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Section 2.3: Functions

We write f : A→ B to say that f is a function from the set A to
the set B.
That is, f assigns one element of B to each element of A.
For a ∈ A, we write f (a) to denote the unique element of B that is
assigned to a.

Examples:

(a) g : R→ R defined by g(x) = x2.
E.g. g(3) = 9, g(8) = 64 = g(−8).

(b) Let Prov be the set of Canadian provinces, and let Cit be
the set of Canadian cities.
We define the function C : Prov → Cit by the rule that C (x) is
the capital city of province x .

E.g. C (Ontario) is Toronto; C (Alberta) is Edmonton.



Examples: (a) g : R→ R defined by g(x) = x2.

(b) C : Prov → Cit defined by C (x) = the capital of x .

We can also represent a function f : A→ B by a subset of A× B
consisting of all ordered pairs of the form (a, f (a)).

(b) For C , this subset includes (ON,Toronto), (AB, Edmonton),
(QC, Quebec City), and seven other ordered pairs (one for each
province).

(a) For g , this subset includes (0, 0), (3, 9), (−3, 9), (
√

2, 2), and
many other points. When viewed as a subset of the plane R2 with
(x , y) coordinate axes, this set is called the graph of the function
(Sec. 2.3.4).



Examples: (a) g : R→ R defined by g(x) = x2.

(b) C : Prov → Cit defined by C (x) = the capital of x .

Images: For the function f : A→ B:

For a ∈ A, let b = f (a). Then b is the image of a, and a is a
preimage of b.

E.g. (a) For g(x) = x2: The number 9 is the image of 3, and 3 is a
preimage of 9. Observe that −3 is also a preimage of 9. (This is
why we say “a preimage” instead of “the preimage.”)

(b) For C : Prov → Cit, the image of Manitoba is Winnipeg. A
preimage of Toronto is Ontario. In this case, no city has more than
one preimage. Some cities have no preimage (e.g. Hamilton, since
Hamilton is not the capital of any province).



Examples: (a) g : R→ R defined by g(x) = x2.

(b) C : Prov → Cit defined by C (x) = the capital of x .

Terminology: For f : A→ B, we say that A is the domain and B is
the codomain of f .

(a) For the function g , the domain is R and the codomain is R.

(b) For the function C , the domain is Prov and codomain is Cit.

The range (or image) of f is the set of all the images of elements
of A.

(a) The range of g is the set of nonnegative real numbers.

(b) The range of C is the set of the ten provincial capitals.

Note the difference between codomain and range.



Examples: (a) g : R→ R defined by g(x) = x2.

(b) C : Prov → Cit defined by C (x) = the capital of x .

Let S ⊆ A. The image of S under f is the set of all images of
elements of S .

(b) The image of { New Brunswick, Nova Scotia, PEI} under C is
the set of the three corresponding capitals: {Fredericton, Halifax,
Charlottetown}.
(a) Poll: The image of [−2, 2] under g is

(A) [−4, 4] (C) {4}
(B) [0, 4] (D) {0, 1, 4}

Answer: (B)

Notation: The image of the set S under f is written f (S). It
equals {f (x) | x ∈ S}.



Examples: (a) g : R→ R defined by g(x) = x2.

(b) C : Prov → Cit defined by C (x) = the capital of x .

A function f : A→ B is one-to-one, or injective, if and only if no
element of B has more than one preimage.
This is equivalent to saying
∀u ∈ A, ∀w ∈ A ([f (u) = f (w)] → [u = w ]).

(a) Is the function g injective?
No, because 9 has two preimages, namely −3 and +3.
Alternative answer: No, because g(−3) = g(3) but −3 6= 3.

(b) Is the function C injective?
Yes. No city is the capital of two different provinces.



Examples: (a) g : R→ R defined by g(x) = x2.

(b) C : Prov → Cit defined by C (x) = the capital of x .

A function f : A→ B is onto, or surjective, if and only if every
element of B has at least one preimage.

This is equivalent to saying ∀b ∈ B, ∃a ∈ A (f (a) = b).

This is also equivalent to saying that the range equals the
codomain.

Poll: Which of the above functions g and C are surjective?

(A) both (C) only g
(B) neither (D) only C

Answer: Neither.
The function g is not surjective because −1 is in the codomain but
has no preimage, i.e. there is no number x such that x2 = −1.

The function C is not surjective because Mississauga is in Cit but
has no preimage. That is, there is no province whose capital is
Mississauga.



A function f : A→ B is one-to-one, or injective, if and only if no
element of B has more than one preimage.

A function f : A→ B is onto, or surjective, if and only if every
element of B has at least one preimage.

Subtler examples: Which of these functions are one-to-one? onto?

g : R→ R defined by g(x) = x2.

h : R→ [0,∞) defined by h(x) = x2.

k : [0,∞)→ [0,∞) defined by k(x) = x2.

The function g is NOT one-to-one because e.g. g(−2) = 4 = g(2),
and it is NOT onto because −1 is in the codomain but has no
preimage, i.e. there is no number x such that x2 = −1.

The function h is NOT one-to-one because e.g. h(−2) = 4 = h(2),
and it IS onto because for every b in [0,∞), there is an a ∈ R such
that a2 = b (a could be

√
b, as well as −

√
b).

The function k IS one-to-one AND onto. This is because for every
b in [0,∞), there is a UNIQUE a ∈ [0,∞) such that a2 = b,
namely

√
b (the positive square root of b).



Example (c) Let L : R→ R be defined by L(x) = 3x + 5.

Show that L is injective (one-to-one) and surjective (onto).

Injective: Assume L(u) = L(w). Then

3u + 5 = 3w + 5 Subtract 5 from both sides:

3u = 3w Divide both sides by 3:

u = w .

This proves that L(u) = L(w)→ u = w . Therefore L is injective.

Surjective: Let b ∈ R. Must there be an x such that L(x) = b?

L(x) = b ↔ 3x + 5 = b

↔ 3x = b − 5

↔ x =
b − 5

3
.

Indeed, L

(
b − 5

3

)
= 3

(
b − 5

3

)
+ 5 = b. So, YES.

This proves that L is surjective.



A function that is injective and surjective is said to be bijective.
We also say that such a function is a bijection, or a one-to-one
correspondence.

Example (c) Recall L : R→ R defined by L(x) = 3x + 5. We
proved that L is injective and surjective. Therefore L is bijective.

Example (a1) Recall k : [0,∞)→ [0,∞) defined by k(x) = x2.
We saw that k is bijective.

Example (b1) Let Cap be the set of Canadian provincial capital
cities. Define a new function CC : Prov → Cap by CC (x) = the
capital of x . Then CC is bijective (unlike C : Prov → Cit.)

Every bijection f : A→ B has an inverse function f −1 : B → A,
which we shall define on the next slide.

In Example (a1), k−1(b) =
√
b.

In Example (b1), CC−1 : Cap → Prov . E.g. CC−1(Toronto) =
Ontario, and CC−1(Victoria) = British Columbia.



Assume f : A→ B is bijective. The inverse function of f , denoted
f −1, is the function f −1 : B → A such that the image of b ∈ B
under f −1 equals the preimage of b under f .

Example (d): Define M : R→ R by M(x) = x3.

Then M is a bijection and M−1(b) = b1/3.

Example (c): Let L : R→ R be defined by L(x) = 3x + 5.

RECALL: Let b ∈ R. Must there be an x such that L(x) = b ?

L(x) = b ↔ 3x + 5 = b ↔ 3x = b − 5

↔ x =
b − 5

3
.

Indeed, L

(
b − 5

3

)
= 3

(
b − 5

3

)
+ 5 = b. So, YES.

This calculation shows that L−1(b) =
b − 5

3
. We also see

L
(
L−1(b)

)
= b and L−1(L(x)) =

(3x + 5) − 5

3
= x .



The last relations hold more generally:

If the inverse function of f : A→ B is f −1 : B → A, then

f −1 (f (a)) = a for every a in A, and

f
(
f −1(b)

)
= b for every b in B.

Recall these functions:
h : R→ [0,∞) defined by h(x) = x2.

k : [0,∞)→ [0,∞) defined by k(x) = x2.

We saw that h is not a bijection, hence it has no inverse function.
The function k is a bijection, and its inverse is k−1(b) =

√
b.

For a ∈ [0,∞), k−1(k(a)) =
√
a2 = a (since a ≥ 0) ,

For b ∈ [0,∞), k(k−1(b)) =
(√

b
)2

= b .

Could k−1(b) =
√
b also be an inverse function of h?

For b ∈ [0,∞), h(k−1(b)) =
(√

b
)2

= b .

BUT: For a = −3 ∈ R, k−1(h(−3)) =
√

(−3)2 = +3 6= −3 .

So, NO.



One more piece of notation:

Assume g : A→ B and h : B → C . Then for every a ∈ A, h(g(a))
is in C (because g(a) ∈ B).
So h(g(a)) defines a function from A to C , called the composition
of h and g , and written h ◦ g . That is, h ◦ g : A→ C .

Notice that g ◦ h does not necessarily make sense in the above
situation:
We have h(x) ∈ C for x ∈ B, so g(h(x)) may not be defined!



A few more things for you to read about in Section 2.3:

Subsection 2.3.5:

Floor function bxc and ceiling function dxe for x ∈ R, with range
Z.

E.g. b5.13c = 5 (“round down”) and d5.13e = 6 (“round up”)

Factorial function n! = 1× 2× 3× · · · × n for n ∈ N, with
codomain Z+

Subsection 2.3.6: Partial functions: May not be defined for every
element of the domain(!).
E.g. the partial function f : R→ R defined by f (x) = 1

x

Don’t worry about this unless you see the phrase “partial function”
stated explicitly



Section 2.4: Sequences and Summations

A sequence is an ordered list of things. Unless we say “finite
sequence,” we assume that the sequence is infinitely long.
Here are some examples of infinite sequences of numbers:

(1) 1, 1
2 , 1

3 , 1
4 , . . .

(2) 1, 2, 4, 8, 16,. . .

(3) 2, 0, 2, 0, 2,. . .

(4) 3, 3.1, 3.14, 3.141, 3.1415, . . .

Notation: a1, a2, a3, . . . ; or {an}; or a0, a1, a2, . . . [or use some
other letter]
For (1): an = 1

n for n ≥ 1.

There are various ways to describe (2):
• bn = 2n−1 for n ≥ 1
• cn = 2n for n ≥ 0
• b1 = 1 and bn = 2 bn−1 for n ≥ 2 [a recurrence relation]
Sequence (2) is an example of a geometric progression.



For the third example: 2, 0, 2, 0, 2,. . . can be described as follows:

• dk =

{
2 if k is odd
0 if k is even

or

• dk = 1− (−1)k for k ≥ 1 or
• d1 = 2 and dk = 2− dk−1 for k ≥ 2

For the fourth example, 3, 3.1, 3.14, 3.141, 3.1415, . . . :
The nth term in the sequence is π truncated to n digits.

We can also view a sequence a1, a2, a3, . . . as a function with
domain {1, 2, 3, . . .}, writing an instead of f (n).

A finite sequence (e.g. the digits of your student number, or the
names of the people in this class in alphabetical order) is also
called a string. This section mainly discusses infinite sequences.



Example (5): The sequence of factorials, defined by

1! = 1,
2! = 2× 1 = 2
3! = 3× 2× 1 = 6
4! = 4× 3× 2× 1 = 24

...
n! = n × (n − 1)× (n − 2)× · · · × 2× 1
and
0! = 1.

Observe that factorials satisfy the relations

4! = 4× [3!], 3! = 3× [2!], 2! = 2× [1!], 1! = 1 = 1× [0!]

and in general

n! = n×[(n − 1)× (n − 2)× · · · × 2× 1] = n×[(n − 1)!] for n ≥ 1.

So if we define a sequence kn by the recurrence relation

k0 = 1 and kn = n × kn−1 for n ≥ 1,

then kn = n! for every n ∈ N.



Example (6): 3, 13, 23, 33, 43,. . .

We can write this sequence as a1, a2, a3, . . . with the “closed
formula” an = 3 + 10(n − 1).

This is an example of an arithmetic progression with initial term 3
and common difference 10.

Subsections 2.4.3–2.4.4 give more examples of sequences, notably
the Fibonacci sequence in Definition 5.
We will revisit sequences and recurrence relations in much more
detail in Chapters 5 and 8.



Section 2.4.4: Summation

Notation: For a real sequence {an}, we write

a4 + a5 + a6 + a7 + a8 =
8∑

n=4

an =
8∑

w=4

aw

and more generally

am + am+1 + · · · + an =
n∑

i=m

ai .

Example: The sum of the first 6 terms of the sequence 1, 2, 4, 8,
16,. . . is

1 + 2 + 4 + 8 + 16 + 32 =
5∑

j=0

2j =
6∑

k=1

2k−1 = 63.

See Theorem 1 for a formula for the sum of terms in a geometric
sequence (and as an exercise, check that it works in this case).



Notice that Section 2.2.3 introduced similar notation for unions
and intersections:

J3 ∪ J4 ∪ J5 ∪ J6 =
6⋃

n=3

Jn J3 ∩ J4 ∩ J5 ∩ J6 =
6⋂

n=3

Jn

For our example from the class of January 26:
Suppose Jn = {n, n + 1, n + 2} for each n.
Then

6⋃
n=3

Jn = {3, 4, 5}∪{4, 5, 6}∪{5, 6, 7}∪{6, 7, 8} = {3, 4, 5, 6, 7, 8}

and

6⋂
n=3

Jn = {3, 4, 5} ∩ {4, 5, 6} ∩ {5, 6, 7} ∩ {6, 7, 8} = ∅ .



Example: What is the sum of the first 100 positive integers? That
is,

1 + 2 + 3 + 4 + · · ·+ 99 + 100 =
100∑
k=1

k = ?

There is a story about Carl Friedrich Gauss (1777–1855), one of
the greatest mathematicians ever. When he was 8 years old, his
teacher asked the class to add up the numbers from 1 to 100.
Gauss noticed

1 + 100 = 101

2 + 99 = 101

3 + 98 = 101
...

50 + 51 = 101

and quickly concluded that the sum of the numbers from 1 to 100
must be 101× 50 = 5050.



The formula for the sum of the first n positive integers is

1 + 2 + 3 + · · ·+ n =
n∑

k=1

k =
n(n + 1)

2
.

This can be proven in many ways. Gauss’ approach is one way.
There is also a visual argument:

1 2 n

n

1 2 n

n
n+1

The number of squares in the left picture is 1 + 2 + · · ·+ n.
This equals half of the number of squares in the right picture.
The right picture is a rectangle with n × (n + 1) little squares.



Other special formulas for sums are given in Table 2 (p. 176).
These are only for reference; you don’t need to memorize this table.

Sums of infinitely many terms (also called “infinite series”) are
difficult to deal with. They are usually treated in a Calculus II
course. They lead to some very interesting mathematics, such as

∞∑
n=1

1

n2
=

π2

6
.

We will not discuss infinite sums in this course.



Example (Double summation):

4∑
i=2

5∑
j=3

(i + j)2 =
4∑

i=2

 5∑
j=3

(i + j)2


=

5∑
j=3

(2 + j)2 +
5∑

j=3

(3 + j)2 +
5∑

j=3

(4 + j)2

=
(
(2 + 3)2 + (2 + 4)2 + (2 + 5)2

)
+
(
(3 + 3)2 + (3 + 4)2 + (3 + 5)2

)
+
(
(4 + 3)2 + (4 + 4)2 + (4 + 5)2

)
which turns out to be 453.



Next class: Read Section 2.5. It is mostly about infinity, and is not
easy to grasp on first reading.

The next homework is posted:
• Problem Set A: Two proofs to write up and submit online
through Crowdmark, due Thursday February. It is posted on our
eClass page.
• Homework assignment 3: Questions in Connect, as usual, due
Sunday February 5.

Information about the first midterm, on Tuesday February 14, will
be posted on eClass soon. It will cover everything up to and
including Section 2.5.


