of the ** file and the job related to it, respectively. We use aj;, bf and cf to
denote the times that request R; for the it" file arrives, begins, and completes being broadcasted by B, (R). We
use bP* and ¢P* to denote the times that the k'* broadcast of the i*" file begins and completes in B, (R). We
use p? to denote the bandwidth allocated to the i file at time ¢ by B, and similarly we use pﬁt to denote the
number of processors that A devotes to job Ji; ;) at time ¢. Finally, we use jP* to be the index of the first request
that arrives after the beginning time 6%* of the k'* broadcast, i.e. the smallest index j such that af > bBik,

In the first step of the proof we attempt to understand the execution of B;(R). Figure 2 depicts the execution
for the i*® file by B,(R) on requests R. The curve increasing up and to the right graphs the arrival time a; of
the j'* request R; for the it" file. Note that time ¢ is on the vertical axis and the index j of request for this file
is on the horizontal axis. The horizontal dotted lines depict the times at which a broadcast of the i!* file begins,
and the horizontal dashed lines depict the times at which a broadcast of the i*” file ends. Imagine any vertical

line through Figure 2 at some index j. The life of a request can be determined by tracing this vertical line from

Timet 1

Waiting (jB k+1 CB, k)

. B, k
(iBk,p™ %

(i B, k—l'bB, k-1)

Index j of request for filei

Figure 2: The computation of B;(R).

bottom to top. The request arrives at the time a; indicated by the solid curve. It waits until time bf, indicated
by the dotted line that intersects the vertical line, at which time it begins to receive the i** file from the next

broadcast. It is served until the time denoted cf,

which time this broadcast completes. The flow time for the request is then cf — aj.

Now let us focus on the k'* broadcast of the i'" file, and consider Figure 2 again. The top two dots depict
B,k

indicated by the dashed line intersecting the vertical line, at

that this broadcast begins at the time denoted %% and completes at the time denoted ¢®*. They also depict
that the range of requests R; that arrive during this broadcast. Hence, during this broadcast, these requests are
waiting to be serviced. They will be serviced later by the k + 1¢* broadcast. The bottom two dots in Figure 2
depict that the range of requests R; that that are serviced by this kt" broadcast.

The total number of packets broadcasted by the k** broadcast of the it” file of size I; is computed to be

li = / prt
tE[bB Bk

= Z pﬁt

je{s | R; is waiting or being serviced at time ¢}

= the volume under the highlighted step in Figure 1 if you assume that point {j,¢) has height pZ.

/ pﬁtt + / pﬁtt
LE[LE ke B0k t€faj,cB¥]

The second step of the proof considers the execution of BOPT{(R). The k'* broadcast under BOPT(R) of the
ith file is denoted to begin at time Y% and complete at time ¢“**. We do not assume that the file is broadcasted

JEGREL,GBH] JEGR K GB A

continually, i.e. that ¢?*% = pP*+1, In fact, we do not even assume that the broadcasts to this file are disjoint, i.e.
that ¢9* < pO*+1 BOPT;(R) dedicates a total of /; its 1 speed bandwidth during the time interval [69:*, ¢@:¥]
to complete this k'” broadcast of the " file, and because of this broadcast, the requests R; that arrive during

bOk =1 pO:*] complete at time c? =0k,

the time interval (
The third step of the proof (see Figure 3) uses the details of B;(R) and BOPT(R) to construct the sequential

and parallel phases of the jobs in J in such a way that the flow time for each request in B;(R) will be equal

to (or be less than) the flow time of the corresponding job in A,(J). Because each job is designed to arrive at
the same time as the corresponding request, it is sufficient to prove that the job completes no earlier, i.e. that
c}“ > cf. In Figure 3 the dashed line plots the completion time cf of the j** request for the i*" file under B, (R).
The dotted line plots the times b? that the requests under BOPT(R) begin being served. There are two cases
in determining how job .J; is designed depending on how these two lines relate.

In the first case, B;(R) completes the request R; before BOPT;(R) begins the request, i.e. ¢? < b?. In this

case, request R; is replaced with a job J; that is completely sequential arriving at time a; with work cf —aP

so that it completes at time cf. Recall that sequential work complete at unit rate independent of the number (J)f
processors allocated to them.

In the second case, B;(R) completes the request after BOPT;(R) begins the request, i.e. cf > b?. In this case,
request R; is replaced with a job .J; that has a sequential phase followed by a parallel phase. The job arrives
at time a; and the sequential phase has work b? — af so that it completes at time b?. The parallel phase has

an infinitesimally more work than the amount fte[b?,cf] pﬁt completed by the processors allocated to it by A, (J)
during the time period [b?, cf]. Hence, at time cf the job will still have an infinitesimally small amount of work
left on the job. This extra work is enough to insure that even if A;(.J) is not working on the job at time cf, it
completes the job some time after this required time. This completes the third step of the proof.

Timet

(i B, k' +2,CB’k’ +l)

.'H'H (jB.K+1 (BK)
1
: (jOk b0k
: (iBK pBK)
| Q Parallel work
1
: Sequential work
il (jB,k’—l bB,k'—l) _a
AN : i
f o CB
LoJ J
........... pO
| ,

Index j of request for filei

Figure 3: The reduction from Broadcasting to the job model.

The final step of the proof converts the given algorithm BOPT(R) into an algorithm denoted JOPT,(J) that
completes our constructed jobs J with a total flow time that is at most that of BOPT{(R). This conversion is
done one broadcast at a time. Consider the k" broadcast of the i file by BOPT(R) which begins at some time
b9 * and completes at some time c¢?*. The requests completed by this k** broadcast are partitioned into three
cases depending on how the request is serviced by B,(R). There is a unique broadcast of the i file by B, (R)
that ends next after the time 9% that the k' broadcast by BOPT;(R) begins. Denote by &’ the index of this
broadcast of B,(R). More formally, &’ is the index for which Bk =1 < HOF < B

The first case of the requests R; serviced by the k'™ broadcast by BOPT(R) are those whose arrival time

aj is within the time interval (b9*~1, bB’kl_l]. Note that this interval may be empty if 67*~1 > bB*' =1 The

bottom of this range is because for a request to be handled by the k'* BOPT, (R) broadcast, it must arrive after
the beginning 59*~1 of the k — 1*! broadcast. The top of this range is depicted by the bottom dot in Figure
3. The second case are those requests R; for which a; € (bB’kl_l, bB’kl]. The third case are those requests R;
for which a; € (bB’kl, b9+*]. The top of this range is because for a request to be handled by the £'* BOPT;(R)
broadcast, it must arrive not after the beginning of this broadcast. The separation between the second and third
cases, when pBE < b9k is depicted by the dot second from the bottom in Figure 3.

bB,k’—

Consider the first case, that is, requests R; that arrive before time L. Hence, they are serviced by either

the k' — 1** broadcast of Bg(R), or an earlier broadcast of B;(R). Hence, their completion time cf is no later
than cB’kl_l, which by the definitions of k and &’ is no later than b? = b9 %, Recall that when constructing jobs
J; from requests R;, the requirement of the first case was that B, (R) completes the request before BOPT(R)
begins the request, i.e. c bo In this case, request R; is replaced with a job .J; that is completely sequential.
The algorithm JOPTY(J) knows to allocate no processors to sequentlal work. Independent of the number of

processors allocated to it, job J; is designed to complete at time c?, which by assumption is before bo when

i
BOPT,(R) begins to serves the request, which is certainly before ¢¢ when it completes the request. We can then

conclude that JOPT,(J) will complete all such requests .J; at leasg by the time that BOPT(R) does.

In the second and third cases we consider the requests R; that arrive after time pEK -1, Hence, their completion
time cf is B+ or later, which is strictly later than b? = b9F by the definition of k and &’. It follows that job J;
is constructed to have a sequential phase followed by a parallel phase. The first sequential phase is constructed
to complete at time b? = b9*. Recall that during the preceding time interval [b9* ¢9*] BOPT(R) dedicated
bandwidth at least I; to the i*? file. In the remainder of the proof we wish to establish that the parallel work in
the second and third case jobs together do not have more than 2/; work. If we can establish this, it will be then
be possible for JOPT%(J) to complete all of these jobs during [69*, ¢?*] since it has a speed 2 processor. Recall
that neither JOPT3 or JOPT),(J) has to work on the sequential phases of these jobs.

The total parallel work of the second and third case jobs is then the volume under the backwards L shaped
shaded region in Figure 3. Recall that we use j%* to be the index of the first request that arrives after the
beginning time 6% of the k' broadcast in B, (R). We similarly define we use j* to be the index of the first
request that arrives after the beginning time 6% of the k'* broadcast in BOPT;(R).

Because these requests are handled by the k'" broadcast of BOPT{(R), we know that b? = b9*. The

B,k'—1 (bB,k’—l’bB,k’]

second case requests R;, those for j € [,jB’kl), arrive at a; € , and hence complete at time
B B,k

¢y = ¢ . The third case requests R;, those for j € [jB’kl,jO’k), arrive at a; € (bB’kl,bO’k] C (bB’kl,bB’kl+1]

B _ Bk'+1

and hence complete at time c; . We can conclude that the total parallel work of these case 2 and 3 jobs

is

J= % / pidt

Bk’lBk’ bOkBkl
Jelj

DN Pt
FE[B R O tE[BO kB k1]

Intuitively, if you could lay Figure 2 on top of Figure 3, you would see that each d] shaped region in figure
3 lies within the region formed by two consecutive broadcasts of B;(R) in figure 2, which we denote by .
We know that the volume of the region under any one broadcast of B, (R) is /;. Hence, the total parallel work
that JOPTY(J) must complete on these case 2 and 3 jobs at most 2 - [;. We conclude that JOPT,(J) is able

to complete all this parallel work by c? since BOPT{(R) completes [; work by time ¢

7 with only a unit speed

processor.
More formally, the total work in the &’*” and the &’ 4+ 1*! broadcasts of Figure 2 is

E?:Qli

- e
te[eB ki—1 Bk’]

JELB k- 1,48 k’)

+ > / Adt

jGDB,k’ Bk’+1 €laj,

+ > / pidt

B,k! .B k’+1
Bk Bk 1) [I
Jeli +

+ > / pidt

B, k!
e[’ k’+1 B k’+2 €laj,ec +1]

The jobs in the first summand correspond to requests serviced by the broadcast k' of B;(R), the jobs in the
second summand correspond to requests that arrive during broadcast &' of B;(R) that must wait this broadcast
out, the jobs in the third summand correspond to requests serviced by the broadcast &' 4+ 1 of B;(R), and the
jobs in the fourth summand correspond to requests that arrive during broadcast &' + 1 of B, (R) that must wait
this broadcast out.

We see that < 7 as follows. For the requests within the range j € [jB’kl_l,min(jB’kl,jO’k)), the time
interval t € [bO*, Bk in I is a subset of the time interval t € [¢B*' =1, ¢BF in [, because by the definition
of of k' it is the case that ¢&F'—1 < 9%, The range of requests j € [jB’kl,jO’k) inclisa subrange of the range
j € [jB’kl,jB’kl‘l'l) appearing twice in E?, because b7 < ¢B*" by the definition of k and k’, and obviously
B+ < bBA'+1 Hence JOr < B #'+1 " Then for these requests, the time interval ¢ € [bo’k,cB’kl‘l'l] in 2lis a
subset of the time interval ¢ € [a;, ¢ FlU[eBH | cBFH1] = [a;, cBHR 1] in 7, because aj < bOF for requests R;
served by BOPT3(R)’s k" broadcast. Because the sums and integrals are over a subranges, it follows that =l <

.

To conclude, given a set of requests R, we constructed a set of jobs J in such a way that the flow times

Bs(R) = A;(J) and BOPT1(R) > JOPT4(J) > JOPTy(J). This completes the proof. [

5 BEQUI

We now apply our reduction from section 4 to the Equi-Partition algorithm to construct the algorithm BEQUI.
We then obtain the result that BEQUI is a 4 + e-speed O(1 + %)—approximation algorithm for B|r;, pmin|>_ F;.

Description of BEQUI: Let s be the speed of the processor and L the bandwidth of the channel. The algorithm
BEQUI broadcasts each file at a rate proportlonal to the number of outstanding requests. That is, the bandwidth

allocated to the i** file at time ¢ is sL ’E’, where nf’ ' denotes the number of requests for the it” file that are either

waiting or being served at time ¢ and n/ =3 nm denotes this number over all files. Note that having either

lots of requests waiting for a file or lots of requests being served motivates BEQUI to broadcast the file faster.

BEQUI,, . (R)

Theorem 4 For all sets of requests R, “BoPT (R = O(1+ %)

Proof: This follows by combining theorem 1 and theorem 3.]

6 BEQUI-EDF

Part of the code of BEQUI-EDF (1)(44.) simulates the algorithm BEQUI 4,) with a factor 1+ € slower band-
width. We simplify our argument by scaling the broadcasting speed units so that BEQUI has a unit speed
processor, and BEQUI-EDF has a (1 4 €) speed processor.

10

Description of BEQUI-EDF,.: At time cfj’k when BEQUI, completes broadcasting the i file for the k"
time, a job JkaF is given to the algorithm EDF;,. with arrival time akaF = fcfj’k], work lkaF = I;, and
deadline dkaF = fc?’k] + l(fcfj’k] — b?’k). The algorithm EDF; . always runs the job with the earliest deadline.

€

The algorithm BEQUI-EDF . always broadcasts the file that EDFy,. is running.

The analysis of BEQUI-EDF will rely on the following lemmas. Lemma 5 proves that BEQUI-EDF is compet-
itive as long as EDF14. can complete every job by its deadline. Lemma 6 proves the well know fact that EDFq .
can complete every job by its deadline if any schedule with this speed can. Finally, Lemma 7 proves that some
schedule with speed 1 4 € can complete the work by the deadlines because BEQUI,; was able to complete the

same work within the similar time constraints only shifted forward in time.

Lemma b5 For all sets of requests R, if EDF1;. can complete every job by its deadline, then BEQUIEDE, . (f) _

BEQUI, (R)
O(1+41).

Proof: Consider a request R;j that arrives at time a; , and under BEQUI; waits until time bfk and is serviced
until time cfk. Its flow time is [cfk —a;). At time cfk when BEQUI,; completes this broadcast, a job JkaF
is given to EDFi .. EDFiy., and hence BEQUI-EDF, ., complete the broadcast of the it" file between the
: : EDF _ [.E : EDF _ 1Bk 1(r.BEky _ 1 Ek E :
arrival time a;;”" = fci7k] and deadline d;;”" = [e; "1+ <([e; "] = b;7") of this job. Hence, the completion
time ckaF of this request R;, under BEQUI-EDF,, . is before this deadline and its flow time is [ckaF —ai] <
[fcf’k] + %(fcfj’k] — b?’k)] —ain < (1+ %)(fcf’k] —a;5) =0((1+ %)(cfk —a; %)) (The ceilings are only needed
in the case where the jobs are unit length, in which case |cfk —ajx| >1.) [|

Lemma 6 will be stated in the contrapositive. If EDF, cannot complete every job by its deadline, then there is a
simple local reason that no speed s schedule can, namely that there exists a time interval T" such the total work
that the scheduler must process during T strictly exceeds what it is capable of. More formally, given an interval
T = [u,v], let Jpu,v] denote the subset of jobs JkaF that must be completed completely within the interval T,
because they arrive no earlier than u and have deadlines no later than time v. We say that the interval T is
over loaded if the total work ijkDFEJT li k. of these jobs exceeds the amount of work s|T| that the scheduler is

capable of completing.
Lemma 6 If EDF; cannot complete every job by its deadline, then there exists an over loaded interval T = [u, v].

Proof: Let v denote the first time v that EDF; misses a deadline of a job Jﬁi),F. Let J[o,,] denote the subset of
those jobs JkaF that have deadlines no later than time v. By the definition of EDF, whenever the job JEQ,F is
run in the schedule EDF,(J}o,,]), it is also run in the original schedule. Hence, job Jﬁ%g,F misses its deadline in
EDF,(Jjo,v]) as well. Let u denote the last time that EDF(J}o,,]) idled the processor before time v. All the jobs
that EDF,(Jj0,s]) processed during the time interval T' = [u, v] have arrival times after u (by idleness at u) and
deadlines before v (by definition of Jjo,1). In other words, during interval 7', EDF,(J[o,,]) works exclusively and
continuously on jobs from [J},). Because EDF,(J[o]) is unable to meet all of these deadlines, it follows that

the total work of these jobs must exceed the amount of work s|T| that the scheduler is capable of completing. B

Lemma 7 will also be stated in the contra-positive.

Lemma 7 If there exists a time interval T" during which the scheduler EDF 1. is over loaded, then there exists a time
interval 7" during which the scheduler BEQUI, is over loaded, (which is false because BEQUI; does complete its

work.)

11

Proof: Consider some interval T = [u, v] during which EDFy, is over loaded. We will prove that BEQUI, is

over loaded during the interval T = [u — e(v — u), v].

Consider any job JkaF in ‘7[5]3]1?. By definition, it is a job given to EDF;,. whose arrival time akaF is no

earlier than time u and whose deadline dkaF is no later than time v. Now consider the k*” broadcast of the
it" file by BEQUI, that caused this job JkaF to be passed to EDF14.. We will prove that this broadcast must

be in the set JF , namely the broadcast begins at a time bEF ho earlier than time u — e(v — u) and
[u—e(v—u),v] 1
completes at a time cfj’k no later than time v. The latter is simply because the broadcast completes cfj’k before
dEDF
Z7

the corresponding job’s deadline , which in turn is no later than time v. The former is a little harder.

Because JkaF is in ‘7[5]3]1?, we know that the interval [akaF, dkaF] during which it could be run is contained
within the interval T' = [u, v], we know that dkaF - akaF = [[¢Z*] + %(fcf’k] — b2 = Te?*] < v — u. Hence,
[eBR] — Pk = akaF —bP* < e(v —u). Hence, bP* > akaF —€(v—u) > u—e€(v—u). This completes the proof
that for each job JkaF in ‘7[57]3]1?, the corresponding broadcast is in ‘T[E—E(U—U),v]
equal to the work lkaF of the corresponding job JkaF. It follows that the total work in ‘7[5_%(U_u)7v] is at least
the total work in ‘7[55]1[7.

The amount of work, (1)(v — (v — e(v — u))), that BEQUI, is capable of completing during the interval

. The work [; of a broadcast is

T = [u—¢e(v — u),v] is equal to the amount of work, (1 + €)(v — u), that EDFy4. is capable of completing
during the interval T' = [u, v]. From this we can conclude that if EDFq4. is over loaded during the time interval
T = [u, v], then BEQUI, is over loaded during the time interval 7" = [u — e(v — u), v]. [|

Theorem 8 The algorithm BEQUI-EDF is an (1+¢)(4+¢)-speed O(1)-approximation algorithm for B|r;, pmitn| Y F;.
Furthermore, BEQUI-EDF preempts each broadcast on average at most once.

Proof: The competitiveness claim follows immediately from theorem 4 and lemmas 5, 6, and 7. Note that the

only reason for EDFq,., and hence for BEQUI-EDF, to preempt is because another job JkaF with an earlier

deadline arrives. It follows that the number of preemptions is at most the number of broadcasts. [|
Theorem 9 The algorithm BEQUI-EDF is an (1+¢)(4-+¢)-speed O(1)-approximation algorithm for B|r;, p; = 1| >_ F;.

Proof: The jobs JkaF are purposefully set to arrive at integer times. Hence, all preemptions occur at integer

times. From this we know that any unit length file will never be preempted. [|

References

[1] S. Aacharya, and S. Muthukrishnan, “Scheduling on-demand broadcasts: new metrics and algorithms”,
ACM/IEEE International Conference on Mobile Computing and Networking, 43 — 54, 1998.

[2] A. Bar-Noy, R. Bhatia, J. Naor, and B. Schieber, “Minimizing service and operation costs of periodic schedul-
ing”, ACM/STAM Symposium on Discrete Algorithms, 11 — 20, 1998.

[3] Y. Bartal, and S. Muthukrishnan, “Minimizing maximum response time in scheduling broadcasts”,

ACM/STAM Symposium on Discrete Algorithms, 558 — 559, 2000.
[4] DirecPC website, http://www.direcpc.com.

[6] T. Erlebach and A. Hall, “NP-hardness of broadcast scheduling and inapproximatability of of single-source
unsplittable min-cost flow”, ACM/SIAM Symposium on Discrete Algorithms, 2002.

[6] J. Edmonds, “Scheduling in the dark”, Theoretical Computer Science, 235(1), 109 — 141, 2000.

12

[7] R. Gandhi, S. Khuller, Y. Kim and Y-C. Wan, “Approximation algorithms for broadcast scheduling”, to

appear at Conference on Integer Programming and Combinatorial Optimization, 2002.

[8] B. Kalyanasundaram, and K. Pruhs, “Speed is as powerful as clairvoyance”, Journal of the ACM, 47(4), 617
- 643, 2000.

[9] B. Kalyanasundaram, K. Pruhs, and M. Velauthapillai, “Scheduling broadcasts in wireless networks”, Journal

of Scheduling, 4(6), 339 — 354, 2000.

[10] C. Kenyon, N. Schabanel and N. Young, “Polynomial-time approximation schemes for data broadcast”, ACM
Symposium on Theory of Computing, 659-666, 2000.

[11] C. Phillips, C. Stein, E. Torng, and J. Wein “Optimal time-critical scheduling via resource augmentation”,

Algorimica, 32(2), 163 — 200, 2002.

[12] K. Pruhs and P. Uthaisombut, “A comparison of multicast pull models”, manuscript.

13

