EECS/MATH 1019 Sections 5.1–5.2: Mathematical Induction — Part II

February 16, 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Principle of Mathematical Induction

Let $P(1), P(2), P(3), \ldots$ be statements. Assume (a) P(1) is true, and (b) $(\forall k \in \mathbb{Z}^+) (P(k) \rightarrow P(k+1))$. Then P(n) is true for every $n \in \mathbb{Z}^+$.

Modified Principle of Mathematical Induction

Let $M \in \mathbb{Z}$, and let P(M), P(M+1), P(M+2), ... be statements. Assume

(a') P(M) is true, and (b') $P(k) \rightarrow P(k+1)$ for every $k \in \mathbb{Z}$ such that $k \ge M$. Then P(n) is true for every $n \in \mathbb{Z}$ such that $n \ge M$.

<u>Notes</u>: (1) Assumption (b') says that $P(M) \rightarrow P(M+1)$ and $P(M+1) \rightarrow P(M+2)$ and $P(M+2) \rightarrow P(M+3)$ and (2) The usual Principle of Mathematical Induction is a special case of the Modified Principle of Mathematical Induction with M = 1. Example 7 Prove that for every positive integer n,

$$\sum_{i=1}^{n} (i+1) 2^{i} = n 2^{n+1}$$

That is, $2 \cdot 2 + 3 \cdot 2^2 + 4 \cdot 2^3 + \dots + (n+1)2^n = n2^{n+1}$.

First, we'll do a quick check:

m	1	2	3	
$(m+1) 2^m$	$2 \cdot 2^1 = 4$	$3 \cdot 2^2 = 12$	$4 \cdot 2^3 = 32$	
$\sum_{i=1}^{m} (i+1) 2^{i}$	4	16	48	
$m 2^{m+1}$	$1 \cdot 2^{1+1} = 4$	$2 \cdot 2^{2+1} = 16$	$3 \cdot 2^{3+1} = 48$	

Looks okay so far! Now we need to prove that the equation is ALWAYS true.

Proof: For each positive integer *n*, let P(n) be the statement $\sum_{i=1}^{n} (i+1) 2^i = n 2^{n+1}$. The above table shows that P(1), P(2), and P(3) are all true. We shall use mathematical induction to prove that P(n) is true for EVERY positive integer *n*. For each $n \in \mathbb{Z}^+$, P(n) is the statement $\sum_{i=1}^n (i+1)2^i = n2^{n+1}$. (That is, $2 \cdot 2 + 3 \cdot 2^2 + 4 \cdot 2^3 + \dots + (n+1)2^n = n2^{n+1}$.) Basis step: We have shown that P(1) is true. Inductive step: Let $k \in \mathbb{Z}^+$, and assume that P(k) is true. We need to show that P(k+1) must also be true (i.e., that $P(k) \to P(k+1)$). Write down what we want to do:

Show
$$2 \cdot 2 + 3 \cdot 2^2 + \dots + (k+2)2^{k+1}$$
 (call this A)
equals $(k+1)2^{k+2}$ (call this B).

Important point: From P(k), we know $2 \cdot 2 + 3 \cdot 2^2 + 4 \cdot 2^3 + \dots + (k+1)2^k = k2^{k+1}$. Now express A in a form that lets us leverage this fact:

$$A = 2 \cdot 2 + 3 \cdot 2^{2} + 4 \cdot 2^{3} + \dots + (k+1)2^{k} + (k+2)2^{k+1}$$

= $k 2^{k+1} + (k+2)2^{k+1}$ (by $P(k)$)
= $(k + (k+2))2^{k+1}$
= $(2k+2)2^{k+1} = (k+1)(2)2^{k+1} = (k+1)2^{k+2} = B$.
Thus, we proved $A = B$. This completes the inductive step.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Summary:

For each $n \in \mathbb{Z}^+$, P(n) is the statement $\sum_{i=1}^n (i+1)2^i = n2^{n+1}$. We have proved P(1) is true. (Basis step) We have proved that $P(k) \to P(k+1)$ for every integer k such that $k \ge 1$.

Therefore, by mathematical induction, P(n) is true for every integer n such that $n \ge 1$.

That is, $\sum_{i=1}^{n} (i+1) 2^{i} = n 2^{n+1}$ for every positive integer *n*.

Example 8 For which positive integers *n* is it true that $n! \ge \frac{1}{4} 3^n$? Recall $n! = n \times (n-1) \times \ldots \times 2 \times 1$.

n	1	2	3	4	5
<i>n</i> !	1	2	6	24	120
$\frac{1}{4}3^n$	$\frac{3}{4}$	$\frac{9}{4}$	$\frac{27}{4}$	$\frac{81}{4}$	$\frac{243}{4}$
$n! \geq \frac{1}{4} 3^n ?$	Yes	No	No	Yes	Yes

Let's try to prove that the inequality holds for all $n \ge 4$.

Let P(n) be the statement $n! \ge \frac{1}{4} 3^n$.

Basis step: We know that P(4) is true.

Inductive step: Assume that k is an integer such that $k \ge 4$ and $\overline{P(k)}$ is true. We want to prove that P(k+1) is also true.

$$P(k): k! \ge \frac{1}{4}3^k \qquad P(k+1): (k+1)! \ge \frac{1}{4}3^{k+1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We have assumed $P(k): k! \ge \frac{1}{4}3^k$ We want to deduce $P(k+1): (k+1)! \ge \frac{1}{4}3^{k+1}$

Useful fact: $(k + 1)! = (k + 1) \times (k!)$. So we obtain

$$(k+1)! = (k+1) \times k!$$

$$\geq (k+1) \times \frac{1}{4} 3^{k} \quad (by P(k))$$

$$\geq 3 \times \frac{1}{4} \times 3^{k} \quad (because \ k \ge 2 \ (in \ fact, \ k \ge 4))$$

$$= \frac{1}{4} 3^{k+1}.$$

This proves P(k+1).

Summary: We proved that P(4) is true, and that $P(k) \rightarrow P(k+1)$ for all integers $k \ge 4$. We conclude that P(n) is true for all $n \ge 4$.

Section 5.2: Strong Induction

Let $P(1), P(2), P(3), \ldots$ be statements. Assume (a') P(1) is true, and (b") $[P(1) \land P(2) \land P(3) \land \ldots \land P(k)] \rightarrow P(k+1)$ for every $k \in \mathbb{Z}^+$.

Then P(n) is true for every $n \in \mathbb{Z}^+$.

(<u>Note</u>: Assumption (b") says that $P(1) \rightarrow P(2)$ and $[P(1) \land P(2)] \rightarrow P(3)$ and $[P(1) \land P(2) \land P(3)] \rightarrow P(4)$ and)

Like ordinary induction, we can start at another integer besides 1. For example, we can use the following form:

Let $P(0), P(1), P(2), \ldots$ be statements. Assume (a') P(0) is true, and (b") $[P(0) \land P(1) \land P(2) \land \ldots \land P(k)] \rightarrow P(k+1)$ for every $k \in \mathbb{N}$. Then P(n) is true for every $n \in \mathbb{N}$. **Definition:** A prime is an integer greater than 1 whose only factors are 1 and itself.

E.g. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 are all the primes less than 30.

Example 9: (p. 357) Use strong induction to prove that every integer greater than 1 is either a prime or a product of primes.

E.g. $26 = 2 \times 13$ $60 = 2 \times 2 \times 3 \times 5$

Let P(n) be the statement "*n* is a prime or a product of primes." We shall prove that P(n) is true for every integer $n \ge 2$. Basis step: n = 2: P(2) is true because 2 is a prime. Inductive step: We must show that for every integer $k \ge 2$, $[P(2) \land P(3) \land \ldots \land P(k)] \rightarrow P(k + 1)$. So assume $k \ge 2$ and $[P(2) \land P(3) \land \ldots \land P(k)]$ is true. For k + 1, we consider two cases: k + 1 is either a prime or not a prime.

Let P(n) be the statement "*n* is a prime or a product of primes." We want to prove that P(n) is true for every integer $n \ge 2$. Assume $k \ge 2$ and $[P(2) \land P(3) \land \ldots \land P(k)]$ is true. Case I: k + 1 is a prime: In this case, P(k + 1) is obviously true. Case II: k + 1 is not a prime: Then k + 1 has a divisor d besides 1 and k + 1. Thus k + 1 = dw for some integer w, and 1 < d < k + 1 (since $d \neq 1$ and $d \neq k + 1$). Also 1 < w < k + 1. Therefore $2 \le d \le k$ and $2 \le w \le k$. So, by the inductive assumption that $[P(2) \land P(3) \land \ldots \land P(k)]$ is true, we see that both P(d) and P(w) are true. That is, d is a prime or a product of primes, and w is a prime or a

Therefore dw is a product of primes. Since k + 1 = dw, this proves that k + 1 is a product of primes. So P(k + 1) is true in Case II.

Since both cases have been checked, we conclude that $[P(2) \land P(3) \land \ldots \land P(k)] \rightarrow P(k+1)$. This is true for every integer k > 2, so have proved the inductive step (b").

product of primes.

Therefore, P(n) is true for every $n \ge 2$ by Strong Induction. ロト 4 団 ト 4 団 ト 4 団 ト 三 - のへで We can also prove the preceding exercise (and other induction problems) by appealing to the **Well-Ordering Property of the positive integers** (Section 5.2.5). Here is how we can do it.

The Well-Ordering Property says that *every nonempty subset of the positive integers has a smallest element.* (Section 5.2.5)

Let P(n) be the statement "*n* is a prime or a product of primes."

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consider the set $S = \{n \in \mathbb{Z}^+ | n \ge 2 \text{ and } P(n) \text{ is False} \}$. Assume S is not empty. (We will use this to get a contradiction.)

By the Well-Ordering Property, S has a smallest element.

Let t be the smallest element of S.

Recap: P(n) says "*n* is a prime or a product of primes."

Consider the set $S = \{n \in \mathbb{Z}^+ | n \ge 2 \text{ and } P(n) \text{ is False}\}$. Assume S is not empty. (We will use this to get a contradiction.) Let t be the smallest element of S. (Well-Ordering)

In particular, since $t \in S$, we know that P(t) is False. Therefore t is not a prime. Therefore (as we argued before) we can write t = dw where $2 \le d < t$ and $2 \le w < t$.

Since d and w are both LESS than t, and t is the SMALLEST element of S, neither d nor w is an element of S. Therefore P(d) and P(w) are not False; that is, they are True. So, as before: d is a prime or a product of primes, and w is a prime or a product of primes. Therefore dw is a product of primes. Since t = dw, this proves that t is a product of primes. Thus P(t)is True. This CONTRADICTS the fact that P(t) is False.

We conclude that S must be empty. That is, P(n) is True whenever $n \ge 2$. Example 10: A Recursive Sequence Let $a_1, a_2, a_3, ...$ be the sequence of real numbers defined *recursively* by

 $a_1 = 1, a_2 = 5,$ and $a_{n+1} = a_n + 2a_{n-1}$ for $n = 2, 3, 4, \dots$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Then
$$a_3 = a_2 + 2a_1 = 5 + 2(1) = 7$$
,
 $a_4 =$

Poll: What is the value of *a*₄? (A) 12 (B) 15 (C) 17 (D) 19 <u>Answer</u>: (C) Example 10: A Recursive Sequence Let $a_1, a_2, a_3, ...$ be the sequence of real numbers defined *recursively* by

 $a_1 = 1, a_2 = 5,$ and $a_{n+1} = a_n + 2a_{n-1}$ for $n = 2, 3, 4, \dots$

Then
$$a_3 = a_2 + 2a_1 = 5 + 2(1) = 7$$
,
 $a_4 = a_3 + 2a_2 = 7 + 2(5) = 17$,
 $a_5 = a_4 + 2a_3 = 17 + 2(7) = 31$,
 $a_6 = a_5 + 2a_4 = 31 + 2(17) = 65$.
 $a_7 = a_6 + 2a_5 = 65 + 2(31) = 127$.

Compare with the sequence 2^n : 2, 4, 8, 16, 32, 64, 128, ...

This suggests the formula $a_n = 2^n + (-1)^n$.

Mathematical induction is ideally suited to handling recursively defined quantities.

Let P(n) be the statement $a_n = 2^n + (-1)^n$.

 $a_1 = 1$, $a_2 = 5$, and $a_{n+1} = a_n + 2a_{n-1}$ for n = 2, 3, 4, ...Let P(n) be the statement $a_n = 2^n + (-1)^n$. We have checked that P(n) is true for n = 1, 2, 3, ..., 7. The statement P(k + 1) is $a_{k+1} = 2^{k+1} + (-1)^{k+1}$. To prove P(k + 1), we would need to use the definition $a_{k+1} = a_k + 2a_{k-1}$. To use this, we would like to use formulas for a_k and a_{k-1} . That is, we would like to know that P(k) and P(k - 1) are both true. Then we would know $a_k = 2^k + (-1)^k$ and

 $a_{k-1} = 2^{k-1} + (-1)^{k-1}$. This would lead to

$$\begin{aligned} \mathbf{a}_{k+1} &= \mathbf{a}_k + 2\mathbf{a}_{k-1} \\ &= \left(2^k + (-1)^k\right) + 2\left(2^{k-1} + (-1)^{k-1}\right) \\ &= 2^k + 2(2^{k-1}) + (-1)^k + 2(-1)^{-1}(-1)^k \\ &= 2^k + 2^k + (-1)^k - 2(-1)^k \\ &= 2(2^k) - (-1)^k = 2^{k+1} + (-1)^{k+1}. \end{aligned}$$

This shows that P(k+1) is true.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $a_1 = 1$, $a_2 = 5$, and $a_{n+1} = a_n + 2a_{n-1}$ for n = 2, 3, 4, ...Here is the formal proof that $a_n = 2^n + (-1)^n$ for every $n \in \mathbb{Z}^+$. **Proof:** Let P(n) be the statement $a_n = 2^n + (-1)^n$. Since $2^1 + (-1) = 1$ and $2^2 + (-1)^2 = 5$, we see directly that P(1) and P(2) are true. (In particular, $P(1) \rightarrow P(2)$ is true.) Let $k \ge 2$ and assume that $P(1), P(2), \ldots, P(k-1)$, and P(k) are all true. Then

$$a_{k+1} = a_k + 2a_{k-1}$$

= $(2^k + (-1)^k) + 2(2^{k-1} + (-1)^{k-1})$
(using $P(k)$ and $P(k-1)$)
= $2^k + 2^k + (-1)^k - 2(-1)^k$
= $2(2^k) - (-1)^k = 2^{k+1} + (-1)^{k+1}$.

This shows that P(k + 1) is true. We know that P(1) is true, and $[P(1) \land P(2) \land \ldots \land P(k)] \rightarrow P(k + 1)$ for all $k \in \mathbb{Z}^+$. Hence P(n) is true for every $n \in \mathbb{Z}^+$ by Strong Induction. Q.E.D. Next class: Read Section 5.3. (Subsection 5.3.5 is optional.)

Homework updates:

- Homework assignment 5 (in Connect) is due Sunday March 5.
- Problem Set B is also due Sunday March 5, to be submitted via Crowdmark.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ