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1 High School

Consider some person. Let t indicate their inner math ability. Let this be randomly chosen
from some fixed distribution with Pr[t] = T (t). Let i = 0 indicate that they are disadvan-
taged and i = 1 advantaged. Let G = G(t, i) give their expected high school grade. This can
be any function that is strictly increasing in both t and i. In particular, ∀t G(t, 0) < G(t, 1).
However, this grading process has some error/noise in approximating the ability t. We choose
to model this be having the error added to t, namely let t′ = t+Error and G = Grade(t′, i).

Here Error is our random error variable. Let p = e(u) give that Pr[Error = u] = p.
We require e(u) to be strictly “sub-exponential” in a range [a, b] and zero outside this range.
Wolfram alpha shows that it includes Gaussians, quadratics, ?polynomials?, uniform, ??? It
might as well have mean zero.

Lets suppose that the resulting grade is known to be G = g. This gives us that the
measured ability is ti = t′ = Grade−1(g, i). Note that for a disadvantaged person (i = 0)
to get the same grade g as an advantaged person (i = 1), they need to have a higher math
abilities, i.e. t0 > t1. Because ti = t′ = t+Error, we have that t = ti−Error ∈ [ti−a, ti−b].
Denote this range as [ai, bi].

Claim: The employer wants to know i, but because he would rather hire someone with
i = 0.

We will simplify the notation by having [g&0] be short hand for the condition that
[G = g & i = 0].
Let c denote the threshold for the employer to hire the person.

Theorem 1

• If the distribution T (t) is uniform within the conditioned range [a1, b0], then

– Exp[t|g&0] = t0 > t1 = Exp[t|g&1].

∗Thanks to Frances for her encouragement.
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• If T (t) graceful and the error range [a1, b0] is not too big, then it is reasonable to
approximate T (t) to be linear within [a1, b0]. In this case,

– ???? Exp[t|g&0]− Exp[t|g&1] = t0 − t1.

– ???? ∀c, Pr[t≥c|g&0] = Pr[t≥c−t0+t1|g&1].

• For worst case T [t],

– Exp[t|g&0] > Exp[t|g&1].

– ∀c, Pr[t≥c|g&0] > Pr[t≥c|g&1], or both are zero, or both are one.
This is tight for a specially chosen distribution on t and (mostly) uniform Error.

Proof of Theorem 1: (T (t)=wt+v) By definition, Pr[t≥ c|g&i] = Pr[t≥c&g&i]
Pr[g&i]

. Fix some

error value u ∈ [a, b]. It has probability E(u)∆u. Because ti = t′ = t+Error, we have that
t = ti−u. The probability of the person having this ability is T (ti−u)δt. This gives that
Pr[g&i] =

∫
u∈[a,b] T (ti−u)E(u)∆uδt and that

Pr[t≥c&g&i] =
∫
u∈[c′,b] T (ti−u)E(u)∆uδt

=
∫
u∈[c′,b][w(ti−u)+v]E(u)∆uδt

= (wti+v)×
∫
u∈[c′,b]E(u)∆uδt+ w ×

∫
u∈[c′,b] uE(u)∆uδt

= (wti+v)×m+ w × n = w′ti+v′.
Pr[t≥c&g&i] = (wti+v)× 1 + w × n′ = wti+v′′.
Pr[t≥c|g&i] = w′ti+v

′

wti+v′′

= w′

w
+ w′′

wti+v′′
.

Proof of Theorem 1: (Worst case T (t)) Because t1 < t0, there are two cases. In the first
case, this t interval is disjoint for i = 0 and i = 1, namely a1 ≤ b1 ≤ a0 ≤ b0. It is trivial to
prove the result for this case. Hence, lets assume the second case, namely a1 ≤ a0 ≤ b1 ≤ b0.
Note that abilities outside the range t ∈ [a1, b0] are simply not possible given G = g and
hence will be ignored. Abilities in the range t ∈ [a1, a0] only help prove our result because
they are low and are possible for i = 1 but not for i = 0. The worst case for the theorem
is when the distribution on t simply does not allow such t to arise. Similarly for t ∈ [b1, b0].
Hence, without loss of generality, lets assume that the distribution on t has range t ∈ [a0, b1].
If our threshold c is outside this range, then both probabilities in the theorem will either be
zero or one. Hence, lets assume c ∈ (a0, b1).

The theorem states that the result is tight. We know that Pr[t|0] = Pr[t|1] for t ∈ (a0, b1).
If uniform Error in the range [a, b], then Pr[t≥c|g&0] = Pr[t≥c|t∈ [a0, b1]] = Pr[t≥c|g&1]

By definition, Pr[t≥ c|g&i] = Pr[t≥c&g&i]
Pr[g&i]

. Fix some abilities value t. Let T (t)δt denote

the probability of the person having ability t. Because ti = t′ = t + Error, we have that
Error = ti− t. Define Ei(t) = E(ti− t). This gives Pr[Error = ti− t] = Ei(t)δt. This
gives that Pr[g&i] =

∫
t T (t)Ei(t)δtδt and that Pr[t≥ c&g&i] =

∫
t≥c T (t)Ei(t)δtδt. Given a

function r(t), define F (r) =

∫
t≥c

r(t)δtδt∫
t
r(t)δtδt

to be the fraction of the area under the curve r(t) that

is to the right of the t=c. This gives that Pr[t≥c|g&i] = F (TEi).

Let h(t) = E0(t)
E1(t)

, let c′ be the constant h(c), and let h′(t) = h(t)/c′. Lemma 1 proves

h(t) is strictly increasing. And hence, ∀t ∈ [a0, c) we have h′(t) < 1 and ∀t ∈ (c, b1] we have
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h′(t) > 1. Hence, multiplying r(t) by h′(t) decreases r(t) for those t before c and increase
those after. It follows that the fraction of the area under the curve r(t) that is right of the
t=c increases, i.e. F (r) < F (h′r). Similarly, F (r) = F (c′r).

The result follows Pr[t ≥ c|g&1] = F (TE1) = F (Tc′E1) ≤ F (Tc′E1h
′) = F (TE0) =

Pr[t≥c|g&0].

Lemma 1 Suppose that E(u) > 0 and is “sub exponential” in a range [a, b] and zero outside

this range. Let f(t) = E(t0 − t) and g(t) = E(t1 − t) for t1 < t0. Let h(t) = f(t)
g(t)

. Then h(t)
is strictly increasing.

Proof of Lemma 1: h′(t) = f ′(t)g(t)−f(t)g′(t)
g2(t)

. Hence, to prove that h′(t) > 0, it is sufficient

to prove that g(t)
g′(t)

> f(t)
f ′(t)

. By the definitions of f and g, it is sufficient to prove that
E(t1−t)
E′(t1−t)

> E(t0−t)
E′(t0−t)

. Because t1 < t0, it is sufficient to prove that E(u)
E′(u)

is strictly decreasing.

This can be visualized as follows. In graph of E(u), draw the line though the point
〈u,E(u)〉 tangent to the curve. Let u0 be the value of u at where the line crosses the u-axis

and ∆u(u) = u − u0. Note that E ′(u) = E(u)
∆u(u)

and hence E(u)
E′(u)

= ∆u(u). Hence, it is

sufficient to prove that ∆u(u) is strictly decreasing. Now visualize watching ∆u(u) change
as u increases. Note how for concave functions it seem (though not totally clear) that ∆u
decreases.

If r(u) = E(u)
E′(u)

, then r′(u) = (E′(u))2−E(u)E′′(u)
(E′(u))2

= 1 − E(u)E′′(u)
(E′(u))2

To prove that r′(t) < 0,

it is sufficient to prove that E ′′(u) < (E′(u))2

E(u)
. Suppose this was tight. Then if you tell me

E(0) and E ′(0), then the whole function is determined. By breaking the domain u into ǫ
sized pieces, u effectively becomes an integer and hence we can do induction on it. By way
of induction, assume that we have determined E(u) and E ′(u). From this we determine

E ′′(u) = (E′(u))2

E(u)
, E(u+ ǫ) = E(u) + ǫE ′(u), and E ′(u+ ǫ) = E ′(u) + ǫE ′′(u). Wolfram

alpha gives that E(u) = c1e
c2u. Certainly, h(t) = f(t)

g(t)
= c1e

c2(t0−t)

c1e
c2(t1−t) = ec2(t0−t1) is not strictly

increasing but constant as we could expect from things being made tight.

Here is a leap, if the solution to E ′′(u) = (E′(u))2

E(u)
is E(u) = c1e

c2u and for E(u) = c1e
c2u

we have that E ′′(u) = c′E(u), then does it follow that E ′′(u) < (E′(u))2

E(u)
can be simplified to

E ′′(u) < c′E(u)?
Any way, my intuition is that this poses very few restriction on E(u) because it should

include every function that ????grows slower than exponential????

Lemma 2 If ∀c, Pr[t≥c|g&0] > Pr[t≥c|g&1], then Exp[t|g&0] > Exp[t|g&1].

Proof of Lemma 2: Exp[t|g&0] =
∫
t≥0 Pr[t|g&0]tδt =

∫
t≥0

∫
c∈[0,t] Pr[t|g&0]δcδt =∫

c≥0

∫
t≥c Pr[t|g&0]δtδc =

∫
c≥0 Pr[t ≥ c|g&0]δc >

∫
c≥0 Pr[t ≥ c|g&1]δc = Exp[t|g&1].
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2 New Problem

Consider some person.
Let i = 0 indicate that they are disadvantaged and i = 1 advantaged.
Let t indicate their inner abilities. Let this be randomly chosen from some distribution D.
Note that it does not depend on i.
Let Ghighschool(t, i) give their expected high school grade. This can be any function that is
strictly increasing in both t and i. In particular, ∀t, Ghighschool(t, 0) < Ghighschool(t, 1).
Let Guniversity(t) give their expected university grade, again any increasing function of t.
Note that it does not depend on i.
Let Errorhighschool and Erroruniversity be any independent error random variables. They
might as well have mean zero.
What is the minimum requirement for these error functions for the proof to go through?
Let ghighschool = Ghighschool(t, i) + Errorhighschool be their actual high school grade.
Let guniversity = Guniversity(t) + Erroruniversity be their actual university grade.
Let µhighschool be the threshold of ghighschool for accepting the person into university.
Let cemployer be the threshold of t that is acceptable for the employer.
The proof will be easier if you assume each possible value of t, G, and Error is rounded
down to the nearest integer multiple of ǫ because then Pr[g = g′] will be non-zero and you
wont have to stick integrations everywhere.
Claim: The employer wants to know ghighschool and i, but because he would rather hire
someone with i = 0.
∀g′highschool ≥ µhighschool, ∀g

′
university,

Pr[t ≥ cemployer |
ghighschool = g′highschool
guniversity = g′university
and i = 0]

> Pr[t ≥ cemployer |
ghighschool = g′highschool
guniversity = g′university
and i = unknown ]

> Pr[t ≥ cemployer |
ghighschool = g′highschool
guniversity = g′university
and i = 1]

Pr[t ≥ cemployer |
ghighschool ≥ µhighschool

guniversity = g′university
and i = 0]

> Pr[t ≥ cemployer |
ghighschool ≥ µhighschool

guniversity = g′university
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and i = unknown ]
> Pr[t ≥ cemployer |

ghighschool ≥ µhighschool

guniversity = g′university
and i = 1]
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3 Rewarding Improvement

Fairness in machine learning is topic that is growing in importance. Affirmative action is a
way of giving a step up to a disadvantaged group in order to improve the group as a whole’s
situation in the long run. In contrast, we propose rewarding individuals from disadvantaged
pasts who have managed to “make it” in their present despite these disadvantages, because
we feel that this is an good indication that they may also “make it” in their future.

X = Past and Group Membership: Let X represent the data we know about an indi-
vidual about their past, eg their race, gender, neighborhoods, handicaps, parents, . . ..
Note that though we call X a “group”, in practice X could have many fields to such
an extent that each individual is effectively in their own group.

Y = Present Accomplishments: Let Y denote how well they are doing now, eg high
school or SAT scores, jobs, clubs, or letters of reference about behavior from school/jail.

Z = Future Accomplishments: Let Z denote what we are trying to predict about the
person so that we can make some decision about them. For example, we may be
deciding whether to accept them to our University, let them out of jail, or give them
a mortgage, while Z denotes how well they will succeed if we say yes.

Unfair: The first thing to try is to use machine learning to learn a predictor Ẑ that takes
〈X, Y 〉 as input and outputs Ẑ = Ẑ(X, Y ) as a prediction of Z. The concern is
that this is potentially unfair as the predictor might make Ẑ(X, Y ) lower when X is
disadvantaged.

Human Interaction: One way to fix this is for humans to identify which X are disadvan-
taged and to work into the machine learning policies to benefit these people.

Information Hiding: One way to fix this is to not tell the machine learner this group
information X, making the prediction Ẑ(Y ). This may still be unfair if the learner can
somehow infer X from Y and then use this to be prejudiced against the disadvantaged
group X when deciding Z.

Insult to Injury: We argue that simply dropping the group information X when learning
Ẑ(Y ) is also unfair because there really are ways in which being in such a disadvantaged
group X “causes” one to do worse in the present situation Y . Then holding it against
them that they did poorly in Y by giving them a low prediction Ẑ(Y ) is adding insult
to injury

Rewarding Improvement: We argue that if someone managed to do ok in Y even though
they were disadvantaged in X, then we should reward them by giving them a better
Ẑ(X, Y ). One might formalize this is by stating that if X1 << X2 and Y1 ≈ Y2 then
Ẑ(X1, Y1) should “fairly” be bigger than Ẑ(X2, Y2).

Predicting Y : We don’t want to rely on human bias to decide which groups X are dis-
advantaged. Lets use our best machine learning practices to predict one’s present Y
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from one’s past X using some predictor Ŷ (X). Then if a group X has a particularly
small predicted present Ŷ (X), then we will use this as the definition of X being a
disadvantaged group X. Note that Ŷ (X) speaks about the group X and not about
individuals in the group. Though we did say that X could be unique to an individual,
in which case, this is saying that this individual has features of their past which are
considered to be disadvantaged.

Improvement: If an individual is from a disadvantaged group, then we predict their present
to be bad, i.e. Ŷ (X) is small. But if despite this, the individual is presently doing well,
i.e. Y is big, then this individual is particularly bright, resilient, and hard working.
This should be rewarded. Define Improvement(X, Y ) to be Y − Ŷ (X). Note that
this is positive if the individual is presently better than average in his group X and is
negative if worse. Note that here we are assuming Y is a real value. This will have to
be fudged if Y is a vector.

Formally Rewarding Improvement: We recommend defining the individual’s adjusted
present to be Y ′ = Y + α · Improvement(X, Y ) = Y + α(Y − Ŷ (X)).

Predicting Future Z: The second step is to then forget the group X as recommended
before for sake of fairness, but now to use the adjusted present Y ′ as a prediction
Ẑ(Y ′) of Z instead of the actual present Y . Our hypothesis that we want to examine
in this paper is that this will be a better predictor, i.e. Ẑ(Y ′) is closer to Z than Ẑ(Y ).
The intuition goes as follows. If Y >> Ŷ (X), then this individual is sufficiently bright,
resilient, and hard working to over come their disadvantage X. These same qualities
will help this person do well in their future Z.

Oh, if Y is a vector but Z is a real number, maybe it is better to define Ẑ(X, Y ) to be
Ẑ(Y ) + α · Improvement(X, Y ) = Ẑ(Y ) + α(Y − Ŷ (X)).

Individual Fairness: The claim is that this is NOT affirmative action geared to help indi-
viduals from the disadvantaged group X, but is actually strongly motivated by wanting
to choose the best candidates by accurately predicting Z.

Reverse Discrimination: Of course if Improvement(X, Y ) = Y − Ŷ (X) is negative, then
this individual is doing worse than expected given their group X. This new method
would be a disservice to this person. For example, an upper class white male with poor
marks will be disadvantaged.

Group Fairness: Group fairness is a method of being kinder to disadvantaged groups X
when predicting Z. Inadvertently, we are doing this. If the group X is disadvantaged
then Ŷ (X) by definition will be small. Then because of the negative sign, Y ′ =
Y +α(Y − Ŷ (X)) will increase as the advantage of X decreases. As such our prediction
Ẑ(Y ′) will also increase.

Contradiction: We must confess to the obvious contradiction. Note that Ẑ(Y ′) is a func-
tion of Y ′ and Y ′ is a function of 〈X, Y 〉. Hence, if our very first predictor Ẑ(X, Y )
was trained well on this data then it should do at least as good of a job as Ẑ(Y ′) in
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predicting Z. Ok, maybe our hypothesis is wishful thinking. However, I have a button
that says “Having abandoned my search for truth, I am looking for a good fantasy.”

X=T+E

Y= (X-Exp(E)) = (T+E-Exp(E))

(Y | T=t) is norm with mean t and variance var(E)

================

If var(EA)=var(EB)

For every Threshold_A, exits Threshold_B

BY = 1 iff Y > Threshold

for all t, Pr( Y | T=t and A) = Pr( Y | T=t and B)

If my t is small then I want my variance to be big.

so that I increase prob of getting in when I should not.

If my t is big then I want my variance to be small.

so that I decrease prob of not getting in when I should.

If my variance is big., then I am happy when my t is small

because variiane increases prob of getting in when I should not.

So I am less happy when you raise the threshold.

If my variance is big., then I am unhappy when my t is big

because variiane increases prob of not getting in when I should.

So I am more happy when you lower the threshold.

====================

[E-Exp(E)]/SD(E) is Norm(0,1)

Y= (X-Exp(E))/SD(E) = (T+E-Exp(E))/SD(E)

(Y | T=t) is norm with mean t/SD(E) and variance 1

BY = 1 iff Y > Threshold

iff c Y > c Threshold

====================

Assume Var(EA) = Var(EB) + dV

If B, then change X to X’ = X + Norm(0,dV)

[E-Exp(E)]/SD(E) is Norm(0,1)

Y= (X-Exp(E))/SD(E) = (T+E-Exp(E))/SD(E)

(Y | T=t) is norm with mean t/SD(E) and variance 1
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BY = 1 iff Y > Threshold

iff c Y > c Threshold

================

X=T+E

Y= (X-Exp(E)) = (T+E-Exp(E))

Equal Opportunity

For every Threshold,

Threshold_i = ??(Threshold, var(Ei), Ti

BY = 1 iff Y > Threshold_i

Pr( Y | T>Threshold and A) = Pr( Y | T>Threshold and B)

Demographic Parity

Exp( Y | A) = Exp( Y | B)

Does not care how what your T is .
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