
EECS/MATH 1019
Section 5.3 (concluded): Structural Induction
Section 8.1: Recurrence Relations — Part I

March 2, 2023

Recap of Recursively Defined Sets and Structures (sec. 5.3.3)

Examples from previous class:

Example T: Consider the set T that is defined by the following
rules:

(i) Basis step: 1 ∈ T .
(ii) Recursive step: If x ∈ T , then x + 2 ∈ T .

(We always implicitly assume (iii): Our set has no other elements
besides those that can be obtained through steps (i) and (ii).)

1 ∈ T , therefore 1 + 2 ∈ T , i.e. 3 ∈ T ;
and therefore 3 + 2 ∈ T , i.e. 5 ∈ T ;
and therefore 5 + 2 ∈ T , i.e. 7 ∈ T ;
and so on . . .

We can see that T is the set of odd positive integers.

Example V: Consider the set V that is defined by the following
rules:

(i) Basis step: 1 ∈ V .
(ii) Recursive step: If x ∈ V , then x + 2 ∈ V and x − 2 ∈ V .

1 ∈ V ; therefore taking x = 1 in step (ii), we see that
1 + 2 ∈ V and 1− 2 ∈ V , i.e. 3 ∈ V and −1 ∈ V .

Now we can take x to be 3 or −1 in step (ii).
Taking x = 3 first, we see that
3 + 2 ∈ V and 3− 2 ∈ V , i.e. 5 ∈ V and 1 ∈ V ;
taking x = −1 next, we see that
−1 + 2 ∈ V and −1− 2 ∈ V , i.e. 1 ∈ V and −3 ∈ V .

Now the new possibilities for x are 5 and −3.
So V contains 5 + 2, 5− 2, −3 + 2, and −3− 2.

Now the new possibilities for x are 7 and −5. And so on. . .

We see that V is the set of all odd integers (positive and negative).

Example W:

(i) Basis step: 3 ∈W .
(ii) Recursive step: If x ∈W , then x + 12 ∈W and x − 4 ∈W .

3 ∈W ; therefore taking x = 3 in step (ii), we see that
3 + 12 ∈W and 3− 4 ∈W , i.e. 15 ∈W and −1 ∈W .

Now we can take x to be 15 or −1 in step (ii).
Taking x = 15 first, we see that
15 + 12 ∈W and 15− 4 ∈W , i.e. 27 ∈W and 11 ∈W ;
taking x = −1 next, we see that
−1 + 12 ∈W and −1− 4 ∈W , i.e. 11 ∈W and −5 ∈W .

Now the new possibilities for x are 27, 11 and −5.
So W contains 27 + 12, 27− 4, 11 + 12, 11− 4, −5 + 12 and
−5− 4.

Now the new possibilities for x are 39, 23, 7, and −9. And so
on. . .

It may not be so clear yet exactly what the set W is. For example,
is 1 an element of W ? We now introduce a method called
structural induction that lets us prove some things about W .

Structural Induction (subsection 5.3.4)
To prove that a statement P(x) is true for every element x of a
recursively defined set:

(i ’) Show that P(x) is true for each element x specified in the
basis step; and
(ii ’) Show that if P(x) is true for each element x used to define a
new element y in the recursive step, then P(y) is true.

Example W:

(i) Basis step: 3 ∈W .
(ii) Recursive step: If x ∈W , then x + 12 ∈ V and x − 4 ∈W .

We have seen that the set W contains -9, -5, -1, 3, 7, 11, 15, 23,
27, and 39 (and infinitely many more elements!)
We shall prove that every element of W is 3 more than a multiple
of 4. That is, every element of W is of the form 3 + 4m for some
integer m.

Let P(x) be the statement “x = 3 + 4m for some integer m.”
Then P(3) is true (3 = 3 + 4× 0), as is P(7) (7 = 3 + 4× 1),
P(39) (39 = 3 + 4× 9), P(−9) (−9 = 3 + 4× (−3)), etc.

(i) Basis step: 3 ∈W .
(ii) Recursive step: If x ∈W , then x + 12 ∈W and x − 4 ∈W .

Let P(x) be the statement x = 3 + 4m for some integer m.

The steps for structural induction:

(i ’) Show that P(x) is true for each element x specified in the
basis step; and
(ii ’) Show that if P(x) is true for each element x used to define a
new element y in the recursive step, then P(y) is true.

For (i ’): Show that P(3) is true. DONE.

For (ii ’): Assume that x ∈W and P(x) is true, and show that
P(x + 12) and P(x − 4) are true.

So assume x ∈W and x = 3 + 4m for some integer m.
Then x + 12 = (3 + 4m) + 12 = 3 + 4m + 4(3) = 3 + 4(m + 3).
And m + 3 is an integer, so P(x + 12) is true.

Similarly, x − 4 = (3+4m)− 4 = 3+4m + 4(−1) = 3 + 4(m− 1).
And m − 1 is an integer, so P(x − 4) is true.

So step (ii ’) is DONE.
We conclude that P(x) is true for every x in W .

Our next example involves strings. Recall from last class:

Let Σ be a set (usually finite). A string over Σ is a finite sequence
of elements of Σ. (Order matters!)

E.g. if Σ = {a, b, c , d}, then some strings over Σ are abdba, and
baadb, and cccacaac , and d , and aaa.

The number of symbols in a string is its length.

We call Σ the alphabet, and we call its elements symbols or
characters.

The empty string is a string with no symbols; we denote it by λ.
The length of λ is 0.

If s and t are strings over Σ, then their concatenation st is the
string obtained by writing t immediately to the right of s.

E.g. For Σ = {a, b, c , d}: Let s = dabbd and t = cca.
Then st = dabbdcca and ts = ccadabbd .

For any string w , we have wλ = λw = w .

The set of all strings over Σ is denoted Σ∗. It is defined recursively
by
(i) Basis step: λ ∈ Σ∗.
(ii) Recursive step: If w ∈ Σ∗ and x ∈ Σ, then wx ∈ Σ∗.

Example: For Σ = {a, b, c , d}, we see that Σ∗ contains λa, λb, λc ,
and λd , which equal a, b, c , and d respectively.
Taking w = a, we see that Σ∗ contains aa, ab, ac, and ad .
Taking w = b, we see that Σ∗ contains ba, bb, bc, and bd .
Similarly, Σ∗ contains ca, cb, cc , cd , da, db, dc , and dd .

Taking w = aa, we see that Σ∗ contains aaa, aab, aac, and aad .
Taking w = ab, we see that Σ∗ contains aba, abb, abc, and abd .
And so on. . .

Example: A binary string is a string over the alphabet {0, 1}.
Then {0, 1}∗ is the set of all binary strings.

Example: In the previous class, we saw this recursive definition of a
particular subset E of bit strings.
(i) Basis step: λ ∈ E .
(ii) Recursive step: If w ∈ E , then w1 ∈ E , 1w ∈ E , and 0w0 ∈ E .

So E contains λ, as well as the following strings:
(Taking w to be λ:) λ1, 1λ, and 0λ0; that is, 1 and 00;
(Taking w to be 1:) 11, 11, and 010; that is, 11 and 010;
and
(taking w to be 00:) 001, 100, and 0000; that is, 001, 100, and
0000;
and so on. . .

Question: Is 10111101110 in E?
We claim it is not, because every string in E must have an even
number of 0’s.
We shall prove this using Structural Induction.

(i) Basis step: λ ∈ E .
(ii) Recursive step: If w ∈ E , then w1 ∈ E , 1w ∈ E , and 0w0 ∈ E .

For a bit string x , let P(x) be the statement x has an even number
of 0’s.

To use structural induction to prove that P(x) is true for every x
in E , we need to:

(i ’) Show that P(x) is true for each x in the basis step; and
(ii ’) Show that if P(x) is true for each x used to define a new
element y in the recursive step, then P(y) is true.

For (i ’): Show that P(λ) is true. The number of 0’s in λ (the
empty string) is 0, which is even. DONE.

For (ii ’): Let w ∈ E , and assume that P(w) is true. That is, let z
be the number of zeroes in w , and assume that z is even. Then:
the number of 0’s in w1 is z , which is even. ∴ P(w1) is true;
the number of 0’s in 1w is z , which is even. ∴ P(1w) is true; and
the number of 0’s in 0w0 is z + 2, which is even. ∴ P(0w0) is true.
And so step (ii ’) is DONE. This completes the structural
induction. Therefore P(x) is true for every x in E .

(i) Basis step: λ ∈ E .
(ii) Recursive step: If w ∈ E , then w1 ∈ E , 1w ∈ E , and 0w0 ∈ E .

We have proved that every string in E has an even number of 0’s.

Converse question: Does every string with an even number of 0’s
have to be in E? We have not addressed this question yet.

(It turns out that the answer is yes. One way to prove it uses the
well-ordering property, as follows.
If the answer is no, then let s be a shortest possible string with an
even number of 0’s that is not in E . Since s 6∈ E , the length of s
must be at least 2. Any string of length 2 or more must have one
of the following forms: 1w1 or 1w0 or 0w1 or 0w0.
Exercise: Finish this proof.)

Section 8.1: Recurrence relations
In this text, a recurrence relation is a recursively defined sequence.

Example A: What is the number of strings of length n over an
alphabet Σ?

Recall: We can recursively define Σ∗ (the set of strings over Σ) by
(i) Basis step: λ ∈ Σ∗.
(ii) Recursive step: If w ∈ Σ∗ and x ∈ Σ, then wx ∈ Σ∗.

E.g. For Σ = {a, b, c , d}, the recursive step says that if w ∈ Σ∗,
then wa, wb, wc , and wd are all in Σ∗.

For n ∈ N, let sn be the number of strings of length n in
{a, b, c , d}∗.
Then s0 = 1 (the empty string), and we see from the recursive step
that sn = 4sn−1 for n ≥ 1 (since every string w of length n − 1
produces 4 strings of length n, which is 4sn−1 strings in total, and
they are all different (if w and u are two different strings of length
n − 1, then wx cannot equal ux)).

There is only one sequence that satisfies s0 = 1 and sn = 4sn−1 for
all n ≥ 1, and it is sn = 4n.

More generally, if the number of symbols in the alphabet Σ is L,
and sn is the number of strings of length n in Σ∗, then the
sequence {sn} satisfies the recurrence relation then

s0 = 1 and sn = L sn−1 for n ≥ 1,

which tells us that sn = Ln for every n ∈ N. That is, sn = Ln is the
unique sequence that satisfies the above recurrence relation.

Example B: Let A be the set of all bit strings that do not have any
adjacent 0’s (i.e., no 0’s next to each other).

The shortest strings in A are

Length 0: λ

Length 1: 0, 1

Length 2: 01, 10, 11

Length 3: 010, 110, 101, 011, 111

Question: How many strings of length n are in A? (Ex. 3, p. 531.)

Let bn be the number of bit strings of length n have no adjacent
0’s. What can we say about bn?
We know from above that b1 = 2, b2 = 3, b3 = 5 and b0 = 1.
What about larger values of n?

Let bn be the number of bit strings of length n have no adjacent
0’s. What can we say about bn?
We know b1 = 2 and b0 = 1. What about n ≥ 2?

Let b
(1)
n be the number of bit strings of length n that have no

adjacent 0’s, and end in 1.

Let b
(0)
n be the number of bit strings of length n that have no

adjacent 0’s, and end in 0.

Then bn = b
(1)
n + b

(0)
n for every n.

Every bit string of length n with no adjacent 0’s and ending in 1 is
of the form w1 where w has length n − 1 and has no adjacent 0’s
and has no other restrictions. Thus there is a one-to-one
correspondence between strings counted by b

(1)
n and strings

counted by bn−1. Therefore b
(1)
n = bn−1.

Every bit string of length n with no adjacent 0’s and ending in 0 is
of the form u10 where u has length n − 2 and has no adjacent 0’s

and has no other restrictions. Therefore b
(0)
n = bn−2.

Therefore bn = b
(1)
n + b

(0)
n = bn−1 + bn−2 (for n ≥ 2).

We have shown

b0 = 1, b1 = 2, and bn = bn−1 + bn−2 for all n ≥ 2.

This is the same recurrence relation for the Fibonacci numbers
{fn}, except they had different initial values: f0 = 0 and f1 = 1,
which gave f2 = 1, f3 = 2, f4 = 3,. . .

So we can relate the Fibonacci sequence to the sequence {bn} by
bn = fn+2.

So we now have an answer to our question:

The number of bit strings of length n with no adjacent 0’s is the
Fibonacci number fn+2.

Example C: Sandra is planning to retire soon. She thinks she will
have $500,000 in investments at the time of her retirement.
She expects the investments to grow by 5% each year, and she
plans to withdraw $70,000 from the investments at the end of each
year.
How much money will she have n years after she retires?

Poll: Let xn be the amount of money after n years of retirement
(in thousands of dollars).
Then x0 = 500, and for each n ≥ 1 we have

(A) xn = 0.05 xn−1 − 70

(B) xn = 0.05 xn−1 − 0.05(70)

(C) xn = xn−1 − 1.05(70)

(D) xn = 1.05 xn−1 − 70

Answer: (D). E.g. After 1 year, Sandra has
x1 = 1.05 x0 − 70 = 1.05(500)− 70 = 525− 70 = 455.
After 2 years, Sandra has
x2 = 1.05 x1 − 70 = 1.05(455)− 70 = 477.75− 70 = 407.75.

See Subsection 8.1.2 for more examples of how recurrence relations
can arise. You can omit Subsection 8.1.3, which is about
algorithms (although you should read it if you are interested!)

Next class: Read Section 8.2.

Homework updates:
• Homework assignment 5 (in Connect) is due Sunday March 5.
• Problem Set B is due Sunday March 5.

