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Recall from Section 2.1.4:

Definition: Let n ∈ N and let S be a set. If S has exactly n
elements, then we say that n is the cardinality of S , and we write
|S | = n. In this case we also say that S is a finite set.

Examples: (a) {1, 3, 5, 7, 9} has cardinality 5. It is a finite set.

(b) The empty set is a finite set, with cardinality 0. (Recall 0 ∈ N.)
. . .

(d) If B is a finite set, and A ⊆ B, then A is finite and
|B − A| = |B| − |A|.
In particular, if A ⊆ B, then |A| ≤ |B|.
An infinite set is a set that is not finite. E.g. N, Z, Q, and R.

Today we shall focus on infinite sets, with two principle themes:

(1) Some infinite sets are “bigger” than others (but not in the way
you might expect)

(2) There are implications in theoretical computer science: some
things cannot be computed



First let’s have another look at finite sets.

Let n ∈ Z+. A set S has cardinality n (i.e. |S | = n) if and only if
there is a bijection from {1, 2, . . . , n} to S .

(Recall bijection is also called one-to-one correspondence)

Example (a) Let GL be the set of Great Lakes:
GL = {Erie, Huron, Michigan, Ontario, Superior}. Then |GL| = 5,
and here is a bijection f : {1, 2, 3, 4, 5} → GL: f (1) = Ontario,
f (2) =Erie, f (3) =Huron, f (4) =Michigan, f (5) =Superior.

Property A: Two nonempty finite sets A and B have the same
cardinality if and only if there is a bijection from A to B.

E.g. {Medicine, Physics, Chemistry, Peace, Literature} has
cardinality 5, so there is a bijection from this set to GL.

Big Idea: We also use Property A for infinite sets. In fact, that will
be how we define cardinality of infinite sets.



Definition 1: Two nonempty sets A and B have the same
cardinality if and only if there is a bijection from A to B.
We write |A| = |B| to denote this situation.

Examples: Consider the sets Z (all integers), Z+ = {1, 2, 3 . . .},
N = {0, 1, 2, 3, . . .}, and Even = {. . . ,−4,−2, 0, 2, 4, . . .}.
First consider Z+ and N. Note that Z+ ⊂ N but |Z+| = |N|
because there is a bijection g : Z+ → N defined by g(x) = x − 1.

• • • • • • • • • · · ·
Next consider Z and Even. We have a bijection h : Z→ Even
defined by h(x) = 2x , so |Z| = |Even|.

Next consider N and Z.
N 0 1 2 3 4 5 6 · · ·
↓ ↓ ↓ ↓ ↓ ↓ ↓

Z 0 -1 1 -2 2 -3 3 · · ·
This is a bijection! (Exercise: Show that we can write this bijection
as k(x) = (−1)xdx/2e.) We conclude that |N| = |Z|.
Therefore Z, Z+, N, and Even all have the same cardinality.
(This is because if f1 : A→ B and f2 : B → C are bijections, then
f2 ◦ f1 : A→ C is also a bijection. Exercise: Prove this.)



Definition 3: A set is said to be countable if it is finite or if it has
the same cardinality as Z+.
An uncountable set is a set that is not countable.

We have seen that N, Z and Even are all countable. The set Q of
rational numbers is also countable (Example 4, page 182).

However, the set R of all real numbers is not countable. This was
proved in 1879 by Georg Cantor. At the time, it was a big surprise
that not all “infinite numbers” are the same!
See Example 5 (p. 183) for the proof. We will do a similar proof in
class later today in a different context.

Remark: Not all uncountable sets have the same cardinality as
each other. In particular, there is an uncountable set U such that
|U| 6= |R|. (An example is the power set P(R), the set of all
subsets of R.)

Observation: A set is countable if and only if all of its elements can
be listed as the terms of a sequence a0, a1, a2, . . .



Theorem 1: The union of two countable sets is a countable set.

Why is this true? Let A and B be two countable sets. Then we
can write A = {a1, a2, a3, . . .} and B = {b1, b2, b3, . . .}.

a1 a2 a3 a4 a5 a6 a7 . . .
b1 b2 b3 b4 b5 b6 b7 . . .

How can we make one sequence out of both rows? Here is one way:

a1, b1, a2, b2, a3, b3, a4, b4, . . .

(If B is finite, say, then just use a’s when you use up all the b’s.
If some elements are in both A and B, say a9 = b5, then skip over
any element you come to that has already appeared in the list.)

Similarly, the union of three countable sets is countable:

a1 a2 a3 a4 a5 a6 a7 . . .
b1 b2 b3 b4 b5 b6 b7 . . .
c1 c2 c3 c4 c5 c6 c7 . . .

Sequence: a1, b1, c1, a2, b2, c2, a3, . . .



What about the union of a countable number of finite sets?
Assume that A1,A2,A3,A4, . . . are finite sets, and let

W =
∞⋃
n=1

An = A1 ∪ A2 ∪ A3 ∪ . . .

Then we can make a sequence that contains all elements of W :
First list all of the elements of A1, then list all the elements of A2,
then list all the elements of A3, and so on.
This tells us that W is countable. This proves

Theorem 1.A: The union of a countable number of finite sets is a
countable set.

Example: N2: Recall that

N2 = N× N = {(j , k) | j ∈ N and k ∈ N } .

We shall use the above ideas to prove that N2 is a countable set.



Theorem 1.A: The union of a countable number of finite sets is a
countable set.

N2 = N× N = {(j , k) | j ∈ N and k ∈ N }
= { (0, 0), (0, 1), (0, 2), (0, 3), . . .

(1, 0), (1, 1), (1, 2), (1, 3), . . .

(2, 0), (2, 1), (2, 2), (2, 3), . . .

(3, 0), (3, 1), (3, 2), (3, 3), . . . }
= { (0, 0) } ∪ { (0, 1), (1, 0) } ∪ { (0, 2), (1, 1), (2, 0) }

∪ { (0, 3), (1, 2) (2, 1), (3, 0) } ∪ · · ·
Now, for each n ∈ N, let An = {(j , k) ∈ N2 | j + k = n }, so that

A0 = {(0, 0)}, A1 = { (0, 1), (1, 0) }, A2 = { (0, 2), (1, 1), (2, 0) }
and so on. Note that each set An is finite. Then

N2 =
∞⋃
n=0

An = A0 ∪ A1 ∪ A2 ∪ A3 ∪ . . .

Therefore, by Theorem 1.A, N2 is a countable set.



What can we say about the cardinalities of finite sets A and B if
there is an injective (i.e. one-to-one) function from A to B?
Then A has smaller cardinality than B, i.e. |A| ≤ |B|.

The same thing holds for infinite sets. In fact, the existence of an
injective function from A to B is the definition of the assertion
|A| ≤ |B| (Definition 2).

The following result is obvious for finite sets, but harder to prove
for infinite sets:

Theorem 2: If |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.

For examples of Theorem 2 in use, see the text or the end of
today’s slides.



Uncomputable Functions (p. 185)

A function f : N→ N is said to be computable if there is a
computer program in some programming language (or, an
algorithm) that can evaluate f (n) for every natural number n.
A function that is not computable is said to be uncomputable.

E.g. The factorial function n! is computable.

So is “the largest prime number that is a factor of n”.

So is F (n) =“the number of ordered pairs (j , k) ∈ N2 such that
3j4 + 5k6 = n7.”

So are many other functions that are easily written down.

Question: Are there any uncomputable functions from N to N?
Answer: Yes!

A proof of this answer is based on two facts:
(1) The number of possible computer programs is countable
(because every program can be expressed as a finite sequence of
characters from a finite “alphabet”; apply Theorem 1.A) (Ex. 37);

(2) The number of functions from N to N is uncountable.



We shall prove that the number of functions from N to N is
uncountable.
The proof will be by contradiction.
Assume that the number of functions from N to N is countable.
Then we can put all of these functions in a sequence
f0, f1, f2, f3, . . . where each fn is a function from N to N.

f0 : f0(0) f0(1) f0(2) f0(3) f0(4) . . .
f1 : f1(0) f1(1) f1(2) f1(3) f1(4) . . .
f2 : f2(0) f2(1) f2(2) f2(3) f2(4) . . .
f3 : f3(0) f3(1) f3(2) f3(3) f3(4) . . .

...

For example, if the first few functions are f0(n) = n2, f1(n) = 3n,
f2(n) = n!, f3(n) = 2n + 1, then we would have

f0 : 0 1 4 9 16 . . .
f1 : 0 3 6 9 12 . . .
f2 : 1 1 2 6 24 . . .
f3 : 1 3 5 7 9 . . .

Can we find a function
that is different from every
function in this infinite list?
The assumption says NO.



We now define another function g : N→ N as follows:

g(n) = fn(n) + 10 for every n ∈ N .

Here is how to think of g for our example:

f0 : 0 1 4 9 16 . . .
f1 : 0 3 6 9 12 . . .
f2 : 1 1 2 6 24 . . .
f3 : 1 3 5 7 9 . . .

...

The entries f0(0), f1(1),
f2(2), f3(3), . . . are in red

So we obtain
g(0) = 10, g(1) = 13, g(2) = 12, g(3) = 17,. . .

Whatever the actual functions f0, f1, f2, . . . are, we see
g is not f0 because g(0) 6= f0(0) (in fact, g(0) = f0(0) + 10)
g is not f1 because g(1) 6= f1(1) (in fact, g(1) = f1(1) + 10)
...
g is not f79 because g(79) 6= f79(79) (g(79) = f79(79) + 10)
...



So for every natural number n, the function g is not fn because
g(n) 6= fn(n) (in fact, g(n) = fn(n) + 10)

g(n) = fn(n) + 10 for every n ∈ N .

f0 : f0(0) f0(1) f0(2) f0(3) f0(4) . . .
f1 : f1(0) f1(1) f1(2) f1(3) f1(4) . . .
f2 : f2(0) f2(1) f2(2) f2(3) f2(4) . . .
f3 : f3(0) f3(1) f3(2) f3(3) f3(4) . . .

...
. . .

So g is not in the list f0, f1, f2, . . ..
But we assumed that this list contains ALL functions from N to N.

CONTRADICTION!

We conclude that there uncountably many functions from N to N.
This completes the proof of fact (2).

And fact (1) says that only countably many of these functions are
computable.

Therefore there exist (many!) uncomputable functions.



Additional examples

Example: We shall use Theorem 1.A to prove that Q, the set of
rational numbers, is a countable set.

We can express the set of rational numbers as

Q =
{m

n

∣∣∣ m ∈ Z, n ∈ Z, and n > 0
}

For each positive integer k , let

Ak =
{m

n

∣∣∣ m ∈ Z, n ∈ Z, n > 0, and |m|+ |n| = k
}
.

That is,

A1 =

{
0

1

}
, A2 =

{
1

1
,
−1

1

}
, A3 =

{
2

1
,

1

2
,
−1

2
,
−2

1

}
and so on. Since every rational number is in Ak for some k , it
follows that

Q =
∞⋃
k=1

Ak .

Also, for every k , we see that Ak is a finite set. Therefore,
Theorem 1.A tells us that Q is countable.



Example: Here is another way to prove that N2 is countable.
Recall

Theorem 2: If |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.

We shall use Theorem 2 to prove that |N| = |N2|.
(That is, we shall prove that the set of natural numbers has the
same cardinality as the set of ordered pairs of natural numbers.)

To show |N| ≤ |N2|: It is easy to find a one-to-one function from
N to N2. E.g. f (x) = (x , 0).

To finish the proof, we need to show |N2| ≤ |N|.
That is, we need to find a one-to-one function from N2 to N.
(This is the trickier part!)



Here’s one way to construct a one-to-one function H from N2 to N.

Let (j , k) ∈ N2. Then j and k are natural numbers.
Let H(j , k) be the number represented (in base 10) by a string of j
2’s followed by a string of k 5’s.

E.g. H(3, 4) = 2225555, H(12, 1) = 2222222222225,
H(6, 0) = 222222, H(0, 6) = 555555,

and we’ll specially define H(0, 0) to be 0.

Clearly “most” natural numbers are not in the range of H. But
any number x that is in the range of H obviously has only one
possible preimage (counting the number of 2’s gives j , and count
5’s gives k).

Thus H : N2 → N is one-to-one.

This proves that |N2| ≤ |N|.
This completes the proof that |N2| = |N|.

Remark: Without Theorem 2, it would not yet be clear whether
there exists a bijection from N2 to N. Theorem 2 assures us that
such a bijection exists, although we don’t know what it is!



Next class: Read Section 3.2. This section is motivated as a tool
for describing the efficiency of algorithms (although we will not
have much to say about algorithms in this course).

Information about the first midterm, on Tuesday February 14, is on
eClass. Two sample tests are also posted.

Homework updates:
• Problem Set A: Two proofs to write up and submit to
Crowdmark by Thursday February 2 (tonight!). The questions are
posted on our eClass page.
• Homework assignment 3 (in Connect) is due Sunday February 5.


