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Background: Properties of Absolute Value
The absolute value of a real number x is the nonnegative number
|x | defined by

|x | =

{
x if x ≥ 0

−x if x < 0

E.g. | − 12| = −(−12) (since −12 < 0)
= 12 = |12|.

Properties: For x , y ∈ R,

(i) |xy | = |x | |y |.
(ii) −|x | ≤ x ≤ |x | (e.g. for x = −12, this says
−| − 12| ≤ −12 ≤ | − 12|

(iii) |x + y | ≤ |x | + |y | (“Triangle Inequality”)
(e.g. | − 12 + 5| ≤ | − 12|+ |5| = 17.

(iv) General Triangle Inequality: For real a1, a2, . . . , an, we have

|a1 + a2 + · · ·+ an| ≤ |a1|+ |a2|+ · · ·+ |an|.



Poll: Suppose w is a real number that satisfies −7 ≤ w ≤ 7.
What can we conclude?

(A) |w | = 7

(B) |w | ≤ 7

(C) |w | ≥ 7

(D) We cannot be sure of any of these.

Correct answer: ?????



Growth of Functions

How long does a computer program (or algorithm) take to run
when the size of its input goes up by a factor of 10? or 100?

For example, suppose our team has developed a mathematical
model to describe the spread of a particular disease in a
community (e.g. Covid-19, or Ebola). They write a program that

(a) seeks available data about a community (locations of homes,
schools, workplaces; family sizes; travel patterns, etc.) and then

(b) runs a series of simulations to see how the disease might
spread after one person is initially infected.

Your goal is to estimate the total number of people who will
become infected in one month.

You have tried it out for communities of 50 people, where it takes
about 5 minutes to give an estimate of the desired quantity.
How long will it take to run on a community of size 500? or
50,000? Or more?

That is, how do you expect your program to “scale up”?
We need a bit more information.



In this disease example, suppose that for a community of N
people, the program takes 5N seconds to perform part (a), and
0.0004N3 seconds to do part (b).
Let f (N) be the total running time (in seconds) of the program for
a community of size N:

f (N) = 5N + 0.0004N3 .

In particular, for N = 50, we have 5N = 250 and
0.004N3 = 0.0004× (50)3 = 0.0004×125,000= 50, so the number
of seconds needed for N = 50 is f (50) = 250 + 50 = 300, which is
5 minutes.
For N = 100:

f (100) = 5× 100 + 0.0004(100)3 = 500 + 400 = 900,

and 900 seconds is 15 minutes.

But as we see on the Excel sheet, as N gets larger, the term
0.0004N3 is much bigger than the term 5N.



Definition: Let f and g be functions with domain Z or R (or Z+ or
R+) and co-domain R. We say that f (x) is O(g(x)) if there exist
constants C and k such that

|f (x)| ≤ C |g(x)| whenever x > k .

Example: We’ll use f (x) = 5x + 0.0004x3 again (domain Z+).

We claim that f (x) is O(x3). For polynomials like f , it is often
convenient to use k = 1.
Observe that x ≤ x3 whenever x > 1 (because when x > 1, we
have 1 < x2 and x > 0, so 1 · x < x2 · x = x3).
Therefore, whenever x > 1,

|f (x)| = 5x + 0.0004x3 ≤ 5x3 + 0.0004x3 = 5.0004x3.

Therefore |f (x)| ≤ 5.0004x3 whenever x > 1.

This proves that f (x) is O(x3). (We have used C = 5.0004 and
k = 1 as our “witnesses” to this fact. We could have used C = 6
instead, since |f (x)| ≤ 6x3 whenever x > 1. For the purpose of
checking the definition, one is as good as the other.)



. . . We say that f (x) is O(g(x)) if there exist constants C and k
such that |f (x)| ≤ C |g(x)| whenever x > k .

Continue with f (x) = 5x + 0.0004x3: We saw that f (x) is O(x3).
Are the following also true for this f :

(i) f (x) is O(x) ? (ii) f (x) is O(x4) ?

Poll: (A) Only (i) is true (B) Only (ii) is true
(C) Both are true (D) Neither is true



Example: Let h(x) = −12x5 + 5x4 − 4x3 + 11x .

What can we say about h(x) being O(xn) for some n?

We can use the Triangle Inequality here:

|h(x)| = | − 12x5 + 5x4 − 4x3 + 11x |
≤ | − 12x5| + |5x4| + | − 4x3| + |11x |
= 12|x5| + 5|x4| + 4|x3| + 11|x |
≤ 12|x5| + 5|x5| + 4|x5| + 11|x5| for x > 1

= 32|x5|.

Therefore h(x) is O(x5).

In general, Theorem 1 says that every polynomial of degree n is
O(xn).



Some useful relations (p. 223–234):
(1) x is O(2x)
In fact, xp is O(bx) for every p > 0 and every base b > 1

(2) logb x is O(x) for every base b > 1

(3) bn is O(n!) for every base b > 1

Exercise: Use (2) and the identity logb(xq) = q logb(x) to prove
that logb(x) is O(

√
x)



Definition Let f and g be functions with domain Z or R (or Z+ or
R+) and co-domain R.
(i) We say that f (x) is Ω(g(x)) if there exist constants C and k
such that

|f (x)| ≥ C |g(x)| whenever x > k .

(ii) We say that f (x) is Θ(g(x)) if f (x) is both O(g(x)) and
Ω(g(x)).

Example: We have seen that x4 > x3 whenever x > 1, which tells
us that x4 is Ω(x3). (With witnesses C = 1 and k = 1)

Example: We have seen that the function f (x) = 5x + 0.0004x3 is
O(x3). Is f (x) also Ω(x3)?

This is rather obvious: f (x) = 5x + 0.0004x3 ≥ 0.0004x3

whenever x > 0. Therefore f (x) is Ω(x3), with witnesses
C = 0.0004 and k = 0.

Hence, 5x + 0.0004x3 is Θ(x3):

0.0004x3 ≤ 5x + 0.0004x3 ≤ 5.0004x3 whenever x > 1.



Example: The Prime Number Theorem

A positive integer m is prime if m > 1 and the only ways to write
m as the product of two positive integers are m × 1 and 1×m.

So the primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,. . .

Euclid’s Theorem: The set of primes is infinite.
(Proved about 2400 years ago.)

How many primes are less than a million? Less than a trillion?

Let π(n) be the number of primes between 1 and n.
E.g. π(10) = 4, π(100) = 22, π(106) = 78,498,
π(1012) ≈ 4×1010.

The Prime Number Theorem (proved in 1896) describes how the
function π(n) grows as n gets large. In our terms, it implies that

π(n) is Θ

(
n

log n

)
.

That is, there are constants C1 and C2 and k such that

C1
n

log n
≤ π(n) ≤ C2

n

log n
whenever n > k .



Example: Let f (x) =
x3√
x + 4

for x > 0.

Can we show that f (x) is Θ(xp) for some power p?
Well, f (x) ≤ x3, so f (x) is O(x3). Can we do better?

x3√
x + 4

≤ x3√
x

(decreasing the denominator)

=
x3

x1/2
= x3−

1
2 = x5/2. ∴ f (x) is O(x5/2).

Can we also show f (x) ≥ C x5/2?
We would like to replace the denominator by

√
x (times a

constant), while increasing the denominator.
Observe that

√
x + 4 ≤

√
x + 4

√
x whenever x > 1.

So whenever x > 1, we have
√
x + 4 ≤ 5

√
x , and hence

x3√
x + 4

≥ x3

5
√
x

=
1

5
x5/2. ∴ f (x) is Ω(x5/2).

Conclusion: f (x) is Θ(x5/2).



Example: Let f (n) =
∑2n

j=1

√
j . That is,

f (1) =
√

1 +
√

2, f (2) =
√

1 +
√

2 +
√

3 +
√

4, etc.

Prove that f (n) is Θ(n
√
n).

(Reminder: n
√
n = n1n

1
2 = n1+

1
2 = n3/2.)

To prove O(n
√
n): Notice that f (n) is the sum of 2n terms, of

which the largest one is
√

2n. Therefore
f (n) ≤

∑2n
j=1

√
2n = 2n

√
2n = (2

√
2)(n
√
n).

To prove Ω(n
√
n) (this is trickier):

f (n) ≥
2n∑

j=n+1

√
j ≥

2n∑
j=n+1

√
n

(because: If j ≥ n + 1, then
√
j ≥
√
n + 1 ≥

√
n.) Thus

f (n) ≥
2n∑

j=n+1

√
n = n ×

√
n (n terms in this sum).

Since f (n) ≥ n
√
n, we conclude that f (n) is Ω(n

√
n).

Since f (n) is O(n
√
n) and Ω(n

√
n), it is Θ(n

√
n).



Next class: Read Section 5.1. This describes a powerful method of
proof called mathematical induction. On first reading, read up to
page 344.

Information about the first midterm (next Tuesday) is on eClass.

New office hours (S616 Ross and Zoom):

Mondays 2:00–3:00
Tuesdays 1:30–2:30
Fridays 1:00–2:00


