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1 New Fun

Theorem: Here we only consider x̂g that are non-extreme performance scores, i.e. r(x̂g) = 2.
Let 〈ta, ea, x̂a〉 and 〈tb, eb, x̂b〉 denote the talent, environment, and measured performance
scores for groups A and B. Let t̂a and t̂b denote desired talent thresholds for acceptance of
the person from each group. Let x̂g denote the measured performance of both the A and B
person that you are deciding between. Below we define the relationship t̂b = F (t̂a) so that

Pr(tb= t̂b|x̂b= x̂g) = Pr(ta= t̂a|x̂a= x̂g) (or equivalently)

Pr(tb≥ t̂b|x̂b= x̂g) = Pr(ta≥ t̂a|x̂a= x̂g)

• Suppose the talent distribution T is uniform.
Suppose the measure of performance is the sum x̂g = Tg+Eg of the talent and envi-
ronment for g ∈ {A,B}.
Suppose group A is advantaged by having its environment distribution k more than
that for group B, i.e. Ea = Eb+k.

→ Then t̂b = t̂a+k.
The effect of this is that if you take the same number of randomly chosen A and B
people and sort each group according to their talent, then the talent of the ith B person
will be k higher then the ith A person.

• If we temporarily relax the restriction that x̂g that is non-extreme performance score,
i.e. r(x̂g) = 2, then this result generalizes to

→ Then t̂b = t̂a+
r(x̂g)
2

k
** Jeff has not check this one ***
and Exp(tb|x̂b= x̂g) = Exp(ta|x̂a= x̂g) +

r(x̂g)
2

k.

∗Thanks to Frances for her encouragement.
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• Generalize, to allowing Ea = d · Eb+k, i.e. the same distribution whose standard
deviation has been scaled by d and mean raised by k.

→ In this case, t̂b =
t̂a+k+(d−1)x

d
.

• We can prove the same result when both Ea and Eb are arbitrary distributions. We
will model this by defining distribution Ea = Ea(Eb), i.e. we randomly choose a value
e′a from the distribution Eb and then set ea = Ea(e

′
a) where the later Ea denotes an

arbitrary function.
→ In this case, t̂b = x−E−1

a (x− t̂a).

• The only restrictions now are that T is uniform, x̂g = tg+eg, and r(x̂g) = 2. With this
we also get

Exp(tb|x̂b= x̂g)−Exp(ta|x̂a= x̂g) = Exp(ea)−Exp(eb)

• Suppose now that we are allowed to produce the measured performance score not just
by x̂g = tg+eg, but more generally by x̂g = X(tg, eg) for an arbitrary increasing function
X. Let eg = Ex̂g

(tg) and tg = Tx̂g
(eg) be two inverse functions.

Finally, let us allow the talent distribution T to be arbitrary by choosing p uniformly
from [0, 1] and setting tg = T (p) for an arbitrary function T . Note that Pr[tg ≤
T (p)] = p.

→ This most general result becomes t̂b = Tx̂g
(E−1

a (Ex̂g
(t̂a))).

• The only remaining cases to consider are when the range of talent is smaller than the
range of environment so that the performance score x̂g is extreme in both directions,
i.e. r(x̂g) = 0.
For here, we will assume that the talent distributions are the same T and uniform, the
environment distributions Ea = Eb + k are the same but shifted, and the measured
performance score is x̂g = tg+eg. In this case, not only may there not be a gap between
the expected talent of person B over person A, but the direction may be reversed.

→ If Eb is sub-exponential, then Exp(tb|x̂b= x̂g) ≥ Exp(ta|x̂a= x̂g).
→ Otherwise it could be that for all x̂g (with r(x̂g) = 0) Exp(tb|x̂b = x̂g) <

Exp(ta|x̂a= x̂g).

======================
Suppose our talent distribution is defined only within the range [tmin, tmax] and the envi-

ronment distribution within [emin
b , emax

b ]. Suppose we condition on the fact that the perfor-
mance score is given by x̂b = tb+eb is fixed to some value x̂g. Rearranging and considering
the environment range gives that tb = x−eb ∈ [x−emax

b , x−emin
b ]. If x̂g is an extreme low value,

then low range x−emax
b is smaller than the talent low range tmin and hence the bound tmin

kicks in. Similarly, if x̂g is an extreme height value, then the high range x−emin
b is trumped

by tmax. We define r(x̂g) to be the number of endpoint for which this does not happen. For
example, if the range [tmin, tmax] on talent is much wider than that on environment and x̂g is
not an extreme value, then the range [x−emax

b , x−emin
b ] is a subset of the range [tmin, tmax].

In this case we say r(x) = 2.
==========================
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Proof: The proof will first assume that T is uniform.
We denote the talent of a random group g ∈ {A,B} person by tg which is drawn from

the distribution T . If T is a continuous random variable, then Pr(tg= t) = 0 for any exact
value of t. The standard way of dealing with this is to define the density function PT (t) so
that Pr(tg ∈ [t, t+δt]) = δt · PT (t). Similarly, we denote his environment value by eg which
is drawn from the distribution Eg with density function PEg

(e).
Because these two random variables are independent, we can define the cross density

function Pg(t, e) = PT (t) × PEg
(e) so that Pr(tg ∈ [t, t+δt] & eg ∈ [e, e+δe]) = δt · PT (t) ×

δe ·PEg
(t) = δtδe ·Pg(t, e). Imagine raising a third dimension coming out of the page on the

〈T,E〉 rectangle in the figure, so that its height at location 〈t, e〉 is Pg(t, e).
Our goal is to compute Pr(tg ∈ [t̂g, t̂g+δt]|xg = x̂g). Using the standard formula Pr(tg ∈

[t̂g, t̂g+δt]&xg = x̂g)/Pr(xg = x̂g) is awkard because the later is zero unless we allow xg to
fall into some infintesemally small range. This performance is given by x = t+e or more
generally by x = X(t, e). These equations narrow our 〈T,E〉 rectangle of possibilities to
the 1-dimensional (possibly curved) line defined as L = {〈t, e〉 |x̂g=X(t, e)}. Let |L| denote
its length and |Pg(L)| the area over this line and under the surface Pg(t, e). In order to
translate from 2 to 1-dims, define L′ to be 2-dim curved road with width ǫ along L and total
area |L′| = ǫ|L|. For all of these points 〈t, e〉 in L′, we have that X(tg, eg) is infintesimally
close to x̂g. Let use denote this with xg ≈ x̂g. Because Pg(t, e) the our probability density
function, Pr(xg≈ x̂g) is equal to the volume |Pg(L

′)| over L′ and under the surface Pg(t, e).
As we do in calculus, ǫ is small enough that Pg(t, e) does vary much across the width of L′.
Hence, its volume |Pg(L

′)| is given by ǫ|Pg(L)|. The next step is define S to be the portion
of the line L for which t ∈ [t̂g, t̂g+δt]. and to define S ′ to be the corresponding portion
within L′, i.e. this line sigment when given ǫ width. Let |S| and |S ′| = ǫ|S| denote their
respective length and area. Let |Pg(S)| and |Pg(S

′)| denote the respective area and volume
over them and under the surface Pg(t, e). As we do in calculus, Pg(t, e) does vary much
within S ′, hence |Pg(S)| = |S|Pg(t̂g, êg) and |Pg(S

′)| = |S ′|Pg(t̂g, êg) = ǫ|Pg(S)|. We are now
ready to compute Pr(tg ∈ [t̂g, t̂g+δt]|xg = x̂g) = Pr(S|L) = Pr(S ′|L′) = Pr(S ′)/Pr(L′) =
|Pg(S

′)|/|Pg(L
′)| = |Pg(S)|/|Pg(L)| = |S|Pg(t̂g, êg/|Pg(L)|, where x̂g = X(t̂g, êg). It follows

that density function of this probability is P〈xg=̂xg〉(t) =
|S|
δt

· Pg(t,X
−1
E (x̂g, t̂g))/|Pg(L)|. Here

|Pg(L)| depends one on the fixed value x̂g. We will ignore it and other “contant” factors that

scale a density function so that the area under it is one. However, |S|
δt

is more problematic,
because it relates to the slope of the curved line L. If L is defined by x = t+e, then this slope

is constant. But with the more general defintion x = X(t, e), this slope |S(̂tg)|
δt

depends on t̂g.
Luckly, we won’t need to compute it because it will be the same for both groups g ∈ {A,B}.

We will now (temporarily) use the restriction that the talent distribution T is uniform.
This means that the density function PT (t) is constant everywhere in its range and zero
elsewhere. Because we decided not to care about the area under our density functions, we
might as well assume that PT (t) = 1 within the range. We also have the restriction that
x̂g is such that r(x̂g) = 2. This means that the talent range [x−emax

g , x−emin
g ] imposed

by the environment is a subset of the range [tmin, tmax] imposed by the talent. This means
that for all values of t that we care about PT (t)=1. This gives us that the density function

for Pr(tg = t|xg = x̂g) is the awkward term |S(̂tg)|
δt

times P〈xg=̂xg〉(t) = Pg(t,X
−1
E (x, t)) =
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PT (t)× PEg
(X−1

E (x, t)) = 1× PEg
(X−1

E (x, t)) = PEg
(X−1

E (x, t)).
When our only restrictions are that T is uniform and x̂g = tg+eg, the probability density

function of Pr(tg = t|xg = x̂g) is PEg
(X−1

E (x, t)) = PEg
(x − t). Due to the linearity of

expectation, Exp(tg|xg = x̂g) = x − Exp(eg). The result follows that Exp(tb|x̂b = x̂g)−
Exp(ta|x̂a= x̂g) = Exp(ea)−Exp(eb).

Lets now look further into the relationship between the distributions Ea and Eb. Initially
suppose that Ea = d · Eb+k, i.e. we randomly choose a value e′a from the distribution Eb

with probability density PEb
(e) and then set ea = d · e′a+k. Solving gives e′a = ea−k

d
. It

follows that Pr(ea ∈ [e, e+δe]) = Pr(e′a ∈ [ e−k
d
, e−k

d
+ δe

d
]) = δe

d
PEb

( e−k
d
). We can ignore the 1

d

because presumably PEb
already has area one. More generally, ea = Ea(e

′
a), e

′
a = E−1

a (ea),
and Pr(ea = e) has density function PEa

(ea) = PEb
(E−1

a (ea)).
Combining these two ideas gives that the density function for Pr(ta = t|x̂a = x̂g) is

PEa
(X−1

E (x, t)) = PEb
(E−1

a (X−1
E (x, t))). Just to check the accuracy of our figure, if x̂a = ta+ea

and ea = d · e′a+k, then the line to which we restrict the 〈T,E〉 rectangle is x̂a = ta+d · e′a+k
or ta = x̂a− d · e′a−k. Note this lowers the group B line by k and makes its slope −d instead
of −1.

We can obtain the result Pr(tb = cb|x̂b = x̂g) = Pr(ta = ca|x̂a = x̂g) by forcing their
probability density functions to be the same, namely PEb

(X−1
E (x, cb)) = PEb

(E−1
a (X−1

E (x, ca))),
which is obtained by forcing X−1

E (x, cb) = E−1
a (X−1

E (x, ca)), which is obtained by forcing
cb = X−1

T (x,X−1
E (x, cb)) = X−1

T (x,E−1
a (X−1

E (x, ca))).
That is ugly. Lets look at our specific examples. Suppose x = X(t, e) = t+e. Then

X−1
T (x, e) = x−e and X−1

E (x, t) = x−t. Suppose further that ea = Ea(e
′
a) = d · e′a+k. Then

E−1
a (ea) = ea−k

d
. This gives cb = X−1

T (x̂g, E
−1
a (X−1

E (x̂g, ca))) = x−E−1
a (x−ca) = x− x−ca−k

d
=

ca+k+(d−1)x
d

. If further, we set d=1, then we get cb = ca+k.
What remains is to prove the result when the talent distribution T is not uniform. We

will do this by choosing p uniformly from [0, 1] and setting tg = T (p) for an arbitrary function
T . Note that Pr[tg ≤ T (p)] = p. We have us this talent in the equation x̂g = X(tg, eg) =
X(T (pg), eg). Rename pg to be our “talent” measure and X ′(pg, eg) = X(T (pg), eg). Because
this talent measure is uniform, we get the result that pb = X ′−1

T (x̂g, E
−1
a (X ′−1

E (x̂g, pa))) =
T−1(X−1

T (x̂g, E
−1
a (X−1

E (x̂g, T (pa))))). However, we do not want our results in terms of these
pseudo talents but in terms the our actual talent measure cg = T (pg). This gives our original
result cb = X ′−1

T (x̂g, E
−1
a (X ′−1

E (x̂g, ca))). Interesting that this relationship does not depend on
the distribution T .
End Proof

============
Hey! t̂b ≫ t̂a, i.e. by some real amount.

Proof:
Rearranging t̂b = X−1

T (x̂g, E
−1
a (X−1

E (x̂g, t̂a))).
X−1

E (x̂g, t̂b) = E−1
a (X−1

E (x̂g, t̂a)).
Ea(X

−1
E (x̂g, t̂b)) = X−1

E (x̂g, t̂a).
Because group A is privileged, Ea(eb) = ea ⇒ eb ≪ ea.
Hence, X−1

E (x̂g, t̂b) ≪ X−1
E (x̂g, t̂a).

Performance X(t, e) must increases with talent and with environment.
Hence if x = X(t, e) is fixed, then as e increases from LHS to RHS, t decrease.
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Hence, t̂b ≫ t̂a.

Theorem: Here we only consider x̂g that are non-extreme performance scores, i.e. r(x̂g) =
2. Let 〈ta, ea, x̂a〉 and 〈tb, eb, x̂b〉 denote the talent, environment, and measured performance
scores for groups A and B. Let ca and cb denote desired talent thresholds for acceptance
of the person from each group. Let x̂g denote the measured performance of both the A
and B person that you are deciding between. Below we define the relationship cb = F (ca)
t̂b = Fx̂(t̂a) so that

Pr(tb∈ [t̂b, t̂b+δt̂]) = Pr(ta∈ [t̂a, t̂a+δt̂])

Pr(tb=cb|x̂b= x̂g) = Pr(ta=ca|x̂a= x̂g) (or equivalently)

Pr(tb≥cb|x̂b= x̂g) = Pr(ta≥ca|x̂a= x̂g)

• Suppose the talent distribution T is uniform.
Suppose the measure of performance is the sum x̂g = Tg+Eg of the talent and envi-
ronment for g ∈ {A,B}.
Suppose group A is advantaged by having its environment distribution k more than
that for group B, i.e. Ea = Eb+k.

→ Then cb = ca+k.
The effect of this is that if you take the same number of randomly chosen A and B
people and sort each group according to their talent, then the talent of the ith B person
will be k higher then the ith A person.

• If we temporarily relax the restriction that x̂g that is non-extreme performance score,
i.e. r(x̂g) = 2, then this result generalizes to

→ Then cb = ca+
r(x̂g)
2

k
** Jeff has not check this one ***
and Exp(tb|x̂b= x̂g) = Exp(ta|x̂a= x̂g) +

r(x̂g)
2

k.

• Generalize, to allowing Ea = d · Eb+k, i.e. the same distribution whose standard
deviation has been scaled by d and mean raised by k.

→ In this case, cb =
ca+k+(d−1)x

d
.

• We can prove the same result when both Ea and Eb are arbitrary distributions. We
will model this by defining distribution Ea = Ea(Eb), i.e. we randomly choose a value
e′a from the distribution Eb and then set ea = Ea(e

′
a) where the later Ea denotes an

arbitrary function.
→ In this case, cb = x−E−1

a (x−ca).

• The only restrictions now are that T is uniform, x̂g = tg+eg, and r(x̂g) = 2. With this
we also get

Exp(tb|x̂b= x̂g)−Exp(ta|x̂a= x̂g) = Exp(ea)−Exp(eb)
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• Suppose now that we are allowed to produce the measured performance score not just
by x̂g = tg+eg, but more generally by x̂g = X(tg, eg) for an arbitrary increasing function
X. Let eg = X−1

E (x̂g, tg) and tg = X−1
T (x̂g, eg) be two inverse functions.

Finally, let us allow the talent distribution T to be arbitrary by choosing p uniformly
from [0, 1] and setting tg = T (p) for an arbitrary function T . Note that Pr[tg ≤
T (p)] = p.

→ This most general result becomes cb = X−1
T (x̂g, E

−1
a (X−1

E (x̂g, ca))).

• The only remaining cases to consider are when the range of talent is smaller than the
range of environment so that the performance score x̂g is extreme in both directions,
i.e. r(x̂g) = 0.
For here, we will assume that the talent distributions are the same T and uniform, the
environment distributions Ea = Eb + k are the same but shifted, and the measured
performance score is x̂g = tg+eg. In this case, not only may there not be a gap between
the expected talent of person B over person A, but the direction may be reversed.

→ If Eb is sub-exponential, then Exp(tb|x̂b= x̂g) ≥ Exp(ta|x̂a= x̂g).
→ Otherwise it could be that for all x̂g (with r(x̂g) = 0) Exp(tb|x̂b = x̂g) <

Exp(ta|x̂a= x̂g).

======================
Suppose our talent distribution is defined only within the range [tmin, tmax] and the envi-

ronment distribution within [emin
b , emax

b ]. Suppose we condition on the fact that the perfor-
mance score is given by x̂b = tb+eb is fixed to some value x̂g. Rearranging and considering
the environment range gives that tb = x−eb ∈ [x−emax

b , x−emin
b ]. If x̂g is an extreme low value,

then low range x−emax
b is smaller than the talent low range tmin and hence the bound tmin

kicks in. Similarly, if x̂g is an extreme height value, then the high range x−emin
b is trumped

by tmax. We define r(x̂g) to be the number of endpoint for which this does not happen. For
example, if the range [tmin, tmax] on talent is much wider than that on environment and x̂g is
not an extreme value, then the range [x−emax

b , x−emin
b ] is a subset of the range [tmin, tmax].

In this case we say r(x) = 2.
==========================
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