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Principle of Mathematical Induction

Let P(1),P(2),P(3), . . . be statements. Assume
(a) P(1) is true, and
(b) (∀k ∈ Z+) (P(k)→ P(k + 1)).

Then P(n) is true for every n ∈ Z+.

Modified Principle of Mathematical Induction

Let M ∈ Z, and let P(M),P(M+1),P(M+2), . . . be statements.
Assume

(a’) P(M) is true, and
(b’) P(k)→ P(k + 1) for every k ∈ Z such that k ≥ M.

Then P(n) is true for every n ∈ Z such that n ≥ M.

Notes: (1) Assumption (b’) says that P(M)→ P(M+1) and
P(M+1)→ P(M+2) and P(M+2)→ P(M+3) and . . . .
(2) The usual Principle of Mathematical Induction is a special case
of the Modified Principle of Mathematical Induction with M = 1.



Example 7 Prove that for every positive integer n,

n∑
i=1

(i + 1) 2i = n 2n+1 .

That is, 2 · 2 + 3 · 22 + 4 · 23 + · · ·+ (n + 1) 2n = n 2n+1.

First, we’ll do a quick check:

m 1 2 3

(m + 1) 2m 2 · 21 = 4 3 · 22 = 12 4 · 23 = 32∑m
i=1(i + 1) 2i 4 16 48

m 2m+1 1 · 21+1 = 4 2 · 22+1 = 16 3 · 23+1 = 48

Looks okay so far! Now we need to prove that the equation is
ALWAYS true.

Proof: For each positive integer n, let P(n) be the statement∑n
i=1(i + 1) 2i = n 2n+1.

The above table shows that P(1), P(2), and P(3) are all true. We
shall use mathematical induction to prove that P(n) is true for
EVERY positive integer n.



For each n ∈ Z+, P(n) is the statement
∑n

i=1(i + 1) 2i = n 2n+1.

(That is, 2 · 2 + 3 · 22 + 4 · 23 + · · ·+ (n + 1) 2n = n 2n+1.)

Basis step: We have shown that P(1) is true.

Inductive step: Let k ∈ Z+, and assume that P(k) is true. We
need to show that P(k + 1) must also be true (i.e., that
P(k)→ P(k + 1)). Write down what we want to do:

Show 2 · 2 + 3 · 22 + · · ·+ (k + 2) 2k+1 (call this A)

equals (k + 1) 2k+2 (call this B).

Important point: From P(k), we know
2 · 2 + 3 · 22 + 4 · 23 + · · ·+ (k + 1) 2k = k 2k+1.
Now express A in a form that lets us leverage this fact:

A = 2 · 2 + 3 · 22 + 4 · 23 + · · ·+ (k + 1) 2k + (k + 2) 2k+1

= k 2k+1 + (k + 2) 2k+1 (by P(k))

= ( k + (k + 2) ) 2k+1

= (2k + 2) 2k+1 = (k + 1)(2)2k+1 = (k + 1) 2k+2 = B .

Thus, we proved A = B. This completes the inductive step.



Summary:

For each n ∈ Z+, P(n) is the statement
∑n

i=1(i + 1) 2i = n 2n+1.
We have proved P(1) is true. (Basis step)
We have proved that P(k)→ P(k + 1) for every integer k such
that k ≥ 1.
Therefore, by mathematical induction, P(n) is true for every
integer n such that n ≥ 1.
That is,

∑n
i=1(i + 1) 2i = n 2n+1 for every positive integer n.



Example 8 For which positive integers n is it true that n! ≥ 1
4 3n ?

Recall n! = n × (n − 1)× . . .× 2× 1.

n 1 2 3 4 5

n! 1 2 6 24 120
1
4 3n 3

4
9
4

27
4

81
4

243
4

n! ≥ 1
4 3n ? Yes No No Yes Yes

Let’s try to prove that the inequality holds for all n ≥ 4.

Let P(n) be the statement n! ≥ 1
4 3n.

Basis step: We know that P(4) is true.

Inductive step: Assume that k is an integer such that k ≥ 4 and
P(k) is true. We want to prove that P(k + 1) is also true.

P(k) : k! ≥ 1

4
3k P(k + 1) : (k + 1)! ≥ 1

4
3k+1



We have assumed P(k) : k! ≥ 1

4
3k

We want to deduce P(k + 1) : (k + 1)! ≥ 1

4
3k+1

Useful fact: (k + 1)! = (k + 1)× (k!). So we obtain

(k + 1)! = (k + 1)× k!

≥ (k + 1)× 1

4
3k (by P(k))

≥ 3× 1

4
× 3k (because k ≥ 2 (in fact, k ≥ 4))

=
1

4
3k+1 .

This proves P(k + 1).

Summary: We proved that P(4) is true, and that P(k)→ P(k + 1)
for all integers k ≥ 4.
We conclude that P(n) is true for all n ≥ 4.



Section 5.2: Strong Induction

Let P(1),P(2),P(3), . . . be statements. Assume

(a’) P(1) is true, and
(b”) [P(1) ∧ P(2) ∧ P(3) ∧ . . . ∧ P(k)]→ P(k + 1) for every
k ∈ Z+.

Then P(n) is true for every n ∈ Z+.

(Note: Assumption (b”) says that P(1)→ P(2) and
[P(1) ∧ P(2)]→ P(3) and [P(1) ∧ P(2) ∧ P(3)]→ P(4) and . . . .)

Like ordinary induction, we can start at another integer besides 1.
For example, we can use the following form:

Let P(0),P(1),P(2), . . . be statements. Assume

(a’) P(0) is true, and
(b”) [P(0)∧P(1)∧P(2)∧ . . .∧P(k)]→ P(k + 1) for every k ∈ N.
Then P(n) is true for every n ∈ N.



Definition: A prime is an integer greater than 1 whose only
factors are 1 and itself.
E.g. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 are all the primes less than 30.

Example 9: (p. 357) Use strong induction to prove that every
integer greater than 1 is either a prime or a product of primes.

E.g. 26 = 2× 13 60 = 2× 2× 3× 5

Let P(n) be the statement “n is a prime or a product of primes.”
We shall prove that P(n) is true for every integer n ≥ 2.

Basis step: n = 2: P(2) is true because 2 is a prime.

Inductive step: We must show that for every integer k ≥ 2,
[P(2) ∧ P(3) ∧ . . . ∧ P(k)]→ P(k + 1).
So assume k ≥ 2 and [P(2) ∧ P(3) ∧ . . . ∧ P(k)] is true.
For k + 1, we consider two cases: k + 1 is either a prime or not a
prime.



Let P(n) be the statement “n is a prime or a product of primes.”
We want to prove that P(n) is true for every integer n ≥ 2.
Assume k ≥ 2 and [P(2) ∧ P(3) ∧ . . . ∧ P(k)] is true.

Case I: k + 1 is a prime: In this case, P(k + 1) is obviously true.

Case II: k + 1 is not a prime: Then k + 1 has a divisor d besides 1
and k + 1. Thus k + 1 = dw for some integer w , and
1 < d < k + 1 (since d 6= 1 and d 6= k + 1). Also 1 < w < k + 1.

Therefore 2 ≤ d ≤ k and 2 ≤ w ≤ k . So, by the inductive
assumption that [P(2) ∧ P(3) ∧ . . . ∧ P(k)] is true, we see that
both P(d) and P(w) are true.
That is, d is a prime or a product of primes, and w is a prime or a
product of primes.
Therefore dw is a product of primes. Since k + 1 = dw , this proves
that k + 1 is a product of primes. So P(k + 1) is true in Case II.

Since both cases have been checked, we conclude that
[P(2) ∧ P(3) ∧ . . . ∧ P(k)]→ P(k + 1). This is true for every
integer k ≥ 2, so have proved the inductive step (b”).

Therefore, P(n) is true for every n ≥ 2 by Strong Induction.



We can also prove the preceding exercise (and other induction
problems) by appealing to the Well-Ordering Property of the
positive integers (Section 5.2.5). Here is how we can do it.

The Well-Ordering Property says that every nonempty subset of
the positive integers has a smallest element. (Section 5.2.5)

Let P(n) be the statement “n is a prime or a product of primes.”

Consider the set S = {n ∈ Z+ | n ≥ 2 and P(n) is False}.
Assume S is not empty. (We will use this to get a contradiction.)

By the Well-Ordering Property, S has a smallest element.

Let t be the smallest element of S .



Recap: P(n) says “n is a prime or a product of primes.”

Consider the set S = {n ∈ Z+ | n ≥ 2 and P(n) is False}.
Assume S is not empty. (We will use this to get a contradiction.)
Let t be the smallest element of S . (Well-Ordering)

In particular, since t ∈ S , we know that P(t) is False.
Therefore t is not a prime. Therefore (as we argued before) we can
write t = dw where 2 ≤ d < t and 2 ≤ w < t.

Since d and w are both LESS than t, and t is the SMALLEST
element of S , neither d nor w is an element of S .
Therefore P(d) and P(w) are not False; that is, they are True.

So, as before: d is a prime or a product of primes, and w is a
prime or a product of primes. Therefore dw is a product of primes.
Since t = dw , this proves that t is a product of primes. Thus P(t)
is True. This CONTRADICTS the fact that P(t) is False.

We conclude that S must be empty.
That is, P(n) is True whenever n ≥ 2.



Example 10: A Recursive Sequence Let a1, a2, a3, . . . be the
sequence of real numbers defined recursively by

a1 = 1, a2 = 5, and an+1 = an + 2an−1 for n = 2, 3, 4, . . .

Then a3 = a2 + 2a1 = 5 + 2(1) = 7,
a4 =

Poll: What is the value of a4?
(A) 12
(B) 15
(C) 17
(D) 19
Answer: (C)



Example 10: A Recursive Sequence Let a1, a2, a3, . . . be the
sequence of real numbers defined recursively by

a1 = 1, a2 = 5, and an+1 = an + 2an−1 for n = 2, 3, 4, . . .

Then a3 = a2 + 2a1 = 5 + 2(1) = 7,
a4 = a3 + 2a2 = 7 + 2(5) = 17,
a5 = a4 + 2a3 = 17 + 2(7) = 31,
a6 = a5 + 2a4 = 31 + 2(17) = 65.
a7 = a6 + 2a5 = 65 + 2(31) = 127.

Compare with the sequence 2n: 2, 4, 8, 16, 32, 64, 128, . . .

This suggests the formula an = 2n + (−1)n.

Mathematical induction is ideally suited to handling recursively
defined quantities.

Let P(n) be the statement an = 2n + (−1)n.



a1 = 1, a2 = 5, and an+1 = an + 2an−1 for n = 2, 3, 4, . . .

Let P(n) be the statement an = 2n + (−1)n.
We have checked that P(n) is true for n = 1, 2, 3, . . . , 7.

The statement P(k + 1) is ak+1 = 2k+1 + (−1)k+1.

To prove P(k + 1), we would need to use the definition
ak+1 = ak + 2ak−1.

To use this, we would like to use formulas for ak and ak−1.

That is, we would like to know that P(k) and P(k − 1) are both
true. Then we would know ak = 2k + (−1)k and
ak−1 = 2k−1 + (−1)k−1. This would lead to

ak+1 = ak + 2ak−1

=
(

2k + (−1)k
)

+ 2
(

2k−1 + (−1)k−1
)

= 2k + 2(2k−1) + (−1)k + 2 (−1)−1(−1)k

= 2k + 2k + (−1)k − 2(−1)k

= 2(2k) − (−1)k = 2k+1 + (−1)k+1.

This shows that P(k + 1) is true.



a1 = 1, a2 = 5, and an+1 = an + 2an−1 for n = 2, 3, 4, . . .

Here is the formal proof that an = 2n + (−1)n for every n ∈ Z+.

Proof: Let P(n) be the statement an = 2n + (−1)n.
Since 21 + (−1) = 1 and 22 + (−1)2 = 5, we see directly that P(1)
and P(2) are true. (In particular, P(1)→ P(2) is true.)

Let k ≥ 2 and assume that P(1),P(2), . . . ,P(k − 1), and P(k) are
all true. Then

ak+1 = ak + 2ak−1

=
(

2k + (−1)k
)

+ 2
(

2k−1 + (−1)k−1
)

(using P(k) and P(k − 1))

= 2k + 2k + (−1)k − 2(−1)k

= 2(2k) − (−1)k = 2k+1 + (−1)k+1.

This shows that P(k + 1) is true.
We know that P(1) is true, and
[P(1) ∧ P(2) ∧ . . . ∧ P(k)] → P(k + 1) for all k ∈ Z+.
Hence P(n) is true for every n ∈ Z+ by Strong Induction. Q.E.D.



Next class: Read Section 5.3. (Subsection 5.3.5 is optional.)

Homework updates:
• Homework assignment 5 (in Connect) is due Sunday March 5.
• Problem Set B is also due Sunday March 5, to be submitted via
Crowdmark.


