1 Gaussian Distribution Analysis

In this section, we will redo the proof that the disadvantaged person will have a higher
expected talent then the advantaged person given the same performance score. However,
this time the talent T' = N (ur,0%) and environment E = N (ug,0%) distributions will be
Gaussian distributions instead of normal. Because the sum of Gaussians is Gaussian, we
know the performance score X =T+ F is also Gaussian X = N (ur+pug,0%+0%). Because
the expectation of the sum X =T+ F is the sum expectation, we easily get Exp(T|X =
x) =x — Exp(E). What is fun is that we will used Bayes’ rule to show that the conditional
distribution [T|X =T+ E=z]| is also Gaussian. Specifically the rule gives
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Conditioned on T having some fixed value of t' € [t,t+dt], we independently choose a
value for F and then compute X =t'+F. Hence, we get X € [z, z+0x] iff E € [x—t', z—t'+0x].
Because F, T, and E are normally distributed we get
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Plugging these into Bayes’ rule gives
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Which can be written as:

2 2 _1 (ny)Z_"_i_ K2
Pr(Y=y | Xp - Xu = 0) = YZrk, (U A

The above expression can be simplified to:
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Equation ?? could now be compared to the Probability Density Function of a Normal
distribution with mean and variance:
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Therefore the Distribution is equivalent to:
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Since 7 is negative, therefore the expected value(mean) of the above distribution positive.
To conclude, if t,, € Ty , t, € Tg, v, € X4 and x, € Xp, then
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We could equivalently say that Exp[T | X = x& G = B] > Exp[T | X = 2&G = A].
Hence, we have shown that for Gaussian Distributions, the expected value of talents for the
disadvantaged group is strictly expected to be greater than the advantaged group.



