
Jeff is DONE editing this.
Though we may still consider more general T and EA.

1 Non-Extreme X Values

Our primary goal is to estimate the talent t ∈ T of a person from her performance score
x ∈ X. The noise making this estimating hard is the person’s environment e ∈ E. In an
extreme case, the range within which these environment values lie is wider than that for
the talent. In this case, this noise overwhelms our signal and all the information about the
talent is lost. In this section, we give quite a comprehensive version of the theorem under
the condition that the performance measure x is non-extreme, i.e. r(x) = 2. More formally,
this means that the talent range [X−emax, X−emin] imposed by the environment is a subset
of the range [tmin, tmax] imposed by the talent.

We say that group A is privileged over group B if their environment distributions are
such that when ever Pr(EB ≥ eB) = Pr(EA ≥ eA) we have that eB ≪ eA. This says that
if the A person received environment value eA and the B received eB, then they are at the
same percentiles within their respective groups. However, because group A is privileged over
B, the A person would have a significantly better environment value, giving eB ≪ eA.

Consider the following story. Your job is to choose who to accept for some job/university.
Being a mediumly desired job, everyone who applies happens to have performance level
exactly x. Your goal of course is to accept people whose talent is as high as possible. This
paper explains why you should favor people from the disadvantaged B group over those from
the privileged A group. The first step is to prove

Exp(TB|x=x)−Exp(TA|X=x) = Exp(EA)−Exp(EB).

But we can say more as follows. Choose N people from group A and N from B randomly
conditioned on their performances being x. Sort each group by talent into two parallel lines.
For each percentile p ∈ [0, 1], get the pN th person in each line to shake hands. Let tA and
tB denote their respective talent. This can be expressed as

Pr(TB≥ tB|XB=x) = Pr(TA≥ tA|XA=x)

This might be useful if you suspect that those people whose talent is higher than percentile
p within the privileged group A and higher than the same percentile p within the disadvan-
taged group B will likely accept a better offer somewhere else. Or maybe p is the risk level
you are willing to take. Either way our goal is to compare these two talent levels by defining
the function tB = F (tA) mapping between them and by proving that tB ≫ tA.

Theorem: Here we only consider xg that are non-extreme performance scores, i.e. r(xg) = 2.
Suppose the talent distribution T is uniform. The environment distributions EA and EB can
be anything. We are assuming the measure of performance is the sum Xg = Tg+Eg of the
talent and environment for g ∈ {A,B}. It follows that

Exp(TB|x=x)−Exp(TA|X=x) = Exp(EA)−Exp(EB).
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If their environment distributions EA and EB are such that group A is privileged over group
B, then

Pr(TB≥ tB|XB=xg) = Pr(TA≥ tA|XA=xg) ⇒ tB ≫ tA.

Suppose further that EA = EB+K, then tB = tA+K.
Slightly more generally, if EA = d·EB+k, then tB = tA+

k
d
+ d−1

d
eA.

Suppose much more generally, both groups have the same but general talent distribution T
and performance is computed by a more general function Xg = X(Tg, Eg), however, these
are restricted so that within the range t ∈ [tA, tB], Pr(T ∈ [t, t+δt]) ∈ [s−1, s] × Pr(T ∈
[t′, t′+δt]) and Xg = X(Tg, Eg) ≈ u·Tg+v·Eg+x0. Then the function tB = F (tA) changes to
tB ∈ [s−1, s]× F (tA).

Proof: We will drop the subscript g∈{A,B}, when the statements apply to either group.
If T is a continuous random variable, then Pr(T = t) = 0 for any specific value of t. The
standard way of dealing with this is to define the density function PT (t) so that Pr(T ∈
[t, t+ δt]) = δt · PT (t). Similarly, we denote his environment value by e which is drawn
from the distribution E with density function PE(e). Because these two random variables
are independent, we can define the cross density function P (t, e) = PT (t) × PE(e) so that
Pr(T ∈ [t, t+δt] & E ∈ [e, e+δe]) = δt · PT (t) × δe · PE(t) = δtδe · P (t, e). Imagine raising
a third dimension coming out of the page on the 〈T,E〉 rectangle in the figure, so that its
height at location 〈t, e〉 is P (t, e).

We will now use the restriction that the talent distribution T is uniform. This means
that the density function PT (t) is constant everywhere in its range and zero elsewhere. In
order to be able to ignore ugly constants, Though it is standard to define density functions so
that the area under them is one, it is also natural to relax this condition and then to divide
by the area when one wants to compute a probability. This allows us to define PT (t) = 1
within the range. We also have the restriction that x is such that r(x) = 2. This means that
the talent range [X−emax, X−emin] imposed by the environment is a subset of the range
[tmin, tmax] imposed by the talent. This means that for all values of t that we care about
PT (t)=1, giving P (t, x−t) = PT (t)× PE(e) = PE(e).

Fix a performance value x of which we will require of all group g people that we are
considering for acceptance. The performance of a person with talent T and environment E
is given by X = T+E. Just to check the accuracy of our figure, if EA = d ·EB+K, then the
line to which we restrict the 〈T,E〉 rectangle is x = TA + d ·EB+K or TA = x− d ·EB−K.
Note this lowers the group B line by k and makes its slope −d instead of −1.

Our goal is prove that the probability density function Px(t) = Pr(T ∈ [t, t+δt]|X=x)/δt
of the distribution on talents t that arise under this condition is simply P (t, x− t). If X
were computed by some more complex function, this would not be the case. Using the
standard formula Pr(T ∈ [t, t+δt] & X = x)/Pr(X = x) is awkward because the later is
zero. Conditioning on our probability space amounts to narrowing our 〈T,E〉 rectangle
of possibilities to the 1-dimensional line defined by {〈T,E〉 |x= T+E}. Lets us define the
infinitesimal rectangle of possibilities St = {T ∈ [t, t+δt]}×{E ∈ [x−t−δt, x−t]}. Within this,
X is sufficiently close to x, the density function P (t, e) is sufficiently constant. Hence, we will
approximate Pr(T ∈ [t, t+δt] & X=x) with Pr(St), which is P (t, x−t)·(δt)2. Lets return to
the awkward fact that Pr(X=x) is zero. Let’s define Sx =

⋃
t St to be the union of all of our
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rectangles within which X is sufficiently close to x. Then we will replacing Pr(X=x) with
Pr(Sx). Lets denote this probability with px·δt. We are now able to determine the probability
Pr(T ∈ [t, t+δt]|X = x) = Pr(St|Sx) = Pr(St)/Pr(Sx) = [P (t, x−t)·(δt)2] /(px ·δt). Our
density function Px(t) is this divided by δt. Because we decided not to care about the area
under our density functions, we get the density function Px(t) = P (t, x−t) = PE(x−t).

We are now ready to compare the two groups g ∈ {A,B} using this result. Before we can
compare this density function PEg

(x−tg) for the two groups, we need that the area under
them is the same. No matter, what the distribution EA and EB are, the areas under their
density functions PEg

(eg) are both one. The area under PEg
(x−tg) will also be one, as long

as when one varies over all values of tg considered, one gets all possible values of eg. This is
the case, because of the restriction that x is such that the talent range [X−emax, X−emin]
imposed by the environment is a subset of the range [tmin, tmax] imposed by the talent. In
conclusion,

The density function of Pr(Tg∈ [tg, tg+δt]|Xg=x) is PEg
(x−tg)

Due to the linearity of expectation, Exp(Tg|Xg = x) = x−Exp(Eg). The result follows
that

Exp(TB|x=x)−Exp(TA|X=x) = Exp(EA)−Exp(EB).

Recall that our second goal is to define a function

Fx(tA) = tB so that Pr(TB≥ tB|XB=x) = Pr(TA≥ tA|XA=x)

Or equivalently Pr(TB∈ [tB, tB+δt]|XB=x) = Pr(TA∈ [tA, tA+δt]|XA=x)

To do this this, it is sufficient to equate their density functions and solve for tB given a each
fixed a value for tA, namely

PEB
(x−tB) = PEA

(x−tA)

Given that these are also the density functions of this other probability, this says

Pr(EB∈ [x−tB, x−tB+δe]) = Pr(EA∈ [x−tA, x−tA+δe]).

Locally, this does not tell us much. However, because we do this simultaneously for every
pair Fx(tA) = tB, we can integrate and get the global statement

Pr(EB≥x−tB) = Pr(EA≥x−tA).

This says that if the A person received environment value eA=x−tA and the B received eB=
x−tA, then they are at the same percentiles within their respective groups. However, because
group A is privileged over B, the A person would have a significantly better environment
value, giving eB ≪ eA and hence tB ≫ tA.

In order to be more specific, lets suppose that EA=d·EB+K, i.e we randomly choose a
value E ′

A from the distribution EB and then set EA = d·E ′

A+K. Plugging this in gives

Pr(EB≥x−tB) = Pr(EA≥x−tA) = Pr(d·E ′

A+K≥x−tA) = Pr(E ′

A ≥d−1(x−tA−K)).

3



Because EB and E ′

A are drawn from the same distribution, it follows that

x−tB = d−1(x−tA−K).

Solving this gives that

Fx(tA) = tB = x−
x−tA−k

d
=

tA+K+(d−1)x

d
=

tA+K+(d−1)(tA+eA)

d
= tA+

K

d
+
d−1

d
eA.

If further, we set d=1, then we get

tB = tA+K.

Now suppose more generally, performance is computed byXg = X(Tg, Eg) = u·Tg+v·Eg+x0.
One could achieve the same effect, by first scaling the uniform talent distribution and both
environment distributions linearly. This would have no effect on the result.

What remains is to prove the result when the talent distribution T is not uniform. Lets
choose p uniformly from [0, 1] to denote their pseudo talent and set T = T (p) to be their
actual talent, for some arbitrary increasing function T . Because this pseudo talent is uniform,
we get the result that pB = F (pA) as before, namely if you sort each group, conditioned on
XA =XB = x, then the paired people will have pseudo talents pA and pB. If you ask these
same people what their actual talent is, they will answer tA = T (pA) and tB = T (pB). This
gives tB = T (F (T−1(tA)).

*** Say something about
Pr(T ∈ [t, t+ δt]) ∈ [s−1, s] × Pr(T ∈ [t′, t′+ δt]), then tB = F (tA) changes to tB ∈

[s−1, s]× F (tA).
These are restricted so that within the range t∈ [tA, tB], ....

End Proof
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