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Principle of Mathematical Induction

Let P(1), P(2), P(3),... be statements. Assume
(a) P(1) is true, and

(b) (Vk € ZT) (P(k) — P(k +1)).

Then P(n) is true for every n € Z.

Modified Principle of Mathematical Induction

Let M € Z, and let P(M), P(M+1), P(M+2), ... be statements.
Assume

(a’) P(M) is true, and

(b’) P(k) — P(k + 1) for every k € Z such that k > M.

Then P(n) is true for every n € Z such that n > M.

Notes: (1) Assumption (b') says that P(M) — P(M+1) and
P(M+1) — P(M+2) and P(M+2) — P(M+3) and ....

(2) The usual Principle of Mathematical Induction is a special case
of the Modified Principle of Mathematical Induction with M = 1.



Example 7 Prove that for every positive integer n,

n

> (i+1)2" = 2"t

i=1
Thatis, 2-243-224+4-2%4...4(n+1)2" = n2"t,

First, we'll do a quick check:

m 1 2 3
(m+1)2m 2.21=4 [ 3.22=12 | 4.25=32

ST+ 1)2 4 16 48
m2m+1 1-2141 =4 [2.2271 =16 | 3.23+1 =48

Looks okay so farl Now we need to prove that the equation is
ALWAYS true.

Proof: For each positive integer n, let P(n) be the statement
Sn o (i+1)2" = pontl

The above table shows that P(1), P(2), and P(3) are all true. We
shall use mathematical induction to prove that P(n) is true for
EVERY positive integer n.



For each n € Z*, P(n) is the statement .7 (i +1)2/ = n2"*L,
(Thatis, 2-243-2244.254+... 4 (n+1)2" = n2"L)
Basis step: We have shown that P(1) is true.
Inductive step: Let k € Zt, and assume that P(k) is true. We
need to show that P(k 4+ 1) must also be true (i.e., that
P(k) — P(k +1)). Write down what we want to do:
Show 2-2+4+3-2% 4 ...+ (k+2)25 (call this A)
equals (k4 1)2%"2  (call this B).
Important point: From P(k), we know
2.243-22 4428 4. 4 (k+1)2Kk = k2kHL,
Now express A in a form that lets us leverage this fact:
A = 2243224428 4. 4 (k+1)25 4+ (k+2)2k!
= k2K 4 (k+2)25TY (by P(k))
= (k+ (k+2)) 2k
= (2k+2)2K1 = (k+1)(2)2" = (k4 1)2F
Thus, we proved A = B. This completes the inductive step.

= B.



Summary:

For each n € Z*, P(n) is the statement Y7 (i +1)2/ = n2"*L,
We have proved P(1) is true. (Basis step)

We have proved that P(k) — P(k + 1) for every integer k such
that kK > 1.

Therefore, by mathematical induction, P(n) is true for every
integer n such that n > 1.

Thatis, >0 ;(i +1)2" = n2"! for every positive integer n.



Example 8 For which positive integers n is it true that n! > %3” ?

Recall n! = nx(n—1) x...x2x1.
n 1 2 3 4 5
n! 1 2 6 | 24 | 120
L1an 3 9 27 81 243
7 1 1 71 4 1
n! > %3” 7] Yes | No | No | Yes | Yes

Let's try to prove that the inequality holds for all n > 4.
Let P(n) be the statement n! > 13"
Basis step: We know that P(4) is true.

Inductive step: Assume that k is an integer such that k > 4 and
P(k) is true. We want to prove that P(k + 1) is also true.

P(k): k!> %3k P(k+1): (k+1)! > %3”1



1
We have assumed P(k): k!> 7 3k

1
We want to deduce  P(k+1): (k+1)! > 1 3kHl

Useful fact: (k+ 1)! = (k + 1) x (k!). So we obtain

(k+1)1 = (k+1)x k!
> (k+1)x ;3 (by P(K))
> 3X % x 3k (because k > 2 (in fact, k > 4))
= %3“1.

This proves P(k + 1).

Summary: We proved that P(4) is true, and that P(k) — P(k+1)
for all integers k > 4.
We conclude that P(n) is true for all n > 4.



Section 5.2: Strong Induction

Let P(1), P(2), P(3),... be statements. Assume

(a’) P(1) is true, and

(b”) [P(1) AP(2) ANP(3)A...AP(k)] = P(k+ 1) for every
keZ".

Then P(n) is true for every n € Z.

(Note: Assumption (b") says that P(1) — P(2) and
[P(1) A P(2)] = P(3) and [P(1) A P(2) A P(3)] = P(4) and ....)

Like ordinary induction, we can start at another integer besides 1.
For example, we can use the following form:

Let P(0), P(1), P(2),... be statements. Assume

(a’) P(0) is true, and

(b”) [P(O)AP(L)AP(2)A...AP(k)] = P(k+1) for every k € N.
Then P(n) is true for every n € N.



Definition: A prime is an integer greater than 1 whose only
factors are 1 and itself.
Eg 2 3,5, 7 11, 13, 17, 19, 23, 29 are all the primes less than 30.

Example 9: (p. 357) Use strong induction to prove that every
integer greater than 1 is either a prime or a product of primes.

Eg 26 = 2x13 60 = 2x2x3x5H

Let P(n) be the statement “n is a prime or a product of primes.”
We shall prove that P(n) is true for every integer n > 2.

Basis step: n=2: P(2) is true because 2 is a prime.

Inductive step: We must show that for every integer k > 2,
[P(2Q)APB)A...ANP(k)] = P(k+1).

So assume k > 2 and [P(2) A P(3) A ... A P(k)] is true.

For k + 1, we consider two cases: k + 1 is either a prime or not a
prime.



Let P(n) be the statement “n is a prime or a product of primes.”
We want to prove that P(n) is true for every integer n > 2.
Assume k > 2 and [P(2) A P(3) A ... A P(k)] is true.

Case I: k+ 1 is a prime: In this case, P(k + 1) is obviously true.
Case ll: k+ 1 is not a prime: Then k + 1 has a divisor d besides 1
and k+ 1. Thus k + 1 = dw for some integer w, and
l<d<k+1(sinced#1landd#k+1). Alsol <w < k+ 1.
Therefore 2 < d < k and 2 < w < k. So, by the inductive
assumption that [P(2) A P(3) A ... A P(k)] is true, we see that
both P(d) and P(w) are true.

That is, d is a prime or a product of primes, and w is a prime or a
product of primes.

Therefore dw is a product of primes. Since k + 1 = dw, this proves
that k + 1 is a product of primes. So P(k + 1) is true in Case II.

Since both cases have been checked, we conclude that
[P(2) AP(3) A...AP(k)] = P(k +1). This is true for every
integer k > 2, so have proved the inductive step (b").

Therefore, P(n) is true for every n > 2 by Strong Induction.



We can also prove the preceding exercise (and other induction
problems) by appealing to the Well-Ordering Property of the
positive integers (Section 5.2.5). Here is how we can do it.

The Well-Ordering Property says that every nonempty subset of
the positive integers has a smallest element. (Section 5.2.5)

Let P(n) be the statement “n is a prime or a product of primes.”
Consider the set S = {n € Z* |n > 2 and P(n) is False}.
Assume S is not empty. (We will use this to get a contradiction.)
By the Well-Ordering Property, S has a smallest element.

Let t be the smallest element of S.



Recap: P(n) says “nis a prime or a product of primes.”

Consider the set S = {n € Z" |n > 2 and P(n) is False}.
Assume S is not empty. (We will use this to get a contradiction.)
Let t be the smallest element of S. (Well-Ordering)

In particular, since t € S, we know that P(t) is False.
Therefore t is not a prime. Therefore (as we argued before) we can
write t = dw where2 <d < tand2<w < t.

Since d and w are both LESS than t, and t is the SMALLEST
element of S, neither d nor w is an element of S.
Therefore P(d) and P(w) are not False; that is, they are True.

So, as before: d is a prime or a product of primes, and w is a
prime or a product of primes. Therefore dw is a product of primes.
Since t = dw, this proves that t is a product of primes. Thus P(1)
is True. This CONTRADICTS the fact that P(t) is False.

We conclude that S must be empty.
That is, P(n) is True whenever n > 2.



Example 10: A Recursive Sequence Let a1, ap, as, ... be the
sequence of real numbers defined recursively by

ag =1 a =5 and a,y1 = ap+2a,-1 forn=2,3,4,...

Then a3 = a» +2a1 = 5+2(1) =1,

dg =
Poll: What is the value of a4?
(A) 12
(B) 15
(C) 17
(D) 19
Answer: (C)



Example 10: A Recursive Sequence Let a1, a», as, ... be the
sequence of real numbers defined recursively by

ag =1, a =5 and apy1 = ap+2a,-1 forn=234,...

Then a3 = ap+2a; = 5+2(1) =

ay = a3 +2a =7+2(5) =

as = ag + 2a3 = 17+2(7) = 31

ag = as +2a4 = 31+ 2(17) = 65.

a; = ag + 2a5 = 65+2(31) = 127.
Compare with the sequence 2": 2, 4, 8, 16, 32, 64, 128, ...
This suggests the formula a, = 2" + (—1)".

Mathematical induction is ideally suited to handling recursively
defined quantities.

Let P(n) be the statement a, = 2" + (—1)".



ag =1 a =5, and apy1 = a, + 23,1 forn=234, ...
Let P(n) be the statement a, = 2" + (—1)".

We have checked that P(n) is true for n=1,2,3,...,7.

The statement P(k + 1) is ag 1 = 28T 4 (— 1)<+

To prove P(k + 1), we would need to use the definition

a+1 = ak + 2ak—1.

To use this, we would like to use formulas for ax and ax_1.

That is, we would like to know that P(k) and P(k — 1) are both

true. Then we would know a; = 2K + (—1)* and
a1 — 21 (—1)%1. This would lead to
aky1 = ak + 23,1

— <2k + (_1)k> + 2 (2k71 4+ (71)k71)

= 24208 ) + (—D)f + 2(—1) (1)

= 2k 42k 4 (—1)k — 2(=1)k

— 2(2k) _ (_1)k _ 2k+1 _|_(_1)k+1'
This shows that P(k + 1) is true.



ag =1 a =5, and apy1 = a, + 23,1 forn=234, ...
Here is the formal proof that a, = 2" + (—1)" for every n € Z*.
Proof: Let P(n) be the statement a, = 2"+ (—1)".
Since 2! +(—1) =1 and 22 4 (—1)? = 5, we see directly that P(1)
and P(2) are true. (In particular, P(1) — P(2) is true.)
Let kK > 2 and assume that P(1), P(2),...,P(k —1), and P(k) are
all true. Then
k1 = ak + 2ak-1
= (2k + (—1)k) + 2 (2"*1 + (—1)"*1>
(using P(k) and P(k — 1))

= 2k g2k 4 (—1)k — 2(—1)k

_ 2(21() o (_1)1( _ 2k+1+(71)k+1'
This shows that P(k + 1) is true.
We know that P(1) is true, and
[P(L)APQR)A...AP(k)] — P(k+1) forall ke Z.
Hence P(n) is true for every n € Z* by Strong Induction. Q.E.D.



Next class: Read Section 5.3. (Subsection 5.3.5 is optional.)

Homework updates:

e Homework assignment 5 (in Connect) is due Sunday March 5.
e Problem Set B is also due Sunday March 5, to be submitted via
Crowdmark.



