
Multicast Pull Scheduling: When Fairness is FineJe� Edmonds � Kirk Pruhs yApril 29, 2002AbstractWe investigate server scheduling policies to minimize average user perceived latency in pull-based client-server systems (systems where multiple clients request data from a server) where the server answers requestson a multicast/broadcast channel. We �rst show that there is no O(1)-competitive algorithm for this problem.We then give a method to convert any nonclairvoyant unicast scheduling algorithm A to nonclairvoyantmulticast scheduling algorithm B. We show that if A works well works well, when jobs can have paralleland sequential phases, then B works well if it is given twice the resources. More formally, if A is an s-speed c-approximation unicast algorithm, then its counter part algorithm B is a 2s-speed c-approximationmulticast algorithm. In is already known [6] that Equi-partition, which devotes an equal amount of processingpower to each job, is an (2+ �)-speed O(1+ 1=�)-approximation algorithm for unicast scheduling of such jobs.Hence, it follows that the algorithm BEQUI, which broadcasts all requested �les at a rate proportional to thenumber of outstanding requests for that �le, is an (4+ �)-speed O(1+1=�)-approximation algorithm. We giveanother algorithm BEQUI-EDF, and show that BEQUI-EDF is also an (4+�)-speed O(1+1=�)-approximationalgorithm. However, BEQUI-EDF has the advantage that the maximum number of preemptions is linear inthe number of requests, and the advantage that no preemptions occur if the data items have unit size.1 IntroductionWe investigate server scheduling policies to minimize average user perceived latency in pull-based client-serversystems (systems where multiple clients request data from a server) where the server answers requests on abroadcast channel. One notable commercial example of such a system is Hughes' DirecPC system [4]. In theDirecPC system the clients request web �les via a low bandwidth dial-up connection, and the web �les arebroadcasted via high bandwidth satellite to all clients (so it may be possible to satisfy many requests to acommon �le with a single broadcast). One would expect that the ability to broadcast would reduce the workloadon a server for the same reason that proxy caches reduce the workload on a server, because it is common fordi�erent clients to make requests for the same data item. The average user perceived latency, or equivalentlyaverage 
ow time, is the average (over all client requests) of the di�erence in time between when the request isfully satis�ed and when the request was made.For convenience, we will adopt terminology appropriate for the DirecPC system, i.e. a web server broadcasting�les to clients, although our discussion is independent of the type of server, and the type of data items. Weconsider what appear to us to be the two most natural job environments. In the job environment ri; pmtn the�les sizes are not uniform, and the server may preempt, that is, terminate the broadcast of one �le, and laterreturn to broadcasting that �le from the point of preemption. Systems that service jobs with widely disparate�York University, Canada. je�@cs.yorku.ca. Supported in part by NSERC Canada.yComputer Science Department. University of Pittsburgh. kirk@cs.pitt.edu. Supported in part by NSF grants CCR-9734927,CCR-0098752, ANIR-0123705, and by a grant from the US Air Force.1



resource requirements, e.g. an operating system, generally need to allow preemption to achieve reasonable systemperformance. This would be an appropriate job environment for a web server. In the case of a name servercommunicating IP address, or any server where all data items are small, a more appropriate job environmentwould be ri; pi = 1, that is, jobs are of unit size and preemption is not allowed. Implementable algorithmsmust beonline, that is, the schedule must be created over time as the jobs arrive without knowledge of the future. We makethe natural assumption that servers broadcast �les sequentially, and the clients must receive �les sequentially,that is, a client cannot bu�er the last part of a �le if it makes a request for that �le in mid-broadcast of that �le.Although recent results in [12] on the relationship of various models of multicast pull scheduling show that theresults in this paper extend, with at most minor modi�cation, to other models (e.g. when the client can bu�erthe end of a �le). We will denote the two resulting problems as Bjri; pmtnjPFi and Bjri; pi = 1jPFi.
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

������������
������������
������������
������������

������������
������������
������������
������������

��
��
��
��

��������
��������
��������

��������
��������
��������

�������
�������
�������

�������
�������
�������

�������������
�������������
�������������

�������������
�������������
�������������

Input

Schedule
Time: 5 10 150 20Figure 1: An example instance of Bjri; pmtnjPFiAs a concrete example of the problem Bjri; pmtnjPFi consider the instance shown in �gure 1. There aretwo �les (designated by the rectangles with two di�erent �ll patterns in the input). The �rst �le is of length 9,and the second �le is of length 1 (designated by the horizontal lengths of the rectangles in the input). The �rst�le is requested at times 0 and time 7 (designated by the horizontal positioning of the rectangles in the input).The second �le is requested at times 1, 3 and 5. Presumably the online scheduler, with unit bandwidth, startsbroadcasting the �rst �le at time 0. At time 1, a request for the second �le arrives and the online scheduler mustdecide whether to continue broadcasting the �rst �le, or preempt and start broadcasting the second �le. In thefeasible schedule shown, the second �le is broadcast from time 5 to time 6, satisfying all of the requests for thesecond �le with this single broadcast. Note that after this schedule �nished broadcasting the �rst �le at time 10,the schedule must again broadcast all 9 units of the �rst �le since we are assuming that the user that made therequest for the �rst �le at time 7 could not bu�er the last 3 units of the �rst �le between time 7 and time 10.The average 
ow time for this schedule is (10+ 5+ 3+ 1+ 12)=5, where the 
ow times of the individual requestsin the numerator are ordered by increasing the arrival times of the requests.In section 3 we will show that there is no O(1)-competitive algorithm for the multicast pull scheduling problemBjri; pmtnjPFi. In [9] it was shown that there are no O(1)-competitive algorithms for the problem Bjri; pi =1jPFi. Note that the lower bound for Bjri; pi = 1jPFi does not apply to the the problem Bjri; pmtnjPFibecause preemption is allowed in Bjri; pmtnjPFi.We thus consider resource augmentation analysis. Resource augmentation analysis was proposed as an methodfor analyzing scheduling algorithms in [8]. We adopt the notation and terminology from [11]. In our context of ascheduling minimization problem, an s-speed c-approximation algorithmA has the property that for all inputs, thevalue of the objective function of the schedule that A produces with speed s processors, denoted by As, is at mostc times the optimal value of the objective function for speed 1 processors. Standard competitive analysis assumesthat A has unit speed processors. So an algorithm A is c-competitive if A is a 1-speed c-approximation algorithm.Not that an s-speed c-approximation algorithm is O(c)-competitive if OPT1 = �(OPTs). Intuitively, OPT1 is�(OPTs) unless the system has load at least 1=s. So one way to interpret an s-speed c-approximation analysisresult is that the algorithm should perform reasonably well if the system is not too heavily loaded. The onlypreviously known positive result for broadcast scheduling was an O(1)-speed O(1)-approximation polynomial-2



time LP-based o�ine algorithm given in [9] for the problem Bjri; pi = 1jPFi. The constants were subsequentlyimproved in [5, 7].Broadcasting complicates the task of the server in that it must decide whether to broadcast a �le as soon aspossible after a request comes or to wait for some undetermined length of time in case more requests for the same�le arrive that can be handled by a single broadcast. To further understand this complication, let us consider thelower bound proofs that no O(1)-competitive online algorithms exist for Bjri; pi = 1jPFi or Bjri; pmtnjPFi.After the online algorithm has performed a signi�cant amount of work on a �le that was requested by a singleclient, the adversary can again direct another client to request that �le. The online algorithm must service thissecond request as well. In contrast, the optimal schedule knows not to initially give any resources to the �rstrequest, because the broadcast for the second request simultaneously services the �rst. In this regard, the workassociated with the �rst request is essentially \sequential", in that even though the online algorithm devotes a lotof resources to it and the optimal algorithm devotes no resources to it, it completes under both within a constantfactor of the time. This is in contrast to the more standard notion of parallelwork, where increasing the fraction ofthe processing power devoted to this work by a multiplicative factor of f decreases the time required to completethe work by a factor of f . Hence, we interpret these lower bounds to indicate that the real di�culty of broadcastscheduling is that the adversary can force some of the work to be sequential. In section 4, we formalize the aboveintuition by giving a method to convert any nonclairvoyant unicast scheduling algorithm A to nonclairvoyantmulticast scheduling algorithm B. We show that if A works well works well, when jobs can have parallel andsequential phases, then B works well if it is given twice the resources. The basic idea is that B simulates A,creating a separate job for each request, and then the amount of time that B broadcasts a �le is equal to theamount of time that A runs the corresponding jobs. More formally, if A is an s-speed c-approximation unicastalgorithm, then its counter part algorithm B is a 2s-speed c-approximation multicast algorithm. This result issurprising given the fact the problems being solved are so di�erent.It is shown in [6] that an algorithm, Equi-partition, which devotes an equal amount of processing power toeach job, is an (2 + �)-speed O(1 + 1=�)-approximation algorithm for unicast scheduling of jobs with \natural"speed-up curves. These \natural" speed-up curves include jobs that consist of parallel and sequential phases.In section 5 we apply our reduction to Equi-partition to obtain the intuitive algorithm BEQUI for the problemBjri; pmtnjPFi. The algorithm BEQUI broadcasts each �le at a rate proportional to the number of outstandingrequests for that �le. Hence we can conclude that BEQUI is an (4+ �)-speed O(1+1=�)-approximation algorithmfor the problem Bjri; pmtnjPFi. We believe that these results are evidence of the applicability to other problemsof the model of scheduling jobs with various speed-up curves, and the analysis of Equi-partition from [6].In section 6, we propose another algorithm BEQUI-EDF. We show that BEQUI-EDF is also an (4 + �)-speed O(1 + 1=�)-approximation algorithm for Bjri; pmtnjPFi. However, BEQUI-EDF has the advantage ofguaranteeing that it preempts on average at most once per broadcast, or alternatively, that the number ofpreemptions is at most the number of requests. Furthermore, we show that if the �les have unit size thenBEQUI-EDF will not preempt any broadcast. Thus BEQUI-EDF is an (4 + �)-speed O(1 + 1=�)-approximationalgorithm for Bjri; pi = 1jPFi. The algorithm BEQUI-EDF can be viewed as a two stage algorithm. The �rststage BEQUI-EDF simulates the algorithm BEQUI. When BEQUI completes the jth broadcast of a �le at timet, a job with work equal to the length of this �le, and deadline equal to t plus the 
ow time for the jth broadcastin BEQUI, is sent to the second stage. The second stage is always broadcasting the job with the earliest deadline.The algorithms BEQUI and BEQUI-EDF have several nice features. Both algorithms are nonclairvoyant,meaning that they do not need to know the quantity of remaining un�nished work for each uncompleted job.This could allow a server to begin broadcasting a dynamically generated �le before the �le is fully generated. Inaddition, both algorithms are fair to all jobs, and thus they avoid starving long jobs as say Shortest RemainingProcessing Time might. Both algorithms are easy to implement. Another way of viewing BEQUI is that the3



bandwidth is distributed evenly between all requests Ri;j that are either waiting or being serviced. Hence, BEQUIcan be implement by servicing the requests in a round robin fashion.Multicast pull scheduling has received considerable attention recently in the database, networks, and algorithmsliterature (e.g. [1, 3, 9]). Let us quickly summarize a couple of the seemingly most related results in the literaturethat we have not yet mentioned. The o�ine problem is NP-hard [5]. In [3] it is shown that the algorithmFirst-Come-First-Served is 2-competitive for the objective function of minimizing the max 
ow time, and thatminimizing the maximum
ow time can be approximated well o�ine (under the assumption that client bu�ering isallowed). There has been a fair amount of research into push-based broadcast systems, sometimes called broadcastdisks, where the server pushes information to the clients without any concept of a request, ala a television or radiobroadcast [2, 10]. It seems that good strategies for push-based systems have little to do with good strategies forpull-based systems.Before preceding with the results we need to formalize some terms and concepts in section 2.2 De�nitionsWe start by more formally de�ning the multicast pull scheduling problem Bjri; pmtnjPFi. The input that theserver receives is a sequence of requests for m di�erent �les. The jth request for the ith �le is denoted Ri;j andits integer arrival time is denoted by ai;j. An online server algorithm does not become aware of Ri;j until timeai;j. The length/work of �le i is an integer li. The only information that a nonclairvoyant algorithm can inferabout li is that it is lower bounded by the amount of work that the algorithm has done on the �le. Let R denotethe collection of all requests.A multicast scheduling algorithm, here denoted Bs, has a given speed s. Broadcasting a �le simultaneouslyservices all requests that arrived before the broadcast began. With this goal in mind, the algorithmmust schedulewhen to broadcast the �les at speed s across the single channel of bandwidth L. At each time step, the algorithmpartitions the e�ective sL bandwidth between the �les. We denote by pBi;t the bandwidth allocated by Bs(R) tothe ith �le at time t. The restriction is that Pi pBi;t � sL. We denote by bB;ki the time that the kth broadcastingof the ith �le begins (that is the time that the �rst bit of ith �le is broadcast for the kth time), and by cB;kithe time that the kth broadcasting of the ith �le ends. To accomplish this, the algorithm must allocate enoughbandwidth so that Rt2[bB;ki ;cB;ki ] pi;t = li, because this is the length of the �le.The life span of a request Ri;j is as follows. It arrives at some time ai;j speci�ed by the input R. It must waituntil the next broadcasting of the ith �le to begin, i.e. the minimum k such that bB;ki � ai;j. This time is denotedbBi;j = bB;ki . The request is then being serviced until the time denoted cBi;j = cB;ki that this broadcast completes.The 
ow time for this request is time from the arrival and the completion the request, namely [cBi;j � ai;j]. Thetotal/average 
ow time of a schedule is the total/average of this over all requests. We use BOPT to denote theoptimal schedule. Note for simplicity we polymorphically use the same notation Bs(R) for the algorithm Bs oninput R, the schedule produced by Bs on R, and the total 
ow time for this schedule.The job environment SC; ri; pmtn given in [6] is as follows. The input to the problem is a set of n jobs J = fJjgthat are to be executed on P processors (note that generally speaking, the number of processors is not relevantsince one can use the speed-up curves to simulate a multi-processor environment in single machine environment).The jth job is denoted by Jj , its arrival time is denoted by aj, and it has a sequence of phases 
Jj;1; Jj;2; : : : ; Jj;qj�.Each phase is an ordered pair hwj;q;�j;qi, where wj;q denotes the amount of work and �j;q denotes its speedupfunction. Here �j;q(�) represents the rate at which work is executed for phase q of job i when given � processors(note that � need not be integer). The original motivation for introducing speed-up curves was that, in thecontext of a parallel computer, not all code is equally parallelizable. In this paper, each phase can either be aparallel phase, that is a phase where �(�) = �, or sequential phase, that is a phase where �(�) = 1. (Note that4



in [6] each speedup function can be an arbitrary nondecreasing sublinear function.) Sequential work completeswork at a rate of 1 even when absolutely no processors are allocated to it. A unicast scheduling algorithm Ashas a given speed s. At each time step, the algorithm partitions the e�ective sP processors between the jobs.We denote by pAj;t the number of processors allocated by As(J) to the job Jj at time t. The restriction is thatPj pAj;t � sP . We denote by cAj;q the time that As(J) completes the qth phase of job Jj . To accomplish this, thealgorithm must allocate enough processors so that Rt2[cAj;q�1;cAj;q] �j;q(pAj;t)dt = wj;q, because wj;q is the work inthis phase and �j;q is its speedup function. The completion time of a job Jj, denoted cAj , is the completion timeof the last phase of the job. The 
ow time for this job is [cAj �aj ]. The performance of the algorithm is measuredby the average 
ow time, As(J) = Avgj [cAj � aj ]. We use JOPT to denote the optimal schedule.In this setting a nonclairvoyant schedule is completely in the dark. In addition to not knowing what jobs willarrive in the future, it does not know the amount of work remaining or the speedup functions �j;q of the jobs thathave already arrived. All it knows is when a job arrives and when it completes. Not knowing the amount of workremaining in a job, prevents the scheduler from doing Shortest-Remaining-Work-First, which is optimum whenall the jobs are fully parallelizable. Not knowing the speedup functions of the jobs is an even bigger handicapbecause any processors accidently allocated to a sequential phase of a job are e�ectively wasted. The optimumscheduler, in contrast, knows not to allocate any processors to the sequential phases of jobs. A nonclairvoyantscheduler that is often used in practice for jobs with varying speed-up curves is Equi-partition, which allocatesan equal number of processors to each outstanding job. That is, pEj;t = sP 1nEt , where nEt is the number of jobsthat are outstanding at time t, and for simplicity we use E to denote the algorithm Equi-partition. In [6], it isshown that Equi-partition is a 2 + �-speed O(1 + 1� )-approximation algorithm (note that is it easy to see that noO(1)-competitive algorithm exists for this problem).Theorem 1 ([6]) For all instance J of SC; ri; pmtn, E2+�(J)JOPT1(J) = O(1 + 1� ).3 A Lower BoundTheorem 2 There is no o(pn)-competitive algorithm for Bjri; pmtnjPFi, where n is the number of requests.Proof: We prove the �rst statement �rst. Initially 2k unit-length �les are each requested once. Without loss ofgenerality, assume that at time k that the online algorithm has done less work on the �rst k �les than on thelast k �les. Thus the online algorithm has at least k=2 work remaining on the �rst k �les just before time k.At time k, the last k �les are all requested again by one more client each. Thus at time k, the online has 3k=2remaining work. At time 2k, the online algorithm must have at least k=2 remaining work. The adversary canhave no remaining work at time 2k by broadcasting the �rst k �les from time 0 to k, and by broadcasting thelast k �les between time k and time 2k. >From time 2k until time k2 a new previously unrequested unit length�le is requested at each integer time step. Thus at each time between time 2k and time k2, the online algorithmwith have at least k=2 un�nished work, and hence at least k=2 unsatis�ed requests. Therefore the total 
ow timeof the online algorithm is 
(k3). The optimal total 
ow time is O(k2). The number of requests n = �(k2).4 A Reduction from Multicast to UnicastIn this section we give a reduction that converts a nonclairvoyant unicast scheduling algorithm into an almostequally competitive nonclairvoyant multicast scheduling algorithm.Description of the Reduction: Let A be a nonclairvoyant algorithm for the unicast scheduling problemP jSC; ri; pmtnjPFi. Despite the fact that the problems being solved are so di�erent, our corresponding algorithm5



B for the multicast pull scheduling problem Bjri; pmtnjPFi requires little changes. Algorithm B is de�ned asfollows. Algorithm B broadcasts each of its �les continuously, (though sometimes at a rate of zero). When itcompletes its kth broadcast of the ith �le, it immediately starts its (k+1)st broadcast of the �le, i.e. cB;ki = bB;k+1.Algorithm B simulates algorithm A to determine the current rate at which it broadcasts each �le. At each pointin time, the jobs active under A directly correspond to the requests that are either waiting to be serviced, orare currently being serviced under B. When B receives the jth request for the ith �le, Ri;j, B tells A thatit has received a new job J(i;j). When B competes servicing a request, it tells A that the corresponding jobhas completed. Because algorithm A is nonclairvoyant, it never has any more knowledge about the jobs thenthis. Hence, B can know at each point in time the number of processors pA(i;j);t allocated by A to job J(i;j).Algorithm B then allocates the same amount of resources to each request by broadcasting the ith page at a rateof pBi;t =Pj pA(i;j);t. Note that the total bandwidth needed by B is always equal to the number sP of processorsthat A has.Theorem 3 If A is an s-speed c-approximation nonclairvoyant algorithm for the problem P jSC; ri; pmtnjPFi thenB is an 2s-speed c-approximation nonclairvoyant algorithm for the problem 1jSC; ri; pmtnjPFi.Proof: We start by making one simpli�cation. We assume that the (k+1)st broadcast for B begins when the kthbroadcast ends, that is, cB;ki = bB;k+1. Thus we assume that any requests that arrive strictly after cB;ki will notbe serviced by the (k + 1)st broadcast for B. This assumption is strictly to B's disadvantage. The assumptionthat cB;ki = bB;k+1 allows us to simplify notation and our �gures.Changing s, we will assume that A is s2 competitive and prove that B is s competitive. To do this we mustprove that for each set of requests R, that the 
ow time of B with requests R and speed s (denoted Bs(R)) is atmost a constant times the 
ow time of the optimal schedule BOPT1(R) for the requests with speed 1. This is doneby constructing from R a set of jobs J to give to the algorithm A and proving that Bs(R)BOPT1(R) � As(J)JOPT2(J) � O(1).The last inequality follows from the fact that algorithm A is s2 competitive.The �rst step of the proof considers in detail the execution of Bs(R). The second step quickly considersthe execution of the optimal algorithm BOPT1(R). The third step uses the details of these two executions toconstruct the sequential and parallel phases of the jobs in J in such a way that the 
ow time for each request inBs(R) will be equal to (or be less than) the 
ow time of the corresponding job in As(J). The �nal step constructsa schedule JOPT02(J) whose total 
ow time is at most the total 
ow time of BOPT1(R). The optimal total 
owtime of JOPT2(J) is clearly at most the total 
ow time of JOPT02(J). These steps complete the proof.The proof requires lots of notation. It considers �ve di�erent algorithms,Bs(R), BOPT1(R), As(J), JOPT02(J)and JOPT2(J). For simplicity, the �rst four will be indicated by a superscript of B, O, A, and O0. Because theproof focuses exclusively on the ith �le, we will drop the subscript i. For example, Rj and Jj, and not Ri;j andJ(i;j), will denote the jth request of the ith �le and the job related to it, respectively. We use aj, bBj , and cBj todenote the times that request Rj for the ith �le arrives, begins, and completes being broadcasted by Bs(R). Weuse bB;k and cB;k to denote the times that the kth broadcast of the ith �le begins and completes in Bs(R). Weuse pBt to denote the bandwidth allocated to the ith �le at time t by B, and similarly we use pAj;t to denote thenumber of processors that A devotes to job J(i;j) at time t. Finally, we use jB;k to be the index of the �rst requestthat arrives after the beginning time bB;k of the kth broadcast, i.e. the smallest index j such that aBj > bB;k.In the �rst step of the proof we attempt to understand the execution of Bs(R). Figure 2 depicts the executionfor the ith �le by Bs(R) on requests R. The curve increasing up and to the right graphs the arrival time aj ofthe jth request Rj for the ith �le. Note that time t is on the vertical axis and the index j of request for this �leis on the horizontal axis. The horizontal dotted lines depict the times at which a broadcast of the ith �le begins,and the horizontal dashed lines depict the times at which a broadcast of the ith �le ends. Imagine any verticalline through Figure 2 at some index j. The life of a request can be determined by tracing this vertical line from6



, b

j
B

Time t

Index j of request for file i

( j B, k

j

B, k)

j
Bb

c
( j

aB, k-1 , bB, k-1 )

( j B, k+1, c B, k )Waiting

Serving

Figure 2: The computation of Bs(R).bottom to top. The request arrives at the time aj indicated by the solid curve. It waits until time bBj , indicatedby the dotted line that intersects the vertical line, at which time it begins to receive the ith �le from the nextbroadcast. It is served until the time denoted cBj , indicated by the dashed line intersecting the vertical line, atwhich time this broadcast completes. The 
ow time for the request is then cBj � aj.Now let us focus on the kth broadcast of the ith �le, and consider Figure 2 again. The top two dots depictthat this broadcast begins at the time denoted bB;k and completes at the time denoted cB;k. They also depictthat the range of requests Rj that arrive during this broadcast. Hence, during this broadcast, these requests arewaiting to be serviced. They will be serviced later by the k + 1st broadcast. The bottom two dots in Figure 2depict that the range of requests Rj that that are serviced by this kth broadcast.The total number of packets broadcasted by the kth broadcast of the ith �le of size li is computed to beli = Zt2[bB;k;cB;k] pBt t.= Xj2fj j Rj is waiting or being serviced at time tg pAj;t= the volume under the highlighted step in Figure 1 if you assume that point hj; ti has height pEt .= Xj2(jB;k�1;jB;k] Zt2[bB;k;cB;k] pAj;tt. + Xj2(jB;k;jB;k+1] Zt2[aj ;cB;k] pAj;tt.The second step of the proof considers the execution of BOPT1(R). The kth broadcast under BOPT1(R) of theith �le is denoted to begin at time bO;k and complete at time cO;k. We do not assume that the �le is broadcastedcontinually, i.e. that cO;k = bO;k+1. In fact, we do not even assume that the broadcasts to this �le are disjoint, i.e.that cO;k � bO;k+1. BOPT1(R) dedicates a total of li its 1 speed bandwidth during the time interval [bO;k; cO;k]to complete this kth broadcast of the ith �le, and because of this broadcast, the requests Rj that arrive duringthe time interval (bO;k�1; bO;k] complete at time cOj = cO;k.The third step of the proof (see Figure 3) uses the details of Bs(R) and BOPT1(R) to construct the sequentialand parallel phases of the jobs in J in such a way that the 
ow time for each request in Bs(R) will be equal7



to (or be less than) the 
ow time of the corresponding job in As(J). Because each job is designed to arrive atthe same time as the corresponding request, it is su�cient to prove that the job completes no earlier, i.e. thatcAj � cBj . In Figure 3 the dashed line plots the completion time cBj of the jth request for the ith �le under Bs(R).The dotted line plots the times bOj that the requests under BOPT1(R) begin being served. There are two casesin determining how job Jj is designed depending on how these two lines relate.In the �rst case, Bs(R) completes the request Rj before BOPT1(R) begins the request, i.e. cBj � bOj . In thiscase, request Rj is replaced with a job Jj that is completely sequential arriving at time aj with work cBj � aBjso that it completes at time cBj . Recall that sequential work complete at unit rate independent of the number ofprocessors allocated to them.In the second case, Bs(R) completes the request after BOPT1(R) begins the request, i.e. cBj > bOj . In this case,request Rj is replaced with a job Jj that has a sequential phase followed by a parallel phase. The job arrivesat time aj and the sequential phase has work bOj � aBj so that it completes at time bOj . The parallel phase hasan in�nitesimally more work than the amount Rt2[bOj ;cEj ] pAj;t completed by the processors allocated to it by As(J)during the time period [bOj ; cBj ]. Hence, at time cBj the job will still have an in�nitesimally small amount of workleft on the job. This extra work is enough to insure that even if As(J) is not working on the job at time cBj , itcompletes the job some time after this required time. This completes the third step of the proof.
a j

, b )( j B, k’

( j O, k

( j B, k’ +2, c B, k’ +1 )

( j B, k’ -1 , bB, k’ -1

B, k’

, b

Index j of request for file i

O, k

b

)

( j B, k’ +1, c B, k’)

Time t

)

c j
B

j
O

Parallel work

Sequential workFigure 3: The reduction from Broadcasting to the job model.The �nal step of the proof converts the given algorithm BOPT1(R) into an algorithm denoted JOPT02(J) thatcompletes our constructed jobs J with a total 
ow time that is at most that of BOPT1(R). This conversion isdone one broadcast at a time. Consider the kth broadcast of the ith �le by BOPT1(R) which begins at some timebO;k and completes at some time cO;k. The requests completed by this kth broadcast are partitioned into threecases depending on how the request is serviced by Bs(R). There is a unique broadcast of the ith �le by Bs(R)that ends next after the time bO;k that the kth broadcast by BOPT1(R) begins. Denote by k0 the index of thisbroadcast of Bs(R). More formally, k0 is the index for which cB;k0�1 � bO;k < cB;k0.The �rst case of the requests Rj serviced by the kth broadcast by BOPT1(R) are those whose arrival timeaj is within the time interval (bO;k�1; bB;k0�1]. Note that this interval may be empty if bO;k�1 > bB;k0�1. The8



bottom of this range is because for a request to be handled by the kth BOPT1(R) broadcast, it must arrive afterthe beginning bO;k�1 of the k � 1st broadcast. The top of this range is depicted by the bottom dot in Figure3. The second case are those requests Rj for which aj 2 (bB;k0�1; bB;k0]. The third case are those requests Rjfor which aj 2 (bB;k0 ; bO;k]. The top of this range is because for a request to be handled by the kth BOPT1(R)broadcast, it must arrive not after the beginning of this broadcast. The separation between the second and thirdcases, when bB;k0 < bO;k, is depicted by the dot second from the bottom in Figure 3.Consider the �rst case, that is, requests Rj that arrive before time bB;k0�1. Hence, they are serviced by eitherthe k0 � 1st broadcast of Bs(R), or an earlier broadcast of Bs(R). Hence, their completion time cBj is no laterthan cB;k0�1, which by the de�nitions of k and k0 is no later than bOj = bO;k. Recall that when constructing jobsJj from requests Rj, the requirement of the �rst case was that Bs(R) completes the request before BOPT1(R)begins the request, i.e. cBj � bOj . In this case, request Rj is replaced with a job Jj that is completely sequential.The algorithm JOPT02(J) knows to allocate no processors to sequential work. Independent of the number ofprocessors allocated to it, job Jj is designed to complete at time cBj , which by assumption is before bOj whenBOPT1(R) begins to serves the request, which is certainly before cOj when it completes the request. We can thenconclude that JOPT02(J) will complete all such requests Jj at least by the time that BOPT1(R) does.In the second and third cases we consider the requests Rj that arrive after time bB;k0�1. Hence, their completiontime cBj is cB;k0 or later, which is strictly later than bOj = bO;k by the de�nition of k and k0. It follows that job Jjis constructed to have a sequential phase followed by a parallel phase. The �rst sequential phase is constructedto complete at time bOj = bO;k. Recall that during the preceding time interval [bO;k; cO;k], BOPT1(R) dedicatedbandwidth at least li to the ith �le. In the remainder of the proof we wish to establish that the parallel work inthe second and third case jobs together do not have more than 2li work. If we can establish this, it will be thenbe possible for JOPT02(J) to complete all of these jobs during [bO;k; cO;k] since it has a speed 2 processor. Recallthat neither JOPT2 or JOPT02(J) has to work on the sequential phases of these jobs.The total parallel work of the second and third case jobs is then the volume under the backwards L shapedshaded region in Figure 3. Recall that we use jB;k to be the index of the �rst request that arrives after thebeginning time bB;k of the kth broadcast in Bs(R). We similarly de�ne we use jO;k to be the index of the �rstrequest that arrives after the beginning time bO;k of the kth broadcast in BOPT1(R).Because these requests are handled by the kth broadcast of BOPT1(R), we know that bOj = bO;k. Thesecond case requests Rj, those for j 2 [jB;k0�1; jB;k0), arrive at aj 2 (bB;k0�1; bB;k0], and hence complete at timecBj = cB;k0 . The third case requests Rj, those for j 2 [jB;k0 ; jO;k), arrive at aj 2 (bB;k0 ; bO;k] � (bB;k0 ; bB;k0+1]and hence complete at time cBj = cB;k0+1. We can conclude that the total parallel work of these case 2 and 3 jobsis = Xj2[jB;k0�1 ;jB;k0) Zt2[bO;k;cB;k0 ] pAj;tdt+ Xj2[jB;k0 ;jO;k) Zt2[bO;k;cB;k0+1] pAj;tdtIntuitively, if you could lay Figure 2 on top of Figure 3, you would see that each shaped region in �gure3 lies within the region formed by two consecutive broadcasts of Bs(R) in �gure 2, which we denote by .We know that the volume of the region under any one broadcast of Bs(R) is li. Hence, the total parallel workthat JOPT02(J) must complete on these case 2 and 3 jobs at most 2 � li. We conclude that JOPT02(J) is ableto complete all this parallel work by cOj since BOPT1(R) completes li work by time cOj with only a unit speedprocessor.More formally, the total work in the k0th and the k0 + 1st broadcasts of Figure 2 is= 2li 9



= Xj2[jB;k0�1 ;jB;k0) Zt2[cB;k0�1;cB;k0 ] pAj;tdt+ Xj2[jB;k0 ;jB;k0+1) Zt2[aj;cB;k0 ] pAj;tdt+ Xj2[jB;k0 ;jB;k0+1) Zt2[cB;k0 ;cB;k0+1 ] pAj;tdt+ Xj2[jB;k0+1;jB;k0+2) Zt2[aj ;cB;k0+1] pAj;tdtThe jobs in the �rst summand correspond to requests serviced by the broadcast k0 of Bs(R), the jobs in thesecond summand correspond to requests that arrive during broadcast k0 of Bs(R) that must wait this broadcastout, the jobs in the third summand correspond to requests serviced by the broadcast k0 + 1 of Bs(R), and thejobs in the fourth summand correspond to requests that arrive during broadcast k0 + 1 of Bs(R) that must waitthis broadcast out.We see that � as follows. For the requests within the range j 2 [jB;k0�1;min(jB;k0 ; jO;k)), the timeinterval t 2 [bO;k; cB;k0] in is a subset of the time interval t 2 [cB;k0�1; cB;k0] in , because by the de�nitionof of k0 it is the case that cB;k0�1 � bO;k. The range of requests j 2 [jB;k0 ; jO;k) in is a subrange of the rangej 2 [jB;k0 ; jB;k0+1) appearing twice in , because bO;k � cB;k0 by the de�nition of k and k0, and obviouslycB;k0 � bB;k0+1. Hence jO;k � jB;k0+1. Then for these requests, the time interval t 2 [bO;k; cB;k0+1] in is asubset of the time interval t 2 [aj; cB;k0 ][ [cB;k0 ; cB;k0+1] = [aj; cB;k0+1] in , because aj � bO;k for requests Rjserved by BOPT2(R)'s kth broadcast. Because the sums and integrals are over a subranges, it follows that �.To conclude, given a set of requests R, we constructed a set of jobs J in such a way that the 
ow timesBs(R) = As(J) and BOPT1(R) � JOPT02(J) � JOPT2(J). This completes the proof.5 BEQUIWe now apply our reduction from section 4 to the Equi-Partition algorithm to construct the algorithm BEQUI.We then obtain the result that BEQUI is a 4 + �-speed O(1 + 1� )-approximation algorithm for Bjri; pmtnjPFi.Description of BEQUI: Let s be the speed of the processor and L the bandwidth of the channel. The algorithmBEQUI broadcasts each �le at a rate proportional to the number of outstanding requests. That is, the bandwidthallocated to the ith �le at time t is sLnEi;tnEt , where nEi;t denotes the number of requests for the ith �le that are eitherwaiting or being served at time t and nEt = Pi nEi;t denotes this number over all �les. Note that having eitherlots of requests waiting for a �le or lots of requests being served motivates BEQUI to broadcast the �le faster.Theorem 4 For all sets of requests R, BEQUI4+�(R)BOPT1(R) = O(1 + 1� ).Proof: This follows by combining theorem 1 and theorem 3.6 BEQUI-EDFPart of the code of BEQUI-EDF(1+�)(4+�) simulates the algorithm BEQUI(4+�) with a factor 1 + � slower band-width. We simplify our argument by scaling the broadcasting speed units so that BEQUI has a unit speedprocessor, and BEQUI-EDF has a (1 + �) speed processor.10



Description of BEQUI-EDF1+�: At time cE;ki when BEQUI1 completes broadcasting the ith �le for the kthtime, a job JEDFi;k is given to the algorithm EDF1+� with arrival time aEDFi;k = dcE;ki e, work lEDFi;k = li, anddeadline dEDFi;k = dcE;ki e+ 1� (dcE;ki e�bE;ki ). The algorithm EDF1+� always runs the job with the earliest deadline.The algorithm BEQUI-EDF1+� always broadcasts the �le that EDF1+� is running.The analysis of BEQUI-EDF will rely on the following lemmas. Lemma 5 proves that BEQUI-EDF is compet-itive as long as EDF1+� can complete every job by its deadline. Lemma 6 proves the well know fact that EDF1+�can complete every job by its deadline if any schedule with this speed can. Finally, Lemma 7 proves that someschedule with speed 1 + � can complete the work by the deadlines because BEQUI1 was able to complete thesame work within the similar time constraints only shifted forward in time.Lemma 5 For all sets of requests R, if EDF1+� can complete every job by its deadline, then BEQUI-EDF1+�(R)BEQUI1(R) =O(1 + 1� ).Proof: Consider a request Ri;k that arrives at time ai;k and under BEQUI1 waits until time bEi;k and is serviceduntil time cEi;k. Its 
ow time is [cEi;k � ai;k]. At time cEi;k when BEQUI1 completes this broadcast, a job JEDFi;kis given to EDF1+�. EDF1+�, and hence BEQUI-EDF1+�, complete the broadcast of the ith �le between thearrival time aEDFi;k = dcEi;ke and deadline dEDFi;k = dcE;ki e + 1� (dcE;ki e � bE;ki ) of this job. Hence, the completiontime cEDFi;k of this request Ri;k under BEQUI-EDF1+� is before this deadline and its 
ow time is [cEDFi;k � ai;k] �[dcE;ki e+ 1� (dcE;ki e � bE;ki )]� ai;k � (1 + 1� )(dcE;ki e � ai;k) = O((1 + 1� )(cEi;k � ai;k)). (The ceilings are only neededin the case where the jobs are unit length, in which case jcEi;k � ai;kj � 1.)Lemma 6 will be stated in the contrapositive. If EDFs cannot complete every job by its deadline, then there is asimple local reason that no speed s schedule can, namely that there exists a time interval T such the total workthat the scheduler must process during T strictly exceeds what it is capable of. More formally, given an intervalT = [u; v], let J[u;v] denote the subset of jobs JEDFi;k that must be completed completely within the interval T ,because they arrive no earlier than u and have deadlines no later than time v. We say that the interval T isover loaded if the total work PJEDFi;k 2JT li;k of these jobs exceeds the amount of work sjT j that the scheduler iscapable of completing.Lemma 6 If EDFs cannot complete every job by its deadline, then there exists an over loaded interval T = [u; v].Proof: Let v denote the �rst time v that EDFs misses a deadline of a job JEDFi0;k0 . Let J[0;v] denote the subset ofthose jobs JEDFi;k that have deadlines no later than time v. By the de�nition of EDF, whenever the job JEDFi0;k0 isrun in the schedule EDFs(J[0;v]), it is also run in the original schedule. Hence, job JEDFi0;k0 misses its deadline inEDFs(J[0;v]) as well. Let u denote the last time that EDFs(J[0;v]) idled the processor before time v. All the jobsthat EDFs(J[0;v]) processed during the time interval T = [u; v] have arrival times after u (by idleness at u) anddeadlines before v (by de�nition of J[0;v]). In other words, during interval T , EDFs(J[0;v]) works exclusively andcontinuously on jobs from J[u;v]. Because EDFs(J[0;v]) is unable to meet all of these deadlines, it follows thatthe total work of these jobs must exceed the amount of work sjT j that the scheduler is capable of completing.Lemma 7 will also be stated in the contra-positive.Lemma 7 If there exists a time interval T during which the scheduler EDF1+� is over loaded, then there exists a timeinterval T 0 during which the scheduler BEQUI1 is over loaded, (which is false because BEQUI1 does complete itswork.) 11



Proof: Consider some interval T = [u; v] during which EDF1+� is over loaded. We will prove that BEQUI1 isover loaded during the interval T 0 = [u� �(v � u); v].Consider any job JEDFi;k in J EDF[u;v] . By de�nition, it is a job given to EDF1+� whose arrival time aEDFi;k is noearlier than time u and whose deadline dEDFi;k is no later than time v. Now consider the kth broadcast of theith �le by BEQUI1 that caused this job JEDFi;k to be passed to EDF1+�. We will prove that this broadcast mustbe in the set J E[u��(v�u);v], namely the broadcast begins at a time bE;ki no earlier than time u � �(v � u) andcompletes at a time cE;ki no later than time v. The latter is simply because the broadcast completes cE;ki beforethe corresponding job's deadline dEDFi;k , which in turn is no later than time v. The former is a little harder.Because JEDFi;k is in J EDF[u;v] , we know that the interval [aEDFi;k ; dEDFi;k ] during which it could be run is containedwithin the interval T = [u; v], we know that dEDFi;k � aEDFi;k = [dcE;ki e+ 1� (dcE;ki e � bE;ki )]�dcE;ki e � v�u. Hence,dcE;ki e� bE;ki = aEDFi;k � bE;ki � �(v� u). Hence, bE;ki � aEDFi;k � �(v�u) � u� �(v� u). This completes the proofthat for each job JEDFi;k in J EDF[u;v] , the corresponding broadcast is in JE[u��(v�u);v]. The work li of a broadcast isequal to the work lEDFi;k of the corresponding job JEDFi;k . It follows that the total work in J E[u� 1� (v�u);v] is at leastthe total work in JEDF[u;v] .The amount of work, (1)(v � (u � �(v � u))), that BEQUI1 is capable of completing during the intervalT 0 = [u � �(v � u); v] is equal to the amount of work, (1 + �)(v � u), that EDF1+� is capable of completingduring the interval T = [u; v]. From this we can conclude that if EDF1+� is over loaded during the time intervalT = [u; v], then BEQUI1 is over loaded during the time interval T 0 = [u� �(v � u); v].Theorem 8 The algorithm BEQUI-EDF is an (1+�)(4+�)-speed O(1)-approximation algorithm forBjri; pmtnjPFi.Furthermore, BEQUI-EDF preempts each broadcast on average at most once.Proof: The competitiveness claim follows immediately from theorem 4 and lemmas 5, 6, and 7. Note that theonly reason for EDF1+�, and hence for BEQUI-EDF, to preempt is because another job JEDFi;k with an earlierdeadline arrives. It follows that the number of preemptions is at most the number of broadcasts.Theorem 9 The algorithmBEQUI-EDF is an (1+�)(4+�)-speed O(1)-approximation algorithm forBjri; pi = 1jPFi.Proof: The jobs JEDFi;k are purposefully set to arrive at integer times. Hence, all preemptions occur at integertimes. From this we know that any unit length �le will never be preempted.References[1] S. Aacharya, and S. Muthukrishnan, \Scheduling on-demand broadcasts: new metrics and algorithms",ACM/IEEE International Conference on Mobile Computing and Networking, 43 { 54, 1998.[2] A. Bar-Noy, R. Bhatia, J. Naor, and B. Schieber, \Minimizing service and operation costs of periodic schedul-ing", ACM/SIAM Symposium on Discrete Algorithms, 11 { 20, 1998.[3] Y. Bartal, and S. Muthukrishnan, \Minimizing maximum response time in scheduling broadcasts",ACM/SIAM Symposium on Discrete Algorithms, 558 { 559, 2000.[4] DirecPC website, http://www.direcpc.com.[5] T. Erlebach and A. Hall, \NP-hardness of broadcast scheduling and inapproximatability of of single-sourceunsplittable min-cost 
ow", ACM/SIAM Symposium on Discrete Algorithms, 2002.[6] J. Edmonds, \Scheduling in the dark", Theoretical Computer Science, 235(1), 109 { 141, 2000.12



[7] R. Gandhi, S. Khuller, Y. Kim and Y-C. Wan, \Approximation algorithms for broadcast scheduling", toappear at Conference on Integer Programming and Combinatorial Optimization, 2002.[8] B. Kalyanasundaram, and K. Pruhs, \Speed is as powerful as clairvoyance", Journal of the ACM, 47(4), 617{ 643, 2000.[9] B. Kalyanasundaram, K. Pruhs, and M. Velauthapillai, \Scheduling broadcasts in wireless networks", Journalof Scheduling, 4(6), 339 { 354, 2000.[10] C. Kenyon, N. Schabanel and N. Young, \Polynomial-time approximation schemes for data broadcast", ACMSymposium on Theory of Computing, 659-666, 2000.[11] C. Phillips, C. Stein, E. Torng, and J. Wein \Optimal time-critical scheduling via resource augmentation",Algorimica, 32(2), 163 { 200, 2002.[12] K. Pruhs and P. Uthaisombut, \A comparison of multicast pull models", manuscript.

13


