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Recap: Section 8.2 gives some recipes for finding solutions to some
special kinds of recurrence relations, namely linear recurrence
relations with constant coefficients. Some examples are

fn = fn−1 + fn−2

and gn = 6 gn−1 − 7 gn−2 + 3.2 gn−4

and hn = 1.6 hn−1 + hn−2 − 13 hn−3 + n2 − 5 .

These are all of the form

an = c1 an−1 + c2 an−2 + · · · + ck an−k + F (n)

where F is any function, the “coefficients” c1, . . . , ck are real
constants (i.e., cannot depend on n), and k is the “degree”
(assuming ck 6= 0; note that the other ci ’s could be 0, such as c3
in the recursion for gn).
The relation is homogeneous if F (n) = 0 for every n. (As for {fn}
and {gn} above.) Otherwise it is nonhomogeneous (as for {hn}).



8.2.2: Solving Linear Homogeneous Recurrence Relations

with Constant Coefficients

That is, we focus on relations of the form

an = c1 an−1 + c2 an−2 + · · · + ck an−k . (∗)

Observation: Let r be a real number (constant). Then the
sequence defined by an = rn satisfies (∗) if and only if r satisfies
the equation

rk − c1 r
k−1 − c2 r

k−2 − · · · − ck−1r − ck = 0 (CE )

called the characteristic equation (CE) of the recurrence relation
(∗). The solutions of (CE) are the characteristic roots.



Theorem 3: Let c1, c2, . . . , ck ∈ R. Assume that the characteristic
equation rk − c1 r

k−1 − c2 r
k−2 − . . . − ck−1 r − ck = 0 has k

different roots r1, r2, . . . , rk . Then the solutions of
an = c1 an−1 + c2 an−2 + . . .+ ck an−k are precisely the sequences
an = b1 r

n
1 + . . .+ bk r

n
k , where b1, . . . , bk are constants.

Special case: When k = 2, the recurrence relation is
an = c1 an−1 + c2 an−2, and its associated characteristic equation
is r2 − c1 r − c2 = 0.

In this case, Theorem 3 specializes to the following:

Theorem 1: Let c1, c2 ∈ R. Assume that the equation
r2 − c1 r − c2 = 0 has two different roots r1 and r2. Then the
solutions of an = c1 an−1 + c2 an−2 are precisely the sequences
an = b rn1 + d rn2 , where b and d are constants.



Theorem 4 deals with the general situation of multiple roots.
For example, if the characteristic equation (CE) consists of a
polynomial of degree 6 and factors to

(r − 2)3(r − 3.2)2(r + 4) = 0 ,

then the characteristic roots are 2, 2, 2, 3.2, 3.2, and −4.

We say that there are 6 real roots but only 3 distinct real roots.
We can label them r1 = 2, r2 = 3.2, and r3 = −4.

For each i , we write mi to denote the multiplicity of the root ri ,
which is the number of times that ri occurs as a root in the
characteristic equation.
In this example, m1 = 3, m2 = 2, and m3 = 1.



Theorem 4: Let c1, c2, . . . , ck ∈ R. Assume that the characteristic
equation rk − c1 r

k−1 − c2 r
k−2 − . . .− ck−1 r − ck = 0 has k real

roots, but only t distinct roots r1, r2, . . . , rt . For i = 1, . . . t, let mi

be the multiplicity of the root ri .
(Note:

∑t
i=1mi = k because there are k real roots.)

Then the solutions of an = c1 an−1 + c2 an−2 + . . .+ ck an−k are
precisely the sequences an = pi(n) r

n
1 + . . .+ pt(n) r

n
t , where pi is a

polynomial of degree at most mi − 1.

Special case: For k = 2, the recurrence relation is
an = c1 an−1 + c2 an−2. If its associated characteristic equation
r2 − c1 r − c2 = 0 has only one real root, then in Theorem 4 we
have t = 1 and m1 = 2, and we get the following:

Theorem 2: Let c1, c2 ∈ R. Assume that the equation
r2 − c1 r − c2 = 0 has only one real root r1. Then the solutions of
an = c1 an−1 + c2 an−2 are precisely the sequences
an = (b n + d) rn1 , where b and d are constants.



8.2.3: Solving Linear Nonhomogeneous Recurrence Relations

with Constant Coefficients

Now we focus on relations of the form

an = c1 an−1 + c2 an−2 + · · · + ck an−k +F (n) (∗F )

where the function F is not identically 0.

E.g. (i) sn = 1.05 sn−1 − 70 (recall Example C)

(ii) an = 5 an−1 − 6 an−2 + n2

Removing the F (n) term from (∗F ) produces the associated
homogeneous recurrence relation

an = c1 an−1 + c2 an−2 + · · · + ck an−k (∗H )

E.g. for (i), we get sn = 1.05 sn−1 (∗H)
For (ii), we get an = 5 an−1 − 6 an−2 (∗H).



an = c1 an−1 + c2 an−2 + · · · + ck an−k +F (n) (∗F )
an = c1 an−1 + c2 an−2 + · · · + ck an−k (∗H)

Theorem 5: Let {a(p)n } be any one particular solution of (∗F ).
Then every solution of (∗F ) is of the form a

(p)
n + a

(h)
n where a

(h)
n is

a solution of (∗H).
E.g. In Example (C), we found the the value sn of Sandra’s
investments after n years (in thousands of dollars) satisfies

s0 = 500 and sn = 1.05 sn−1 − 70 (∗F ) for n ≥ 1.

The associated homogeneous recurrence (∗H) is sn = 1.05 sn−1,

and its most general solution is s
(h)
n = b(1.05)n (for any real

constant b).

Now we need to find just one particular solution to (∗F ). In the
previous class, we made an educated guess. But more generally, we
can use Theorem 6 instead of guessing.



Theorem 6: Consider the recurrence relation

an = c1 an−1 + c2 an−2 + · · · + ck an−k +F (n) (∗F )

where F has the specific form

F (n) = (bJn
J + bJ−1n

J−1 + . . . + b1n + b0) s
n

for bJ , . . . , b0, s ∈ R (that is, a polynomial of degree J in n, times
a constant to the power n). Then there is a particular solution of
(∗F ) of the form

a
(p)
n = nM(dJn

J + dJ−1n
J−1 + . . .+ d1n+ d0) s

n

where dJ , . . . , d0 ∈ R and

M =

{

mi if s equals the characteristic root ri
0 if s is not a characteristic root



Theorem 6: (rewritten) Consider the recurrence relation

an = c1 an−1 + c2 an−2 + · · · + ck an−k +F (n) (∗F )

where F (n) = (bJn
J + bJ−1n

J−1 + . . .+ b1n + b0) s
n

for bJ , . . . , b0, s ∈ R. Then (∗F ) has a particular solution

a
(p)
n = nM(dJn

J + dJ−1n
J−1 + . . .+ d1n + d0) s

n
, where

dJ , . . . , d0 ∈ R, and M =

{

mi if s = ri (a characteristic root)
0 if s is not a characteristic root

For sn = 1.05 sn−1 − 70 as our (∗F ), we have
F (n) = −70 = (−70) 1n (notice s = 1 and J = 0).
Since 1 is not a characteristic root of r − 1.05 = 0, we are in the
case M = 0.
So there is a particular solution a

(p)
n = n0(d0)1

n, i.e. a
(p)
n = d0 (a

constant solution).

Solve d0 = 1.05 d0 − 70 to get d0 =
70
0.05 = 1400, i.e. a

(p)
n = 1400.



sn = 1.05 sn−1 − 70 (n ≥ 1) (∗F )
sn = 1.05 sn−1 (n ≥ 1) (∗H)

Thus we have found a particular solution for (∗F ), a(p)n = 1400;

and we know the general solution for (∗H), a(h)n = b(1.05)n (for
any b ∈ R).

So by Theorem 5, the general solution for (∗F ) is

s
(p)
n + s

(h)
n = 1400 + b(1.05)n .

Now we bring in the initial condition to find out what b is.

We were told that s0 = 500, so we have

500 = s0 = 1400 + b (1.05)0 = 1400 + b .

Therefore b = −900, and the solution for the complete problem is
sn = 1400 − 900 (1.05)n (n ≥ 0).



Next, consider the example

(ii) an = 5 an−1 − 6 an−2 + n2 (∗F )

We examined the associated homogeneous recurrence relation

an = 5 an−1 − 6 an−2 (∗H)

in Example D in our previous class. The roots of the characteristic
equation are 3 and 2, and the general solution of (∗H) is

a
(h)
n = b 3n + d 2n for any real b and d .

Theorem 6 helps us find a particular solution of (∗F ).



Theorem 6: Consider the recurrence relation

an = c1 an−1 + c2 an−2 + · · · + ck an−k +F (n) (∗F )

where F (n) = (bJn
J + bJ−1n

J−1 + . . .+ b1n + b0) s
n

for bJ , . . . , b0, s ∈ R. Then (∗F ) has a particular solution

a
(p)
n = nM(dJn

J + dJ−1n
J−1 + . . .+ d1n + d0) s

n
, where

dJ , . . . , d0 ∈ R, and M =

{

mi if s = ri (a characteristic root)
0 if s is not a characteristic root

For our example an = 5 an−1 − 6 an−2 + n2, we have
F (n) = n2 = (1 · n2 + 0n + 0) 1n (notice s = 1).
The characteristic roots are 3 and 2, so we are in the case M = 0.

So the form of the particular solution is

a
(p)
n = n0(d2 n

2 + d1 n + d0) 1
n = d2 n

2 + d1 n + d0.

Now what? Here is a rapid description of how to find d0, d1, and
d2, just to show you that it can be done if you really need to!



The form of the particular solution is

a
(p)
n = n0(d2 n

2 + d1 n + d0) 1
n = d2 n

2 + d1 n + d0.

We can find the values of d2, d1, and d0 by plugging into the
recurrence equation an = 5 an−1 − 6 an−2 + n2:

d2 n
2 + d1 n + d0 = 5[d2 (n − 1)2 + d1 (n − 1) + d0]

−6[d2 (n − 2)2 + d1 (n − 2) + d0] + n2 .

Method 1: Plug in some values of n, say n = 0, 1, 2:

n = 0 : 0 + 0 + d0 = 5[d2(−1)2 + d1(−1) + d0]

−6[d2(−2)2 + d1(−2) + d0] + 02

that is, d0 = 5[d2 − d1 + d0]− 6[4d2 − 2d1 + d0]

n = 1 : d2 + d1 + d0 = 5[d2(0) + d1(0) + d0]

−6[d2(−1)2 + d1(−1) + d0] + 12

n = 2 : 4d2 + 2d1 + d0 = 5[d2(1)
2 + d1(1) + d0]

−6[d2(0)
2 + d1(0) + d0] + 22

This gives three linear equations in the three unknowns, which can
be solved for d0, d1, and d2.



d2 n
2 + d1 n + d0 = 5[d2 (n − 1)2 + d1 (n − 1) + d0]

−6[d2 (n − 2)2 + d1 (n − 2) + d0] + n2 .

Method 2: Expand the expression and match coefficients of n2, n1,
and n0.

d2 n
2 + d1 n + d0 = 5[d2 (n

2 − 2n + 1) + d1 (n − 1) + d0]

−6[d2 (n
2 − 4n + 4) + d1 (n − 2) + d0] + n2

= n2[5d2 − 6d2 + 1] +

n [5(−2d2 + d1)− 6((−4)d2 + d1)] +

5[d2 − d1 + d0]− 6[(−4)d2 − 2d1 + d0] .

∴ d2 = 5d2 − 6d2 + 1

d1 = 5(−2d2 + d1)− 6((−4)d2 + d1)

d0 = 5[d2 − d1 + d0]− 6[(−4)d2 − 2d1 + d0] .

Again, we can solve these equations for d0, d1, and d2.



After some coffee, we get d2 =
1
2 , d1 =

7
2 , and d0 =

15
2 .

So our particular solution is

a
(p)
n = d2 n

2 + d1 n+ d0 =
1

2
n2 +

7

2
n +

15

2
.

Note that the initial conditions play no role in determining the di
coefficients of the particular solution.
So the general solution of an = 5 an−1 − 6 an−2 + n2 is

an = a
(h)
n + a

(p)
n = b 3n + d 2n +

1

2
n2 +

7

2
n +

15

2
.

Now we can use the initial conditions (a0 and a1) to evaluate b and
d via a system of two linear equations in the unknowns b and d .



Theorem 6: Consider the recurrence relation

an = c1 an−1 + c2 an−2 + · · · + ck an−k +F (n) (∗F )
where F (n) = (bJn

J + bJ−1n
J−1 + . . .+ b1n + b0) s

n

for bJ , . . . , b0, s ∈ R. Then (∗F ) has a particular solution

a
(p)
n = nM(dJn

J + dJ−1n
J−1 + . . .+ d1n + d0) s

n
, where

dJ , . . . , d0 ∈ R, and M =

{

mi if s = ri (a characteristic root)
0 if s is not a characteristic root

For a slightly different example, if the recurrence relation is

an = 5 an−1 − 6 an−2 + n2 2n,

then we have F (n) = n2 2n = (1 · n2 + 0n + 0) 2n.

Here we have s = 2. Recall that the roots of the characteristic
equation are 3 and 2, each with multiplicity 1. Therefore M = 1,
and the form of the particular solution is

a
(p)
n = n (d2 n

2 + d1 n+ d0) 2
n
.

Now we can proceed as before.



Sections 9.1 and 9.5: Relations

This section also discusses the concept of a relation from one set

to another set.

Examples:
(1) “speaks” is a relation from the set of people to the set of

languages (we interpret this as “speaks fluently“)
E.g. Justin Trudeau speaks English
Andrés Manuel López Obrador speaks Spanish
Justin Trudeau speaks French

The relation “speaks” can be viewed as a set of ordered pairs:

{ (Trudeau, English), (López Obrador, Spanish),
(Trudeau, French), (O Scholz, German), (R Sunak, English),
(R Sunak, Punjabi), . . . }

⊆ { people } × { languages }

(2) “is greater than” is a relation from R to R. E.g.
√
5 > −1.7 ;

19 > π ; −4 6> 2.311 (i.e. ¬ − 4 > 2.311)



Definition: (Section 9.1.1) Let A and B be sets. A relation R

from A to B is a subset of A× B.

We write xRy to mean that x is related by R to y , i.e. that
(x , y) ∈ R .

When A and B are the same set, we often say that “R is a relation
on A” rather than “R is a relation from A to A.” (E.g., “is greater
than” is a relation on R.) In this case, R is a subset of A× A.

Usually, we think of a relation in terms of some kind of rule or
condition that you can check for a given x and y (e.g., ”is greater
than”, ”speaks”).
E.g., for “speaks”: Is (Scholz, English) on the list of all pairs that
define this relation? Ask Google; . . . apparently, yes.
[So is (Sunak, Hindi), but not (López Obrador, English).]



Since a relation R from A to B is a subset of A× B , we can think
it visually as a graph.
For example, for the relation “speaks“ from the set of people to
the set of languages:

Trudeau Sunak Scholz López

Obrador

English

French

German

Punjabi

Spanish

x

x

x

x

x

x

x

{languages}

{people}



Another example: For the relation “greater than“ from R to R:
(x > y)

0 1 2−1−2
0

−1

−2

1

2



Now we’ll just consider relations on a set (i.e., from a set to itself.)

Examples: (3) “divides” on Z: m divides n if m 6= 0 and n
m

∈ Z.

(4) “speaks a language in common with”: write the relation as LC :
Trrudea LC Scholz, Trudeau LC Sunak,
but ¬ (Trudeau LC López Obrador) .

(5) 2x3 + y2 = 3xy . This equation defines a relation E on R by
saying that xEy if and only if x and y satisfy this equation. That
is, thinking of a relation on R as a set of ordered pairs of real
numbers, we have

E = {(x , y) ∈ R× R | 2x3 + y2 = 3xy } .

The graph of this relation is a curve in the xy -plane.

E.g. Is it true that 1E2, i.e. that (1, 2) ∈ E ? Check the equation:
2(13) + (22) = 6 and 3(1)(2) = 6. That is, (1, 2) is a point on
this curve. Therefore 1E2.
Some other pairs in relation E : (0,0), (1,1), (-2,2), (-2,-8), (58 ,

5
16 ).



A function is a special kind of relation. (Ses Subsection 9.1.2)

Let R be a relation from the set A to the set B .
When does R correspond to a function from A to B?

Answer: This happens if and only if the following is true:
For every x in A, there exists a unique y in B such that xRy (i.e.,
such that (x , y) ∈ R).



Here are three properties that a relation on a set could have:

• Reflexive • Symmetric • Transitive

Definition: The relation R on A is symmetric if

∀x ∀y (xRy → yRx) .

Which of the following relations are symmetric?
“Less than”: < on R: No
“Equals”: = (on any set): Yes

Poll: Which if these is (are) NOT symmetric?

(A) “Not equal”: 6= (on any set)
(B) “Speaks a common language with“
(C) “Has the same length” on a set of strings Σ∗

(D) “divides”: x |y on Z
+

(E) “Born in same country as“ on the set of people

Answer: ????

Remark : If R is symmetric, then ∀x ∀y (xRy ↔ yRx).



Next class: Read the rest of Section 9.1 and 9.5.

Homework updates:
• Problem Set C is due Thursday November 16.
• Homework assignment 6 (in Connect) is due Sunday March 12.


