Fairness

Jeff Edmonds *	Karan Singh	Ruth Urner
York University	York University	York University
jeff@cse.yorku.ca	singkara@cse.yorku.ca	ruth@cse.yorku.ca

March 16, 2021

JEFF IS EDITING THIS Please don't change \widehat{t}_q

1 New Fun

Theorem: Here we only consider \hat{x}_g that are non-extreme performance scores, i.e. $r(\hat{x}_g) = 2$. Let $\langle t_a, e_a, \hat{x}_a \rangle$ and $\langle t_b, e_b, \hat{x}_b \rangle$ denote the talent, environment, and measured performance scores for groups A and B. Let \hat{t}_a and \hat{t}_b denote desired talent thresholds for acceptance of the person from each group. Let \hat{x}_g denote the measured performance of both the A and Bperson that you are deciding between. Below we define the relationship $\hat{t}_b = F(\hat{t}_a)$ so that

$$Pr(t_b = \hat{t}_b | \hat{x}_b = \hat{x}_g) = Pr(t_a = \hat{t}_a | \hat{x}_a = \hat{x}_g) \text{ (or equivalently)}$$
$$Pr(t_b \ge \hat{t}_b | \hat{x}_b = \hat{x}_g) = Pr(t_a \ge \hat{t}_a | \hat{x}_a = \hat{x}_g)$$

• Suppose the talent distribution T is uniform.

Suppose the measure of performance is the sum $\hat{x}_g = T_g + E_g$ of the talent and environment for $g \in \{A, B\}$.

Suppose group A is advantaged by having its environment distribution k more than that for group B, i.e. $E_a = E_b + k$.

$$\rightarrow$$
 Then $\hat{t}_b = \hat{t}_a + k$.

The effect of this is that if you take the same number of randomly chosen A and B people and sort each group according to their talent, then the talent of the $i^{th} B$ person will be k higher then the $i^{th} A$ person.

• If we temporarily relax the restriction that \hat{x}_g that is non-extreme performance score, i.e. $r(\hat{x}_g) = 2$, then this result generalizes to

^{*}Thanks to Frances for her encouragement.

- Generalize, to allowing E_a = d ⋅ E_b + k, i.e. the same distribution whose standard deviation has been scaled by d and mean raised by k.
 → In this case, t_b = t_{a+k+(d-1)x}/d.
- We can prove the same result when both E_a and E_b are arbitrary distributions. We will model this by defining distribution $E_a = E_a(E_b)$, i.e. we randomly choose a value e'_a from the distribution E_b and then set $e_a = E_a(e'_a)$ where the later E_a denotes an arbitrary function.

 \rightarrow In this case, $\hat{t}_b = x - E_a^{-1}(x - \hat{t}_a)$.

• The only restrictions now are that T is uniform, $\hat{x}_g = t_g + e_g$, and $r(\hat{x}_g) = 2$. With this we also get

$$Exp(t_b|\hat{x}_b=\hat{x}_g) - Exp(t_a|\hat{x}_a=\hat{x}_g) = Exp(e_a) - Exp(e_b)$$

Suppose now that we are allowed to produce the measured performance score not just by \$\hat{x}_g = t_g + e_g\$, but more generally by \$\hat{x}_g = X(t_g, e_g)\$ for an arbitrary increasing function X. Let \$e_g = E_{\hat{x}_g}(t_g)\$ and \$t_g = T_{\hat{x}_g}(e_g)\$ be two inverse functions.

Finally, let us allow the talent distribution T to be arbitrary by choosing p uniformly from [0,1] and setting $t_g = T(p)$ for an arbitrary function T. Note that $Pr[t_g \leq T(p)] = p$.

 \rightarrow This most general result becomes $\hat{t}_b = T_{\hat{x}_a}(E_a^{-1}(E_{\hat{x}_a}(\hat{t}_a))).$

• The only remaining cases to consider are when the range of talent is smaller than the range of environment so that the performance score \hat{x}_g is extreme in both directions, i.e. $r(\hat{x}_g) = 0$.

For here, we will assume that the talent distributions are the same T and uniform, the environment distributions $E_a = E_b + k$ are the same but shifted, and the measured performance score is $\hat{x}_g = t_g + e_g$. In this case, not only may there not be a gap between the expected talent of person B over person A, but the direction may be reversed.

 \rightarrow If E_b is sub-exponential, then $Exp(t_b|\hat{x}_b=\hat{x}_g) \geq Exp(t_a|\hat{x}_a=\hat{x}_g)$.

 \rightarrow Otherwise it could be that for all \hat{x}_g (with $r(\hat{x}_g) = 0$) $Exp(t_b|\hat{x}_b = \hat{x}_g) < Exp(t_a|\hat{x}_a = \hat{x}_g)$.

Suppose our talent distribution is defined only within the range $[t^{min}, t^{max}]$ and the environment distribution within $[e_b^{min}, e_b^{max}]$. Suppose we condition on the fact that the performance score is given by $\hat{x}_b = t_b + e_b$ is fixed to some value \hat{x}_g . Rearranging and considering the environment range gives that $t_b = x - e_b \in [x - e_b^{max}, x - e_b^{min}]$. If \hat{x}_g is an extreme low value, then low range $x - e_b^{max}$ is smaller than the talent low range t^{min} and hence the bound t^{min} kicks in. Similarly, if \hat{x}_g is an extreme height value, then the high range $x - e_b^{min}$ is trumped by t^{max} . We define $r(\hat{x}_g)$ to be the number of endpoint for which this does not happen. For example, if the range $[t^{min}, t^{max}]$ on talent is much wider than that on environment and \hat{x}_g is not an extreme value, then the range $[x - e_b^{max}, x - e_b^{min}]$ is a subset of the range $[t^{min}, t^{max}]$. In this case we say r(x) = 2.

Proof: The proof will first assume that T is uniform.

We denote the talent of a random group $g \in \{A, B\}$ person by t_g which is drawn from the distribution T. If T is a continuous random variable, then $Pr(t_g = t) = 0$ for any exact value of t. The standard way of dealing with this is to define the density function $P_T(t)$ so that $Pr(t_g \in [t, t+\delta t]) = \delta t \cdot P_T(t)$. Similarly, we denote his environment value by e_g which is drawn from the distribution E_q with density function $P_{E_q}(e)$.

Because these two random variables are independent, we can define the cross density function $P_g(t, e) = P_T(t) \times P_{E_g}(e)$ so that $Pr(t_g \in [t, t+\delta t] \& e_g \in [e, e+\delta e]) = \delta t \cdot P_T(t) \times \delta e \cdot P_{E_g}(t) = \delta t \delta e \cdot P_g(t, e)$. Imagine raising a third dimension coming out of the page on the $\langle T, E \rangle$ rectangle in the figure, so that its height at location $\langle t, e \rangle$ is $P_g(t, e)$.

Our goal is to compute $Pr(t_g \in [\hat{t}_g, \hat{t}_g + \delta t] | x_g = \hat{x}_g)$. Using the standard formula $Pr(t_g \in \hat{t}_g, \hat{t}_g + \delta t]$ $[\hat{t}_g, \hat{t}_g + \delta t] \& x_g = \hat{x}_g) / Pr(x_g = \hat{x}_g)$ is awkard because the later is zero unless we allow x_g to fall into some infinitesemally small range. This performance is given by x = t + e or more generally by x = X(t, e). These equations narrow our $\langle T, E \rangle$ rectangle of possibilities to the 1-dimensional (possibly curved) line defined as $L = \{\langle t, e \rangle | \hat{x}_q = X(t, e)\}$. Let |L| denote its length and $|P_g(L)|$ the area over this line and under the surface $P_g(t, e)$. In order to translate from 2 to 1-dims, define L' to be 2-dim curved road with width ϵ along L and total area $|L'| = \epsilon |L|$. For all of these points $\langle t, e \rangle$ in L', we have that $X(t_q, e_q)$ is infinitesimally close to \hat{x}_g . Let use denote this with $x_g \approx \hat{x}_g$. Because $P_g(t, e)$ the our probability density function, $Pr(x_g \approx \hat{x}_g)$ is equal to the volume $|P_g(L')|$ over L' and under the surface $P_g(t, e)$. As we do in calculus, ϵ is small enough that $P_g(t, e)$ does vary much across the width of L'. Hence, its volume $|P_g(L')|$ is given by $\epsilon |P_g(L)|$. The next step is define S to be the portion of the line L for which $t \in [\hat{t}_q, \hat{t}_q + \delta t]$. and to define S' to be the corresponding portion within L', i.e. this line sigment when given ϵ width. Let |S| and $|S'| = \epsilon |S|$ denote their respective length and area. Let $|P_q(S)|$ and $|P_q(S')|$ denote the respective area and volume over them and under the surface $P_q(t,e)$. As we do in calculus, $P_q(t,e)$ does vary much within S', hence $|P_g(S)| = |S|P_g(\hat{t}_g, \hat{e}_g)$ and $|P_g(S')| = |S'|P_g(\hat{t}_g, \hat{e}_g) = \epsilon |P_g(S)|$. We are now ready to compute $Pr(t_g \in [\hat{t}_g, \hat{t}_g + \delta t] | x_g = \hat{x}_g) = Pr(S|L) = Pr(S'|L') = Pr(S')/Pr(L') =$ $|P_g(S')|/|P_g(L')| = |P_g(S)|/|P_g(L)| = |S|P_g(\hat{t}_g, \hat{e}_g/|P_g(L)|, \text{ where } \hat{x}_g = X(\hat{t}_g, \hat{e}_g).$ It follows that density function of this probability is $P_{\langle x_g = \widehat{x}_g \rangle}(t) = \frac{|S|}{\delta t} \cdot P_g(t, X_E^{-1}(\widehat{x}_g, \widehat{t}_g))/|P_g(L)|$. Here $|P_q(L)|$ depends one on the fixed value \hat{x}_q . We will ignore it and other "contant" factors that scale a density function so that the area under it is one. However, $\frac{|S|}{\delta t}$ is more problematic, because it relates to the slope of the curved line L. If L is defined by x = t + e, then this slope is constant. But with the more general definition x = X(t, e), this slope $\frac{|S(\hat{t}_g)|}{\delta t}$ depends on \hat{t}_g . Luckly, we won't need to compute it because it will be the same for both groups $q \in \{A, B\}$.

We will now (temporarily) use the restriction that the talent distribution T is uniform. This means that the density function $P_T(t)$ is constant everywhere in its range and zero elsewhere. Because we decided not to care about the area under our density functions, we might as well assume that $P_T(t) = 1$ within the range. We also have the restriction that \hat{x}_g is such that $r(\hat{x}_g) = 2$. This means that the talent range $[x - e_g^{max}, x - e_g^{min}]$ imposed by the environment is a subset of the range $[t^{min}, t^{max}]$ imposed by the talent. This means that for all values of t that we care about $P_T(t) = 1$. This gives us that the density function for $Pr(t_g = t | x_g = \hat{x}_g)$ is the awkward term $\frac{|S(\hat{t}_g)|}{\delta t}$ times $P_{\langle x_g = \hat{x}_g \rangle}(t) = P_g(t, X_E^{-1}(x, t)) =$ $P_T(t) \times P_{E_g}(X_E^{-1}(x,t)) = 1 \times P_{E_g}(X_E^{-1}(x,t)) = P_{E_g}(X_E^{-1}(x,t)).$

When our only restrictions are that T is uniform and $\hat{x}_g = t_g + e_g$, the probability density function of $Pr(t_g = t | x_g = \hat{x}_g)$ is $P_{E_g}(X_E^{-1}(x,t)) = P_{E_g}(x-t)$. Due to the linearity of expectation, $Exp(t_g | x_g = \hat{x}_g) = x - Exp(e_g)$. The result follows that $Exp(t_b | \hat{x}_b = \hat{x}_g) - Exp(t_a | \hat{x}_a = \hat{x}_g) = Exp(e_a) - Exp(e_b)$.

Lets now look further into the relationship between the distributions E_a and E_b . Initially suppose that $E_a = d \cdot E_b + k$, i.e. we randomly choose a value e'_a from the distribution E_b with probability density $P_{E_b}(e)$ and then set $e_a = d \cdot e'_a + k$. Solving gives $e'_a = \frac{e_a - k}{d}$. It follows that $Pr(e_a \in [e, e + \delta e]) = Pr(e'_a \in [\frac{e - k}{d}, \frac{e - k}{d} + \frac{\delta e}{d}]) = \frac{\delta e}{d} P_{E_b}(\frac{e - k}{d})$. We can ignore the $\frac{1}{d}$ because presumably P_{E_b} already has area one. More generally, $e_a = E_a(e'_a)$, $e'_a = E_a^{-1}(e_a)$, and $Pr(e_a = e)$ has density function $P_{E_a}(e_a) = P_{E_b}(E_a^{-1}(e_a))$.

Combining these two ideas gives that the density function for $Pr(t_a = t | \hat{x}_a = \hat{x}_g)$ is $P_{E_a}(X_E^{-1}(x,t)) = P_{E_b}(E_a^{-1}(X_E^{-1}(x,t)))$. Just to check the accuracy of our figure, if $\hat{x}_a = t_a + e_a$ and $e_a = d \cdot e'_a + k$, then the line to which we restrict the $\langle T, E \rangle$ rectangle is $\hat{x}_a = t_a + d \cdot e'_a + k$ or $t_a = \hat{x}_a - d \cdot e'_a - k$. Note this lowers the group B line by k and makes its slope -d instead of -1.

We can obtain the result $Pr(t_b = c_b | \hat{x}_b = \hat{x}_g) = Pr(t_a = c_a | \hat{x}_a = \hat{x}_g)$ by forcing their probability density functions to be the same, namely $P_{E_b}(X_E^{-1}(x, c_b)) = P_{E_b}(E_a^{-1}(X_E^{-1}(x, c_a)))$, which is obtained by forcing $X_E^{-1}(x, c_b) = E_a^{-1}(X_E^{-1}(x, c_a))$, which is obtained by forcing $c_b = X_T^{-1}(x, X_E^{-1}(x, c_b)) = X_T^{-1}(x, E_a^{-1}(X_E^{-1}(x, c_a)))$.

That is ugly. Lets look at our specific examples. Suppose x = X(t, e) = t + e. Then $X_T^{-1}(x, e) = x - e$ and $X_E^{-1}(x, t) = x - t$. Suppose further that $e_a = E_a(e'_a) = d \cdot e'_a + k$. Then $E_a^{-1}(e_a) = \frac{e_a - k}{d}$. This gives $c_b = X_T^{-1}(\hat{x}_g, E_a^{-1}(X_E^{-1}(\hat{x}_g, c_a))) = x - E_a^{-1}(x - c_a) = x - \frac{x - c_a - k}{d} = \frac{e_a + k + (d-1)x}{d}$. If further, we set d = 1, then we get $c_b = c_a + k$.

What remains is to prove the result when the talent distribution T is not uniform. We will do this by choosing p uniformly from [0, 1] and setting $t_g = T(p)$ for an arbitrary function T. Note that $Pr[t_g \leq T(p)] = p$. We have us this talent in the equation $\hat{x}_g = X(t_g, e_g) = X(T(p_g), e_g)$. Rename p_g to be our "talent" measure and $X'(p_g, e_g) = X(T(p_g), e_g)$. Because this talent measure is uniform, we get the result that $p_b = X_T^{-1}(\hat{x}_g, E_a^{-1}(X_E^{-1}(\hat{x}_g, p_a))) = T^{-1}(X_T^{-1}(\hat{x}_g, E_a^{-1}(X_E^{-1}(\hat{x}_g, T(p_a)))))$. However, we do not want our results in terms of these pseudo talents but in terms the our actual talent measure $c_g = T(p_g)$. This gives our original result $c_b = X_T^{-1}(\hat{x}_g, E_a^{-1}(X_E^{-1}(\hat{x}_g, c_a)))$. Interesting that this relationship does not depend on the distribution T.

End Proof

Hey! $\hat{t}_b \gg \hat{t}_a$, i.e. by some real amount. Proof:

Rearranging $\hat{t}_b = X_T^{-1}(\hat{x}_g, E_a^{-1}(X_E^{-1}(\hat{x}_g, \hat{t}_a))).$ $X_E^{-1}(\hat{x}_g, \hat{t}_b) = E_a^{-1}(X_E^{-1}(\hat{x}_g, \hat{t}_a)).$ $E_a(X_E^{-1}(\hat{x}_g, \hat{t}_b)) = X_E^{-1}(\hat{x}_g, \hat{t}_a).$ Because group A is privileged, $E_a(e_b) = e_a \Rightarrow e_b \ll e_a.$ Hence, $X_E^{-1}(\hat{x}_g, \hat{t}_b) \ll X_E^{-1}(\hat{x}_g, \hat{t}_a).$ Performance X(t, e) must increases with talent and with environment.

Hence if x = X(t, e) is fixed, then as e increases from LHS to RHS, t decrease.

Hence, $\hat{t}_b \gg \hat{t}_a$.

Theorem: Here we only consider \hat{x}_g that are non-extreme performance scores, i.e. $r(\hat{x}_g) = 2$. Let $\langle t_a, e_a, \hat{x}_a \rangle$ and $\langle t_b, e_b, \hat{x}_b \rangle$ denote the talent, environment, and measured performance scores for groups A and B. Let c_a and c_b denote desired talent thresholds for acceptance of the person from each group. Let \hat{x}_g denote the measured performance of both the A and B person that you are deciding between. Below we define the relationship $c_b = F(c_a)$ $\hat{t}_b = F_{\hat{x}}(\hat{t}_a)$ so that

$$Pr(t_b \in [\hat{t}_b, \hat{t}_b + \delta \hat{t}]) = Pr(t_a \in [\hat{t}_a, \hat{t}_a + \delta \hat{t}])$$

$$Pr(t_b = c_b | \hat{x}_b = \hat{x}_g) = Pr(t_a = c_a | \hat{x}_a = \hat{x}_g) \text{ (or equivalently)}$$
$$Pr(t_b \ge c_b | \hat{x}_b = \hat{x}_g) = Pr(t_a \ge c_a | \hat{x}_a = \hat{x}_g)$$

• Suppose the talent distribution T is uniform.

Suppose the measure of performance is the sum $\hat{x}_g = T_g + E_g$ of the talent and environment for $g \in \{A, B\}$.

Suppose group A is advantaged by having its environment distribution k more than that for group B, i.e. $E_a = E_b + k$.

$$\rightarrow$$
 Then $c_b = c_a + k$.

The effect of this is that if you take the same number of randomly chosen A and B people and sort each group according to their talent, then the talent of the $i^{th} B$ person will be k higher then the $i^{th} A$ person.

• If we temporarily relax the restriction that \hat{x}_g that is non-extreme performance score, i.e. $r(\hat{x}_g) = 2$, then this result generalizes to

- Generalize, to allowing $E_a = d \cdot E_b + k$, i.e. the same distribution whose standard deviation has been scaled by d and mean raised by k. \rightarrow In this case, $c_b = \frac{c_a + k + (d-1)x}{d}$.
- We can prove the same result when both E_a and E_b are arbitrary distributions. We will model this by defining distribution $E_a = E_a(E_b)$, i.e. we randomly choose a value e'_a from the distribution E_b and then set $e_a = E_a(e'_a)$ where the later E_a denotes an arbitrary function.

 \rightarrow In this case, $c_b = x - E_a^{-1}(x - c_a)$.

• The only restrictions now are that T is uniform, $\hat{x}_g = t_g + e_g$, and $r(\hat{x}_g) = 2$. With this we also get

$$Exp(t_b|\hat{x}_b = \hat{x}_g) - Exp(t_a|\hat{x}_a = \hat{x}_g) = Exp(e_a) - Exp(e_b)$$

- Suppose now that we are allowed to produce the measured performance score not just by $\hat{x}_g = t_g + e_g$, but more generally by $\hat{x}_g = X(t_g, e_g)$ for an arbitrary increasing function X. Let $e_g = X_E^{-1}(\hat{x}_g, t_g)$ and $t_g = X_T^{-1}(\hat{x}_g, e_g)$ be two inverse functions.
 - Finally, let us allow the talent distribution T to be arbitrary by choosing p uniformly from [0,1] and setting $t_g = T(p)$ for an arbitrary function T. Note that $Pr[t_g \leq T(p)] = p$.

 \rightarrow This most general result becomes $c_b = X_T^{-1}(\hat{x}_g, E_a^{-1}(X_E^{-1}(\hat{x}_g, c_a))).$

The only remaining cases to consider are when the range of talent is smaller than the range of environment so that the performance score \$\hat{x}_g\$ is extreme in both directions, i.e. \$r(\$\hat{x}_g\$) = 0\$.

For here, we will assume that the talent distributions are the same T and uniform, the environment distributions $E_a = E_b + k$ are the same but shifted, and the measured performance score is $\hat{x}_g = t_g + e_g$. In this case, not only may there not be a gap between the expected talent of person B over person A, but the direction may be reversed.

 \rightarrow If E_b is sub-exponential, then $Exp(t_b|\hat{x}_b=\hat{x}_g) \geq Exp(t_a|\hat{x}_a=\hat{x}_g)$.

 \rightarrow Otherwise it could be that for all \hat{x}_g (with $r(\hat{x}_g) = 0$) $Exp(t_b|\hat{x}_b = \hat{x}_g) < Exp(t_a|\hat{x}_a = \hat{x}_g)$.

Suppose our talent distribution is defined only within the range $[t^{min}, t^{max}]$ and the environment distribution within $[e_b^{min}, e_b^{max}]$. Suppose we condition on the fact that the performance score is given by $\hat{x}_b = t_b + e_b$ is fixed to some value \hat{x}_g . Rearranging and considering the environment range gives that $t_b = x - e_b \in [x - e_b^{max}, x - e_b^{min}]$. If \hat{x}_g is an extreme low value, then low range $x - e_b^{max}$ is smaller than the talent low range t^{min} and hence the bound t^{min} kicks in. Similarly, if \hat{x}_g is an extreme height value, then the high range $x - e_b^{min}$ is trumped by t^{max} . We define $r(\hat{x}_g)$ to be the number of endpoint for which this does not happen. For example, if the range $[t^{min}, t^{max}]$ on talent is much wider than that on environment and \hat{x}_g is not an extreme value, then the range $[x - e_b^{max}, x - e_b^{min}]$ is a subset of the range $[t^{min}, t^{max}]$. In this case we say r(x) = 2.