EECS/MATH 1019 Section 8.2: Solving Linear Recurrence Relations

March 7, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Section 8.2 gives some recipes for finding solutions to some special kinds of recurrence relations, namely linear recurrence relations with constant coefficients. Some examples are

$$f_n = f_{n-1} + f_{n-2}$$

and $g_n = 6 g_{n-1} - 7 g_{n-2} + 3.2 g_{n-4}$ and $h_n = 1.6 h_{n-1} + h_{n-2} - 13 h_{n-3} + n^2 - 5$.

These are all of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + F(n)$$

where F is any function, the "coefficients" c_1, \ldots, c_k are real constants (i.e., cannot depend on n), and k is the "degree" (assuming $c_k \neq 0$; note that the other c_i 's could be 0, such as c_3 in the recursion for g_n). The relation is homogeneous if F(n) = 0 for every n. (As for $\{f_n\}$ and $\{g_n\}$ above.)

8.2.1: Solving Linear Homogeneous Recurrence Relations with Constant Coefficients

That is, we focus on relations of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}.$$
 (*)

<u>Observation 1:</u> Let r be a real number (constant). Then the sequence defined by $a_n = r^n$ satisfies (*) if and only if

$$r^{n} = c_{1} r^{n-1} + c_{2} r^{n-2} + \dots + c_{k} r^{n-k} \text{ Divide by } r^{n-k}:$$

$$\leftrightarrow \frac{r^{n}}{r^{n-k}} = c_{1} \frac{r^{n-1}}{r^{n-k}} + c_{2} \frac{r^{n-2}}{r^{n-k}} + \dots + c_{k} \frac{r^{n-k}}{r^{n-k}}$$

$$r^{k} = c_{1} r^{k-1} + c_{2} r^{k-2} + \dots + c_{k} r^{0}$$

that is, if and only if r satisfies the equation

$$r^{k} - c_{1}r^{k-1} - c_{2}r^{k-2} - \cdots - c_{k-1}r - c_{k} = 0$$
 (CE)

called the characteristic equation (CE) of the recurrence relation (*). The solutions of (CE) are the characteristic roots.

 $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}.$ (*)

<u>Observation 2.1:</u> If the sequence u_n is a solution of (*), and b is a real number, then the sequence $b u_n$ is also a solution of (*). Observation 2.2: If the sequences u_n and v_n are two solutions of

(*), then the sequence $u_n + v_n$ is also a solution of (*).

<u>Observation 2.3</u>: **Corollary:** If the sequences s_n and t_n are two solutions of (*), and *b* and *d* are real numbers, then $b s_n + d t_n$ is also a solution of (*).

See p. 541 for justification of the above.

We now look at the case k = 2 of (*), i.e. $a_n = c_1 a_{n-1} + c_2 a_{n-2}$, and its associated characteristic equation $r^2 - c_1 r - c_2 = 0$.

Theorem 1: Let $c_1, c_2 \in \mathbb{R}$. Assume that the equation $r^2 - c_1 r - c_2 = 0$ has two different roots r_1 and r_2 . Then the solutions of $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ are precisely the sequences $a_n = b r_1^n + d r_2^n$, where *b* and *d* are constants. (See p. 542 for the proof.)

Theorem 1: Let $c_1, c_2 \in \mathbb{R}$. Assume that the equation $r^2 - c_1 r - c_2 = 0$ has two different roots r_1 and r_2 . Then the solutions of $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ are precisely the sequences $a_n = b r_1^n + d r_2^n$, where *b* and *d* are constants.

Example D: Find the solution of

$$a_0 = 2$$
, $a_1 = 9$, and $a_n = 5 a_{n-1} - 6 a_{n-2}$ for $n \ge 2$.

Apply Theorem 1. The characteristic equation is $r^2 - 5r + 6 = 0$, Factoring this as (r-3)(r-2) = 0, we see that its roots are $r_1 = 3$ and $r_2 = 2$. So the solution must be $a_n = b 3^n + d 2^n$ for some b and d. Now what? Use the initial conditions to find b and d.

$$2 = a_0 = b 3^0 + d 2^0$$
 and $9 = a_1 = b 3^1 + d 2^1$.

That is, solve 2 = b + d and 9 = 3b + 2d.

We can solve this and obtain b = 5 and d = -3. (Always check!) So the solution is $a_n = 5 \cdot 3^n - 3 \cdot 2^n$. See also Example 4 on pages 543–544, which solve the Fibonacci recurrence relation

$$f_0 = 0, \quad f_1 = 1, \quad \text{and} \quad f_n = f_{n-1} + f_{n-2} \quad \text{for } n \ge 2.$$

The characteristic equation is $r^2 - r - 1 = 0$, with characteristic roots $\frac{1+\sqrt{5}}{2}$ and $\frac{1-\sqrt{5}}{2}$.

The resulting formula is

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

Remarks: Some things to think about:

1. Is it surprising that this formula for f_n always produces an integer value?

2. If you had to evaluate f_{100} , would you use this exact formula or would you apply the recurrence relation 99 times?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We have been using

Theorem 1: Let $c_1, c_2 \in \mathbb{R}$. Assume that the equation $r^2 - c_1 r - c_2 = 0$ has two different roots r_1 and r_2 . Then the solutions of $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ are precisely the sequences $a_n = b r_1^n + d r_2^n$, where b and d are constants.

What if there is only one root?

Theorem 2: Let $c_1, c_2 \in \mathbb{R}$. Assume that the equation $r^2 - c_1 r - c_2 = 0$ has only one real root r_0 . Then the solutions of $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ are precisely the sequences $a_n = (b n + d) r_0^n$, where b and d are constants.

Theorem 2: Let $c_1, c_2 \in \mathbb{R}$. Assume that the equation $r^2 - c_1 r - c_2 = 0$ has only one real root r_0 . Then the solutions of $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ are precisely the sequences $a_n = (b n + d) r_0^n$, where b and d are constants.

Example E: Find the solution of

 $a_0 = 2$, $a_1 = 10$, and $a_n = 4 a_{n-1} - 4 a_{n-2}$ for $n \ge 2$.

The characteristic equation is $r^2 - 4r + 4 = 0$. Factoring this as $(r-2)^2 = 0$, we see that it has only one root, $r_0 = 2$. So the solution must be $a_n = (bn + d)2^n$ for some b and d. Now use the initial conditions to find b and d.

 $2 = a_0 = (b(0) + d) 2^0$ and $10 = a_1 = (b(1) + d) 2^1$.

That is, solve 2 = d and 10 = 2b + 2d.

We can solve this and obtain d = 2 and b = 3. So the solution is $a_n = (3n + 2)2^n$. When the degree is not necessarily 2, we have two theorems that generalize Theorems 1 and 2.

Theorem 3: Let $c_1, c_2, \ldots, c_k \in \mathbb{R}$. Assume that the characteristic equation $r^{k} - c_{1} r^{k-1} - c_{2} r^{k-2} - \ldots - c_{k-1} r - c_{k} = 0$ has k different roots r_1, r_2, \ldots, r_k . Then the solutions of $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$ are precisely the sequences $a_n = b_1 r_1^n + \ldots + b_k r_k^n$, where b_1, \ldots, b_k are constants. Example F: Find the solution of $a_0=2$, $a_1=14$, $a_2=14$ and $a_n = -a_{n-1}+4a_{n-2}+4a_{n-3}$ (n > 3). Apply Theorem 3. The characteristic equation is $r^{3} + r^{2} - 4r - 4 = 0$. Factoring this as $(r + 1)(r^{2} - 4) = 0$, we see that it has three roots: 2, -2, and -1. Solution: $a_n = b_1 2^n + b_2 (-2)^n + b_3 (-1)^n$ for some b_1, b_2, b_3 . Now use the initial conditions to find b_1 , b_2 , and b_3 .

$$2 = a_0 = b_1 2^0 + b_2 (-2)^0 + b_3 (-1)^0 = b_1 + b_2 + b_3$$

$$14 = a_1 = b_1 2^1 + b_2 (-2)^1 + b_3 (-1)^1 = 2b_1 - 2b_2 - b_3$$

$$14 = a_2 = b_1 2^2 + b_2 (-2)^2 + b_3 (-1)^2 = 4b_1 + 4b_2 + b_3.$$

Solve this system of equations:

$$\begin{array}{cccc} 2 & = & b_1 + b_2 + b_3 \\ 14 & = & 2b_1 - 2b_2 - b_3 \\ 14 & = & 4b_1 + 4b_2 + b_3 \end{array} \right\} \begin{array}{cccc} b_1 & = & 5 \\ & \Longrightarrow & b_2 & = & -1 \\ & & b_3 & = & -2 \end{array}$$

Plugging this back into $a_n = b_1 2^n + b_2 (-2)^n + b_3 (-1)^n$, we find that the solution to

$$a_0=2, a_1=14, a_2=14 \text{ and } a_n=-a_{n-1}+4a_{n-2}+4a_{n-3} \ (n\geq 3).$$

is
$$a_n = 5(2^n) - (-2)^n - 2(-1)^n$$
 $(n = 0, 1, 2, ...).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The fourth theorem deals with the general situation of multiple roots.

For example, if the characteristic equation (CE) consists of polynomial of degree 6 and factors to

$$(r-2)^3(r-3.2)^2(r+4) = 0,$$

then the characteristic roots are 2, 2, 2, 3.2, 3.2, and -4. We say that there are 6 real roots but only 3 <u>distinct</u> real roots. We can label them $r_1 = 2$, $r_2 = 3.2$, and $r_3 = -4$. (The order doesn't matter, as long as we declare one particular order and then always use it.)

For each *i*, we write m_i to denote the <u>multiplicity</u> of the root r_i , which is the number of times that r_i occurs as a root in the characteristic equation.

In this example, $m_1 = 3$, $m_2 = 2$, and $m_3 = 1$.

Observe that $m_1 + m_2 + m_3$ must equal the number of roots of the characteristic equation, which is 6 in this example.

Theorem 4: Let $c_1, c_2, \ldots, c_k \in \mathbb{R}$. Assume that the characteristic equation $r^k - c_1 r^{k-1} - c_2 r^{k-2} - \ldots - c_{k-1} r - c_k = 0$ has k real roots, but only t distinct roots r_1, r_2, \ldots, r_t . For $i = 1, \ldots t$, let m_i be the multiplicity of the root r_i . (*Note:* $\sum_{i=1}^t m_i = k$ because there are k real roots.) Then the solutions of $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}$ are precisely the sequences $a_n = p_i(n) r_1^n + \ldots + p_t(n) r_t^n$, where p_i is a polynomial of degree at most $m_i - 1$.

For our previous example in which the characteristic equation factors to $(r-2)^3(r-3.2)^2(r+4) = 0$, the solution of the recurrence relation must have the form

$$a_n = (b_{1,0} + b_{1,1}n + b_{1,2}n^2)(2^n) + (b_{2,0} + b_{2,1}n)(3.2)^n + b_{3,0}(-4)^n$$

where each $b_{i,j}$ is a real constant. The values of the $b_{i,j}$'s are determined by the six equations of the initial conditions (typically values of a_0 , a_1 , a_2 , a_3 , a_4 , and a_5 , since this is a recurrence relation of degree 6). See text for examples.

8.2.3: Solving Linear Nonhomogeneous Recurrence Relations with Constant Coefficients

Now we focus on relations of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k} + F(n)$$
 (*_F)

where the function F is not identically 0.

E.g. (i)
$$s_n = 1.05 s_{n-1} - 70$$
 (recall Example C)
(ii) $a_n = 5 a_{n-1} - 6 a_{n-2} + n^2$

Removing the F(n) term from $(*_F)$ produces the associated homogeneous recurrence relation

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$$
 (*_H)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

E.g. for (i), we get
$$s_n = 1.05 s_{n-1}$$
 (**H*)
For (ii), we get $a_n = 5 a_{n-1} - 6 a_{n-2}$ (**H*).

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + F(n) \quad (*_F)$$

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} \quad (*_H)$$

Theorem 5: Let $\{a_n^{(p)}\}$ be any one particular solution of $(*_F)$. Then *every* solution of $(*_F)$ is of the form $a_n^{(p)} + a_n^{(h)}$ where $a_n^{(h)}$ is a solution of $(*_H)$.

E.g. In Example (C), we found the the value s_n of Sandra's investments after n years (in thousands of dollars) satisfies

$$s_0 = 500$$
 and $s_n = 1.05 s_{n-1} - 70$ (*_F) for $n \ge 1$.

The associated homogeneous recurrence $(*_H)$ is $s_n = 1.05 s_{n-1}$. **Poll:** The most general form of the solution of $(*_H)$ is (A) $s_n = (1.05)^n$ (B) $s_n = b(1.05)^n$ for any real constant b (C) $s_n = 1.05 n$ (D) $s_n = b(1.05)^n + d$ for any real b and d <u>Answer:</u> ????

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + F(n) \quad (*_F)$$

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} \quad (*_H)$$

Theorem 5: Let $\{a_n^{(p)}\}$ be any one particular solution of $(*_F)$. Then *every* solution of $(*_F)$ is of the form $a_n^{(p)} + a_n^{(h)}$ where $a_n^{(h)}$ is a solution of $(*_H)$.

 $s_0 = 500$ and $s_n = 1.05 s_{n-1} - 70$ (*_F) for $n \ge 1$.

We need to find one particular solution of $(*_F)$. Idea/Guess: How much money would Sandra need for her investment total to stay constant each year? We have $s_0 = s_1 \iff s_0 = 1.05 s_0 - 70$ $\Leftrightarrow 70 = 0.05s_0 \iff s_0 = 70/0.05 = 1400.$

So a particular solution of $(*_F)$ is $s_n^{(P)} = 1400$ for every *n*. From the previous slide, $a_n^{(h)} = b(1.05)^n$ for some real *b*. By Theorem 5, the solution of $(*_F)$ with $s_0 = 500$ must be of the form $s_n = b(1.05)^n + 1400$. To find *b*, solve $500 = s_0 = b(1.05)^0 + 1400 = b + 1400$. $\therefore b = 500 - 1400 = -900$. Solution: $s_n = 1400 - 900(1.05)^n$. Next class: We will finish Section 8.2 and begin Section 9.1. (The only sections of Chapter 9 that will do are 9.1 and 9.5.)

Homework updates:

• Homework assignment 6 (in Connect) is due Sunday March 12.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Problem Set C is due Thursday March 16.